1
|
Fujii F, Kanemasa H, Okuzono S, Setoyama D, Taira R, Yonemoto K, Motomura Y, Kato H, Masuda K, Kato TA, Ohga S, Sakai Y. ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress. Dis Model Mech 2024; 17:dmm050574. [PMID: 38804677 PMCID: PMC11247502 DOI: 10.1242/dmm.050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Pathogenic variants in ATP1A3, the gene encoding the α3 subunit of the Na+/K+-ATPase, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerated symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as Eif4g (encoded by Eif4g1), Pabpc1 and Fmrp (encoded by Fmr1), in mouse Neuro2a cells. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C variant of human ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 (encoded by Rps6) and increased susceptibility to heat stress. In agreement with these findings, induced pluripotent stem cells (iPSCs) from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient-derived iPSCs showed lower calcium influxes in responses to stimulation with ATP than those in control iPSCs. These data indicate that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes in patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Alfahel L, Gschwendtberger T, Kozareva V, Dumas L, Gibbs R, Kertser A, Baruch K, Zaccai S, Kahn J, Thau-Habermann N, Eggenschwiler R, Sterneckert J, Hermann A, Sundararaman N, Vaibhav V, Van Eyk JE, Rafuse VF, Fraenkel E, Cantz T, Petri S, Israelson A. Targeting low levels of MIF expression as a potential therapeutic strategy for ALS. Cell Rep Med 2024; 5:101546. [PMID: 38703766 PMCID: PMC11148722 DOI: 10.1016/j.xcrm.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/03/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.
Collapse
Affiliation(s)
- Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura Dumas
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Rachel Gibbs
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Ness Ziona 7404905, Israel
| | - Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | | | - Reto Eggenschwiler
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technical University Dresden, 01307 Dresden, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vineet Vaibhav
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Victor F Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tobias Cantz
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, 48149 Münster, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
3
|
Bărar AA, Pralea IE, Maslyennikov Y, Munteanu R, Berindan-Neagoe I, Pîrlog R, Rusu I, Nuțu A, Rusu CC, Moldovan DT, Potra AR, Tirinescu D, Ticala M, Elec FI, Iuga CA, Kacso IM. Minimal Change Disease: Pathogenetic Insights from Glomerular Proteomics. Int J Mol Sci 2024; 25:5613. [PMID: 38891801 PMCID: PMC11171934 DOI: 10.3390/ijms25115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanism underlying podocyte dysfunction in minimal change disease (MCD) remains unknown. This study aimed to shed light on the potential pathophysiology of MCD using glomerular proteomic analysis. Shotgun proteomics using label-free quantitative mass spectrometry was performed on formalin-fixed, paraffin-embedded (FFPE) renal biopsies from two groups of samples: control (CTR) and MCD. Glomeruli were excised from FFPE renal biopsies using laser capture microdissection (LCM), and a single-pot solid-phase-enhanced sample preparation (SP3) digestion method was used to improve yield and protein identifications. Principal component analysis (PCA) revealed a distinct separation between the CTR and MCD groups. Forty-eight proteins with different abundance between the two groups (p-value ≤ 0.05 and |FC| ≥ 1.5) were identified. These may represent differences in podocyte structure, as well as changes in endothelial or mesangial cells and extracellular matrix, and some were indeed found in several of these structures. However, most differentially expressed proteins were linked to the podocyte cytoskeleton and its dynamics. Some of these proteins are known to be involved in focal adhesion (NID1 and ITGA3) or slit diaphragm signaling (ANXA2, TJP1 and MYO1C), while others are structural components of the actin and microtubule cytoskeleton of podocytes (ACTR3 and NES). This study suggests the potential of mass spectrometry-based shotgun proteomic analysis with LCM glomeruli to yield valuable insights into the pathogenesis of podocytopathies like MCD. The most significantly dysregulated proteins in MCD could be attributable to cytoskeleton dysfunction or may be a compensatory response to cytoskeleton malfunction caused by various triggers.
Collapse
Affiliation(s)
- Andrada Alina Bărar
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
| | - Yuriy Maslyennikov
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Raluca Munteanu
- Department of In Vivo Studies, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Radu Pîrlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400394 Cluj-Napoca, Romania;
| | - Andreea Nuțu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Crina Claudia Rusu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Diana Tania Moldovan
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Alina Ramona Potra
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Dacian Tirinescu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Maria Ticala
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Florin Ioan Elec
- Department of Urology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ina Maria Kacso
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| |
Collapse
|
4
|
Tejeda-Muñoz N, Azbazdar Y, Sosa EA, Monka J, Wei PS, Binder G, Mei KC, Kurmangaliyev YZ, De Robertis EM. Na,K-ATPase activity promotes macropinocytosis in colon cancer via Wnt signaling. Biol Open 2024; 13:bio060269. [PMID: 38713004 PMCID: PMC11139033 DOI: 10.1242/bio.060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the β-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Eric A. Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | | | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| |
Collapse
|
5
|
Cereijido M, Jimenez L, Hinojosa L, Castillo A, Martínez-Rendon J, Ponce A. Ouabain-Induced Changes in the Expression of Voltage-Gated Potassium Channels in Epithelial Cells Depend on Cell-Cell Contacts. Int J Mol Sci 2022; 23:13257. [PMID: 36362049 PMCID: PMC9655981 DOI: 10.3390/ijms232113257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/25/2023] Open
Abstract
Ouabain is a cardiac glycoside, initially isolated from plants, and currently thought to be a hormone since some mammals synthesize it endogenously. It has been shown that in epithelial cells, it induces changes in properties and components related to apical-basolateral polarity and cell-cell contacts. In this work, we used a whole-cell patch clamp to test whether ouabain affects the properties of the voltage-gated potassium currents (Ik) of epithelial cells (MDCK). We found that: (1) in cells arranged as mature monolayers, ouabain induced changes in the properties of Ik; (2) it also accelerated the recovery of Ik in cells previously trypsinized and re-seeded at confluence; (3) in cell-cell contact-lacking cells, ouabain did not produce a significant change; (4) Na+/K+ ATPase might be the receptor that mediates the effect of ouabain on Ik; (5) the ouabain-induced changes in Ik required the synthesis of new nucleotides and proteins, as well as Golgi processing and exocytosis, as evidenced by treatment with drugs inhibiting those processes; and (5) the signaling cascade included the participation of cSrC, PI3K, Erk1/2, NF-κB and β-catenin. These results reveal a new role for ouabain as a modulator of the expression of voltage-gated potassium channels, which require cells to be in contact with themselves.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Lidia Jimenez
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Lorena Hinojosa
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Aida Castillo
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| | - Jacqueline Martínez-Rendon
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ Siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX 07360, Mexico
| |
Collapse
|
6
|
Tetti M, Gong S, Veglio F, Reincke M, Williams TA. Primary aldosteronism: Pathophysiological mechanisms of cell death and proliferation. Front Endocrinol (Lausanne) 2022; 13:934326. [PMID: 36004349 PMCID: PMC9393369 DOI: 10.3389/fendo.2022.934326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Primary aldosteronism is the most common surgically curable form of hypertension. The sporadic forms of the disorder are usually caused by aldosterone overproduction from a unilateral adrenocortical aldosterone-producing adenoma or from bilateral adrenocortical hyperplasia. The main knowledge-advances in disease pathophysiology focus on pathogenic germline and somatic variants that drive the excess aldosterone production. Less clear are the molecular and cellular mechanisms that lead to an increased mass of the adrenal cortex. However, the combined application of transcriptomics, metabolomics, and epigenetics has achieved substantial insight into these processes and uncovered the evolving complexity of disrupted cell growth mechanisms in primary aldosteronism. In this review, we summarize and discuss recent progress in our understanding of mechanisms of cell death, and proliferation in the pathophysiology of primary aldosteronism.
Collapse
Affiliation(s)
- Martina Tetti
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Siyuan Gong
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Cai J, Zhang BD, Li YQ, Zhu WF, Akihisa T, Kikuchi T, Xu J, Liu WY, Feng F, Zhang J. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem 2022; 127:106004. [PMID: 35843015 DOI: 10.1016/j.bioorg.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Cardiac glycosides (CGs) show potential broad-spectrum antiviral activity by targeting cellular host proteins. Herein are reported the isolation of five new (1-5) and eight known (7-13) CGs from the roots of Streblus asper Lour. Of these compounds 1 and 7 exhibited inhibitory action against EBV early antigen (EA) expression, with half-maximal effective concentration values (EC50) being less than 60 nM, and they also showed selectivity, with selectivity index (SI) values being 56.80 and 103.17, respectively. Preliminary structure activity relationships indicated that the C-10 substituent, C-5 hydroxy groups, and C-3 sugar unit play essential roles in the mediation of the inhibitory activity of CGs against EBV. Further enzyme experiments demonstrated that these compounds might inhibit ion pump function and thereby change the intracellular signal transduction pathway by binding to Na+/K+-ATPase, as validated by simulated molecular docking. This study is the first report that CGs can effectively limit EBV lytic replication, and the observations made in this study may be of value for lead compound development.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu-Qi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| |
Collapse
|
8
|
Udoh UAS, Banerjee M, Rajan PK, Sanabria JD, Smith G, Schade M, Sanabria JA, Nakafuku Y, Sodhi K, Pierre SV, Shapiro JI, Sanabria JR. Tumor-Suppressor Role of the α1-Na/K-ATPase Signalosome in NASH Related Hepatocellular Carcinoma †. Int J Mol Sci 2022; 23:ijms23137359. [PMID: 35806364 PMCID: PMC9266688 DOI: 10.3390/ijms23137359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, with an estimate of 0.84 million cases every year. In Western countries, because of the obesity epidemic, non-alcoholic steatohepatitis (NASH) has become the major cause of HCC. Intriguingly, the molecular mechanisms underlying tumorigenesis of HCC from NASH are largely unknown. We hypothesized that the growing uncoupled metabolism during NASH progression to HCC, manifested by lower cell redox status and an apoptotic ‘switch’ activity, follows a dysregulation of α1-Na/K-ATPase (NKA)/Src signalosome. Our results suggested that in NASH-related malignancy, α1-NKA signaling causes upregulation of the anti-apoptotic protein survivin and downregulation of the pro-apoptotic protein Smac/DIABLO via the activation of the PI3K → Akt pro-survival pathway with concomitant inhibition of the FoxO3 circuit, favoring cell division and primary liver carcinogenesis. Signalosome normalization using an inhibitory peptide resets apoptotic activity in malignant cells, with a significant decrease in tumor burden in vivo. Therefore, α1-NKA signalosome exercises in HCC the characteristic of a tumor suppressor, suggesting α1-NKA as a putative target for clinical therapy.
Collapse
Affiliation(s)
- Utibe-Abasi S. Udoh
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Moumita Banerjee
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Pradeep K. Rajan
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Juan D. Sanabria
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Gary Smith
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Mathew Schade
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Jacqueline A. Sanabria
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Yuto Nakafuku
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Komal Sodhi
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Joseph I. Shapiro
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Juan R. Sanabria
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: or
| |
Collapse
|
9
|
Shandell MA, Capatina AL, Lawrence SM, Brackenbury WJ, Lagos D. Inhibition of the Na +/K +-ATPase by cardiac glycosides suppresses expression of the IDO1 immune checkpoint in cancer cells by reducing STAT1 activation. J Biol Chem 2022; 298:101707. [PMID: 35150740 PMCID: PMC8902613 DOI: 10.1016/j.jbc.2022.101707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Despite extensive basic and clinical research on immune checkpoint regulatory pathways, little is known about the effects of the ionic tumor microenvironment on immune checkpoint expression and function. Here we describe a mechanistic link between Na+/K+-ATPase (NKA) inhibition and activity of the immune checkpoint protein indoleamine-pyrrole 2',3'-dioxygenase 1 (IDO1). We found that IDO1 was necessary and sufficient for production of kynurenine, a downstream tryptophan metabolite, in cancer cells. We developed a spectrophotometric assay to screen a library of 31 model ion transport-targeting compounds for potential effects on IDO1 function in A549 lung and MDA-MB-231 breast cancer cells. This revealed that the cardiac glycosides ouabain and digoxin inhibited kynurenine production at concentrations that did not affect cell survival. NKA inhibition by ouabain and digoxin resulted in increased intracellular Na+ levels and downregulation of IDO1 mRNA and protein levels, which was consistent with the reduction in kynurenine levels. Knockdown of ATP1A1, the ɑ1 subunit of the NKA and target of cardiac glycosides, increased Na+ levels to a lesser extent than cardiac glycoside treatment and did not affect IDO1 expression. However, ATP1A1 knockdown significantly enhanced the effect of cardiac glycosides on IDO1 expression and kynurenine production. Mechanistically, we show that cardiac glycoside treatment resulted in curtailing the length of phosphorylation-mediated stabilization of STAT1, a transcriptional regulator of IDO1 expression, an effect enhanced by ATP1A1 knockdown. Our findings reveal cross talk between ionic modulation via cardiac glycosides and immune checkpoint protein expression in cancer cells with broad mechanistic and clinical implications.
Collapse
Affiliation(s)
- Mia A Shandell
- Department of Biology, University of York, York, United Kingdom; Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alina L Capatina
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dimitris Lagos
- Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
10
|
Cardiac Glycosides as Autophagy Modulators. Cells 2021; 10:cells10123341. [PMID: 34943848 PMCID: PMC8699753 DOI: 10.3390/cells10123341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.
Collapse
|
11
|
Nakamura K, Shiozaki A, Kosuga T, Shimizu H, Kudou M, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Otsuji E. The expression of the alpha1 subunit of Na +/K +-ATPase is related to tumor development and clinical outcomes in gastric cancer. Gastric Cancer 2021; 24:1278-1292. [PMID: 34251542 DOI: 10.1007/s10120-021-01212-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Na+/K+-ATPase alpha1 subunit (ATP1A1) is a critical component of Na+/K+-ATPase (NKA), a membrane pump that maintains a low intracellular Na+/K+ ratio and retains cellular volume and osmolarity. ATP1A1 was recently implicated in tumor behavior. Therefore, the present study investigated the role of ATP1A1 in patients with gastric cancer (GC). METHODS Knockdown experiments were conducted on human GC cell lines using ATP1A1 siRNA, and its effects on proliferation, the cell cycle, apoptosis, and cellular movement were examined. Gene expression profiling was performed by a microarray analysis. Primary tumor samples from 192 GC patients who underwent gastrectomy were subjected to an immunohistochemical analysis. RESULTS High ATP1A1 expression levels were observed in NUGC4 and MKN74 cells. Cell proliferation was suppressed and apoptosis was induced by the siRNA-induced knockdown of ATP1A1. The microarray analysis showed that knockdown of ATP1A1 leads to the up-regulated expression of genes involved in the interferon (IFN) signaling pathway, such as STAT1, STAT2, IRF1, and IRF9. Furthermore, the depletion of ATP1A1 altered the phosphorylation of the MAPK pathway. The immunohistochemical analysis revealed that the expression of ATP1A1 was associated with the histological type, venous invasion, and the pathological T stage. Furthermore, the prognostic analysis showed a relationship between high ATP1A1 expression levels and poor postoperative survival. CONCLUSIONS ATP1A1 appears to regulate tumor progression by altering IFN signaling, and high ATP1A1 expression levels were associated with poor postoperative survival in GC patients. The present results provide novel insights into the function of ATP1A1 as a mediator and/or biomarker of GC.
Collapse
Affiliation(s)
- Kei Nakamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Pathology, Kyoto City Hospital, Kyoto, 604-8845, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
12
|
ATP1A1 Mutant in Aldosterone-Producing Adenoma Leads to Cell Proliferation. Int J Mol Sci 2021; 22:ijms222010981. [PMID: 34681640 PMCID: PMC8537586 DOI: 10.3390/ijms222010981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms by which ATP1A1 mutation-mediated cell proliferation or tumorigenesis in aldosterone-producing adenomas (APAs) have not been elucidated. First, we investigated whether the APA-associated ATP1A1 L104R mutation stimulated cell proliferation. Second, we aimed to clarify the molecular mechanisms by which the ATP1A1 mutation-mediated cell proliferated. We performed transcriptome analysis in APAs with ATP1A1 mutation. ATP1A1 L104R mutation were modulated in human adrenocortical carcinoma (HAC15) cells (ATP1A1-mutant cells), and we evaluated cell proliferation and molecular signaling events. Transcriptome and immunohistochemical analysis showed that Na/K-ATPase (NKA) expressions in ATP1A1 mutated APA were more abundant than those in non-functioning adrenocortical adenoma or KCNJ5 mutated APAs. The significant increase of number of cells, amount of DNA and S-phase population were shown in ATP1A1-mutant cells. Fluo-4 in ATP1A1-mutant cells were significantly increased. Low concentration of ouabain stimulated cell proliferation in ATP1A1-mutant cells. ATP1A1-mutant cells induced Src phosphorylation, and low concentration of ouabain supplementation showed further Src phosphorylation. We demonstrated that NKAs were highly expressed in ATP1A1 mutant APA, and the mutant stimulated cell proliferation and Src phosphorylation in ATP1A1-mutant cells. NKA stimulations would be a risk factor for the progression and development to an ATP1A1 mutant APA.
Collapse
|
13
|
Škubník J, Bejček J, Pavlíčková VS, Rimpelová S. Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses. Molecules 2021; 26:molecules26185627. [PMID: 34577097 PMCID: PMC8469069 DOI: 10.3390/molecules26185627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.
Collapse
|
14
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
15
|
Bejček J, Spiwok V, Kmoníčková E, Rimpelová S. Na +/K +-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation. Molecules 2021; 26:molecules26071905. [PMID: 33800655 PMCID: PMC8061769 DOI: 10.3390/molecules26071905] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Maintenance of Na+ and K+ gradients across the cell plasma membrane is an essential process for mammalian cell survival. An enzyme responsible for this process, sodium-potassium ATPase (NKA), has been currently extensively studied as a potential anticancer target, especially in lung cancer and glioblastoma. To date, many NKA inhibitors, mainly of natural origin from the family of cardiac steroids (CSs), have been reported and extensively studied. Interestingly, upon CS binding to NKA at nontoxic doses, the role of NKA as a receptor is activated and intracellular signaling is triggered, upon which cancer cell death occurs, which lies in the expression of different NKA isoforms than in healthy cells. Two major CSs, digoxin and digitoxin, originally used for the treatment of cardiac arrhythmias, are also being tested for another indication—cancer. Such drug repositioning has a big advantage in smoother approval processes. Besides this, novel CS derivatives with improved performance are being developed and evaluated in combination therapy. This article deals with the NKA structure, mechanism of action, activity modulation, and its most important inhibitors, some of which could serve not only as a powerful tool to combat cancer, but also help to decipher the so-far poorly understood NKA regulation.
Collapse
Affiliation(s)
- Jiří Bejček
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Eva Kmoníčková
- Department of Pharmacology, Second Faculty of Medicine, Charles University, Plzeňská 311, 150 00 Prague, Czech Republic;
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-220-444-360
| |
Collapse
|
16
|
Silva CID, Gonçalves-de-Albuquerque CF, Moraes BPTD, Garcia DG, Burth P. Na/K-ATPase: Their role in cell adhesion and migration in cancer. Biochimie 2021; 185:1-8. [PMID: 33713729 DOI: 10.1016/j.biochi.2021.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
Na/K-ATPase (NKA) is a p-type transmembrane enzyme formed by three different subunits (α, β, and γ gamma). Primarily responsible for transporting sodium and potassium through the cell membrane, it also plays a critical role in intracellular signaling. The activation of diverse intracellular pathways may trigger cell death, survival, or even cell proliferation. Changes in the NKA functions or expression in isoforms subunits impact pathological conditions, such as cancer. The NKA function affects cell adhesion, motility, and migration, which are different in the physiological and pathological states. All enzyme subunits take part in the cell adhesion process, with the β subunit being the most studied. Thus, herein we aim to highlight NKA' central role in cell adhesion, motility, and migration in cancer cells.
Collapse
Affiliation(s)
- Camila Ignácio da Silva
- Laboratório de Enzimologia e Sinalização Celular, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil; Pós-Graduação em Ciências e Biotecnologia Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Laboratorio de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Bianca Portugal Tavares de Moraes
- Laboratorio de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Gomes Garcia
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Burth
- Laboratório de Enzimologia e Sinalização Celular, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil; Pós-Graduação em Ciências e Biotecnologia Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
17
|
Baasch Christensen I, Cheng L, Brewer JR, Bartsch U, Fenton RA, Damkier HH, Praetorius J. Multiple Na,K-ATPase Subunits Colocalize in the Brush Border of Mouse Choroid Plexus Epithelial Cells. Int J Mol Sci 2021; 22:ijms22041569. [PMID: 33557294 PMCID: PMC7915972 DOI: 10.3390/ijms22041569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 01/24/2023] Open
Abstract
(1) Background: The unusual accumulation of Na,K-ATPase complexes in the brush border membrane of choroid plexus epithelial cells have intrigued researchers for decades. However, the full range of the expressed Na,K-ATPase subunits and their relation to the microvillus cytoskeleton remains unknown. (2) Methods: RT-PCR analysis, co-immunoprecipitation, native PAGE, mass spectrometry, and differential centrifugation were combined with high-resolution immunofluorescence histochemistry, proximity ligase assays, and stimulated emission depletion (STED) microscopy on mouse choroid plexus cells or tissues in order to resolve these issues. (3) Results: The choroid plexus epithelium expresses Na,K-ATPase subunits α1, α2, β1, β2, β3, and phospholemman. The α1, α2, β1, and β2, subunits are all localized to the brush border membrane, where they appear to form a complex. The ATPase complexes may stabilize in the brush border membrane via anchoring to microvillar actin indirectly through ankyrin-3 or directly via other co-precipitated proteins. Aquaporin 1 (AQP1) may form part of the proposed multi-protein complexes in contrast to another membrane protein, the Na-K-2Cl cotransporter 1 (NKCC1). NKCC1 expression seems necessary for full brush border membrane accumulation of the Na,K-ATPase in the choroid plexus. (4) Conclusion: A multitude of Na,K-ATPase subunits form molecular complexes in the choroid plexus brush border, which may bind to the cytoskeleton by various alternative actin binding proteins.
Collapse
Affiliation(s)
- Inga Baasch Christensen
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Lei Cheng
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, 5230 Odense, Denmark;
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Robert A. Fenton
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Helle H. Damkier
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Jeppe Praetorius
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
- Correspondence: ; Tel.: +45-61820576
| |
Collapse
|
18
|
Ouabain Promotes Gap Junctional Intercellular Communication in Cancer Cells. Int J Mol Sci 2020; 22:ijms22010358. [PMID: 33396341 PMCID: PMC7801950 DOI: 10.3390/ijms22010358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Gap junctions are molecular structures that allow communication between neighboring cells. It has been shown that gap junctional intercellular communication (GJIC) is notoriously reduced in cancer cells compared to their normal counterparts. Ouabain, a plant derived substance, widely known for its therapeutic properties on the heart, has been shown to play a role in several types of cancer, although its mechanism of action is not yet fully understood. Since we have previously shown that ouabain enhances GJIC in epithelial cells (MDCK), here we probed whether ouabain affects GJIC in a variety of cancer cell lines, including cervico-uterine (CasKi, SiHa and Hela), breast (MDA-MB-321 and MCF7), lung (A549), colon (SW480) and pancreas (HPAF-II). For this purpose, we conducted dye transfer assays to measure and compare GJIC in monolayers of cells with and without treatment with ouabain (0.1, 1, 10, 50 and 500 nM). We found that ouabain induces a statistically significant enhancement of GJIC in all of these cancer cell lines, albeit with distinct sensitivity. Additionally, we show that synthesis of new nucleotides or protein subunits is not required, and that Csrc, ErK1/2 and ROCK-Rho mediate the signaling mechanisms. These results may contribute to explaining how ouabain influences cancer.
Collapse
|
19
|
Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules 2020; 25:E3596. [PMID: 32784680 PMCID: PMC7465415 DOI: 10.3390/molecules25163596] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac glycosides (CGs) have a long history of treating cardiac diseases. However, recent reports have suggested that CGs also possess anticancer and antiviral activities. The primary mechanism of action of these anticancer agents is by suppressing the Na+/k+-ATPase by decreasing the intracellular K+ and increasing the Na+ and Ca2+. Additionally, CGs were known to act as inhibitors of IL8 production, DNA topoisomerase I and II, anoikis prevention and suppression of several target genes responsible for the inhibition of cancer cell proliferation. Moreover, CGs were reported to be effective against several DNA and RNA viral species such as influenza, human cytomegalovirus, herpes simplex virus, coronavirus, tick-borne encephalitis (TBE) virus and Ebola virus. CGs were reported to suppress the HIV-1 gene expression, viral protein translation and alters viral pre-mRNA splicing to inhibit the viral replication. To date, four CGs (Anvirzel, UNBS1450, PBI05204 and digoxin) were in clinical trials for their anticancer activity. This review encapsulates the current knowledge about CGs as anticancer and antiviral drugs in isolation and in combination with some other drugs to enhance their efficiency. Further studies of this class of biomolecules are necessary to determine their possible inhibitory role in cancer and viral diseases.
Collapse
Affiliation(s)
- Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur WB-721172, India;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal deMinas Gerais (UFMG), Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
20
|
Influence of Endogenous Cardiac Glycosides, Digoxin, and Marinobufagenin in the Physiology of Epithelial Cells. Cardiol Res Pract 2019; 2019:8646787. [PMID: 32089875 PMCID: PMC7024086 DOI: 10.1155/2019/8646787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/20/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiac glycosides are a group of compounds widely known for their action in cardiac tissue, some of which have been found to be endogenously produced (ECG). We have previously studied the effect of ouabain, an endogenous cardiac glycoside, on the physiology of epithelial cells, and we have shown that in concentrations in the nanomolar range, it affects key properties of epithelial cells, such as tight junction, apical basolateral polarization, gap junctional intercellular communication (GJIC), and adherent junctions. In this work, we study the influence of digoxin and marinobufagenin, two other endogenously expressed cardiac glycosides, on GJIC as well as the degree of transepithelial tightness due to tight junction integrity (TJ). We evaluated GJIC by dye transfer assays and tight junction integrity by transepithelial electrical resistance (TER) measurements, as well as immunohistochemistry and western blot assays of expression of claudins 2 and 4. We found that both digoxin and marinobufagenin improve GJIC and significantly enhance the tightness of the tight junctions, as evaluated from TER measurements. Immunofluorescence assays show that both compounds promote enhanced basolateral localization of claudin-4 but not claudin 2, while densitometric analysis of western blot assays indicate a significantly increased expression of claudin 4. These changes, induced by digoxin and marinobufagenin on GJIC and TER, were not observed on MDCK-R, a modified MDCK cell line that has a genetically induced insensitive α1 subunit, indicating that Na-K-ATPase acts as a receptor mediating the actions of both ECG. Plus, the fact that the effect of both cardiac glycosides was suppressed by incubation with PP2, an inhibitor of c-Src kinase, PD98059, an inhibitor of mitogen extracellular kinase-1 and Y-27632, a selective inhibitor of ROCK, and a Rho-associated protein kinase, indicate altogether that the signaling pathways involved include c-Src and ERK1/2, as well as Rho-ROCK. These results widen and strengthen our general hypothesis that a very important physiological role of ECG is the control of the epithelial phenotype and the regulation of cell-cell contacts.
Collapse
|
21
|
Li S, Dai Z, Yang D, Li W, Dai H, Sun B, Liu X, Xie X, Xu R, Zhao X. Targeting β2 subunit of Na +/K +-ATPase induces glioblastoma cell apoptosis through elevation of intracellular Ca 2. Am J Cancer Res 2019; 9:1293-1308. [PMID: 31285960 PMCID: PMC6610052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent brain cancer with poor prognosis and few therapies and urgently requires effective treatments. Na+/K+-ATPase is considered as a target for GBM therapy and development of anticancer drugs. Cardiac glycosides bind the Na+/K+-ATPase α subunit to inhibit enzymatic activity and are promising candidates for anticancer drug development including GBM. However, the comparatively higher doses required for effective anticancer actions cause severe cardiotoxicity. Selectively targeting the ATPase Na+/K+ transporting subunit beta 2 (ATP1B2) that is not expressed in the heart might avoid the cardiotoxicity. However, the effect of targeting ATP1B2 in GBM remains unknown. In this study, we found that high ATP1B2 expression is significantly associated with poor prognosis of patients with GBM. ATP1B2 silencing in GBM cells resulted in remarkably cell cycle arrest at the G2/M phase and apoptosis with concomitant increase in intracellular Ca2+ and activation of p38 kinase, similar to Na+/K+-ATPase inhibition by the classic cardiac glycoside digoxin. ATP1B2 is expressed higher in glioblastoma stem-like cells (GSCs) than in GBM cells and its downregulation induces apoptosis of GSCs. Furthermore, inducible ATP1B2 knockdown significantly inhibit tumor growth in vivo. Our data suggest ATP1B2 has potential as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of SciencesKunming 650204, Yunnan, China
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming 650223, Yunnan, China
| | - Dong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming 650223, Yunnan, China
| | - Wenxuan Li
- College of Life Sciences, Sichuan UniversityChengdu 610064, Sichuan, China
| | - Hongjuan Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming 650223, Yunnan, China
| | - Bin Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming 650223, Yunnan, China
| | - Xiuyun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of SciencesKunming 650204, Yunnan, China
| | - Xin Xie
- Stake Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | - Rong Xu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming 650223, Yunnan, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunming 650223, China
- Kunming Key Laboratory of Healthy Aging Molecular Mechanism StudyKunming 650223, Yunnan, China
| |
Collapse
|
22
|
Li B, Huang X, Xu X, Ning W, Dai H, Wang C. The profibrotic effect of downregulated Na,K‑ATPase β1 subunit in alveolar epithelial cells during lung fibrosis. Int J Mol Med 2019; 44:273-280. [PMID: 31115510 DOI: 10.3892/ijmm.2019.4201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/08/2019] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by progressive lung scarring and excessive extracellular matrix depositon. When stimulated, alveolar epithelial cells (AECs) are aberrantly activated, the expression of profibrotic molecules is enhanced, and lung fibrosis is promoted, but the mechanism for this is unclear. It has been reported that a downregulation of the Na,K‑ATPase β1 subunit in renal epithelial cells is involved in renal fibrosis development, but the role of this protein in lung fibrosis remains unknown. In the present study, the expression of the Na,K‑ATPase β1 subunit was revealed to be markedly decreased in AECs of patients with IPF and a bleomycin‑induced pulmonary fibrosis mouse model. Treatment with transforming growth factor β‑1 led to significantly downregulation of the Na,K‑ATPase β1 subunit in lung adenocarcioma A549 cells. Furthermore, the knockdown of the Na,K‑ATPase β1 subunit in A549 cells resulted in the upregulation of profibrotic molecules, activation of the neurogenic locus notch homolog protein 1 and extracellular signal‑regulated kinase 1/2 signaling pathways and induction of endoplasmic reticulum stress. These findings reveal that the downregulation of the Na,K‑ATPase β1 subunit enhances the expression of profibrotic molecules in AECs and may contribute to IPF pathogenesis.
Collapse
Affiliation(s)
- Biyun Li
- Department of Pulmonary and Critical Care Medicine, China‑Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, P.R. China
| | - Xiaoxi Huang
- Department of Medical Research, Beijing Chao‑Yang Hospital, Beijing 100020, P.R. China
| | - Xuefeng Xu
- Department of Surgical Intensive Care Unit, Beijing An‑Zhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Wen Ning
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‑Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, P.R. China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China‑Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, P.R. China
| |
Collapse
|
23
|
Lan YL, Yu ZL, Lou JC, Ma XC, Zhang B. Update on the effects of the sodium pump α1 subunit on human glioblastoma: from the laboratory to the clinic. Expert Opin Investig Drugs 2018; 27:753-763. [PMID: 30130132 DOI: 10.1080/13543784.2018.1512582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Glioblastoma is a debilitating disease that is associated with poor prognosis and a very limited response to therapies; thus, molecularly targeted therapeutics and personalized therapy are urgently needed. The Na+/K+-ATPase sodium pump is a transmembrane protein complex that has recently been recognized as an important transducer and integrator of various signals. The sodium pump α1 subunit, which is highly expressed in most glioblastomas compared with that in normal brain tissues, is an emerging cancer target that merits further investigation. AREAS COVERED The purpose of this narrative review is to explore the important roles of the sodium pump α1 subunit in glioblastoma and analyze its potential therapeutic applications. EXPERT OPINION Expression of the sodium pump α1 subunit in glioblastoma tissues is generally higher than that in normal tissues. Sodium pump α1 subunit-mediated pivotal antiglioblastoma signaling pathways have been reviewed, and their impact on the sensitivity of glioblastoma cells to anticancer drugs has recently been clarified. In addition, various pharmacologically optimized sodium pump inhibitors have recently reached early clinical trials, and explorations of sodium pump α1 subunit inhibitors may hold promise for the development of stratification strategies in which patients are treated based on their isoform expression status.
Collapse
Affiliation(s)
- Yu-Long Lan
- a Department of Neurosurgery , The Second Affiliated Hospital of Dalian Medical University , Dalian , China.,b Department of Pharmacy , Dalian Medical University , Dalian , China.,c Department of Physiology , Dalian Medical University , Dalian , China
| | - Zhen-Long Yu
- b Department of Pharmacy , Dalian Medical University , Dalian , China
| | - Jia-Cheng Lou
- a Department of Neurosurgery , The Second Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Xiao-Chi Ma
- b Department of Pharmacy , Dalian Medical University , Dalian , China
| | - Bo Zhang
- a Department of Neurosurgery , The Second Affiliated Hospital of Dalian Medical University , Dalian , China
| |
Collapse
|
24
|
Characterizing functional consequences of DNA copy number alterations in breast and ovarian tumors by spaceMap. J Genet Genomics 2018; 45:361-371. [PMID: 30057342 DOI: 10.1016/j.jgg.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 01/18/2023]
Abstract
We propose a novel conditional graphical model - spaceMap - to construct gene regulatory networks from multiple types of high dimensional omic profiles. A motivating application is to characterize the perturbation of DNA copy number alterations (CNAs) on downstream protein levels in tumors. Through a penalized multivariate regression framework, spaceMap jointly models high dimensional protein levels as responses and high dimensional CNAs as predictors. In this setup, spaceMap infers an undirected network among proteins together with a directed network encoding how CNAs perturb the protein network. spaceMap can be applied to learn other types of regulatory relationships from high dimensional molecular profiles, especially those exhibiting hub structures. Simulation studies show spaceMap has greater power in detecting regulatory relationships over competing methods. Additionally, spaceMap includes a network analysis toolkit for biological interpretation of inferred networks. We applies spaceMap to the CNAs, gene expression and proteomics data sets from CPTAC-TCGA breast (n=77) and ovarian (n=174) cancer studies. Each cancer exhibits disruption of 'ion transmembrane transport' and 'regulation from RNA polymerase II promoter' by CNA events unique to each cancer. Moreover, using protein levels as a response yields a more functionally-enriched network than using RNA expressions in both cancer types. The network results also help to pinpoint crucial cancer genes and provide insights on the functional consequences of important CNA in breast and ovarian cancers. The R package spaceMap - including vignettes and documentation - is hosted on https://topherconley.github.io/spacemap.
Collapse
|
25
|
Buzaglo N, Golomb M, Rosen H, Beeri R, Ami HCB, Langane F, Pierre S, Lichtstein D. Augmentation of Ouabain-Induced Increase in Heart Muscle Contractility by Akt Inhibitor MK-2206. J Cardiovasc Pharmacol Ther 2018; 24:78-89. [DOI: 10.1177/1074248418788301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac steroids (CSs), such as ouabain and digoxin, increase the force of contraction of heart muscle and are used for the treatment of congestive heart failure (CHF). However, their small therapeutic window limits their use. It is well established that Na+, K+-ATPase inhibition mediates CS-induced increase in heart contractility. Recently, the involvement of intracellular signal transduction was implicated in this effect. The aim of the present study was to test the hypothesis that combined treatment with ouabain and Akt inhibitor (MK-2206) augments ouabain-induced inotropy in mammalian models. We demonstrate that the combined treatment led to an ouabain-induced increase in contractility at concentrations at which ouabain alone was ineffective. This was shown in 3 experimental systems: neonatal primary rat cardiomyocytes, a Langendorff preparation, and an in vivo myocardial infarction induced by left anterior descending coronary artery (LAD) ligation. Furthermore, cell viability experiments revealed that this treatment protected primary cardiomyocytes from MK-2206 toxicity and in vivo reduced the size of scar tissue 10 days post-LAD ligation. We propose that Akt activity imposes a constant inhibitory force on muscle contraction, which is attenuated by low concentrations of MK-2206, resulting in potentiation of the ouabain effect. This demonstration of the increase in the CS effect advocates the development of the combined treatment in CHF.
Collapse
Affiliation(s)
- Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Mordechai Golomb
- The Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ronen Beeri
- The Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hagit Cohen-Ben Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Fattal Langane
- Marshall Institute for Interdisciplinary Research, Huntington, WV, USA
| | - Sandrine Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV, USA
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
26
|
Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia. Blood Cancer J 2018; 8:52. [PMID: 29921955 PMCID: PMC6889502 DOI: 10.1038/s41408-018-0087-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Therapy for acute myeloid leukemia (AML) involves intense cytotoxic treatment and yet approximately 70% of AML are refractory to initial therapy or eventually relapse. This is at least partially driven by the chemo-resistant nature of the leukemic stem cells (LSCs) that sustain the disease, and therefore novel anti-LSC therapies could decrease relapses and improve survival. We performed in silico analysis of highly prognostic human AML LSC gene expression signatures using existing datasets of drug–gene interactions to identify compounds predicted to target LSC gene programs. Filtering against compounds that would inhibit a hematopoietic stem cell (HSC) gene signature resulted in a list of 151 anti-LSC candidates. Using a novel in vitro LSC assay, we screened 84 candidate compounds at multiple doses and confirmed 14 drugs that effectively eliminate human AML LSCs. Three drug families presenting with multiple hits, namely antihistamines (astemizole and terfenadine), cardiac glycosides (strophanthidin, digoxin and ouabain) and glucocorticoids (budesonide, halcinonide and mometasone), were validated for their activity against human primary AML samples. Our study demonstrates the efficacy of combining computational analysis of stem cell gene expression signatures with in vitro screening to identify novel compounds that target the therapy-resistant LSC at the root of relapse in AML.
Collapse
|
27
|
Wu IC, Chen YK, Wu CC, Cheng YJ, Chen WC, Ko HJ, Liu YP, Chai CY, Lin HS, Wu DC, Wu MT. Overexpression of ATPase Na+/+ transporting alpha 1 polypeptide, ATP1A1, correlates with clinical diagnosis and progression of esophageal squamous cell carcinoma. Oncotarget 2018; 7:85244-85258. [PMID: 27845894 PMCID: PMC5356733 DOI: 10.18632/oncotarget.13267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 10/14/2016] [Indexed: 01/10/2023] Open
Abstract
This study aims to identify new upregulated genes related to secretory or membranous proteins to help detect esophageal squamous cell carcinoma (ESCC). First, we performed microarray-based screening of esophageal tumors from both N-nitrosomethylbenzylamine- and arecoline-induced F344 rats and seventeen human ESCC specimens. Candidate genes were validated by quantitative PCR (qPCR) and immunohistochemical (IHC) staining of ESCC tissues. Among the paired cancer and adjacent normal tissues from 14 ESCC patients, 10 pairs (71.4%) had overexpression of ATP1A1 (ATPase Na+/K+ transporting alpha 1 polypeptide) by qPCR (P = 0.0052). ATP1A1 protein expression was re-confirmed by tissue arrays in 243 ESCC tissues and 126 adjacent normal tissues and by ELISA in 78 serum specimens of ESCC patients. ATP1A1 was 12.3 times (adjusted odds ratio=12.3, 95% CI = 7.2-21.0) more likely to be overexpressed in cancer tissues than in normal tissues. ATP1A1 expression was also correlated to tumor stage. Patients with higher serum ATP1A1 levels had a 2.9-fold (95% CI = 1.1-7.4) risk of late-stage disease (stages III-IV vs. I-II). Downregulation of ATP1A1 expression inhibited the migration and invasion ability of ESCC cell lines in vitro. We concluded that the overexpression of ATP1A1 is strongly associated with the presence and severity of ESCC.
Collapse
Affiliation(s)
- I-Chen Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Kuei Chen
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Jen Cheng
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Wei-Chung Chen
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Huey-Jiun Ko
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Shun Lin
- Department of Laboratory Medicine & Department of Research, Education & Training, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Yu H, Cui X, Zhang J, Xie JX, Banerjee M, Pierre SV, Xie Z. Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction. Am J Physiol Cell Physiol 2018; 314:C202-C210. [PMID: 29118027 PMCID: PMC5866435 DOI: 10.1152/ajpcell.00124.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 11/22/2022]
Abstract
Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Jue Zhang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Joe X Xie
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Moumita Banerjee
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| |
Collapse
|
29
|
Paz MFCJ, Gomes AL, Islam MT, Tabrez S, Jabir NR, Alam MZ, Machado KC, de Alencar MVOB, Machado KC, Ali ES, Mishra SK, Gomes LF, Sobral ALP, e Sousa JMC, de Souza GF, Melo‐Cavalcante AAC, da Silva J. Assessment of chemotherapy on various biochemical markers in breast cancer patients. J Cell Biochem 2017; 119:2923-2928. [DOI: 10.1002/jcb.26487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Muhammad T. Islam
- Postgraduate Program in Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Nasimudeen R. Jabir
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Mohammad Z. Alam
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Kátia C. Machado
- Postgraduate Program in Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil
| | | | - Keylla C. Machado
- Postgraduate Program in Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil
| | - Eunus S. Ali
- School of MedicineFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Siddhartha K. Mishra
- Cancer Biology LaboratorySchool of Biological Sciences (Zoology)Dr. Harisingh Gour Central University, SagarMadhya PradeshIndia
| | - Leonardo F. Gomes
- Postgraduate Program in Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil
| | | | - João M. C. e Sousa
- Postgraduate Program in Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil
| | - Geane F. de Souza
- Postgraduate Program in Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil
| | | | | |
Collapse
|
30
|
Pessôa MTC, Alves SLG, Taranto AG, Villar JAFP, Blanco G, Barbosa LA. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: a molecular docking approach. J Enzyme Inhib Med Chem 2017; 33:85-97. [PMID: 29115894 PMCID: PMC6009882 DOI: 10.1080/14756366.2017.1380637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Digoxin and other cardiotonic steroids (CTS) exert their effect by inhibiting Na,K-ATPase (NKA) activity. CTS bind to the various NKA isoforms that are expressed in different cell types, which gives CTS their narrow therapeutic index. We have synthesised a series of digoxin derivatives (γ-Benzylidene digoxin derivatives) with substitutions in the lactone ring (including non-oxygen and ether groups), to obtain CTS with better NKA isoform specificity. Some of these derivatives show some NKA isoform selective effects, with BD-3, BD-8, and BD-13 increasing NKA α2 activity, BD-5 inhibiting NKA α1 and NKA α3, BD-10 reducing NKA α1, but stimulating NKA α2 and α3; and BD-14, BD-15, and BD-16 enhancing NKA α3 activity. A molecular-docking approach favoured NKA isoform specific interactions for the compounds that supported their observed activity. These results show that BD compounds are a new type of CTS with the capacity to target NKA activity in an isoform-specific manner.
Collapse
Affiliation(s)
- Marco T C Pessôa
- a Laboratório de Bioquímica Celular , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - Silmara L G Alves
- b Laboratório de Síntese Orgânica e Nanoestruturas , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - Alex G Taranto
- c Laboratório de Modelagem Molecular , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - José A F P Villar
- b Laboratório de Síntese Orgânica e Nanoestruturas , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| | - Gustavo Blanco
- d Department of Molecular and Integrative Physiology , Kansas University Medical Center , Kansas City , KS , USA
| | - Leandro A Barbosa
- a Laboratório de Bioquímica Celular , Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú , Divinópolis , Brazil
| |
Collapse
|
31
|
Rotoli D, Cejas MM, Maeso MDC, Pérez-Rodríguez ND, Morales M, Ávila J, Mobasheri A, Martín-Vasallo P. The Na, K-ATPase β-Subunit Isoforms Expression in Glioblastoma Multiforme: Moonlighting Roles. Int J Mol Sci 2017; 18:ijms18112369. [PMID: 29117147 PMCID: PMC5713338 DOI: 10.3390/ijms18112369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Recent studies point out that gliomas exploit ion channels and transporters, including Na, K-ATPase, to sustain their singular growth and invasion as they invade the brain parenchyma. Moreover, the different isoforms of the β-subunit of Na, K-ATPase have been implicated in regulating cellular dynamics, particularly during cancer progression. The aim of this study was to determine the Na, K-ATPase β subunit isoform subcellular expression patterns in all cell types responsible for microenvironment heterogeneity of GBM using immunohistochemical analysis. All three isoforms, β1, β2/AMOG (Adhesion Molecule On Glia) and β3, were found to be expressed in GBM samples. Generally, β1 isoform was not expressed by astrocytes, in both primary and secondary GBM, although other cell types (endothelial cells, pericytes, telocytes, macrophages) did express this isoform. β2/AMOG and β3 positive expression was observed in the cytoplasm, membrane and nuclear envelope of astrocytes and GFAP (Glial Fibrillary Acidic Protein) negative cells. Interestingly, differences in isoforms expression have been observed between primary and secondary GBM: in secondary GBM, β2 isoform expression in astrocytes was lower than that observed in primary GBM, while the expression of the β3 subunit was more intense. These changes in β subunit isoforms expression in GBM could be related to a different ionic handling, to a different relationship between astrocyte and neuron (β2/AMOG) and to changes in the moonlighting roles of Na, K-ATPase β subunits as adaptor proteins and transcription factors.
Collapse
Affiliation(s)
- Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
- CNR-National Research Council, Institute of Endocrinology and Experimental Oncology (IEOS), Via Sergio Pansini, 5-80131 Naples, Italy.
| | - Mariana-Mayela Cejas
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - María-Del-Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain.
| | - Natalia-Dolores Pérez-Rodríguez
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain.
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain.
- Medical Oncology, Hospiten® Hospitals, 38001 Santa Cruz de Tenerife, Tenerife, Spain.
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
32
|
Boo MV, Hiong KC, Choo CYL, Cao-Pham AH, Wong WP, Chew SF, Ip YK. The inner mantle of the giant clam, Tridacna squamosa, expresses a basolateral Na+/K+-ATPase α-subunit, which displays light-dependent gene and protein expression along the shell-facing epithelium. PLoS One 2017; 12:e0186865. [PMID: 29049367 PMCID: PMC5648256 DOI: 10.1371/journal.pone.0186865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Na+/K+-ATPase (NKA) is essential for maintaining the Na+ and K+ gradients, and supporting the secondary active transport of certain ions/molecules, across the plasma membrane of animal cells. This study aimed to clone the NKA α-subunit (NKAα) from the inner mantle adjacent to the extrapallial fluid of Tridacna squamosa, to determine its subcellular localization, and to examine the effects of light exposure on its transcript level and protein abundance. The cDNA coding sequence of NKAα from T. squamosa comprised 3105 bp, encoding 1034 amino acids with an estimated molecular mass of 114 kDa. NKAα had a basolateral localization along the shell-facing epithelium of the inner mantle. Exposure to 12 h of light led to a significantly stronger basolateral NKAα-immunofluorescence at the shell-facing epithelium, indicating that NKA might play a role in light-enhanced calcification in T. squamosa. After 3 h of light exposure, the transcript level of NKAα decreased transiently in the inner mantle, but returned to the control level thereafter. In comparison, the protein abundance of NKAα remained unchanged at hour 3, but became significantly higher than the control after 12 h of light exposure. Hence, the expression of NKAα in the inner mantle of T. squamosa was light-dependent. It is probable that a higher expression level of NKA was needed in the shell-facing epithelial cells of the inner mantle to cope with a rise in Na+ influx, possibly caused by increases in activities of some Na+-dependent ion transporters/channels involved in light-enhanced calcification.
Collapse
Affiliation(s)
- Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Celine Y. L. Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Anh H. Cao-Pham
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
33
|
Wang SH, Wang KL, Yang WK, Lee TH, Lo WY, Lee JD. Expression and potential roles of sodium-potassium ATPase and E-cadherin in human gastric adenocarcinoma. PLoS One 2017; 12:e0183692. [PMID: 28832634 PMCID: PMC5568324 DOI: 10.1371/journal.pone.0183692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background Gastric adenocarcinoma originates from an abnormal epithelium. The aim of this study was to investigate the expression of sodium-potassium ATPase (NKA), a transmembrane protein located in the epithelium for Na+ and K+ transportation, and E-cadherin, which are both crucial for the epithelium and adherens junction, as potential gastric cancer biomarkers. Methods 45 patients diagnosed with gastric adenocarcinoma were recruited. Immunohistochemistry and immunofluorescence were conducted to for localization of NKA α1-, β1-isoform, and E-cadherin. NKA enzyme activity was determined by NADH-linked methods and immunoblotting of NKA α1-, β1-isoform, and E-cadherin were performed to evaluate protein expression. Results Immunostaining revealed that NKA was co-localized with E-cadherin in the glands of the gastric epithelium. Both NKA activity and α1-isoform protein expression were reduced in the study group (P < 0.05), indicating impaired NKA functions. In the adherens junctions, the NKA β1-isoform and E-cadherin were significantly reduced in the study groups (P < 0.05), indicating the adhesion force between cells may have been weakened. Conclusions A significant decrease in NKA function (protein and activity) and E-cadherin in tumor lesions appear promising biomarker for gastric adenocarcinoma. Therefore, developing screening methods for detecting NKA function may be beneficial for the early diagnosis of gastric cancer. In our knowledge, this study was the first to investigate the NKA and E-cadherin expression in the relation of gastric adenocarcinoma in human patients.
Collapse
Affiliation(s)
- Shih-Ho Wang
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan, R.O.C
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan, R.O.C
| | - Kuan-Lin Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan, R.O.C
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Wan-Yu Lo
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan, R.O.C
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan, R.O.C
| | - Jane-Dar Lee
- Department of Urology, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan, R.O.C
- Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
- Department of Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
34
|
Lubarski-Gotliv I, Dey K, Kuznetsov Y, Kalchenco V, Asher C, Garty H. FXYD5 (dysadherin) may mediate metastatic progression through regulation of the β-Na+-K+-ATPase subunit in the 4T1 mouse breast cancer model. Am J Physiol Cell Physiol 2017; 313:C108-C117. [DOI: 10.1152/ajpcell.00206.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 04/24/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
Abstract
FXYD5 is a Na+-K+-ATPase regulator, expressed in a variety of normal epithelia. In parallel, it has been found to be associated with several types of cancer and effect lethal outcome by promoting metastasis. However, the molecular mechanism underlying FXYD5 mediated invasion has not yet been identified. In this study, using in vivo 4T1 murine breast cancer model, we found that FXYD5-specific shRNA significantly inhibited lung cancer metastasis, without having a substantial effect on primary tumor growth. Our study reveals that FXYD5 participates in multiple stages of metastatic development and exhibits more than one mode of E-cadherin regulation. We provide the first evidence that FXYD5-related morphological changes are mediated through its interaction with Na+-K+-ATPase. Experiments in cultured 4T1 cells have indicated that FXYD5 expression may downregulate the β1 isoform of the pump. This behavior could have implications on both transcellular interactions and intracellular events. Further studies suggest that differential localization of the adaptor protein Annexin A2 in FXYD5-expressing cells may correlate with matrix metalloproteinase 9 secretion and adhesion changes in 4T1 wild-type cells.
Collapse
Affiliation(s)
- Irina Lubarski-Gotliv
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel; and
| | - Kuntal Dey
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel; and
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Vecheslav Kalchenco
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Carol Asher
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel; and
| | - Haim Garty
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel; and
| |
Collapse
|
35
|
The Glycoside Oleandrin Reduces Glioma Growth with Direct and Indirect Effects on Tumor Cells. J Neurosci 2017; 37:3926-3939. [PMID: 28292827 DOI: 10.1523/jneurosci.2296-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na+/K+-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrin's protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment.SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor.
Collapse
|
36
|
Liu M, Feng LX, Sun P, Liu W, Mi T, Lei M, Wu W, Jiang B, Yang M, Hu L, Guo DA, Liu X. Knockdown of Apolipoprotein E Enhanced Sensitivity of Hep3B Cells to Cardiac Steroids via Regulating Na+/K+-ATPase Signalosome. Mol Cancer Ther 2016; 15:2955-2965. [PMID: 27507851 DOI: 10.1158/1535-7163.mct-15-0961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 11/16/2022]
Abstract
This study compared the sensitivity of human hepatoma Hep3B, SK-HEP-1, SMMC-7721, and BEL-7402 cells to cardiac steroids, including bufalin (BF), a bufalin derivative (BF211), ouabain (OUA), and digitoxin (DIG). Hep3B cells exhibited relatively low sensitivity to cardiac steroids. Expression levels of subunits of Na+/K+-ATPase were high in Hep3B cells. However, colocalization of Na+/K+-ATPase and caveolin was nearly undetectable in Hep3B cells. By using RNA-Seq technology, we found a total of 36 genes to be differentially expressed between Hep3B cells and SK-HEP-1 cells, which are highly sensitive to cardiac steroids. Our bioinformatics analysis determined that these genes were mostly comprised of extracellular space, protein binding, and extracellular region. Among these 36 genes, apolipoprotein E (APOE) played a critical role, as knockdown APOE expression induced colocalization of Na+/K+-ATPase and caveolin and increased sensitivity of Hep3B cells to both proliferation-inhibiting and cytotoxic effects of BF or BF211. Also, the effects of BF on PI3K/AKT/GSK3β and apoptosis signal cascades were enhanced in APOE knockdown cells. The results of our study confirmed the role of Na+/K+-ATPase signalosome in cytotoxicity of cardiac steroids and suggested that APOE regulated the sensitivity of cells to cardiac steroids by affecting formation and function of Na+/K+-ATPase signalosome. In addition, intercellular interaction with high level of Na+/K+-ATPase β1 subunit may be also a factor in the low sensitivity of Hep3B cells to cardiac steroids. Mol Cancer Ther; 15(12); 2955-65. ©2016 AACR.
Collapse
Affiliation(s)
- Miao Liu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Li-Xing Feng
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Peng Sun
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Wang Liu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Tian Mi
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Lei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Wanying Wu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Baohong Jiang
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Yang
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Lihong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - De-An Guo
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Xuan Liu
- Shanghai Research Center for Modernization of TCM, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China. .,Department of Cardiology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
37
|
Shah PT, Martin R, Yan Y, Shapiro JI, Liu J. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis. Front Physiol 2016; 7:256. [PMID: 27445847 PMCID: PMC4923243 DOI: 10.3389/fphys.2016.00256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 01/01/2023] Open
Abstract
Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).
Collapse
Affiliation(s)
- Preeya T Shah
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Rebecca Martin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Yanling Yan
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Joseph I Shapiro
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Jiang Liu
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| |
Collapse
|
38
|
Lubarski-Gotliv I, Asher C, Dada LA, Garty H. FXYD5 Protein Has a Pro-inflammatory Role in Epithelial Cells. J Biol Chem 2016; 291:11072-82. [PMID: 27006401 DOI: 10.1074/jbc.m115.699041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
The FXYD proteins are a family of small membrane proteins that share an invariant four amino acid signature motif F-X-Y-D and act as tissue-specific regulatory subunits of the Na,K-ATPase. FXYD5 (also termed dysadherin or RIC) is a structurally and functionally unique member of the FXYD family. As other FXYD proteins, FXYD5 specifically interacts with the Na,K-ATPase and alters its kinetics by increasing Vmax However, unlike other family members FXYD5 appears to have additional functions, which cannot be readily explained by modulation of transport kinetics. Knockdown of FXYD5 in MDA-MB-231 breast cancer cells largely decreases expression and secretion of the chemokine CCL2 (MCP-1). A related effect has also been observed in renal cell carcinoma cells. The current study aims to further characterize the relationship between the expression of FXYD5 and CCL2 secretion. We demonstrate that transfection of M1 epithelial cell line with FXYD5 largely increases lipopolysaccharide (LPS) stimulated CCL2 mRNA and secretion of the translated protein. We have completed a detailed analysis of the molecular events leading to the above response. Our key findings indicate that FXYD5 generates a late response by increasing the surface expression of the TNFα receptor, without affecting its total protein level, or mRNA transcription. LPS administration to mice demonstrates induced secretion of CCL2 and TNFα in FXYD5-expressing lung peripheral tissue, which suggests a possible role for FXYD5 in normal epithelia during inflammation.
Collapse
Affiliation(s)
- Irina Lubarski-Gotliv
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel and
| | - Carol Asher
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel and
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Haim Garty
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel and
| |
Collapse
|
39
|
Durlacher CT, Chow K, Chen XW, He ZX, Zhang X, Yang T, Zhou SF. Targeting Na⁺/K⁺ -translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharmacol Physiol 2016; 42:427-43. [PMID: 25739707 DOI: 10.1111/1440-1681.12385] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 12/24/2022]
Abstract
The Na(+) /K(+) -translocating adenosine triphosphatase (ATPase) transports sodium and potassium across the plasma membrane and represents a potential target in cancer chemotherapy. Na(+) /K(+) -ATPase belongs to the P-type ATPase family (also known as E1-E2 ATPase), which is involved in transporting certain ions, metals, and lipids across the plasma membrane of mammalian cells. In humans, the Na(+) /K(+) -ATPase is a binary complex of an α-subunit that has four isoforms (α1 -α4 ) and a β-subunit that has three isoforms (β1 -β3 ). This review aims to update our knowledge on the role of Na(+) /K(+) -ATPase in cancer development and metastasis, as well as on how Na(+) /K(+) -ATPase inhibitors kill tumour cells. The Na(+) /K(+) -ATPase has been found to be associated with cancer initiation, growth, development, and metastasis. Cardiac glycosides have exhibited anticancer effects in cell-based and mouse studies via inhibition of the Na(+) /K(+) -ATPase and other mechanisms. Na(+) /K(+) -ATPase inhibitors may kill cancer cells via induction of apoptosis and autophagy, radical oxygen species production, and cell cycle arrest. They also modulate multiple signalling pathways that regulate cancer cell survival and death, which contributes to their antiproliferative activities in cancer cells. The clinical evidence supporting the use of Na(+) /K(+) -ATPase inhibitors as anticancer drugs is weak. Several phase I and phase II clinical trials with digoxin, Anvirzel, and huachansu (an intravenous formulated extract of the venom of the wild toad), either alone or more often in combination with other anticancer agents, have shown acceptable safety profiles but limited efficacy in cancer patients. Well-designed randomized clinical trials with reasonable sample sizes are certainly warranted to confirm the efficacy and safety of cardiac glycosides for the treatment of cancer.
Collapse
Affiliation(s)
- Cameron T Durlacher
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Baker Bechmann M, Rotoli D, Morales M, Maeso MDC, García MDP, Ávila J, Mobasheri A, Martín-Vasallo P. Na,K-ATPase Isozymes in Colorectal Cancer and Liver Metastases. Front Physiol 2016; 7:9. [PMID: 26858653 PMCID: PMC4731494 DOI: 10.3389/fphys.2016.00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/11/2016] [Indexed: 02/01/2023] Open
Abstract
The goal of this study was to define Na,K-ATPase α and β subunit isoform expression and isozyme composition in colorectal cancer cells and liver metastases. The α1, α3, and β1 isoforms were the most highly expressed in tumor cells and metastases; in the plasma membrane of non-neoplastic cells and mainly in a cytoplasmic location in tumor cells. α1β1 and α3β1 isozymes found in tumor and metastatic cells exhibit the highest and lowest Na+ affinity respectively and the highest K+ affinity. Mesenchymal cell isozymes possess an intermediate Na+ affinity and a low K+ affinity. In cancer, these ions are likely to favor optimal conditions for the function of nuclear enzymes involved in mitosis, especially a high intra-nuclear K+ concentration. A major and striking finding of this study was that in liver, metastasized CRC cells express the α3β1 isozyme. Thus, the α3β1 isozyme could potentially serve as a novel exploratory biomarker of CRC metastatic cells in liver.
Collapse
Affiliation(s)
- Marc Baker Bechmann
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna Santa Cruz de Tenerife, Spain
| | - Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias, Universidad de La LagunaSanta Cruz de Tenerife, Spain; Institute of Endocrinology and Experimental Oncology, National Research CouncilNaples, Italy
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de CandelariaSanta Cruz de Tenerife, Spain; Medical Oncology, Hospiten HospitalsSanta Cruz de Tenerife, Spain
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria Santa Cruz de Tenerife, Spain
| | | | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna Santa Cruz de Tenerife, Spain
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, Faculty of Health and Medical Sciences, University of SurreyGuildford, UK; Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Fahd Medical Research Center, King AbdulAziz UniversityJeddah, Saudi Arabia
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna Santa Cruz de Tenerife, Spain
| |
Collapse
|
41
|
Thabet R, Rouault JD, Ayadi H, Leignel V. Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:11-18. [PMID: 26812300 DOI: 10.1016/j.cbpb.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/18/2023]
Abstract
The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates.
Collapse
Affiliation(s)
- Rahma Thabet
- University of Sfax, Laboratory of Biodiversity and Aquatic Ecosystems UR/11ES72, Ecology and Planktonology, Department of Life Sciences, Road Soukra Km 3.5, BP1171, 3000, Sfax, Tunisia
| | - J-D Rouault
- Laboratoire Evolution, Genomes et Speciation, UPR9034, CNRS, 91198 Gif-sur-Yvette, France
| | - Habib Ayadi
- University of Sfax, Laboratory of Biodiversity and Aquatic Ecosystems UR/11ES72, Ecology and Planktonology, Department of Life Sciences, Road Soukra Km 3.5, BP1171, 3000, Sfax, Tunisia
| | - Vincent Leignel
- Université du Maine, Laboratoire Mer Molecule Sante EA 2160 FR-CNRS 3473 IUML, 72085 Le Mans, France.
| |
Collapse
|
42
|
Cheung LW, Mills GB. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics 2016; 17:297-307. [PMID: 26807692 DOI: 10.2217/pgs.15.174] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The regulatory subunit of PI3K, p85α (encoded by PIK3R1), binds, stabilizes and inhibits the PI3K p110 catalytic subunit. Functional characterization of PIK3R1 mutations has identified not only hypomorphs with reduced inhibition of p110, but also hypomorphs and dominant negative mutants that disrupt a novel regulatory role of p85α on PTEN or neomorphs that activate unexpected signaling pathways. The diverse phenotypic spectrum of these PIK3R1 driver mutations underscores the need for different treatment strategies targeting tumors harboring these mutations. This article describes the functional consequences of the spectrum of PIK3R1 driver mutations and therapeutic liabilities they may engender.
Collapse
Affiliation(s)
- Lydia Wt Cheung
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Khalifa Bin Zayed Al Nahyan Institute of Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Li Z, Langhans SA. Transcriptional regulators of Na,K-ATPase subunits. Front Cell Dev Biol 2015; 3:66. [PMID: 26579519 PMCID: PMC4620432 DOI: 10.3389/fcell.2015.00066] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.
Collapse
Affiliation(s)
- Zhiqin Li
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| |
Collapse
|
44
|
Patil PU, D'Ambrosio J, Inge LJ, Mason RW, Rajasekaran AK. Carcinoma cells induce lumen filling and EMT in epithelial cells through soluble E-cadherin-mediated activation of EGFR. J Cell Sci 2015; 128:4366-79. [PMID: 26483386 DOI: 10.1242/jcs.173518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022] Open
Abstract
In epithelial cancers, carcinoma cells coexist with normal cells. Although it is known that the tumor microenvironment (TME) plays a pivotal role in cancer progression, it is not completely understood how the tumor influences adjacent normal epithelial cells. In this study, a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) was used to demonstrate that carcinoma cells sequentially induce preneoplastic lumen filling and epithelial-mesenchymal transition (EMT) in epithelial cysts. MMP-9 secreted by carcinoma cells cleaves cellular E-cadherin (encoded by CDH1) from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein. We show that sE-cad induces EGFR activation, resulting in lumen filling in MDCK cysts. Long-term sE-cad treatment induced EMT. sE-cad caused lumen filling by induction of the ERK signaling pathway and triggered EMT through the sustained activation of the AKT pathway. Although it is known that sE-cad induces MMP-9 release and consequent EGFR activation in tumor cells, our results, for the first time, demonstrate that carcinoma cells can induce sE-cad shedding in adjacent epithelial cells, which leads to EGFR activation and the eventual transdifferentiation of the normal epithelial cells.
Collapse
Affiliation(s)
- Pratima U Patil
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA Nemours Center for Childhood Cancer Research, Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Julia D'Ambrosio
- Nemours Center for Childhood Cancer Research, Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Landon J Inge
- Thoracic and Esophageal disease, Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Robert W Mason
- Nemours Center for Childhood Cancer Research, Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ayyappan K Rajasekaran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA Therapy Architects, LLC, 2700, Silverside Road, Wilmington, DE 19810, USA
| |
Collapse
|
45
|
EGF-induced sodium influx regulates EGFR trafficking through HDAC6 and tubulin acetylation. BMC Cell Biol 2015; 16:24. [PMID: 26382850 PMCID: PMC4574528 DOI: 10.1186/s12860-015-0070-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Endocytosis of activated EGF receptor (EGFR) to specific endocytic compartments is required to terminate EGF signaling. Trafficking of EGFR relies on microtubule tracks that transport the cargo vesicle to their intermediate and final destinations and can be modulated through posttranslational modification of tubulin including acetylation. Na,K-ATPase maintains intracellular sodium homeostasis, functions as a signaling scaffold and interacts with EGFR. Na,K-ATPase also binds to and is regulated by acetylated tubulin but whether there is a functional link between EGFR, Na,K-ATPase and tubulin acetylation is not known. RESULTS EGF-induced sodium influx regulates EGFR trafficking through increased microtubule acetylation. Increased sodium influx induced either by sodium ionophores or Na,K-ATPase blockade mimicked the EGF-induced effects on EGFR trafficking through histone deacetylase (HDAC) 6 inactivation and accumulation of acetylated tubulin. In turn, blocking sodium influx reduced tubulin acetylation and EGF-induced EGFR turnover. Knockdown of HDAC6 reversed the effect of sodium influx indicating that HDAC6 is necessary to modulate sodium-dependent tubulin acetylation. CONCLUSIONS These studies provide a novel regulatory mechanism to attenuate EGFR signaling in which EGF modulates EGFR trafficking through intracellular sodium-mediated HDAC6 inactivation and tubulin acetylation.
Collapse
|
46
|
Lee SJ, Litan A, Li Z, Graves B, Lindsey S, Barwe SP, Langhans SA. Na,K-ATPase β1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. Mol Cancer 2015; 14:159. [PMID: 26286140 PMCID: PMC4544806 DOI: 10.1186/s12943-015-0430-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Background The Sonic hedgehog (Shh) signaling pathway plays an important role in cerebellar development, and mutations leading to hyperactive Shh signaling have been associated with certain forms of medulloblastoma, a common form of pediatric brain cancer. While the fundamentals of this pathway are known, the molecular targets contributing to Shh-mediated proliferation and transformation are still poorly understood. Na,K-ATPase is a ubiquitous enzyme that maintains intracellular ion homeostasis and functions as a signaling scaffold and a cell adhesion molecule. Changes in Na,K-ATPase function and subunit expression have been reported in several cancers and loss of the β1-subunit has been associated with a poorly differentiated phenotype in carcinoma but its role in medulloblastoma progression is not known. Methods Human medulloblastoma cell lines and primary cultures of cerebellar granule cell precursors (CGP) were used to determine whether Shh regulates Na,K-ATPase expression. Smo/Smo medulloblastoma were used to assess the Na,K-ATPase levels in vivo. Na,K-ATPase β1-subunit was knocked down in DAOY cells to test its role in medulloblastoma cell proliferation and tumorigenicity. Results Na,K-ATPase β1-subunit levels increased with differentiation in normal CGP cells. Activation of Shh signaling resulted in reduced β1-subunit mRNA and protein levels and was mimicked by overexpression of Gli1and Bmi1, both members of the Shh signaling cascade; overexpression of Bmi1 reduced β1-subunit promoter activity. In human medulloblastoma cells, low β1-subunit levels were associated with increased cell proliferation and in vivo tumorigenesis. Conclusions Na,K-ATPase β1-subunit is a target of the Shh signaling pathway and loss of β1-subunit expression may contribute to tumor development and progression not only in carcinoma but also in medulloblastoma, a tumor of neuronal origin.
Collapse
Affiliation(s)
- Seung Joon Lee
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Alisa Litan
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Zhiqin Li
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Bruce Graves
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Stephan Lindsey
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Sonali P Barwe
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA
| | - Sigrid A Langhans
- Nemours/Alfred I. duPont Hospital for Children, Rockland Center I, 1701 Rockland Road, Wilmington, DE, 19803, USA.
| |
Collapse
|
47
|
Balasubramaniam SL, Gopalakrishnapillai A, Barwe SP. Ion dependence of Na-K-ATPase-mediated epithelial cell adhesion and migration. Am J Physiol Cell Physiol 2015; 309:C437-41. [PMID: 26157008 DOI: 10.1152/ajpcell.00140.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sona Lakshme Balasubramaniam
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware; and Department of Biological Sciences, University of Delaware, Newark, Delaware
| | | | - Sonali P Barwe
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware; and Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
48
|
Huynh TP, Barwe SP, Lee SJ, McSpadden R, Franco OE, Hayward SW, Damoiseaux R, Grubbs SS, Petrelli NJ, Rajasekaran AK. Glucocorticoids suppress renal cell carcinoma progression by enhancing Na,K-ATPase beta-1 subunit expression. PLoS One 2015; 10:e0122442. [PMID: 25836370 PMCID: PMC4383530 DOI: 10.1371/journal.pone.0122442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 02/21/2015] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoids are commonly used as palliative or chemotherapeutic clinical agents for treatment of a variety of cancers. Although steroid treatment is beneficial, the mechanisms by which steroids improve outcome in cancer patients are not well understood. Na,K-ATPase beta-subunit isoform 1 (NaK-β1) is a cell-cell adhesion molecule, and its expression is down-regulated in cancer cells undergoing epithelial-to mesenchymal-transition (EMT), a key event associated with cancer progression to metastatic disease. In this study, we performed high-throughput screening to identify small molecules that could up-regulate NaK-β1 expression in cancer cells. Compounds related to the glucocorticoids were identified as drug candidates enhancing NaK-β1 expression. Of these compounds, triamcinolone, dexamethasone, and fluorometholone were validated to increase NaK-β1 expression at the cell surface, enhance cell-cell adhesion, attenuate motility and invasiveness and induce mesenchymal to epithelial like transition of renal cell carcinoma (RCC) cells in vitro. Treatment of NaK-β1 knockdown cells with these drug candidates confirmed that these compounds mediate their effects through up-regulating NaK-β1. Furthermore, we demonstrated that these compounds attenuate tumor growth in subcutaneous RCC xenografts and reduce local invasiveness in orthotopically-implanted tumors. Our results strongly indicate that the addition of glucocorticoids in the treatment of RCC may improve outcome for RCC patients by augmenting NaK-β1 cell-cell adhesion function.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/enzymology
- Carcinoma, Renal Cell/pathology
- Cell Adhesion/drug effects
- Cell Line, Tumor
- Dexamethasone/pharmacology
- Disease Progression
- Fluorometholone/pharmacology
- Glucocorticoids/pharmacology
- HeLa Cells
- High-Throughput Screening Assays
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/enzymology
- Kidney Neoplasms/pathology
- Male
- Mice
- Mice, Hairless
- Mice, SCID
- Neoplasm Invasiveness/prevention & control
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
- Triamcinolone/pharmacology
- Up-Regulation/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Thu P. Huynh
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Sonali P. Barwe
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Seung J. Lee
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Ryan McSpadden
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Omar E. Franco
- Department of Urologic Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephen S. Grubbs
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware, United States of America
| | - Nicholas J. Petrelli
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware, United States of America
| | - Ayyappan K. Rajasekaran
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Therapy Architects, 2700 Silverside Road, Wilmington, Delaware, United States of America
| |
Collapse
|
49
|
Litan A, Langhans SA. Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosci 2015; 9:86. [PMID: 25852478 PMCID: PMC4362317 DOI: 10.3389/fncel.2015.00086] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/23/2015] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that ion channels and pumps not only regulate membrane potential, ion homeostasis, and electric signaling in excitable cells but also play important roles in cell proliferation, migration, apoptosis and differentiation. Consistent with a role in cell signaling, channel proteins and ion pumps can form macromolecular complexes with growth factors, and cell adhesion and other signaling molecules. And while cancer is still not being cataloged as a channelopathy, as the non-traditional roles of ion pumps and channels are being recognized, it is increasingly being suggested that ion channels and ion pumps contribute to cancer progression. Cancer cell migration requires the regulation of adhesion complexes between migrating cells and surrounding extracellular matrix (ECM) proteins. Cell movement along solid surfaces requires a sequence of cell protrusions and retractions that mainly depend on regulation of the actin cytoskeleton along with contribution of microtubules and molecular motor proteins such as mysoin. This process is triggered and modulated by a combination of environmental signals, which are sensed and integrated by membrane receptors, including integrins and cadherins. Membrane receptors transduce these signals into downstream signaling pathways, often involving the Rho GTPase protein family. These pathways regulate the cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachment of cells in order to find their way through extracellular spaces. Migration and adhesion involve continuous modulation of cell motility, shape and volume, in which ion channels and pumps play major roles. Research on cancer cells suggests that certain ion channels may be involved in aberrant tumor growth and channel inhibitors often lead to growth arrest. This review will describe recent research into the role of ion pumps and ion channels in cell migration and adhesion, and how they may contribute to tumor development.
Collapse
Affiliation(s)
- Alisa Litan
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children Wilmington, DE, USA
| |
Collapse
|
50
|
Balasubramaniam SL, Gopalakrishnapillai A, Gangadharan V, Duncan RL, Barwe SP. Sodium-calcium exchanger 1 regulates epithelial cell migration via calcium-dependent extracellular signal-regulated kinase signaling. J Biol Chem 2015; 290:12463-73. [PMID: 25770213 DOI: 10.1074/jbc.m114.629519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Na(+)/Ca(2+) exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca(2+) ion and the influx of three Na(+) ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory β-subunit (Na,K-β) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-β had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-β associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-β knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in β-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-β in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration.
Collapse
Affiliation(s)
- Sona Lakshme Balasubramaniam
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Anilkumar Gopalakrishnapillai
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and
| | - Vimal Gangadharan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Sonali P Barwe
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|