1
|
Ong JY, Abdusamad M, Ramirez I, Gholkar A, Zhang X, Gimeno TV, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. Mol Biol Cell 2025; 36:ar24. [PMID: 39785820 DOI: 10.1091/mbc.e24-04-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP activity, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate that SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ankur Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiaoxuan Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Thomas V Gimeno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
2
|
Mouery RD, Lukasik K, Hsu C, Bonacci T, Bolhuis DL, Wang X, Mills CA, Toomer ED, Canterbury OG, Robertson KC, Branigan TB, Brown NG, Herring LE, Gupton SL, Emanuele MJ. Proteomic analysis reveals a PLK1-dependent G2/M degradation program and a role for AKAP2 in coordinating the mitotic cytoskeleton. Cell Rep 2024; 43:114510. [PMID: 39018246 PMCID: PMC11403584 DOI: 10.1016/j.celrep.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Ubiquitination is an essential regulator of cell division. The kinase Polo-like kinase 1 (PLK1) promotes protein degradation at G2/M phase through the E3 ubiquitin ligase Skp1-Cul1-F box (SCF)βTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome is uncharacterized. Combining quantitative proteomics with pharmacologic PLK1 inhibition revealed a widespread, PLK1-dependent program of protein breakdown at G2/M. We validated many PLK1-regulated proteins, including substrates of the cell-cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct E3 ligases. We show that the protein-kinase-A-anchoring protein A-kinase anchor protein 2 (AKAP2) is cell-cycle regulated and that its mitotic degradation is dependent on the PLK1/βTrCP signaling axis. Expression of a non-degradable AKAP2 mutant resulted in actin defects and aberrant mitotic spindles, suggesting that AKAP2 degradation coordinates cytoskeletal organization during mitosis. These findings uncover PLK1's far-reaching role in shaping the mitotic proteome post-translationally and have potential implications in malignancies where PLK1 is upregulated.
Collapse
Affiliation(s)
- Ryan D Mouery
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kimberly Lukasik
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carolyn Hsu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Drew Toomer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen G Canterbury
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin C Robertson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Gupton
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Dragoi CM, Kaur E, Barr AR, Tyson JJ, Novák B. The oscillation of mitotic kinase governs cell cycle latches in mammalian cells. J Cell Sci 2024; 137:jcs261364. [PMID: 38206091 PMCID: PMC10911285 DOI: 10.1242/jcs.261364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.
Collapse
Affiliation(s)
- Calin-Mihai Dragoi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ekjot Kaur
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Mouery RD, Hsu C, Bonacci T, Bolhuis DL, Wang X, Mills CA, Toomer ED, Canterbury OG, Robertson KC, Branigan TB, Brown NG, Herring LE, Emanuele MJ. Proteomic Analysis Reveals a PLK1-Dependent G2/M Degradation Program and Links PKA-AKAP2 to Cell Cycle Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561963. [PMID: 37873169 PMCID: PMC10592729 DOI: 10.1101/2023.10.11.561963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Targeted protein degradation by the ubiquitin-proteasome system is an essential mechanism regulating cellular division. The kinase PLK1 coordinates protein degradation at the G2/M phase of the cell cycle by promoting the binding of substrates to the E3 ubiquitin ligase SCFβTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome has not been characterized. Combining deep, quantitative proteomics with pharmacologic PLK1 inhibition (PLK1i), we identified more than 200 proteins whose abundances were increased by PLK1i at G2/M. We validate many new PLK1-regulated proteins, including several substrates of the cell cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct SCF-family E3 ligases. Further, we found that the protein kinase A anchoring protein AKAP2 is cell cycle regulated and that its mitotic degradation is dependent on the PLK1/βTrCP-signaling axis. Interactome analysis revealed that the strongest interactors of AKAP2 function in signaling networks regulating proliferation, including MAPK, AKT, and Hippo. Altogether, our data demonstrate that PLK1 coordinates a widespread program of protein breakdown at G2/M. We propose that dynamic proteolytic changes mediated by PLK1 integrate proliferative signals with the core cell cycle machinery during cell division. This has potential implications in malignancies where PLK1 is aberrantly regulated.
Collapse
Affiliation(s)
- Ryan D Mouery
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Carolyn Hsu
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Christine A Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Drew Toomer
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Owen G Canterbury
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Kevin C Robertson
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
6
|
Park JE, Kirsch K, Lee H, Oliva P, Ahn JI, Ravishankar H, Zeng Y, Fox SD, Kirby SA, Badhwar P, Andresson T, Jacobson KA, Lee KS. Specific inhibition of an anticancer target, polo-like kinase 1, by allosterically dismantling its mechanism of substrate recognition. Proc Natl Acad Sci U S A 2023; 120:e2305037120. [PMID: 37603740 PMCID: PMC10629583 DOI: 10.1073/pnas.2305037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Hobin Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Paola Oliva
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Stephen D. Fox
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Samuel A. Kirby
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Pooja Badhwar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Kyung S. Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| |
Collapse
|
7
|
Ong JY, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540659. [PMID: 37293018 PMCID: PMC10245568 DOI: 10.1101/2023.05.13.540659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SPOP is a Cul3 substrate adaptor responsible for degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
9
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
10
|
Kim T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int J Mol Sci 2022; 23:ijms23095252. [PMID: 35563642 PMCID: PMC9102930 DOI: 10.3390/ijms23095252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
The accurate distribution of the replicated genome during cell division is essential for cell survival and healthy organismal development. Errors in this process have catastrophic consequences, such as birth defects and aneuploidy, a hallmark of cancer cells. PLK1 is one of the master kinases in mitosis and has multiple functions, including mitotic entry, chromosome segregation, spindle assembly checkpoint, and cytokinesis. To dissect the role of PLK1 in mitosis, it is important to understand how PLK1 localizes in the specific region in cells. PLK1 localizes at the kinetochore and is essential in spindle assembly checkpoint and chromosome segregation. However, how PLK1 localizes at the kinetochore remains elusive. Here, we review the recent literature on the kinetochore recruitment mechanisms of PLK1 and its roles in spindle assembly checkpoint and attachment between kinetochores and spindle microtubules. Together, this review provides an overview of how the local distribution of PLK1 could regulate major pathways in mitosis.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
11
|
Gao J, Yang D, Cao R, Huang H, Ma J, Wang Z, Xia J, Pan X. The role of Fbxo5 in the development of human malignant tumors. Am J Cancer Res 2022; 12:1456-1464. [PMID: 35530293 PMCID: PMC9077063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023] Open
Abstract
Fbxo5 (F-Box only protein 5), as a substrate recognition subunit of SCF (SKP1-Cullin1-Fbox) protein, plays a crucial role in various cellular processes through ubiquitination and degradation of multiple proteins. In recent years, many studies have pointed out that Fbxo5 is critically involved in carcinogenesis. Moreover, targeting Fbxo5 could have a therapeutic potential for cancer therapy. This review focuses on the functions of Fbxo5 in various types of human malignancies and its underlying molecular mechanisms. This review might lay the foundation for enhancing future investigation on Fbxo5 functions in cancer development and progression.
Collapse
Affiliation(s)
- Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Dandan Yang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Ruoxue Cao
- Department of Laboratory, Lianyungang Second People’s HospitalLianyungang 222000, Jiangsu, China
| | - Hua Huang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| |
Collapse
|
12
|
Saikiran Reddy M, Bhattacharjee D, Jain N. Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Cell Signal 2022; 92:110279. [PMID: 35143931 DOI: 10.1016/j.cellsig.2022.110279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Mutations in the metabolic enzymes, IDH1 and IDH2 are frequently found in glioma, chondrosarcoma, and acute myeloid leukemia. In our previous study, we showed that mutant IDH1 and IDH2 proteins levels are high in mitosis, and mutant IDH1 enzyme activity increases in mitosis. In another study, we observed that mutant IDH2 is ubiquitinated in mitosis in an APC/C-dependent manner. To orchestrate mitosis, kinases phosphorylate key proteins and regulate their functions. But it is unknown, whether mitotic kinases regulate mutant IDH1 and IDH2. As IDH1 and IDH2 have 66% sequence identity, thus we hypothesized that a common mitotic kinase(s) may regulate mutant IDH1 and IDH2 in mitosis. To test our hypothesis, we examined mutant IDH1 and IDH2 binding to mitotic kinases and determined their role in regulating mutant IDH1 and IDH2 in mitosis. Here, we observed that Cdk1/Cyclin B1 phosphorylated mutant IDH1 and IDH2 binds Plk1. Conserved Plk1 phosphobinding sites in IDH1 and IDH2 are important for Plk1 binding. We found that Plk1 regulates mutant IDH1 enzyme activity and blocking Plk1 decreases D-2HG, whereas, overexpressing Plk1 increases D-2HG levels. Furthermore, blocking Plk1 decreases mutant IDH2 ubiquitination, whereas, overexpressing Plk1 increases mutant IDH2 ubiquitination in mitosis. We conclude that Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Based on our results, we suggest that Plk1 can be a therapeutic target in mutant IDH-linked tumours.
Collapse
Affiliation(s)
- M Saikiran Reddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debanjan Bhattacharjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Kinterová V, Kaňka J, Bartková A, Toralová T. SCF Ligases and Their Functions in Oogenesis and Embryogenesis-Summary of the Most Important Findings throughout the Animal Kingdom. Cells 2022; 11:234. [PMID: 35053348 PMCID: PMC8774150 DOI: 10.3390/cells11020234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Veronika Kinterová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Jiří Kaňka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Alexandra Bartková
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Tereza Toralová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| |
Collapse
|
14
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
15
|
Zhao JZ, Ye Q, Wang L, Lee SC. Centrosome amplification in cancer and cancer-associated human diseases. Biochim Biophys Acta Rev Cancer 2021; 1876:188566. [PMID: 33992724 DOI: 10.1016/j.bbcan.2021.188566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/07/2022]
Abstract
Accumulated evidence from genetically modified cell and animal models indicates that centrosome amplification (CA) can initiate tumorigenesis with metastatic potential and enhance cell invasion. Multiple human diseases are associated with CA and carcinogenesis as well as metastasis, including infection with oncogenic viruses, type 2 diabetes, toxicosis by environmental pollution and inflammatory disease. In this review, we summarize (1) the evidence for the roles of CA in tumorigenesis and tumor cell invasion; (2) the association between diseases and carcinogenesis as well as metastasis; (3) the current knowledge of CA in the diseases; and (4) the signaling pathways of CA. We then give our own thinking and discuss perspectives relevant to CA in carcinogenesis and cancer metastasis in human diseases. In conclusion, investigations in this area might not only identify CA as a biological link between these diseases and the development of cancer but also prove the causal role of CA in cancer and progression under pathophysiological conditions, potentially taking cancer research into a new era.
Collapse
Affiliation(s)
- Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qin Ye
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
16
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
17
|
Krenning L, van den Berg J, Medema RH. Life or Death after a Break: What Determines the Choice? Mol Cell 2019; 76:346-358. [PMID: 31561953 DOI: 10.1016/j.molcel.2019.08.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
DNA double-strand breaks (DSBs) pose a constant threat to genomic integrity. Such DSBs need to be repaired to preserve homeostasis at both the cellular and organismal levels. Hence, the DNA damage response (DDR) has evolved to repair these lesions and limit their toxicity. The initiation of DNA repair depends on the activation of the DDR, and we know that the strength of DDR signaling may differentially affect cellular viability. However, we do not fully understand what determines the cytotoxicity of a DSB. Recent work has identified genomic location, (in)correct DNA repair pathway usage, and cell-cycle position as contributors to DSB-induced cytotoxicity. In this review, we discuss how these determinants affect cytotoxicity, highlight recent discoveries, and identify open questions that could help to improve our understanding about cell fate decisions after a DNA DSB.
Collapse
Affiliation(s)
- Lenno Krenning
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Stratmann JA, Sebastian M. Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers. LUNG CANCER-TARGETS AND THERAPY 2019; 10:67-80. [PMID: 31308774 PMCID: PMC6612950 DOI: 10.2147/lctt.s177618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease is diagnosed in the majority of all cases. Palliative treatment options comprise of conventional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted to a small proportion of patients with lung cancer that harbor activating driver mutations. Still, the effectiveness and favorable safety profile of these compounds have prompted a systematic search for specific driver mechanisms of tumorigenesis and moreover the development of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the frequently observed overexpression in various tumor entities have raised much interest in basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this review, we give a comprehensive summary on the (pre-) clinical development of the different types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and efficacy data and give an overview on translational research aiming to identify predictive biomarkers for a rational use of PLK inhibitors.
Collapse
Affiliation(s)
- Jan A Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
19
|
Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol 2019; 15:e1006402. [PMID: 30875364 PMCID: PMC6436762 DOI: 10.1371/journal.pcbi.1006402] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/27/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT signaling pathway plays a role in most cellular functions linked to cancer progression, including cell growth, proliferation, cell survival, tissue invasion and angiogenesis. It is generally recognized that hyperactive PI3K/AKT1 are oncogenic due to their boost to cell survival, cell cycle entry and growth-promoting metabolism. That said, the dynamics of PI3K and AKT1 during cell cycle progression are highly nonlinear. In addition to negative feedback that curtails their activity, protein expression of PI3K subunits has been shown to oscillate in dividing cells. The low-PI3K/low-AKT1 phase of these oscillations is required for cytokinesis, indicating that oncogenic PI3K may directly contribute to genome duplication. To explore this, we construct a Boolean model of growth factor signaling that can reproduce PI3K oscillations and link them to cell cycle progression and apoptosis. The resulting modular model reproduces hyperactive PI3K-driven cytokinesis failure and genome duplication and predicts the molecular drivers responsible for these failures by linking hyperactive PI3K to mis-regulation of Polo-like kinase 1 (Plk1) expression late in G2. To do this, our model captures the role of Plk1 in cell cycle progression and accurately reproduces multiple effects of its loss: G2 arrest, mitotic catastrophe, chromosome mis-segregation / aneuploidy due to premature anaphase, and cytokinesis failure leading to genome duplication, depending on the timing of Plk1 inhibition along the cell cycle. Finally, we offer testable predictions on the molecular drivers of PI3K oscillations, the timing of these oscillations with respect to division, and the role of altered Plk1 and FoxO activity in genome-level defects caused by hyperactive PI3K. Our model is an important starting point for the predictive modeling of cell fate decisions that include AKT1-driven senescence, as well as the non-intuitive effects of drugs that interfere with mitosis.
Collapse
Affiliation(s)
- Herbert Sizek
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Andrew Hamel
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Dávid Deritei
- Department of Physics, Pennsylvania State University, State College, PA, United States of America
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Sarah Campbell
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| |
Collapse
|
20
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
21
|
Belur Nagaraj A, Kovalenko O, Avelar R, Joseph P, Brown A, Surti A, Mantilla S, DiFeo A. Mitotic Exit Dysfunction through the Deregulation of APC/C Characterizes Cisplatin-Resistant State in Epithelial Ovarian Cancer. Clin Cancer Res 2018; 24:4588-4601. [PMID: 29653924 PMCID: PMC6139058 DOI: 10.1158/1078-0432.ccr-17-2885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/21/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022]
Abstract
Purpose: Acquired resistance to cisplatin is a major barrier to success in treatment of various cancers, and understanding mitotic mechanisms unique to cisplatin-resistant cancer cells can provide the basis for developing novel mitotic targeted therapies aimed at eradicating these cells.Experimental Design: Using cisplatin-resistant models derived from primary patient epithelial ovarian cancer (EOC) cells, we have explored the status of mitotic exit mechanisms in cisplatin-resistant cells.Results: We have uncovered an unexpected role of long-term cisplatin treatment in inducing mitotic exit vulnerability characterized by increased spindle checkpoint activity and functional dependency on Polo-like kinase 1 (PLK1) for mitotic exit in the presence of anaphase promoting complex/cyclosome (APC/C) dysfunction in a cisplatin-resistant state. Accordingly, PLK1 inhibition decreased the survival of cisplatin-resistant cells in vitro and in vivo and exacerbated spindle checkpoint response in these cells. APC/CCDC20 inhibition increased sensitivity to pharmacologic PLK1 inhibition, further confirming the existence of APC/C dysfunction in cisplatin-resistant cells. In addition, we uncovered that resistance to volasertib, PLK1 inhibitor, is due to maintenance of cells with low PLK1 expression. Accordingly, stable PLK1 downregulation in cisplatin-resistant cells induced tolerance to volasertib.Conclusions: We provide the first evidence of APC/C dysfunction in cisplatin-resistant state, suggesting that understanding APC/C functions in cisplatin-resistant state could provide a basis for developing novel mitotic exit-based therapies to eradicate cisplatin-resistant cancer cells. Our results also show that PLK1 downregulation could underlie emergence of resistance to PLK1-targeted therapies in cancers. Clin Cancer Res; 24(18); 4588-601. ©2018 AACR.
Collapse
Affiliation(s)
- Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Olga Kovalenko
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rita Avelar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Peronne Joseph
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Annalyn Brown
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Arshia Surti
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sandra Mantilla
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Analisa DiFeo
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
22
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
23
|
Du H, Shi Y, Li D, Fan W, Wang G, Wang C. Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS One 2017; 12:e0188964. [PMID: 29211806 PMCID: PMC5718555 DOI: 10.1371/journal.pone.0188964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Fall dormancy (FD) determines the adaptation of an alfalfa variety and affects alfalfa production and quality. However, the molecular mechanism underlying FD remains poorly understood. Here, 44 genes regulating FD were identified by comparison of the transcriptomes from leaves of Maverick (fall-dormant alfalfa) and CUF101(non-fall-dormant), during FD and non-FD and were classified them depending on their function. The transcription of IAA-amino acid hydrolase ILR1-like 1, abscisic acid receptor PYL8, and monogalactosyldiacylglycerol synthase-3 in Maverick leaves was regulated by daylength and temperature, and the transcription of the abscisic acid receptor PYL8 was mainly affected by daylength. The changes in the expression of these genes and the abundance of their messenger RNA (mRNA) in Maverick leaves differed from those in CUF101 leaves, as evidenced by the correlation analysis of their mRNA abundance profiles obtained from April to October. The present findings suggested that these genes are involved in regulating FD in alfalfa.
Collapse
Affiliation(s)
- Hongqi Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Defeng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Wenna Fan
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Kumar S, Sharma G, Chakraborty C, Sharma AR, Kim J. Regulatory functional territory of PLK-1 and their substrates beyond mitosis. Oncotarget 2017; 8:37942-37962. [PMID: 28415805 PMCID: PMC5514964 DOI: 10.18632/oncotarget.16290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 12/04/2022] Open
Abstract
Polo-like kinase 1 (PLK-1) is a well-known (Ser/Thr) mitotic protein kinase and is considered as a proto-oncogene. As hyper-activation of PLK-1 is broadly associated with poor prognosis and cancer progression, it is one of the most extensively studied mitotic kinases. During mitosis, PLK-1 regulates various cell cycle events, such as spindle pole maturation, chromosome segregation and cytokinesis. However, studies have demonstrated that the role of PLK-1 is not only restricted to mitosis, but PLK-1 can also regulate other vital events beyond mitosis, including transcription, translation, ciliogenesis, checkpoint adaptation and recovery, apoptosis, chromosomes dynamics etc. Recent reviews have tried to define the regulatory role of PLK-1 during mitosis progression and tumorigenesis, but its' functional role beyond mitosis is still largely unexplored. PLK-1 can regulate the activity of many proteins that work outside of its conventional territory. The dysregulation of these proteins can cause diseases such as Alzheimer's disease, tumorigenesis etc. and may also lead to drug resistance. Thus, in this review, we discussed the versatile role of PLK-1 and tried to collect data to validate its' functional role in cell cycle regulation apart from mitosis.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Garima Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| |
Collapse
|
25
|
Zhang J, Schmidt CJ, Lamont SJ. Transcriptome analysis reveals potential mechanisms underlying differential heart development in fast- and slow-growing broilers under heat stress. BMC Genomics 2017; 18:295. [PMID: 28407751 PMCID: PMC5390434 DOI: 10.1186/s12864-017-3675-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern fast-growing broilers are susceptible to heart failure under heat stress because their relatively small hearts cannot meet increased need of blood pumping. To improve the cardiac tolerance to heat stress in modern broilers through breeding, we need to find the important genes and pathways that contribute to imbalanced cardiac development and frequent occurrence of heat-related heart dysfunction. Two broiler lines - Ross 708 and Illinois - were included in this study as a fast-growing model and a slow-growing model respectively. Each broiler line was separated to two groups at 21 days posthatch. One group was subjected to heat stress treatment in the range of 35-37 °C for 8 h per day, and the other was kept in thermoneutral condition. Body and heart weights were measured at 42 days posthatch, and gene expression in left ventricles were compared between treatments and broiler lines through RNA-seq analysis. RESULTS Body weight and normalized heart weight were significantly reduced by heat stress only in Ross broilers. RNA-seq results of 44 genes were validated using Biomark assay. A total of 325 differentially expressed (DE) genes were detected between heat stress and thermoneutral in Ross 708 birds, but only 3 in Illinois broilers. Ingenuity pathway analysis (IPA) predicted dramatic changes in multiple cellular activities especially downregulation of cell cycle. Comparison between two lines showed that cell cycle activity is higher in Ross than Illinois in thermoneutral condition but is decreased under heat stress. Among the significant pathways (P < 0.01) listed for different comparisons, "Mitotic Roles of Polo-like Kinases" is always ranked first. CONCLUSIONS The increased susceptibility of modern broilers to cardiac dysfunction under heat stress compared to slow-growing broilers could be due to diminished heart capacity related to reduction in relative heart size. The smaller relative heart size in Ross heat stress group than in Ross thermoneutral group is suggested by the transcriptome analysis to be caused by decreased cell cycle activity and increased apoptosis. The DE genes in RNA-seq analysis and significant pathways in IPA provides potential targets for breeding of heat-tolerant broilers with optimized heart function.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
26
|
Borg NA, Dixit VM. Ubiquitin in Cell-Cycle Regulation and Dysregulation in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-040716-075607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncontrolled cell proliferation and genomic instability are common features of cancer and can arise from, respectively, the loss of cell-cycle control and defective checkpoints. Ubiquitin-mediated proteolysis, ultimately executed by ubiquitin-ligating enzymes (E3s), plays a key part in cell-cycle regulation and is dominated by two multisubunit E3s, the anaphase-promoting complex (or cyclosome) (APC/C) and SKP1–cullin-1–F-box (SCF) complex. We highlight the role of APC/C and the SCF bound to F-box proteins, FBXW7, SKP2, and β-TrCP, in regulating the abundance of select fundamental proteins, primarily during the cell cycle, that are associated with human cancer. The clinical success of the first proteasome inhibitor, bortezomib, in treating multiple myeloma and mantle-cell lymphoma set the precedent for viewing the ubiquitin–proteasome system as a druggable target for cancer. Given that there are more E3s than kinases, selective, small-molecule E3 inhibitors have the potential of opening up another dimension in the therapeutic armamentarium for the treatment of cancer.
Collapse
Affiliation(s)
- Natalie A. Borg
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080
| |
Collapse
|
27
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
28
|
Abstract
Chromosomal instability (CIN), the persistent inability of a cell to faithfully segregate its genome, is a feature of many cancer cells. It stands to reason that CIN enables the acquisition of multiple cancer hallmarks; however, there is a growing body of evidence suggesting that CIN impairs cellular fitness and prevents neoplastic transformation. Here, we suggest a new perspective to reconcile this apparent paradox and share an unexpected link between aneuploidy and aging that was discovered through attempts to investigate the CIN-cancer relationship. Additionally, we provide a comprehensive overview of the function and regulation of the anaphase-promoting complex, an E3 ubiquitin ligase that mediates high-fidelity chromosome segregation, and describe the mechanisms that lead to whole-chromosome gain or loss. With this review, we aim to expand our understanding of the role of CIN in cancer and aging with the long-term objective of harnessing this information for the advancement of patient care.
Collapse
Affiliation(s)
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905;
| |
Collapse
|
29
|
Xu W, Neckers L. A USE1ful Biomarker and Molecular Target in Lung Cancer? J Natl Cancer Inst 2016; 109:2905660. [PMID: 27770043 DOI: 10.1093/jnci/djw227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Wanping Xu
- Affiliation of authors: Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Len Neckers
- Affiliation of authors: Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
30
|
Yan Q, Zeng Z, Gong Z, Zhang W, Li X, He B, Song Y, Li Q, Zeng Y, Liao Q, Chen P, Shi L, Fan S, Xiang B, Ma J, Zhou M, Li X, Yang J, Xiong W, Li G. EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget 2016; 6:41766-82. [PMID: 26497204 PMCID: PMC4747187 DOI: 10.18632/oncotarget.6155] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is closely associated with tumorigenesis and development of nasopharyngeal carcinoma (NPC), but the underlying molecular mechanisms remain poorly understood. It has been recently reported that EBV encodes 44 mature miRNAs, some of which were found to promote tumor development by targeting virus-infected host genes or self-viral genes. However, few targets of EBV encoded-miRNAs that are related to NPC development have been identified to date. In this study, we revealed that in NPC cells, EBV-miR-BART10-3p directly targets BTRC gene that encodes βTrCP (beta-transducin repeat containing E3 ubiquitin protein ligase). We found that EBV-miR-BART10-3p expression in clinical samples from a cohort of 106 NPC patients negatively correlated with BTRC expression levels. Over-expression of EBV-miR-BART10-3p and down-regulation of BTRC were associated with poor prognosis in NPC patients. EBV-miR-BART10-3p promoted the invasion and migration cabilities of NPC cells through the targeting of BTRC and regulation of the expression of the downstream substrates β-catenin and Snail. As a result, EBV-miR-BART10-3p facilitated epithelial-mesenchymal transition of NPC. Our study presents an unreported mechanism underlying EBV infection in NPC carcinogenesis, and provides a potential novel biomarker for NPC diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Qijia Yan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baoyu He
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yali Song
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qiao Li
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Zeng
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianbo Yang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Feringa FM, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, Medema RH. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun 2016; 7:12618. [PMID: 27561326 PMCID: PMC5007458 DOI: 10.1038/ncomms12618] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division.
Collapse
Affiliation(s)
- Femke M Feringa
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lenno Krenning
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.,Hubrecht Institute, The Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht 3584CT, The Netherlands
| | - André Koch
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - René H Medema
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
32
|
de Boer HR, Llobet SG, van Vugt MATM. Erratum to: Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:2985-2998. [PMID: 27251328 PMCID: PMC4969907 DOI: 10.1007/s00018-016-2279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Donizy P, Halon A, Surowiak P, Kaczorowski M, Kozyra C, Matkowski R. Augmented expression of Polo-like kinase 1 is a strong predictor of shorter cancer-specific overall survival in early stage breast cancer at 15-year follow-up. Oncol Lett 2016; 12:1667-1674. [PMID: 27602103 PMCID: PMC4998224 DOI: 10.3892/ol.2016.4890] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine-threonine kinase that plays a crucial role in the regulation of cell division. In addition, it acts as a modulator of the DNA damage response and as a novel factor in the maintenance of genome stability during DNA replication. The present study aimed to reveal the associations between PLK1 expression and clinicopathological features of patients with breast cancer (BC), particularly patient survival at 5-, 10- and 15-year follow-up. PLK1 expression was evaluated immunohistochemically in routine diagnostic tissue specimens from 83 patients treated radically for stage II BC. Kaplan-Meier analysis revealed a correlation between PLK1 overexpression and long-term survival. High PLK1 immunoreactivity was associated with shorter cancer-specific overall survival (CSOS) and disease-free survival (P=0.00001 and 0.00013, respectively). Multivariate analysis confirmed the negative prognostic significance of PLK1 overexpression for CSOS in all 83 patients (P=0.00030). Furthermore, analogous correlations were observed in both subgroups with and without nodal metastases (P=0.01400 and 0.01200, respectively). The present results indicate that PLK1 expression has a prognostic role in early BC. Immunohistochemical assessment of PLK1 reactivity may potentially become a qualifier for inclusion of PLK1 inhibitor therapy.
Collapse
Affiliation(s)
- Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Pawel Surowiak
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Cyprian Kozyra
- Department of Statistics, Wroclaw University of Economics, Wroclaw 53-345, Poland
| | - Rafal Matkowski
- Department of Oncology and Surgical Oncology, Wroclaw Medical University, Wroclaw 50-556, Poland; Lower Silesian Oncology Centre, Breast Unit, Wroclaw 53-413, Poland
| |
Collapse
|
34
|
Abstract
The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development.
Collapse
|
35
|
Baran V, Brzakova A, Rehak P, Kovarikova V, Solc P. PLK1 regulates spindle formation kinetics and APC/C activation in mouse zygote. ZYGOTE 2016; 24:338-45. [PMID: 26174739 DOI: 10.1017/s0967199415000246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 1 (PLK1) is involved in essential events of cell cycle including mitosis in which it participates in centrosomal microtubule nucleation, spindle bipolarity establishment and cytokinesis. Although PLK1 function has been studied in cycling cancer cells, only limited data are known about its role in the first mitosis of mammalian zygotes. During the 1-cell stage of mouse embryo development, the acentriolar spindle is formed and the shift from acentriolar to centrosomal spindle formation progresses gradually throughout the preimplantation stage, thus providing a unique possibility to study acentriolar spindle formation. We have shown previously that PLK1 activity is not essential for entry into first mitosis, but is required for correct spindle formation and anaphase onset in 1-cell mouse embryos. In the present study, we extend this knowledge by employing quantitative confocal live cell imaging to determine spindle formation kinetics in the absence of PLK1 activity and answer the question whether metaphase arrest at PLK1-inhibited embryos is associated with low anaphase-promoting complex/cyclosome (APC/C) activity and consequently high securin level. We have shown that inhibition of PLK1 activity induces a delay in onset of acentriolar spindle formation during first mitosis. Although these PLK1-inhibited 1-cell embryos were finally able to form a bipolar spindle, not all chromosomes were aligned at the metaphase equator. PLK1-inhibited embryos were arrested in metaphase without any sign of APC/C activation with high securin levels. Our results document that PLK1 controls the onset of spindle assembly and spindle formation, and is essential for APC/C activation before anaphase onset in mouse zygotes.
Collapse
Affiliation(s)
- Vladimir Baran
- Institute of Animal Physiology,Slovak Academy of Sciences,Soltesovej 4,040 01 Kosice,Slovakia
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics,Academy of Sciences of the Czech Republic,Libechov,Czech Republic
| | - Pavol Rehak
- Institute of Animal Physiology,Slovak Academy of Sciences,Kosice,Slovakia
| | | | - Petr Solc
- Institute of Animal Physiology and Genetics,Academy of Sciences of the Czech Republic,Libechov,Czech Republic
| |
Collapse
|
36
|
CHEN CHENGYONG, SUN CHONG, TANG DONG, YANG GUANGCHENG, ZHOU XUANJUN, WANG DONGHAI. Identification of key genes in glioblastoma-associated stromal cells using bioinformatics analysis. Oncol Lett 2016; 11:3999-4007. [PMID: 27313730 PMCID: PMC4888085 DOI: 10.3892/ol.2016.4526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to identify key genes and pathways in glioblastoma-associated stromal cells (GASCs) using bioinformatics. The expression profile of microarray GSE24100 was obtained from the Gene Expression Omnibus database, which included the expression profile of 4 GASC samples and 3 control stromal cell samples. Differentially expressed genes (DEGs) were identified using limma software in R language, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery software. In addition, a protein-protein interaction (PPI) network was constructed. Subsequently, a sub-network was constructed to obtain additional information on genes identified in the PPI network using CFinder software. In total, 502 DEGs were identified in GASCs, including 331 upregulated genes and 171 downregulated genes. Cyclin-dependent kinase 1 (CDK1), cyclin A2, mitotic checkpoint serine/threonine kinase (BUB1), cell division cycle 20 (CDC20), polo-like kinase 1 (PLK1), and transcription factor breast cancer 1, early onset (BRCA1) were identified from the PPI network, and sub-networks revealed these genes as hub genes that were involved in significant pathways, including mitotic, cell cycle and p53 signaling pathways. In conclusion, CDK1, BUB1, CDC20, PLK1 and BRCA1 may be key genes that are involved in significant pathways associated with glioblastoma. This information may lead to the identification of the mechanism of glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- CHENGYONG CHEN
- Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - CHONG SUN
- Department of Neurosurgery, People's Hospital of Huantai, Zibo, Shandong 256400, P.R. China
| | - DONG TANG
- Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - GUANGCHENG YANG
- Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - XUANJUN ZHOU
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - DONGHAI WANG
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
37
|
Kumar S, Sharma AR, Sharma G, Chakraborty C, Kim J. PLK-1: Angel or devil for cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:190-203. [PMID: 26899266 DOI: 10.1016/j.bbcan.2016.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Garima Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida 203201, India.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo 200-704, Republic of Korea.
| |
Collapse
|
38
|
Hint1 Up-Regulates IκBα by Targeting the β-TrCP Subunit of SCF E3 Ligase in Human Hepatocellular Carcinoma Cells. Dig Dis Sci 2016; 61:785-94. [PMID: 26520111 DOI: 10.1007/s10620-015-3927-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/08/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM There is increasing evidence that histidine triad nucleotide-binding protein 1 (HINT1) is a novel tumor suppressor. In the present study, we investigated the mechanism by which HINT1 promotes the stability of inhibitor of NF-κB α (IκBα) in the cytoplasm of hepatocellular carcinoma (HCC) cells, which was observed in our previous study (Wang et al. in Int J Cancer 124:1526-1534, 2009). METHODS We examined HINT1 and IκBα expression in HCC cell lines and determined the effect of HINT1 overexpression and knockdown on IκBα protein and mRNA expression in these cell lines. Then, ubiquitination assays were performed to investigate the effects of HINT1 expression plasmid transfection on IκBα ubiquitination. Next, the interaction between HINT1 and β-TrCP was investigated in immunoprecipitation and immunofluorescence assays. RESULTS Our data showed that increased HINT1 expression in HepG2 and SMMC7702 cells markedly increased IκBα protein levels, while decreased HINT1 expression markedly decreased them. Overexpression or knockdown of HINT1 did not alter the transcription of IκBα, but HINT1 inhibited proteasomal IκBα degradation and reduced its ubiquitination levels. This inhibition might occur because HINT1 is a component of the SCF(β-TrCP) E3 ligase, which is responsible for IκBα ubiquitination and degradation. CONCLUSION This study provides new evidence that HINT1 is a regulator of IκBα through SCF(β-TrCP) E3 ligase. These findings help to clarify the mechanism underlying the anticancer effects of HINT1.
Collapse
|
39
|
Fischer M, Quaas M, Nickel A, Engeland K. Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget 2015; 6:41402-17. [PMID: 26595675 PMCID: PMC4747163 DOI: 10.18632/oncotarget.6356] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is central to cell cycle control by downregulation of cell cycle-promoting genes upon cell stress such as DNA damage. Survivin (BIRC5), CDC25C, and PLK1 encode important cell cycle regulators that are repressed following p53 activation. Here, we provide evidence that p53-dependent repression of these genes requires activation of p21 (CDKN1A, WAF1, CIP1). Chromatin immunoprecipitation (ChIP) data indicate that promoter binding of B-MYB switches to binding of E2F4 and p130 resulting in a replacement of the MMB (Myb-MuvB) by the DREAM complex. We demonstrate that this replacement depends on p21. Furthermore, transcriptional repression by p53 requires intact DREAM binding sites in the target promoters. The CDE and CHR cell cycle promoter elements are the sites for DREAM binding. These elements as well as the p53 response of Survivin, CDC25C, and PLK1 are evolutionarily conserved. No binding of p53 to these genes is detected by ChIP and mutation of proposed p53 binding sites does not alter the p53 response. Thus, a mechanism for direct p53-dependent transcriptional repression is not supported by the data. In contrast, repression by DREAM is consistent with most previous findings and unifies models based on p21-, E2F4-, p130-, and CDE/CHR-dependent repression by p53. In conclusion, the presented data suggest that the p53-p21-DREAM-CDE/CHR pathway regulates p53-dependent repression of Survivin, CDC25C, and PLK1.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana–Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marianne Quaas
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Annina Nickel
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
40
|
Park JE, Kim TS, Meng L, Bang JK, Kim BY, Lee KS. Putting a bit into the polo-box domain of polo-like kinase 1. J Anal Sci Technol 2015; 6:27. [PMID: 26500787 PMCID: PMC4610673 DOI: 10.1186/s40543-015-0069-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/27/2015] [Indexed: 01/11/2023] Open
Abstract
Polo-like kinase 1 (Plk1) plays key roles in regulating various mitotic processes that are critical for cellular proliferation. A growing body of evidence suggests that Plk1 overexpression is tightly associated with the development of human cancers. Interestingly, various types of cancer cells are shown to be addicted to a high level of Plk1, and the reversal of Plk1 addiction appears to be an effective strategy for selectively killing cancer cells, but not normal cells. Therefore, Plk1 is considered an attractive anticancer drug target. Over the years, a large number of inhibitors that target the catalytic activity of Plk1 have been developed. However, these inhibitors exhibit significant levels of cross-reactivity with related kinases, including Plk2 and Plk3. Consequently, as an alternative approach for developing anti-Plk1 therapeutics, substantial effort is under way to develop inhibitors that target the C-terminal protein–protein interaction domain of Plk1, called the polo-box domain (PBD). In this communication, I will discuss the pros and cons of targeting the PBD in comparison to those of targeting the ATP-binding site within the kinase domain.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| | - Tae-Sung Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| | - Lingjun Meng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, 804-1, Yangcheong Ri, Ochang, 363-883 Chungbuk Republic of Korea
| | - Bo Y Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, 363-883 Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892 USA
| |
Collapse
|
41
|
Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl Oncol 2015; 8:185-95. [PMID: 26055176 PMCID: PMC4486469 DOI: 10.1016/j.tranon.2015.03.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that regulate multiple intracellular processes including DNA replication, mitosis, and stress response. Plk1, the most well understood family member, regulates numerous stages of mitosis and is overexpressed in many cancers. Plk inhibitors are currently under clinical investigation, including phase III trials of volasertib, a Plk inhibitor, in acute myeloid leukemia and rigosertib, a dual inhibitor of Plk1/phosphoinositide 3-kinase signaling pathways, in myelodysplastic syndrome. Other Plk inhibitors, including the Plk1 inhibitors GSK461364A, TKM-080301, GW843682, purpurogallin, and poloxin and the Plk4 inhibitor CFI-400945 fumarate, are in earlier clinical development. This review discusses the biologic roles of Plks in cell cycle progression and cancer, and the mechanisms of action of Plk inhibitors currently in development as cancer therapies.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
42
|
Abstract
Polo-like kinase 1 (Plk1) plays a number of important roles in the passage of cells through mitosis. It is expressed at high levels in a variety of malignancies, including acute myeloid leukemia (AML). Inhibition of Plk1 results in cell cycle arrest and apoptosis, and has anti-tumor effects in pre-clinical models. A number of Plk1 inhibitors have been developed, some of which have entered clinical trials. Of these, volasertib (BI6727) has been most extensively studied clinically in AML. Volasertib has demonstrated antileukemic activity in AML, both as a single agent and when combined with low-dose cytarabine. It is well tolerated, with the major toxicity being reversible myelosuppression. A recently completed phase III clinical trial in older AML patients will address the question of whether adding this agent to low-dose cytarabine is associated with a survival advantage.
Collapse
Affiliation(s)
- Joseph M Brandwein
- Division of Hematology, Department of Medicine, University of Alberta, 4-112 Clinical Sciences Building, 11350-83 Avenue, Edmonton, AB, Canada T6G 2G3
| |
Collapse
|
43
|
Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 2015; 16:82-94. [PMID: 25604195 DOI: 10.1038/nrm3934] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
44
|
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One 2015; 10:e0116783. [PMID: 25658810 PMCID: PMC4319955 DOI: 10.1371/journal.pone.0116783] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Tomoya S. Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Masako Kaido
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | - Alexandra Mayer
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Pavlina Samalova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
45
|
Senese S, Cheung K, Lo YC, Gholkar AA, Xia X, Wohlschlegel JA, Torres JZ. A unique insertion in STARD9's motor domain regulates its stability. Mol Biol Cell 2015; 26:440-52. [PMID: 25501367 PMCID: PMC4310736 DOI: 10.1091/mbc.e14-03-0829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/10/2023] Open
Abstract
STARD9 is a largely uncharacterized mitotic kinesin and putative cancer target that is critical for regulating pericentriolar material cohesion during bipolar spindle assembly. To begin to understand the mechanisms regulating STARD9 function and their importance to cell division, we took a multidisciplinary approach to define the cis and trans factors that regulate the stability of the STARD9 motor domain. We show that, unlike the other ∼50 mammalian kinesins, STARD9 contains an insertion in loop 12 of its motor domain (MD). Working with the STARD9-MD, we show that it is phosphorylated in mitosis by mitotic kinases that include Plk1. These phosphorylation events are important for targeting a pool of STARD9-MD for ubiquitination by the SCFβ-TrCP ubiquitin ligase and proteasome-dependent degradation. Of interest, overexpression of nonphosphorylatable/nondegradable STARD9-MD mutants leads to spindle assembly defects. Our results with STARD9-MD imply that in vivo the protein levels of full-length STARD9 could be regulated by Plk1 and SCFβ-TrCP to promote proper mitotic spindle assembly.
Collapse
Affiliation(s)
- Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Keith Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yu-Chen Lo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 Program in Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiaoyu Xia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
46
|
Low TY, Peng M, Magliozzi R, Mohammed S, Guardavaccaro D, Heck AJR. A systems-wide screen identifies substrates of the SCFβTrCP ubiquitin ligase. Sci Signal 2014; 7:rs8. [PMID: 25515538 DOI: 10.1126/scisignal.2005882] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular proteins are degraded by the ubiquitin-proteasome system (UPS) in a precise and timely fashion. Such precision is conferred by the high substrate specificity of ubiquitin ligases. Identification of substrates of ubiquitin ligases is crucial not only to unravel the molecular mechanisms by which the UPS controls protein degradation but also for drug discovery purposes because many established UPS substrates are implicated in disease. We developed a combined bioinformatics and affinity purification-mass spectrometry (AP-MS) workflow for the system-wide identification of substrates of SCF(βTrCP), a member of the SCF family of ubiquitin ligases. These ubiquitin ligases are characterized by a multisubunit architecture typically consisting of the invariable subunits Rbx1, Cul1, and Skp1 and one of 69 F-box proteins. The F-box protein of this member of the family is βTrCP. SCF(βTrCP) binds, through the WD40 repeats of βTrCP, to the DpSGXX(X)pS diphosphorylated motif in its substrates. We recovered 27 previously reported SCF(βTrCP) substrates, of which 22 were verified by two independent statistical protocols, thereby confirming the reliability of this approach. In addition to known substrates, we identified 221 proteins that contained the DpSGXX(X)pS motif and also interacted specifically with the WD40 repeats of βTrCP. Thus, with SCF(βTrCP), as the example, we showed that integration of structural information, AP-MS, and degron motif mining constitutes an effective method to screen for substrates of ubiquitin ligases.
Collapse
Affiliation(s)
- Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Mao Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Roberto Magliozzi
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Daniele Guardavaccaro
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, Netherlands.
| |
Collapse
|
47
|
Douthwright S, Sluder G. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol 2014; 229:1427-36. [PMID: 24532022 PMCID: PMC4122266 DOI: 10.1002/jcp.24579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
Abstract
The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations.
Collapse
Affiliation(s)
- Stephen Douthwright
- Department of Cell and Developmental Biology University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Greenfield Sluder
- Department of Cell and Developmental Biology University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
48
|
Banerjee S, Zagórska A, Deak M, Campbell D, Prescott A, Alessi D. Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the SCFβTrCP E3 ubiquitin ligase. Biochem J 2014; 461:233-45. [PMID: 24785407 PMCID: PMC4109838 DOI: 10.1042/bj20140408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
NUAK1 (NUAK family SnF1-like kinase-1) and NUAK2 protein kinases are activated by the LKB1 tumour suppressor and have been implicated in regulating multiple processes such as cell survival, senescence, adhesion and polarity. In the present paper we present evidence that expression of NUAK1 is controlled by CDK (cyclin-dependent kinase), PLK (Polo kinase) and the SCFβTrCP (Skp, Cullin and F-boxβTrCP) E3 ubiquitin ligase complex. Our data indicate that CDK phosphorylates NUAK1 at Ser445, triggering binding to PLK, which subsequently phosphorylates NUAK1 at two conserved non-catalytic serine residues (Ser476 and Ser480). This induces binding of NUAK1 to βTrCP, the substrate-recognition subunit of the SCFβTrCP E3 ligase, resulting in NUAK1 becoming ubiquitylated and degraded. We also show that NUAK1 and PLK1 are reciprocally controlled in the cell cycle. In G2-M-phase, when PLK1 is most active, NUAK1 levels are low and vice versa in S-phase, when PLK1 expression is low, NUAK1 is more highly expressed. Moreover, NUAK1 inhibitors (WZ4003 or HTH-01-015) suppress proliferation by reducing the population of cells in S-phase and mitosis, an effect that can be rescued by overexpression of a NUAK1 mutant in which Ser476 and Ser480 are mutated to alanine. Finally, previous work has suggested that NUAK1 phosphorylates and inhibits PP1βMYPT1 (where PP1 is protein phosphatase 1) and that a major role for the PP1βMYPT1 complex is to inhibit PLK1 by dephosphorylating its T-loop (Thr210). We demonstrate that activation of NUAK1 leads to a striking increase in phosphorylation of PLK1 at Thr210, an effect that is suppressed by NUAK1 inhibitors. Our data link NUAK1 to important cell-cycle signalling components (CDK, PLK and SCFβTrCP) and suggest that NUAK1 plays a role in stimulating S-phase, as well as PLK1 activity via its ability to regulate the PP1βMYPT1 phosphatase.
Collapse
Key Words
- amp-activated protein kinase (ampk)
- ampk-related kinase 5 (ark5)
- cell cycle
- degron
- mitosis
- polo kinase (plk) ubiquitylation
- ampk, amp-activated protein kinase
- cdk, cyclin-dependent kinase
- ck1, casein kinase 1
- cul1, cullin 1
- dmem, dulbecco’s modified eagle’s medium
- dtb, double thymidine block
- emi1, early mitotic inhibitor 1
- gst, glutathione transferase
- ha, haemagglutinin
- hek, human embryonic kidney
- hrp, horseradish peroxidase
- ikk, inhibitor of nuclear factor κb kinase
- mef, mouse embryonic fibroblast
- lkb1, liver kinase b1
- nem, n-ethylmaleimide
- nuak, nuak family snf1-like kinase
- pei, polyethylenimine
- pi, propidium iodide
- plk1, polo kinase 1
- pp1, protein phosphatase 1
- scfβtrcp, skp, cullin and f-boxβtrcp
- skp1, s-phase kinase-associated protein 1
- wee1, wee1 g2 checkpoint kinase
- wt, wild-type
- xic, extracted ion chromatogram analysis
Collapse
Affiliation(s)
- Sourav Banerjee
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Anna Zagórska
- †Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A
| | - Maria Deak
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - David G. Campbell
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Alan R. Prescott
- ‡Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Dario R. Alessi
- *MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
49
|
Craig SN, Wyatt MD, McInnes C. Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opin Drug Discov 2014; 9:773-89. [PMID: 24819909 DOI: 10.1517/17460441.2014.918100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Polo-like kinase (PLK)1 is the most studied of the PLK family and is a serine/threonine kinase that plays pivotal roles in many aspects of mitosis and hence its deregulation is prevalent in various malignant tumor types. AREAS COVERED In this review, the authors discuss the relevancy of PLK1 and other PLK members as oncology targets in light of known roles of these kinases and the observed phenotypic consequence of downregulating their activity, depending on how they are targeted. Furthermore, they also discuss the pathways mutated in cancer that have been shown to enhance sensitivity toward PLK1 inhibitors in the context of tumor types that possess these molecular defects. They also summarize preclinical and clinical investigations that have been undertaken for both ATP and non-ATP competitive inhibitors. EXPERT OPINION PLKs 2, 3 and 5 are primarily linked with tumor suppressor functions and as PLK1 is the most validated anticancer drug target, selective inhibitors for its activities are most likely to result in effective therapeutics with reduced side effects. In this regard, the polo box domain can be targeted to generate selective inhibitors of PLK1 while preventing inhibition of kinases outside of this family. Recent studies confirming the synthetic lethality of other molecular defects with PLK1 can be exploited to obtain tumor selective apoptosis in p53, KRAS and PTEN mutant cancers.
Collapse
Affiliation(s)
- Sandra N Craig
- University of South Carolina, South Carolina College of Pharmacy, Drug Discovery and Biomedical Sciences , Columbia, SC, 29208 , USA +1 803 576 5684 ;
| | | | | |
Collapse
|
50
|
Plk1-targeted therapies in TP53- or RAS-mutated cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:31-39. [PMID: 24630986 DOI: 10.1016/j.mrrev.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/23/2022]
Abstract
Despite advances in treatment, prognosis for many types of carcinoma remains poor. Polo-like kinase 1 (Plk1) has been explored as a target for the development of anticancer drugs. As a mitotic master Ser/Thr kinase, Plk1 is involved in centrosomal maturation, microtubule nucleation, chromosomal segregation, and cytokinesis. Additional functions in interphase and in response to DNA damage have been revealed. The multiple locations of Plk1 correspond to distinct functions, mediated by phosphorylation of multiple substrates. Since it is highly expressed in several carcinomas, and expression of Plk1 is inversely correlated with the survival rate of patients in non-small cell lung, head and neck, and esophageal cancer, Plk1 is recognized as a valid prognostic marker. Connections between Plk1 and p53 or KRAS in carcinoma provide a rationale and several possible routes to the development of therapies. Tumors with both p53-deficiency and high Plk1 expression may be particularly sensitive to Plk1 inhibitors, although some controversial data exist. In KRAS-mutant cancers, on the other hand, Plk1 may be essential for tumor cell survival, but detailed studies as to whether Plk1 inhibitors are more effective in KRAS-mutant cancers must be performed in order to determine whether this is the case. Here, we present evidence for Plk1 as a prognostic marker and potentially effective target for the treatment of patients with carcinoma, to demonstrate the value of Plk1 as a target for the development of cancer treatment, especially for patients with solid tumors. In addition, the effects of Plk1 inhibition in p53- or KRAS-mutated cancer are discussed with respect to clinical implications. Structural specifics of Plk1 are presented, as well as current strategies for discovering new Plk1 inhibitors by targeting the conserved ATP binding site or polo-box domain of Plk1, in order to develop Plk1-specific anticancer drugs.
Collapse
|