1
|
Brown ME, Hernandez-Urbina DA, Kumsta C. Low humidity enhances thermotolerance in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001404. [PMID: 39650082 PMCID: PMC11625312 DOI: 10.17912/micropub.biology.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Humidity is an important environmental factor that causes physiological changes in organisms. In humans, high humidity disrupts thermoregulation by limiting heat dissipation, leading to heat stress. While Caenorhabditis elegans lacks comparable thermoregulatory systems, humidity may still impact its heat tolerance by affecting cellular stress responses. We tested this by subjecting C. elegans to heat shock under different humidity conditions and found that lower humidity during heat shock improved survival compared to higher humidity. These findings demonstrate that humidity is an important variable affecting thermotolerance in C. elegans and should be standardized in heat-stress experiments.
Collapse
Affiliation(s)
- Michelle E. Brown
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | | | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| |
Collapse
|
2
|
Erinjeri AP, Wang X, Williams R, Chiozzi RZ, Thalassinos K, Labbadia J. HSF-1 promotes longevity through ubiquilin-1-dependent mitochondrial network remodelling. Nat Commun 2024; 15:9797. [PMID: 39532882 PMCID: PMC11557981 DOI: 10.1038/s41467-024-54136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Increased activity of the heat shock factor, HSF-1, suppresses proteotoxicity and enhances longevity. However, the precise mechanisms by which HSF-1 promotes lifespan are unclear. Using an RNAi screen, we identify ubiquilin-1 (ubql-1) as an essential mediator of lifespan extension in worms overexpressing hsf-1. We find that hsf-1 overexpression leads to transcriptional downregulation of all components of the CDC-48-UFD-1-NPL-4 complex, which is central to both endoplasmic reticulum and mitochondria associated protein degradation, and that this is complemented by UBQL-1-dependent turnover of NPL-4.1. As a consequence, mitochondrial network dynamics are altered, leading to increased lifespan. Together, our data establish that HSF-1 mediates lifespan extension through mitochondrial network adaptations that occur in response to down-tuning of components associated with organellar protein degradation pathways.
Collapse
Affiliation(s)
- Annmary Paul Erinjeri
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Xunyan Wang
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Rhianna Williams
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Riccardo Zenezini Chiozzi
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- UCL Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- UCL Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Johnathan Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
3
|
Tiwari V, Buvarp E, Borbolis F, Puligilla C, Croteau D, Palikaras K, Bohr V. Loss of DNA glycosylases improves health and cognitive function in a C. elegans model of human tauopathy. Nucleic Acids Res 2024; 52:10965-10985. [PMID: 39149885 PMCID: PMC11472166 DOI: 10.1093/nar/gkae705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing a major burden on families and society. Some of the main pathological hallmarks of AD are the accumulation of amyloid plaques (Aβ) and tau neurofibrillary tangles. However, it is still unclear how Aβ and tau aggregates promote specific phenotypic outcomes and lead to excessive oxidative DNA damage, neuronal cell death and eventually to loss of memory. Here we utilized a Caenorhabditis elegans (C. elegans) model of human tauopathy to investigate the role of DNA glycosylases in disease development and progression. Transgenic nematodes expressing a pro-aggregate form of tau displayed altered mitochondrial content, decreased lifespan, and cognitive dysfunction. Genetic ablation of either of the two DNA glycosylases found in C. elegans, NTH-1 and UNG-1, improved mitochondrial function, lifespan, and memory impairment. NTH-1 depletion resulted in a dramatic increase of differentially expressed genes, which was not apparent in UNG-1 deficient nematodes. Our findings clearly show that in addition to its enzymatic activity, NTH-1 has non-canonical functions highlighting its modulation as a potential therapeutic intervention to tackle tau-mediated pathology.
Collapse
Affiliation(s)
- Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Elisabeth Buvarp
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Fivos Borbolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chandrakala Puligilla
- Section for Telomere Maintenance, LGG, National Institute on Aging, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Computational Biology & Genomics Core, LGG, NIA, Baltimore, MD 21224, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Center for Healthy Aging, University of Copenhagen, 2200 N, Denmark
| |
Collapse
|
4
|
Jeayeng S, Thongsroy J, Chuaijit S. Caenorhabditis elegans as a Model to Study Aging and Photoaging. Biomolecules 2024; 14:1235. [PMID: 39456168 PMCID: PMC11505728 DOI: 10.3390/biom14101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Caenorhabditis elegans (C. elegans) has emerged as an outstanding model organism for investigating the aging process due to its shortened lifespan, well-defined genome, and accessibility of potent genetic tools. This review presents the current findings on chronological aging and photoaging in C. elegans, exploring the elaborate molecular pathways that control these processes. The progression of chronological aging is characterized by a gradual deterioration of physiological functions and is influenced by an interaction of genetic and environmental factors, including the insulin/insulin-like signaling (IIS) pathway. In contrast, photoaging is characterized by increased oxidative stress, DNA damage, and activation of stress response pathways induced by UV exposure. Although the genetic mechanisms of chronological aging in C. elegans have been characterized by extensive research, the pathways regulating photoaging are comparatively less well-studied. Here, we provide an overview of the current understanding of aging research, including the crucial genes and genetic pathways involved in the aging and photoaging processes of C. elegans. Understanding the complex interactions between these factors will provide invaluable insights into the molecular mechanisms underlying chronological aging and photoaging and may lead to novel therapeutic approaches and further studies for promoting healthy aging in humans.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Jirapan Thongsroy
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sirithip Chuaijit
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
5
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Minor C, Castro Torres T, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Growth on stiffer substrates impacts animal health and longevity in C. elegans. PLoS One 2024; 19:e0302673. [PMID: 39264947 PMCID: PMC11392421 DOI: 10.1371/journal.pone.0302673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024] Open
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo model organism setting to study the impact of altering substrate stiffness on aging by changing the stiffness of solid agar medium used for growth of C. elegans. We found that greater substrate stiffness had limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our study reveals that altering substrate stiffness of growth medium for C. elegans has only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Cray Minor
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Song J, Li Z, Zhou L, Chen X, Sew WQG, Herranz H, Ye Z, Olsen JV, Li Y, Nygaard M, Christensen K, Tong X, Bohr VA, Rasmussen LJ, Dai F. FOXO-regulated OSER1 reduces oxidative stress and extends lifespan in multiple species. Nat Commun 2024; 15:7144. [PMID: 39164296 PMCID: PMC11336091 DOI: 10.1038/s41467-024-51542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
FOXO transcription factors modulate aging-related pathways and influence longevity in multiple species, but the transcriptional targets that mediate these effects remain largely unknown. Here, we identify an evolutionarily conserved FOXO target gene, Oxidative stress-responsive serine-rich protein 1 (OSER1), whose overexpression extends lifespan in silkworms, nematodes, and flies, while its depletion correspondingly shortens lifespan. In flies, overexpression of OSER1 increases resistance to oxidative stress, starvation, and heat shock, while OSER1-depleted flies are more vulnerable to these stressors. In silkworms, hydrogen peroxide both induces and is scavenged by OSER1 in vitro and in vivo. Knockdown of OSER1 in Caenorhabditis elegans leads to increased ROS production and shorter lifespan, mitochondrial fragmentation, decreased ATP production, and altered transcription of mitochondrial genes. Human proteomic analysis suggests that OSER1 plays roles in oxidative stress response, cellular senescence, and reproduction, which is consistent with the data and suggests that OSER1 could play a role in fertility in silkworms and nematodes. Human studies demonstrate that polymorphic variants in OSER1 are associated with human longevity. In summary, OSER1 is an evolutionarily conserved FOXO-regulated protein that improves resistance to oxidative stress, maintains mitochondrial functional integrity, and increases lifespan in multiple species. Additional studies will clarify the role of OSER1 as a critical effector of healthy aging.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Chen
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Wei Qi Guinevere Sew
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Zilu Ye
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200, Copenhagen, Denmark
- Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Jesper Velgaard Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yuan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
- Section on DNA repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Ohta A, Sato Y, Isono K, Kajino T, Tanaka K, Taji T, Kuhara A. The intron binding protein EMB-4 is an opposite regulator of cold and high temperature tolerance in Caenorhabditis elegans. PNAS NEXUS 2024; 3:pgae293. [PMID: 39118835 PMCID: PMC11309393 DOI: 10.1093/pnasnexus/pgae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Adaptation and tolerance to changes in heat and cold temperature are essential for survival and proliferation in plants and animals. However, there is no clear information regarding the common molecules between animals and plants. In this study, we found that heat, and cold tolerance of the nematode Caenorhabditis elegans is oppositely regulated by the RNA-binding protein EMB-4, whose plant homolog contains polymorphism causing heat tolerance diversity. Caenorhabditis elegans alters its cold and heat tolerance depending on the previous cultivation temperature, wherein EMB-4 respectively acts as a positive and negative controller of heat and cold tolerance by altering gene expression. Among the genes whose expression is regulated by EMB-4, a phospholipid scramblase, and an acid sphingomyelinase, which are involved in membrane lipid metabolism, were found to play essential roles in the negative regulation of heat tolerance.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
| | - Yuki Sato
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
| | - Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
8
|
Sala AJ, Grant RA, Imran G, Morton C, Brielmann RM, Gorgoń S, Watts J, Bott LC, Morimoto RI. Nuclear receptor signaling via NHR-49/MDT-15 regulates stress resilience and proteostasis in response to reproductive and metabolic cues. Genes Dev 2024; 38:380-392. [PMID: 38816072 PMCID: PMC11216168 DOI: 10.1101/gad.351829.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in Caenorhabditis elegans We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, an ortholog of mammalian peroxisome proliferator-activated receptor α (PPARα), regulates stress resilience and proteostasis downstream from embryo integrity and other pathways that influence lipid homeostasis and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing intertissue pathway in somatic cells, triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49, together with its coactivator, MDT-15, contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer. Our findings indicate that NHR-49 also contributes to stress resilience in other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting, and that increased NHR-49 activity is sufficient to improve proteostasis and stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.
Collapse
Affiliation(s)
- Ambre J Sala
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA;
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Rogan A Grant
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ghania Imran
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Claire Morton
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Renee M Brielmann
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Szymon Gorgoń
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jennifer Watts
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Laura C Bott
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA;
| |
Collapse
|
9
|
Kingsley SF, Seo Y, Wood A, Wani KA, Gonzalez X, Irazoqui J, Finkel SE, Tissenbaum HA. Glucose-fed microbiota alters C. elegans intestinal epithelium and increases susceptibility to multiple bacterial pathogens. Sci Rep 2024; 14:13177. [PMID: 38849503 PMCID: PMC11161463 DOI: 10.1038/s41598-024-63514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Overconsumption of dietary sugar can lead to many negative health effects including the development of Type 2 diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disorders. Recently, the human intestinal microbiota, strongly associated with our overall health, has also been known to be affected by diet. However, mechanistic insight into the importance of the human intestinal microbiota and the effects of chronic sugar ingestion has not been possible largely due to the complexity of the human microbiome which contains hundreds of types of organisms. Here, we use an interspecies C. elegans/E. coli system, where E. coli are subjected to high sugar, then consumed by the bacterivore host C. elegans to become the microbiota. This glucose-fed microbiota results in a significant lifespan reduction accompanied by reduced healthspan (locomotion), reduced stress resistance, and changes in behavior and feeding. Lifespan reduction is also accompanied by two potential major contributors: increased intestinal bacterial density and increased concentration of reactive oxygen species. The glucose-fed microbiota accelerated the age-related development of intestinal cell permeability, intestinal distention, and dysregulation of immune effectors. Ultimately, the changes in the intestinal epithelium due to aging with the glucose-fed microbiota results in increased susceptibility to multiple bacterial pathogens. Taken together, our data reveal that chronic ingestion of sugar, such as a Western diet, has profound health effects on the host due to changes in the microbiota and may contribute to the current increased incidence of ailments including inflammatory bowel diseases as well as multiple age-related diseases.
Collapse
Affiliation(s)
- Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Alicia Wood
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Khursheed A Wani
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Xavier Gonzalez
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
10
|
Promtang S, Sanguanphun T, Chalorak P, Pe LS, Niamnont N, Sobhon P, Meemon K. 2-Butoxytetrahydrofuran, Isolated from Holothuria scabra, Attenuates Aggregative and Oxidative Properties of α-Synuclein and Alleviates Its Toxicity in a Transgenic Caenorhabditis elegans Model of Parkinson's Disease. ACS Chem Neurosci 2024; 15:2182-2197. [PMID: 38726817 PMCID: PMC11157484 DOI: 10.1021/acschemneuro.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Aggregative α-synuclein and incurring oxidative stress are pivotal cascading events, leading to dopaminergic (DAergic) neuronal loss and contributing to clinical manifestations of Parkinson's disease (PD). Our previous study demonstrated that 2-butoxytetrahydrofuran (2-BTHF), isolated from Holothuria scabra (H. scabra), could inhibit amyloid-β aggregation and its ensuing toxicity, which leads to Alzheimer's disease. In the present study, we found that 2-BTHF also attenuated the aggregative and oxidative activities of α-synuclein and lessened its toxicity in a transgenic Caenorhabditis elegans (C. elegans) PD model. Such worms treated with 100 μM of 2-BTHF showed substantial reductions in α-synuclein accumulation and DAergic neurodegeneration. Mechanistically, 2-BTHF, at this concentration, significantly decreased aggregation of monomeric α-synuclein and restored locomotion and dopamine-dependent behaviors. Molecular docking exhibited potential bindings of 2-BTHF to HSF-1 and DAF-16 transcription factors. Additionally, 2-BTHF significantly increased the mRNA transcripts of genes encoding proteins involved in proteostasis, including the molecular chaperones hsp-16.2 and hsp-16.49, the ubiquitination/SUMOylation-related ubc-9 gene, and the autophagy-related genes atg-7 and lgg-1. Transcriptomic profiling revealed an additional mechanism of 2-BTHF in α-synuclein-expressing worms, which showed upregulation of PPAR signaling cascades that mediated fatty acid metabolism. 2-BTHF significantly restored lipid deposition, upregulated the fat-7 gene, and enhanced gcs-1-mediated glutathione synthesis in the C. elegans PD model. Taken together, this study demonstrated that 2-BTHF could abrogate aggregative and oxidative properties of α-synuclein and attenuate its toxicity, thus providing a possible therapeutic application for the treatment of α-synuclein-induced PD.
Collapse
Affiliation(s)
- Sukrit Promtang
- Molecular
Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Tanatcha Sanguanphun
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Pawanrat Chalorak
- Department
of Radiological Technology and Medical Physics, Faculty of Allied
Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Laurence S. Pe
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nakorn Niamnont
- Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Prasert Sobhon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
- Center for
Neuroscience, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Govindhan T, Amirthalingam M, Govindan S, Duraisamy K, Cho JH, Tawata S, Periyakali SB, Palanisamy S. Diosgenin intervention: targeting lipophagy to counter high glucose diet-induced lipid accumulation and lifespan reduction. 3 Biotech 2024; 14:171. [PMID: 38828099 PMCID: PMC11143156 DOI: 10.1007/s13205-024-04017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is abundantly found in the plants of the Dioscoreaceae family and exhibits diverse pharmacological properties. In our previous study, we demonstrated that DG supplementation protected Caenorhabditis elegans from high glucose-induced lipid deposition, oxidative damage, and lifespan reduction. Nevertheless, the precise biological mechanisms underlying the beneficial effects of DG have not yet been described. In this context, the present study aims to elucidate how DG reduces molecular and cellular declines induced by high glucose, using the powerful genetics of the C. elegans model. Treatment with DG significantly (p < 0.01) prevented fat accumulation and extended lifespan under high-glucose conditions without affecting physiological functions. DG-induced lifespan extension was found to rely on longevity genes daf-2, daf-16, skn-1, glp-1, eat-2, let-363, and pha-4. Specifically, DG regulates lipophagy, the autophagy-mediated degradation of lipid droplets, in C. elegans, thereby inhibiting fat accumulation. Furthermore, DG treatment did not alter the triglyceride levels in the fat-6 and fat-7 single mutants and fat-6;fat-7 double mutants, indicating the significant role of stearoyl-CoA desaturase genes in mediating the reduction of fat deposition by DG. Our results provide new insight into the fat-reducing mechanisms of DG, which might develop into a multitarget drug for preventing obesity and associated health complications; however, preclinical studies are required to investigate the effect of DG on higher models. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04017-3.
Collapse
Affiliation(s)
| | - Mohankumar Amirthalingam
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213 Japan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112 USA
| | - Shanmugam Govindan
- Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452 Republic of Korea
| | - Shinkichi Tawata
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213 Japan
| | | | | |
Collapse
|
12
|
Flis Ł, Malewski T, Dobosz R. Temperature Effects on Expression Levels of hsp Genes in Eggs and Second-Stage Juveniles of Meloidogyne hapla Chitwood, 1949. Int J Mol Sci 2024; 25:4867. [PMID: 38732085 PMCID: PMC11084963 DOI: 10.3390/ijms25094867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Meloidogyne hapla is one of the most important nematode pathogens. It is a sedentary, biotrophic parasite of plants that overwinters in the soil or in diseased roots. The development of M. hapla is temperature dependent. Numerous studies have been performed on the effect of temperature on the development of M. hapla, but only a few of them analyzed the heat shock protein (hsp) genes. The aim of the study was to perform expression profiling of eight hsp genes (Mh-hsp90, Mh-hsp1, Mh-hsp4, Mh-hsp6, Mh-hsp60, Mh-dnj19, Mh-hsp43, and Mh-hsp12.2) at two development stages of M. hapla, i.e., in eggs and second-stage juveniles (J2). The eggs and J2 were incubated under cold stress (5 °C), heat stress (35 °C, 40 °C), and non-stress (10 °C, 20 °C, and 30 °C) conditions. Expression profiling was performed by qPCR. It was demonstrated that only two genes, Mh-hsp60 and Mh-dnj19, have been upregulated by heat and cold stress at both development stages. Heat stress upregulated the expression of more hsp genes than cold stress did. The level of upregulation of most hsp genes was more marked in J2 than in eggs. The obtained results suggest that the Mh-hsp90 and Mh-hsp1 genes can be used as bioindicators of environmental impacts on nematodes of the Meloidogyne genus.
Collapse
Affiliation(s)
- Łukasz Flis
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
| | - Renata Dobosz
- Department of Entomology and Animal Pests, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznan, Poland;
| |
Collapse
|
13
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Torres TC, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Mechanical stress through growth on stiffer substrates impacts animal health and longevity in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589121. [PMID: 38645203 PMCID: PMC11030433 DOI: 10.1101/2024.04.11.589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo, model organism setting to study the impact of mechanical stress on aging, by increasing substrate stiffness in solid agar medium of C. elegans. To our surprise, we found shockingly limited impact of growth of C. elegans on stiffer substrates, including limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our studies reveal that altering substrate stiffness of growth medium for C. elegans have only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, 92037
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
14
|
Trivedi R, Knopf B, Rakoczy S, Manocha GD, Brown-Borg H, Jurivich DA. Disrupted HSF1 regulation in normal and exceptional brain aging. Biogerontology 2024; 25:147-160. [PMID: 37707683 PMCID: PMC10794279 DOI: 10.1007/s10522-023-10063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Brain aging is a major risk factor for cognitive diseases such as Alzheimer's disease (AD) and vascular dementia. The rate of aging and age-related pathology are modulated by stress responses and repair pathways that gradually decline with age. However, recent reports indicate that exceptional longevity sustains and may even enhance the stress response. Whether normal and exceptional aging result in either attenuated or enhanced stress responses across all organs is unknown. This question arises from our understanding that biological age differs from chronological age and evidence that the rate of aging varies between organs. Thus, stress responses may differ between organs and depend upon regenerative capacity and ability to manage damaged proteins and proteotoxicity. To answer these questions, we assessed age-dependent changes in brain stress responses with normally aged wild type and long-lived Dwarf mice. Results from this study show that normal aging unfavorably impacts activation of the brain heat shock (HS) axis with key changes noted in the transcription factor, HSF1, and its regulation. Exceptional aging appears to preserve and strengthen many elements of HSF1 activation in the brain. These results support the possibility that reconstitution of aging brain stress responses requires a multi-factorial approach that addresses HSF1 protein levels, its DNA binding, and regulatory elements such as phosphorylation and protein interactions.
Collapse
Affiliation(s)
- Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA
| | - Bailey Knopf
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Gunjan D Manocha
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA
| | - Holly Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA.
| |
Collapse
|
15
|
Xiong S, Yu K, Lin H, Ye X, Xiao S, Yang Y, Stanley DW, Song Q, Fang Q, Ye G. Regulatory network in heat stress response in parasitoid wasp focusing on Xap5 heat stress regulator. iScience 2024; 27:108622. [PMID: 38205256 PMCID: PMC10777071 DOI: 10.1016/j.isci.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Insects are susceptible to elevated temperatures, resulting in impaired fertility, and shortened lifespan. This study investigated the genetic mechanisms underlying heat stress effects. We conducted RNA sequencing on Pteromalus puparum exposed to 25°C and 35°C, revealing transcriptional signatures. Weighted Gene Co-expression Network Analysis uncovered heat stress-associated modules, forming a regulatory network of 113 genes. The network is naturally divided into two subgroups, one linked to acute heat stress, including heat shock proteins (HSPs), and the other to chronic heat stress, involving lipogenesis genes. We identified an Xap5 Heat Shock Regulator (XHSR) gene as a crucial network component, validated through RNA interference and quantitative PCR assays. XHSR knockdown reduced wasps' lifespan while directly inducing HSPs and mediating lipogenesis gene induction. CRISPR/Cas9-mediated knockout of the Drosophila XHSR homolog reduced mutants' survival, highlighting its conserved role. This research sheds light on thermal tolerance mechanisms, offering potential applications in pest control amid global warming.
Collapse
Affiliation(s)
- Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Yu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiwei Lin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - David W. Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, 1503 S. Providence Road, Columbia MO, USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Perez FP, Morisaki J, Kanakri H, Rizkalla M. Electromagnetic Field Stimulation Therapy for Alzheimer's Disease. NEUROLOGY (CHICAGO, ILL.) 2024; 3:1020. [PMID: 38699565 PMCID: PMC11064876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia worldwide. AD is a multifactorial disease that causes a progressive decline in memory and function precipitated by toxic beta-amyloid (Aβ) proteins, a key player in AD pathology. In 2022, 6.5 million Americans lived with AD, costing the nation $321billion. The standard of care for AD treatment includes acetylcholinesterase inhibitors (AchEIs), NMDA receptor antagonists, and monoclonal antibodies (mAbs). However, these methods are either: 1) ineffective in improving cognition, 2) unable to change disease progression, 3) limited in the number of therapeutic targets, 4) prone to cause severe side effects (brain swelling, microhemorrhages with mAb, and bradycardia and syncope with AchEIs), 5) unable to effectively cross the blood-brain barrier, and 6) lack of understanding of the aging process on the disease. mAbs are available to lower Aβ, but the difficulties of reducing the levels of the toxic Aβ proteins in the brain without triggering brain swelling or microhemorrhages associated with mAbs make the risk-benefit profile of mAbs unclear. A novel multitarget, effective, and safe non-invasive approach utilizing Repeated Electromagnetic Field Stimulation (REMFS) lowers Aβ levels in human neurons and memory areas, prevents neuronal death, stops disease progression, and improves memory without causing brain edema or bleeds in AD mice. This REMFS treatment has not been developed for humans because current EMF devices have poor penetration depth and inhomogeneous E-field distribution in the brain. Here, we discussed the biology of these effects in neurons and the design of optimal devices to treat AD.
Collapse
Affiliation(s)
- Felipe P Perez
- Department of Medicine, Indiana University School of Medicine, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| |
Collapse
|
17
|
Labbadia J. Potential roles for mitochondria-to-HSF1 signaling in health and disease. Front Mol Biosci 2023; 10:1332658. [PMID: 38164224 PMCID: PMC10757924 DOI: 10.3389/fmolb.2023.1332658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
The ability to respond rapidly and efficiently to protein misfolding is crucial for development, reproduction and long-term health. Cells respond to imbalances in cytosolic/nuclear protein homeostasis through the Heat Shock Response, a tightly regulated transcriptional program that enhances protein homeostasis capacity by increasing levels of protein quality control factors. The Heat Shock Response is driven by Heat Shock Factor 1, which is rapidly activated by the appearance of misfolded proteins and drives the expression of genes encoding molecular chaperones and protein degradation factors, thereby restoring proteome integrity. HSF1 is critical for organismal health, and this has largely been attributed to the preservation of cytosolic and nuclear protein homeostasis. However, evidence is now emerging that HSF1 is also a key mediator of mitochondrial function, raising the possibility that many of the health benefits conferred by HSF1 may be due to the maintenance of mitochondrial homeostasis. In this review, I will discuss our current understanding of the interplay between HSF1 and mitochondria and consider how mitochondria-to-HSF1 signaling may influence health and disease susceptibility.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Genetics, Evolution and Environment, Division of Biosciences, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
18
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Li K, Mocciaro G, Griffin JL, Zhang N. The Saccharomyces cerevisiae acetyltransferase Gcn5 exerts antagonistic pleiotropic effects on chronological ageing. Aging (Albany NY) 2023; 15:10915-10937. [PMID: 37874684 PMCID: PMC10637828 DOI: 10.18632/aging.205109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Compared to replicative lifespan, epigenetic regulation of chronological lifespan (CLS) is less well understood in yeast. Here, by screening all the viable mutants of histone acetyltransferase (HAT) and histone deacetylase (HDAC), we demonstrate that Gcn5, functioning in the HAT module of the SAGA/SLIK complex, exhibits an epistatic relationship with the HDAC Hda1 to control the expression of starvation-induced stress response and respiratory cell growth. Surprisingly, the gcn5Δ mutants lose their colony-forming potential early in the stationary phase but display a longer maximum CLS than their WT counterparts, suggesting the contradictory roles of Gcn5 in lifespan regulation. Integrative analyses of the transcriptome, metabolome and ChIP assays reveal that Gcn5 is necessary for the activation of two regulons upon glucose starvation: the Msn2/4-/Gis1-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogramming, to enable pro-longevity characteristics, including redox homeostasis, stress resistance and maximal storage of carbohydrates. The activation of Cat8-/Adr1-dependent regulon also promotes the pyruvate dehydrogenase (PDH) bypass, leading to acetyl-CoA synthesis, global and targeted H3K9 acetylation. Global H3K9 acetylation levels mediated by Gcn5 and Hda1 during the transition into stationary phase are positively correlated with senescent cell populations accumulated in the aged cell cultures. These data suggest that Gcn5 lies in the centre of a feed-forward loop between histone acetylation and starvation-induced gene expression, enabling stress resistance and homeostasis but also promoting chronological ageing concomitantly.
Collapse
Affiliation(s)
- Kaiqiang Li
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gabriele Mocciaro
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jules L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZD, UK
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
20
|
Kumar AV, Mills J, Parker WM, Leitão JA, Rodriguez DI, Daigle SE, Ng C, Patel R, Aguilera JL, Johnson JR, Wong SQ, Lapierre LR. Lipid droplets modulate proteostasis, SQST-1/SQSTM1 dynamics, and lifespan in C. elegans. iScience 2023; 26:107960. [PMID: 37810233 PMCID: PMC10551902 DOI: 10.1016/j.isci.2023.107960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/01/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
In several long-lived Caenorhabditis elegans strains, such as insulin/IGF-1 receptor daf-2 mutants, enhanced proteostatic mechanisms are accompanied by elevated intestinal lipid stores, but their role in longevity is unclear. Here, while determining the regulatory network of the selective autophagy receptor SQST-1/SQSTM1, we uncovered an important role for lipid droplets in proteostasis and longevity. Using genome-wide RNAi screening, we identified several SQST-1 modulators, including lipid droplets-associated and aggregation-prone proteins. Expansion of intestinal lipid droplets by silencing the conserved cytosolic triacylglycerol lipase gene atgl-1/ATGL enhanced autophagy, and extended lifespan. Notably, a substantial amount of ubiquitinated proteins were found on lipid droplets. Reducing lipid droplet levels exacerbated the proteostatic collapse when autophagy or proteasome function was compromised, and significantly reduced the lifespan of long-lived daf-2 animals. Altogether, our study uncovered a key role for lipid droplets in C. elegans as a proteostatic mediator that modulates ubiquitinated protein accumulation, facilitates autophagy, and promotes longevity.
Collapse
Affiliation(s)
- Anita V Kumar
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Biology Department, Wheaton College, 26 E. Main Street, Norton, MA 02766, USA
| | - Wesley M Parker
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joshua A Leitão
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Diego I Rodriguez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Sandrine E Daigle
- New Brunswick Center for Precision Medicine, 27 rue Providence, Moncton, NB E1C 8X3, Canada
- Département de chimie et biochimie, Université de Moncton, 18 Antonine Maillet, Moncton, NB E1A 3E9, Canada
| | - Celeste Ng
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Rishi Patel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joseph L Aguilera
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joseph R Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Shi Quan Wong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- New Brunswick Center for Precision Medicine, 27 rue Providence, Moncton, NB E1C 8X3, Canada
- Département de chimie et biochimie, Université de Moncton, 18 Antonine Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
21
|
How CM, Cheng KC, Li YS, Pan MH, Wei CC. Tangeretin Supplementation Mitigates the Aging Toxicity Induced by Dietary Benzo[a]pyrene Exposure with Aberrant Proteostasis and Heat Shock Responses in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13474-13482. [PMID: 37639537 DOI: 10.1021/acs.jafc.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Benzo[a]pyrene (BaP) is a common food contaminant that can impair organismal aging. Tangeretin (TAN) may mitigate aging toxicities as a dietary supplement. This study used Caenorhabditis elegans to investigate the effects of chronic exposure to BaP on aging and to determine whether TAN supplementation could alleviate BaP-induced toxicity. Early life exposure to BaP (10 μM) significantly inhibited growth by 5%, and exposure to 0.1 to 10 μM BaP impaired C. elegans motility, resulting in a 3.4-6.5% reduction in motility. Chronic exposure to BaP (10 μM) age-dependently aggravated aberrant protein aggregation (7% increase) and shortened the median lifespan of the worms from 20 to 16 days. In addition, BaP worsened the age-dependent decline in motility and pharyngeal pumping, as well as the accumulation of reactive oxygen species. Furthermore, exposure to BaP resulted in significantly higher relative transcript levels of approximately 1.8-2.0-fold for the hsp-16.1, hsp-16.2, hsp-16.49, and hsp-70 genes. Stressed worms exposed to BaP exhibited significantly lower survival under heat stress. Dietary TAN supplementation alleviated the BaP-induced decline in motility, pumping, and poly-Q accumulation and restored heat shock proteins' transcript levels. Our findings suggest that chronic BaP exposure adversely affects aging and that TAN exposure mitigates the BaP-induced aging toxicity.
Collapse
Affiliation(s)
- Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Ko-Chun Cheng
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Yong-Shan Li
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| |
Collapse
|
22
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
23
|
Jung R, Lechler MC, Fernandez-Villegas A, Chung CW, Jones HC, Choi YH, Thompson MA, Rödelsperger C, Röseler W, Kaminski Schierle GS, Sommer RJ, David DC. A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans. PLoS Biol 2023; 21:e3002284. [PMID: 37708127 PMCID: PMC10501630 DOI: 10.1371/journal.pbio.3002284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.
Collapse
Affiliation(s)
- Raimund Jung
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marie C. Lechler
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Ana Fernandez-Villegas
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Chyi Wei Chung
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry C. Jones
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | - Yoon Hee Choi
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | | | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Waltraud Röseler
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | | | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Della C. David
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Khanal C, Land J. Study on two nematode species suggests climate change will inflict greater crop damage. Sci Rep 2023; 13:14185. [PMID: 37648720 PMCID: PMC10468521 DOI: 10.1038/s41598-023-41466-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Food security has become one of the greatest challenges of the millennium and it is predicted to be exacerbated by climate change due to the adverse effects of soil temperature on crop productivity. Although plant-parasitic nematodes are one of the most important limiting factors of agricultural production, the fate of soil temperature in their biology is not fully understood. Here we present the effects of soil temperature on survival, reproduction, virulence, and disease severity from the perspective of two nematode species Rotylenchulus reniformis and Meloidogyne floridensis. The two nematode species were purposefully selected to represent a significant threat to annual and perennial crops. We employed novel approaches of direct as well as indirect heat exposure to evaluate nematode biology. The direct heat exposure assay involved the exposure of nematodes to hot water in a heating block at 32, 33, and 34 °C for 7 h, and subsequent evaluation of their survival after 18 h. The indirect exposure assay employed a commercial heat mat to raise soil temperatures to 32, 33, and 34 °C for 7 h during the daytime, and subsequent evaluation of nematode reproduction, virulence, and/or disease severity over the period of 6 weeks after inoculation. When directly exposed to hot water at 34 °C, the survival of R. reniformis increased by 10% while the survival of M. floridensis decreased by 12% relative to that at 32 °C. Upon increasing soil temperatures from 32 to 34 °C, the reproduction of R. reniformis and M. floridensis decreased by 49% and 53%, respectively. A significant reduction in the reproduction of M. floridensis occurred when soil temperature was increased from 33 to 34 °C, however, the same condition did not significantly affect R. reniformis reproduction suggesting the latter species has a greater ability to adapt to increasing soil temperature. Additionally, the virulence of R. reniformis was greater at 33 and 34 °C relative to that at 30 °C indicating increased aggressiveness of the nematode at higher soil temperatures. The virulence of M. floridensis appeared to be decreased as evident from increased root biomass when soil temperature was increased from 32 to 34 °C, however, the greater root biomass may have resulted from increased root galling at the higher temperatures. Results of the current study suggest that while higher soil temperatures due to climate change may lead to reduced nematode reproduction, crop losses will likely increase due to increased nematode virulence. Through the current study, we report practical evidence of the quantitative impact of climate change on the biology of plant-parasitic nematodes. Further studies involving a wider range of temperature and exposure time are needed to better understand nematode biology under climate change.
Collapse
Affiliation(s)
- Churamani Khanal
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA.
| | - Julian Land
- Rheinland-Pfälzische Technische Universität, Campus Landau, Wolfsmilchweg 7, 55262, Ingelheim, Germany
| |
Collapse
|
25
|
Roux AE, Yuan H, Podshivalova K, Hendrickson D, Kerr R, Kenyon C, Kelley D. Individual cell types in C. elegans age differently and activate distinct cell-protective responses. Cell Rep 2023; 42:112902. [PMID: 37531250 DOI: 10.1016/j.celrep.2023.112902] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Aging is characterized by a global decline in physiological function. However, by constructing a complete single-cell gene expression atlas, we find that Caenorhabditis elegans aging is not random in nature but instead is characterized by coordinated changes in functionally related metabolic, proteostasis, and stress-response genes in a cell-type-specific fashion, with downregulation of energy metabolism being the only nearly universal change. Similarly, the rates at which cells age differ significantly between cell types. In some cell types, aging is characterized by an increase in cell-to-cell variance, whereas in others, variance actually decreases. Remarkably, multiple resilience-enhancing transcription factors known to extend lifespan are activated across many cell types with age; we discovered new longevity candidates, such as GEI-3, among these. Together, our findings suggest that cells do not age passively but instead react strongly, and individualistically, to events that occur during aging. This atlas can be queried through a public interface.
Collapse
Affiliation(s)
| | - Han Yuan
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | | | - Rex Kerr
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| | - David Kelley
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| |
Collapse
|
26
|
Yuan W, Weaver YM, Earnest S, Taylor CA, Cobb MH, Weaver BP. Modulating p38 MAPK signaling by proteostasis mechanisms supports tissue integrity during growth and aging. Nat Commun 2023; 14:4543. [PMID: 37507441 PMCID: PMC10382525 DOI: 10.1038/s41467-023-40317-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The conserved p38 MAPK family is activated by phosphorylation during stress responses and inactivated by phosphatases. C. elegans PMK-1 p38 MAPK initiates innate immune responses and blocks development when hyperactivated. Here we show that PMK-1 signaling is enhanced during early aging by modulating the stoichiometry of non-phospho-PMK-1 to promote tissue integrity and longevity. Loss of pmk-1 function accelerates progressive declines in neuronal integrity and lysosome function compromising longevity which has both cell autonomous and cell non-autonomous contributions. CED-3 caspase cleavage limits phosphorylated PMK-1. Enhancing p38 signaling with caspase cleavage-resistant PMK-1 protects lysosomal and neuronal integrity extending a youthful phase. PMK-1 works through a complex transcriptional program to regulate lysosome formation. During early aging, the absolute phospho-p38 amount is maintained but the reservoir of non-phospho-p38 diminishes to enhance signaling without hyperactivation. Our findings show that modulating the stoichiometry of non-phospho-p38 dynamically supports tissue-homeostasis during aging without hyper-activation of stress response.
Collapse
Affiliation(s)
- Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Petratou D, Gjikolaj M, Kaulich E, Schafer W, Tavernarakis N. A proton-inhibited DEG/ENaC ion channel maintains neuronal ionstasis and promotes neuronal survival under stress. iScience 2023; 26:107117. [PMID: 37416472 PMCID: PMC10320524 DOI: 10.1016/j.isci.2023.107117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The nervous system participates in the initiation and modulation of systemic stress. Ionstasis is of utmost importance for neuronal function. Imbalance in neuronal sodium homeostasis is associated with pathologies of the nervous system. However, the effects of stress on neuronal Na+ homeostasis, excitability, and survival remain unclear. We report that the DEG/ENaC family member DEL-4 assembles into a proton-inactivated sodium channel. DEL-4 operates at the neuronal membrane and synapse to modulate Caenorhabditis elegans locomotion. Heat stress and starvation alter DEL-4 expression, which in turn alters the expression and activity of key stress-response transcription factors and triggers appropriate motor adaptations. Similar to heat stress and starvation, DEL-4 deficiency causes hyperpolarization of dopaminergic neurons and affects neurotransmission. Using humanized models of neurodegenerative diseases in C. elegans, we showed that DEL-4 promotes neuronal survival. Our findings provide insights into the molecular mechanisms by which sodium channels promote neuronal function and adaptation under stress.
Collapse
Affiliation(s)
- Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Martha Gjikolaj
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - William Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| |
Collapse
|
28
|
Osorio-Paz I, Valle-Jiménez X, Brunauer R, Alavez S. Vanillic Acid Improves Stress Resistance and Substantially Extends Life Span in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2023; 78:1100-1107. [PMID: 36941756 DOI: 10.1093/gerona/glad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 03/23/2023] Open
Abstract
Aging is the root cause of several pathologies like neurological and cardiovascular diseases. Identifying compounds that improve health span and extend life span, called geroprotectors, could be crucial to preventing or at least delaying the onset of age-related diseases. In this regard, the nematode Caenorhabditis elegans (C. elegans) is emerging as an easy, efficient, low-cost model system to screen natural products and identify novel geroprotectors. Phenolic acids can be found in a wide range of natural products that are part of the human diet. Vanillic acid (VA) is a phenolic acid that has previously been attributed with antioxidant, anti-inflammatory, and neuroprotective features. To determine whether these beneficial health effects amount to an extension of health span and life span, in this work, we thoroughly explore the effect of VA on C. elegans stress resistance and life span. We found that VA increases thermotolerance (19.4%), reduces protein aggregation (between 30% and 40%), improves motility, and extends life span by almost 50%, an extent hardly ever achieved with a natural compound. The increased thermotolerance induced by VA is independent of the insulin/insulin-like growth factor-1 signaling pathway but requires heat shock factor-1 and is associated with increased heat shock protein-4 (HSP-4) and hsp-16.2 expression. These results provide new insight into understanding the therapeutical properties of VA and warrant further investigation of VA as a novel geroprotector.
Collapse
Affiliation(s)
- Ixchel Osorio-Paz
- Health Sciences Department, Metropolitan Autonomous University, Campus Lerma, State of México, México
| | - Xareni Valle-Jiménez
- Health Sciences Department, Metropolitan Autonomous University, Campus Lerma, State of México, México
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Silvestre Alavez
- Health Sciences Department, Metropolitan Autonomous University, Campus Lerma, State of México, México
| |
Collapse
|
29
|
van Oosten-Hawle P. Exploiting inter-tissue stress signaling mechanisms to preserve organismal proteostasis during aging. Front Physiol 2023; 14:1228490. [PMID: 37469564 PMCID: PMC10352849 DOI: 10.3389/fphys.2023.1228490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Aging results in a decline of cellular proteostasis capacity which culminates in the accumulation of phototoxic material, causing the onset of age-related maladies and ultimately cell death. Mechanisms that regulate proteostasis such as cellular stress response pathways sense disturbances in the proteome. They are activated to increase the expression of protein quality control components that counteract cellular damage. Utilizing invertebrate model organisms such as Caenorhabditis elegans, it has become increasingly evident that the regulation of proteostasis and the activation of cellular stress responses is not a cell autonomous process. In animals, stress responses are orchestrated by signals coming from other tissues, including the nervous system, the intestine and the germline that have a profound impact on determining the aging process. Genetic pathways discovered in C. elegans that facilitate cell nonautonomous regulation of stress responses are providing an exciting feeding ground for new interventions. In this review I will discuss cell nonautonomous proteostasis mechanisms and their impact on aging as well as ongoing research and clinical trials that can increase organismal proteostasis to lengthen health- and lifespan.
Collapse
|
30
|
Soo SK, Rudich ZD, Ko B, Moldakozhayev A, AlOkda A, Van Raamsdonk JM. Biological resilience and aging: Activation of stress response pathways contributes to lifespan extension. Ageing Res Rev 2023; 88:101941. [PMID: 37127095 DOI: 10.1016/j.arr.2023.101941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
While aging was traditionally viewed as a stochastic process of damage accumulation, it is now clear that aging is strongly influenced by genetics. The identification and characterization of long-lived genetic mutants in model organisms has provided insights into the genetic pathways and molecular mechanisms involved in extending longevity. Long-lived genetic mutants exhibit activation of multiple stress response pathways leading to enhanced resistance to exogenous stressors. As a result, lifespan exhibits a significant, positive correlation with resistance to stress. Disruption of stress response pathways inhibits lifespan extension in multiple long-lived mutants representing different pathways of lifespan extension and can also reduce the lifespan of wild-type animals. Combined, this suggests that activation of stress response pathways is a key mechanism by which long-lived mutants achieve their extended longevity and that many of these pathways are also required for normal lifespan. These results highlight an important role for stress response pathways in determining the lifespan of an organism.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Zenith D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alibek Moldakozhayev
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Müller MBD, Kasturi P, Jayaraj GG, Hartl FU. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 2023:S0092-8674(23)00587-1. [PMID: 37339632 PMCID: PMC10364623 DOI: 10.1016/j.cell.2023.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
32
|
Glastad KM, Roessler J, Gospocic J, Bonasio R, Berger SL. Long ant life span is maintained by a unique heat shock factor. Genes Dev 2023; 37:398-417. [PMID: 37257919 PMCID: PMC10270196 DOI: 10.1101/gad.350250.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Eusocial insect reproductive females show strikingly longer life spans than nonreproductive female workers despite high genetic similarity. In the ant Harpegnathos saltator (Hsal), workers can transition to reproductive "gamergates," acquiring a fivefold prolonged life span by mechanisms that are poorly understood. We found that gamergates have elevated expression of heat shock response (HSR) genes in the absence of heat stress and enhanced survival with heat stress. This HSR gene elevation is driven in part by gamergate-specific up-regulation of the gene encoding a truncated form of a heat shock factor most similar to mammalian HSF2 (hsalHSF2). In workers, hsalHSF2 was bound to DNA only upon heat stress. In gamergates, hsalHSF2 bound to DNA even in the absence of heat stress and was localized to gamergate-biased HSR genes. Expression of hsalHSF2 in Drosophila melanogaster led to enhanced heat shock survival and extended life span in the absence of heat stress. Molecular characterization illuminated multiple parallels between long-lived flies and gamergates, underscoring the centrality of hsalHSF2 to extended ant life span. Hence, ant caste-specific heat stress resilience and extended longevity can be transferred to flies via hsalHSF2. These findings reinforce the critical role of proteostasis in health and aging and reveal novel mechanisms underlying facultative life span extension in ants.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian Roessler
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Janko Gospocic
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Sala AJ, Grant RA, Imran G, Morton C, Brielmann RM, Bott LC, Watts J, Morimoto RI. Nuclear receptor signaling via NHR-49/MDT-15 regulates stress resilience and proteostasis in response to reproductive and metabolic cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537803. [PMID: 37162952 PMCID: PMC10168274 DOI: 10.1101/2023.04.25.537803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in C. elegans. We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, a functional homolog of mammalian peroxisome proliferator-activated receptor alpha (PPARα), regulates stress resilience and proteostasis downstream of embryo integrity and other pathways that influence lipid homeostasis, and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing inter-tissue pathway in somatic tissues, also triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49 together with its co-activator MDT-15 contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer as well as by other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting. Further, we show that increased NHR-49 activity is sufficient to suppress polyglutamine aggregation and improve stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.
Collapse
Affiliation(s)
- Ambre J. Sala
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gifsur-Yvette, France
| | - Rogan A. Grant
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ghania Imran
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Claire Morton
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Renee M. Brielmann
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Laura C. Bott
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| | - Jennifer Watts
- School of Molecular Biosciences, Washington State University, Pullman WA, USA
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston IL, USA
| |
Collapse
|
34
|
Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling. Biochem Soc Trans 2023; 51:501-512. [PMID: 36892215 DOI: 10.1042/bst20220616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.
Collapse
|
35
|
Yang S, Nie T, She H, Tao K, Lu F, Hu Y, Huang L, Zhu L, Feng D, He D, Qi J, Kukar T, Ma L, Mao Z, Yang Q. Regulation of TFEB nuclear localization by HSP90AA1 promotes autophagy and longevity. Autophagy 2023; 19:822-838. [PMID: 35941759 PMCID: PMC9980472 DOI: 10.1080/15548627.2022.2105561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022] Open
Abstract
TFEB (transcription factor EB) regulates multiple genes involved in the process of macroautophagy/autophagy and plays a critical role in lifespan determination. However, the detailed mechanisms that regulate TFEB activity are not fully clear. In this study, we identified a role for HSP90AA1 in modulating TFEB. HSP90AA1 was phosphorylated by CDK5 at Ser 595 under basal condition. This phosphorylation inhibited HSP90AA1, disrupted its binding to TFEB, and impeded TFEB's nuclear localization and subsequent autophagy induction. Pro-autophagy signaling attenuated CDK5 activity and enhanced TFEB function in an HSP90AA1-dependent manner. Inhibition of HSP90AA1 function or decrease in its expression significantly attenuated TFEB's nuclear localization and transcriptional function following autophagy induction. HSP90AA1-mediated regulation of a TFEB ortholog was involved in the extended lifespan of Caenorhabditis elegans in the absence of its food source bacteria. Collectively, these findings reveal that this regulatory process plays an important role in modulation of TFEB, autophagy, and longevity.Abbreviations : AL: autolysosome; AP: autophagosome; ATG: autophagy related; BafA1: bafilomycin A1; CDK5: cyclin-dependent kinase 5; CDK5R1: cyclin dependent kinase 5 regulatory subunit 1; CR: calorie restriction; FUDR: 5-fluorodeoxyuridine; HSP90AA1: heat shock protein 90 alpha family class A member 1; MAP1LC3: microtubule associated protein 1 light chain 3; NB: novobiocin sodium; SQSTM1: sequestosome 1; TFEB: transcription factor EB; WT: wild type.
Collapse
Affiliation(s)
- Shaosong Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hua She
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kai Tao
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yiman Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Zhu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dayun Feng
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dan He
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Qi
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
36
|
Tabarraei H, Waddell BM, Raymond K, Murray SM, Wang Y, Choe KP, Wu CW. CCR4-NOT subunit CCF-1/CNOT7 promotes transcriptional activation to multiple stress responses in Caenorhabditis elegans. Aging Cell 2023; 22:e13795. [PMID: 36797658 PMCID: PMC10086529 DOI: 10.1111/acel.13795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
CCR4-NOT is a versatile eukaryotic protein complex that controls multiple steps in gene expression regulation from synthesis to decay. In yeast, CCR4-NOT has been implicated in stress response regulation, though this function in other organisms remains unclear. In a genome-wide RNAi screen, we identified a subunit of the CCR4-NOT complex, ccf-1, as a requirement for the C. elegans transcriptional response to cadmium and acrylamide stress. Using whole-transcriptome RNA sequencing, we show that the knockdown of ccf-1 attenuates the activation of a broad range of stress-protective genes in response to cadmium and acrylamide, including those encoding heat shock proteins and xenobiotic detoxification. Consistently, survival assays show that the knockdown of ccf-1 decreases C. elegans stress resistance and normal lifespan. A yeast 2-hybrid screen using a CCF-1 bait identified the homeobox transcription factor PAL-1 as a physical interactor. Knockdown of pal-1 inhibits the activation of ccf-1 dependent stress genes and reduces C. elegans stress resistance. Gene expression analysis reveals that knockdown of ccf-1 and pal-1 attenuates the activation of elt-2 and elt-3 under stress that encode master transcriptional co-regulators of stress response in the C. elegans, and that overexpression of ELT-2 can suppress ccf-1's requirement for gene transcription in a stress-dependent manner. Our findings reveal a new role for CCR4-NOT in the environmental stress response and define its role in stress resistance and longevity in C. elegans.
Collapse
Affiliation(s)
- Hadi Tabarraei
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon M Waddell
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kelly Raymond
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sydney M Murray
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ying Wang
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
37
|
Miles J, Townend S, Milonaitytė D, Smith W, Hodge F, Westhead DR, van Oosten-Hawle P. Transcellular chaperone signaling is an intercellular stress-response distinct from the HSF-1-mediated heat shock response. PLoS Biol 2023; 21:e3001605. [PMID: 36780563 PMCID: PMC9956597 DOI: 10.1371/journal.pbio.3001605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Organismal proteostasis is maintained by intercellular signaling processes including cell nonautonomous stress responses such as transcellular chaperone signaling (TCS). When TCS is activated upon tissue-specific knockdown of hsp-90 in the Caenorhabditis elegans intestine, heat-inducible hsp-70 is induced in muscle cells at the permissive temperature resulting in increased heat stress resistance and lifespan extension. However, our understanding of the molecular mechanism and signaling factors mediating transcellular activation of hsp-70 expression from one tissue to another is still in its infancy. Here, we conducted a combinatorial approach using transcriptome RNA-Seq profiling and a forward genetic mutagenesis screen to elucidate how stress signaling from the intestine to the muscle is regulated. We find that the TCS-mediated "gut-to-muscle" induction of hsp-70 expression is suppressed by HSF-1 and instead relies on transcellular-X-cross-tissue (txt) genes. We identify a key role for the PDZ-domain guanylate cyclase txt-1 and the homeobox transcription factor ceh-58 as signaling hubs in the stress receiving muscle cells to initiate hsp-70 expression and facilitate TCS-mediated heat stress resistance and lifespan extension. Our results provide a new view on cell-nonautonomous regulation of "inter-tissue" stress responses in an organism that highlight a key role for the gut. Our data suggest that the HSF-1-mediated heat shock response is switched off upon TCS activation, in favor of an intercellular stress-signaling route to safeguard survival.
Collapse
Affiliation(s)
- Jay Miles
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sarah Townend
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dovilė Milonaitytė
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - William Smith
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Francesca Hodge
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David R. Westhead
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
van Oosten-Hawle P. Organismal Roles of Hsp90. Biomolecules 2023; 13:biom13020251. [PMID: 36830620 PMCID: PMC9952938 DOI: 10.3390/biom13020251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone that assists in the maturation of many client proteins involved in cellular signal transduction. As a regulator of cellular signaling processes, it is vital for the maintenance of cellular proteostasis and adaptation to environmental stresses. Emerging research shows that Hsp90 function in an organism goes well beyond intracellular proteostasis. In metazoans, Hsp90, as an environmentally responsive chaperone, is involved in inter-tissue stress signaling responses that coordinate and safeguard cell nonautonomous proteostasis and organismal health. In this way, Hsp90 has the capacity to influence evolution and aging, and effect behavioral responses to facilitate tissue-defense systems that ensure organismal survival. In this review, I summarize the literature on the organismal roles of Hsp90 uncovered in multicellular organisms, from plants to invertebrates and mammals.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
39
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
40
|
Feng X, Wang X, Zhou L, Pang S, Tang H. The impact of glucose on mitochondria and life span is determined by the integrity of proline catabolism in Caenorhabditis elegans. J Biol Chem 2023; 299:102881. [PMID: 36626986 PMCID: PMC9932108 DOI: 10.1016/j.jbc.2023.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes involved in mitochondrial proline catabolism lead to the rare genetic disorder hyperprolinemia in humans. We have previously reported that mutations of proline catabolic genes in Caenorhabditis elegans impair mitochondrial homeostasis and shorten life span, and that these effects surprisingly occur in a diet type-dependent manner. Therefore, we speculated that a specific dietary component may mitigate the adverse effects of defective proline catabolism. Here, we discovered that high dietary glucose, which is generally detrimental to health, actually improves mitochondrial homeostasis and life span in C. elegans with faulty proline catabolism. Mechanistically, defective proline catabolism results in a shift of glucose catabolism toward the pentose phosphate pathway, which is crucial for cellular redox balance. This shift helps to maintain mitochondrial reactive oxygen species homeostasis and to extend life span, as suppression of the pentose phosphate pathway enzyme GSPD-1 prevents the favorable effects of high glucose. In addition, we demonstrate that this crosstalk between proline and glucose catabolism is mediated by the transcription factor DAF-16. Altogether, these findings suggest that a glucose-rich diet may be advantageous in certain situations and might represent a potentially viable treatment strategy for disorders involving impaired proline catabolism.
Collapse
Affiliation(s)
- Xi Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xinyu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
41
|
Chen XQ, Shen T, Fang SJ, Sun XM, Li GY, Li YF. Protein homeostasis in aging and cancer. Front Cell Dev Biol 2023; 11:1143532. [PMID: 36875752 PMCID: PMC9978402 DOI: 10.3389/fcell.2023.1143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Aging is a major risk factor for cancer development. As dysfunction in protein homeostasis, or proteostasis, is a universal hallmark of both the aging process and cancer, a comprehensive understanding of the proteostasis system and its roles in aging and cancer will shed new light on how we can improve health and quality of life for older individuals. In this review, we summarize the regulatory mechanisms of proteostasis and discuss the relationship between proteostasis and aging and age-related diseases, including cancer. Furthermore, we highlight the clinical application value of proteostasis maintenance in delaying the aging process and promoting long-term health.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Shao-Jun Fang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Xiao-Min Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Guo-Yu Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
42
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
43
|
Garcia G, Bar‐Ziv R, Averbukh M, Dasgupta N, Dutta N, Zhang H, Fan W, Moaddeli D, Tsui CK, Castro Torres T, Alcala A, Moehle EA, Hoang S, Shalem O, Adams PD, Thorwald MA, Higuchi‐Sanabria R. Large-scale genetic screens identify BET-1 as a cytoskeleton regulator promoting actin function and life span. Aging Cell 2023; 22:e13742. [PMID: 36404134 PMCID: PMC9835578 DOI: 10.1111/acel.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
The actin cytoskeleton is a three-dimensional scaffold of proteins that is a regulatory, energyconsuming network with dynamic properties to shape the structure and function of the cell. Proper actin function is required for many cellular pathways, including cell division, autophagy, chaperone function, endocytosis, and exocytosis. Deterioration of these processes manifests during aging and exposure to stress, which is in part due to the breakdown of the actin cytoskeleton. However, the regulatory mechanisms involved in preservation of cytoskeletal form and function are not well-understood. Here, we performed a multipronged, cross-organismal screen combining a whole-genome CRISPR-Cas9 screen in human fibroblasts with in vivo Caenorhabditis elegans synthetic lethality screening. We identified the bromodomain protein, BET-1, as a key regulator of actin function and longevity. Overexpression of bet-1 preserves actin function at late age and promotes life span and healthspan in C. elegans. These beneficial effects are mediated through actin preservation by the transcriptional regulator function of BET-1. Together, our discovery assigns a key role for BET-1 in cytoskeletal health, highlighting regulatory cellular networks promoting cytoskeletal homeostasis.
Collapse
Affiliation(s)
- Gilberto Garcia
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Raz Bar‐Ziv
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Maxim Averbukh
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno‐oncology ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Naibedya Dutta
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hanlin Zhang
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Wudi Fan
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Darius Moaddeli
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - C. Kimberly Tsui
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Toni Castro Torres
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Athena Alcala
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Erica A. Moehle
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Sally Hoang
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ophir Shalem
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter D. Adams
- Aging, Cancer and Immuno‐oncology ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Max A. Thorwald
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ryo Higuchi‐Sanabria
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
44
|
Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur 2022; 73:427-439. [PMID: 36402935 DOI: 10.1007/s42977-022-00138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Márton Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Saqib Ahmed
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary. .,ELKH-ELTE Genetics Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
45
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
46
|
Midkiff DF, Huayta J, Lichty JD, Crapster JP, San-Miguel A. Identifying C. elegans lifespan mutants by screening for early-onset protein aggregation. iScience 2022; 25:105460. [PMID: 36388964 PMCID: PMC9664360 DOI: 10.1016/j.isci.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Genetic screens are widely used to identify genes that control specific biological functions. In Caenorhabditis elegans, forward genetic screens rely on the isolation of reproductively active mutants that can self-propagate clonal populations. Screens that target post-reproductive phenotypes, such as lifespan, are thus challenging. We combine microfluidic technologies and image processing to perform high-throughput automated screening for short-lived mutants using protein aggregation as a marker for aging. We take advantage of microfluidics for maintaining a reproductively active adult mutagenized population and for performing serial high-throughput analysis and sorting of animals with increased protein aggregation, using fluorescently-labeled PAB-1 as a readout. We demonstrate that lifespan mutants can be identified by screening for accelerated protein aggregation through quantitative analysis of fluorescently labeled aggregates while avoiding conditional sterilization or manual separation of parental and progeny populations. We also show that aged wildtypes and premature aggregation mutants differ in aggregate morphology, suggesting aggregate growth is time-dependent.
Collapse
Affiliation(s)
- Daniel F. Midkiff
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Javier Huayta
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James D. Lichty
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Joseph P. Crapster
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
47
|
Loss of MTCH-1 suppresses age-related proteostasis collapse through the inhibition of programmed cell death factors. Cell Rep 2022; 41:111690. [DOI: 10.1016/j.celrep.2022.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
|
48
|
Watterson A, Arneaud SLB, Wajahat N, Wall JM, Tatge L, Beheshti ST, Mihelakis M, Cheatwood NY, McClendon J, Ghorashi A, Dehghan I, Corley CD, McDonald JG, Douglas PM. Loss of heat shock factor initiates intracellular lipid surveillance by actin destabilization. Cell Rep 2022; 41:111493. [PMID: 36261024 PMCID: PMC9642076 DOI: 10.1016/j.celrep.2022.111493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cells sense stress and initiate response pathways to maintain lipid and protein homeostasis. However, the interplay between these adaptive mechanisms is unclear. Herein, we demonstrate how imbalances in cytosolic protein homeostasis affect intracellular lipid surveillance. Independent of its ancient thermo-protective properties, the heat shock factor, HSF-1, modulates lipid metabolism and age regulation through the metazoan-specific nuclear hormone receptor, NHR-49. Reduced hsf-1 expression destabilizes the Caenorhabditis elegans enteric actin network, subsequently disrupting Rab GTPase-mediated trafficking and cell-surface residency of nutrient transporters. The ensuing malabsorption limits lipid availability, thereby activating the intracellular lipid surveillance response through vesicular release and nuclear translocation of NHR-49 to both increase nutrient absorption and restore lipid homeostasis. Overall, cooperation between these regulators of cytosolic protein homeostasis and lipid surveillance ensures metabolic health and age progression through actin integrity, endocytic recycling, and lipid sensing.
Collapse
Affiliation(s)
- Abigail Watterson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naureen Wajahat
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M Wall
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaghayegh T Beheshti
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melina Mihelakis
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas Y Cheatwood
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacob McClendon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Atossa Ghorashi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ishmael Dehghan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase D Corley
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Shrivastava A, Sandhof CA, Reinle K, Jawed A, Ruger-Herreros C, Schwarz D, Creamer D, Nussbaum-Krammer C, Mogk A, Bukau B. The cytoprotective sequestration activity of small heat shock proteins is evolutionarily conserved. J Cell Biol 2022; 221:213447. [PMID: 36069810 PMCID: PMC9458469 DOI: 10.1083/jcb.202202149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The chaperone-mediated sequestration of misfolded proteins into inclusions is a pivotal cellular strategy to maintain proteostasis in Saccharomyces cerevisiae, executed by small heat shock proteins (sHsps) Hsp42 and Btn2. Direct homologs of Hsp42 and Btn2 are absent in other organisms, questioning whether sequestration represents a conserved proteostasis strategy and, if so, which factors are involved. We examined sHsps from Escherchia coli, Caenorhabditis elegans, and humans for their ability to complement the defects of yeast sequestrase mutants. We show that sequestration of misfolded proteins is an original and widespread activity among sHsps executed by specific family members. Sequestrase positive C. elegans' sHsps harbor specific sequence features, including a high content of aromatic and methionine residues in disordered N-terminal extensions. Those sHsps buffer limitations in Hsp70 capacity in C. elegans WT animals and are upregulated in long-lived daf-2 mutants, contributing to lifespan extension. Cellular protection by sequestration of misfolded proteins is, therefore, an evolutionarily conserved activity of the sHsp family.
Collapse
Affiliation(s)
- Aseem Shrivastava
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carl Alexander Sandhof
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin Reinle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Areeb Jawed
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Schwarz
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Declan Creamer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Lyu C, Wang Q, Yin X, Li Z, Wang T, Wang Y, Cui S, Liu K, Wang Z, Gao C, Xu R. Clinical significance and potential mechanism of heat shock factor 1 in acute myeloid leukemia. Aging (Albany NY) 2022; 14:7026-7037. [PMID: 36069792 PMCID: PMC9512492 DOI: 10.18632/aging.204267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Background: Heat shock factor 1 (HSF1) is now considered to have the potential to be used as a prognostic biomarker in cancers. However, its clinical significance and potential function in acute myeloid leukemia (AML) remain underexplored. Methods: In this study, the expression pattern and clinical significance of HSF1 in AML were examined by integrating data from databases including The Cancer Genome Atlas (TCGA), The Genotype–Tissue Expression (GTEx), Vizome, Cancer Cell Line Encyclopedia (CCLE) and Gene Expression Omnibus (GEO). Linkedomics was applied to collect HSF1–related genes in AML. GeneMANIA was applied to outline HSF1–related functional networks. CancerSEA analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) were performed to mine the potential mechanism of HSF1 in leukemogenesis. Single–sample Gene Set Enrichment Analysis (ssGSEA) was applied to explore the correlation between HSF1 and infiltrating immune cells in AML. Results: HSF1 expression was elevated in AML compared to healthy controls and indicate a poor overall survival. HSF1 expression was significantly correlated with patients age, associated with patient survival in subgroup of bone marrow blasts (%) >20. Functional analyses indicated that HSF1 plays a role in the metastatic status of AML, and is involved in inflammation–related pathways and biological processes. HSF1 expression was significantly correlated with the immune infiltration of nature killer cells and T cell population. Conclusion: HSF1 plays a vital role in the molecular network of AML pathogenesis, and has the potential to be a biomarker for prognosis prediction.
Collapse
Affiliation(s)
- Chunyi Lyu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Qian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xuewei Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zonghong Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Teng Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yan Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Kui Liu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhenzhen Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chang Gao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ruirong Xu
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|