1
|
Burdet V, Bournonville L, Das M, Wenger E, Delattre M, Steiner FA, Guichard P, Hamel V. Ultrastructure Expansion Microscopy applied to C. elegans embryos. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001033. [PMID: 38774216 PMCID: PMC11106672 DOI: 10.17912/micropub.biology.001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Visualization of organelles using expansion microscopy has been previously applied to Caenorhadbitis elegans adult gonads or worms. However, its application to embryos has remained a challenge due to the protective eggshell barrier. Here, by combining freeze-cracking and ultrastructure expansion microscopy (U-ExM), we demonstrate a four-time isotropic expansion of C. elegans embryos. As an example structure, we chose the nuclear pore and demonstrate that we achieve sufficient resolution to distinguish them individually. Our work provides proof of principle for U-ExM in C. elegans embryos, which will be applicable for imaging a wide range of cellular structures in this model system.
Collapse
Affiliation(s)
- Valentin Burdet
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Lorène Bournonville
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Moushumi Das
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Eva Wenger
- Ecole Normale Supérieure de Lyon, Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Marie Delattre
- Ecole Normale Supérieure de Lyon, Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Florian A. Steiner
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Paul Guichard
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Virginie Hamel
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| |
Collapse
|
2
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
3
|
Potgieter S, Eddy C, Badrinath A, Chukrallah L, Lo T, Mohanty G, Visconti PE, Snyder EM. ADAD1 is required for normal translation of nuclear pore and transport protein transcripts in spermatids of Mus musculus†. Biol Reprod 2023; 109:340-355. [PMID: 37399121 PMCID: PMC10502568 DOI: 10.1093/biolre/ioad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
ADAD1 is a testis-specific RNA-binding protein expressed in post-meiotic spermatids whose loss leads to defective sperm and male infertility. However, the drivers of the Adad1 phenotype remain unclear. Morphological and functional analysis of Adad1 mutant sperm showed defective DNA compaction, abnormal head shaping, and reduced motility. Mutant testes demonstrated minimal transcriptome changes; however, ribosome association of many transcripts was reduced, suggesting ADAD1 may be required for their translational activation. Further, immunofluorescence of proteins encoded by select transcripts showed delayed protein accumulation. Additional analyses demonstrated impaired subcellular localization of multiple proteins, suggesting protein transport is also abnormal in Adad1 mutants. To clarify the mechanism giving rise to this, the manchette, a protein transport microtubule network, and the LINC (linker of nucleoskeleton and cytoskeleton) complex, which connects the manchette to the nuclear lamin, were assessed across spermatid development. Proteins of both displayed delayed translation and/or localization in mutant spermatids implicating ADAD1 in their regulation, even in the absence of altered ribosome association. Finally, ADAD1's impact on the NPC (nuclear pore complex), a regulator of both the manchette and the LINC complex, was examined. Reduced ribosome association of NPC encoding transcripts and reduced NPC protein abundance along with abnormal localization in Adad1 mutants confirmed ADAD1's impact on translation is required for a NPC in post-meiotic germ cells. Together, these studies lead to a model whereby ADAD1's influence on nuclear transport leads to deregulation of the LINC complex and the manchette, ultimately generating the range of physiological defects observed in the Adad1 phenotype.
Collapse
Affiliation(s)
- Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Christopher Eddy
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aditi Badrinath
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lauren Chukrallah
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Toby Lo
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gayatri Mohanty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Klyosova E, Azarova I, Buikin S, Polonikov A. Differentially Expressed Genes Regulating Glutathione Metabolism, Protein-Folding, and Unfolded Protein Response in Pancreatic β-Cells in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:12059. [PMID: 37569434 PMCID: PMC10418503 DOI: 10.3390/ijms241512059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Impaired redox homeostasis in the endoplasmic reticulum (ER) may contribute to proinsulin misfolding and thus to activate the unfolded protein response (UPR) and apoptotic pathways, culminating in pancreatic β-cell loss and type 2 diabetes (T2D). The present study was designed to identify differentially expressed genes (DEGs) encoding enzymes for glutathione metabolism and their impact on the expression levels of genes regulating protein folding and UPR in β-cells of T2D patients. The GEO transcriptome datasets of β-cells of diabetics and non-diabetics, GSE20966 and GSE81608, were analyzed for 142 genes of interest using limma and GREIN software, respectively. Diabetic β-cells showed dataset-specific patterns of DEGs (FDR ≤ 0.05) implicated in the regulation of glutathione metabolism (ANPEP, PGD, IDH2, and CTH), protein-folding (HSP90AB1, HSP90AA1, HSPA1B, HSPA8, BAG3, NDC1, NUP160, RLN1, and RPS19BP1), and unfolded protein response (CREB3L4, ERP27, and BID). The GCLC gene, encoding the catalytic subunit of glutamate-cysteine ligase, the first rate-limiting enzyme of glutathione biosynthesis, was moderately down-regulated in diabetic β-cells from both datasets (p ≤ 0.05). Regression analysis established that genes involved in the de novo synthesis of glutathione, GCLC, GCLM, and GSS affect the expression levels of genes encoding molecular chaperones and those involved in the UPR pathway. This study showed for the first time that diabetic β-cells exhibit alterations in the expression of genes regulating glutathione metabolism, protein-folding, and UPR and provided evidence for the molecular crosstalk between impaired redox homeostasis and abnormal protein folding, underlying ER stress in type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Stepan Buikin
- Centre of Omics Technology, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
- Department of Internal Diseases, Yaroslav the Wise Novgorod State University, 41 Bolshaya St. Petersburg Street, 173003 Veliky Novgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
5
|
Nkombo Nkoula S, Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of nuclear pore complex disassembly by the mitotic Polo-like kinase 1 (PLK-1) in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadf7826. [PMID: 37467327 PMCID: PMC10355831 DOI: 10.1126/sciadv.adf7826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The nuclear envelope, which protects and organizes the genome, is dismantled during mitosis. In the Caenorhabditis elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the maternal and paternal genomes. Nuclear pore complex (NPC) disassembly is a decisive step of NEBD, essential for nuclear permeabilization. By combining live imaging, biochemistry, and phosphoproteomics, we show that NPC disassembly is a stepwise process that involves Polo-like kinase 1 (PLK-1)-dependent and -independent steps. PLK-1 targets multiple NPC subcomplexes, including the cytoplasmic filaments, central channel, and inner ring. PLK-1 is recruited to and phosphorylates intrinsically disordered regions (IDRs) of several multivalent linker nucleoporins. Notably, although the phosphosites are not conserved between human and C. elegans nucleoporins, they are located in IDRs in both species. Our results suggest that targeting IDRs of multivalent linker nucleoporins is an evolutionarily conserved driver of NPC disassembly during mitosis.
Collapse
Affiliation(s)
- Sylvia Nkombo Nkoula
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Griselda Velez-Aguilera
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lucie Van Hove
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laura Thomas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Géraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Lionel Pintard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
6
|
Nkoula SN, Velez-Aguilera G, Ossareh-Nazari B, Hove LV, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of Nuclear Pore Complex disassembly by the mitotic Polo-Like Kinase 1 (PLK-1) in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.528438. [PMID: 36865292 PMCID: PMC9980100 DOI: 10.1101/2023.02.21.528438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The nuclear envelope, which protects and organizes the interphase genome, is dismantled during mitosis. In the C. elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the parental genomes. During NEBD, Nuclear Pore Complex (NPC) disassembly is critical for rupturing the nuclear permeability barrier and removing the NPCs from the membranes near the centrosomes and between the juxtaposed pronuclei. By combining live imaging, biochemistry, and phosphoproteomics, we characterized NPC disassembly and unveiled the exact role of the mitotic kinase PLK-1 in this process. We show that PLK-1 disassembles the NPC by targeting multiple NPC sub-complexes, including the cytoplasmic filaments, the central channel, and the inner ring. Notably, PLK-1 is recruited to and phosphorylates intrinsically disordered regions of several multivalent linker nucleoporins, a mechanism that appears to be an evolutionarily conserved driver of NPC disassembly during mitosis. (149/150 words). One-Sentence Summary PLK-1 targets intrinsically disordered regions of multiple multivalent nucleoporins to dismantle the nuclear pore complexes in the C. elegans zygote.
Collapse
|
7
|
Mishra S, Levy DL. Nuclear F-actin and Lamin A antagonistically modulate nuclear shape. J Cell Sci 2022; 135:275607. [PMID: 35665815 PMCID: PMC9377710 DOI: 10.1242/jcs.259692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nuclear shape influences cell migration, gene expression and cell cycle progression, and is altered in disease states like laminopathies and cancer. What factors and forces determine nuclear shape? We find that nuclei assembled in Xenopus egg extracts in the presence of dynamic F-actin exhibit a striking bilobed nuclear morphology with distinct membrane compositions in the two lobes and accumulation of F-actin at the inner nuclear envelope. The addition of Lamin A (encoded by lmna), which is absent from Xenopus eggs, results in rounder nuclei, suggesting that opposing nuclear F-actin and Lamin A forces contribute to the regulation of nuclear shape. Nuclear F-actin also promotes altered nuclear shape in Lamin A-knockdown HeLa cells and, in both systems, abnormal nuclear shape is driven by formins and not Arp2/3 or myosin. Although the underlying mechanisms might differ in Xenopus and HeLa cells, we propose that nuclear F-actin filaments nucleated by formins impart outward forces that lead to altered nuclear morphology unless Lamin A is present. Targeting nuclear actin dynamics might represent a novel approach to rescuing disease-associated defects in nuclear shape.
Collapse
Affiliation(s)
- Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA,Author for correspondence ()
| |
Collapse
|
8
|
Mitic K, Grafe M, Batsios P, Meyer I. Partial Disassembly of the Nuclear Pore Complex Proteins during Semi-Closed Mitosis in Dictyostelium discoideum. Cells 2022; 11:cells11030407. [PMID: 35159217 PMCID: PMC8834467 DOI: 10.3390/cells11030407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion of tubulin dimers and spindle assembly factors into the nucleus. In Aspergillus, free diffusion of proteins between the cytoplasm and the nucleus is achieved by a partial disassembly of the nuclear pore complexes (NPCs) prior to spindle assembly. In order to determine whether this is also the case in Dictyostelium, we analysed components of the NPC by immunofluorescence microscopy and live cell imaging and studied their behaviour during interphase and mitosis. We observed that the NPCs are absent from the contact area of the nucleoli and that some nucleoporins also localize to the centrosome and the spindle poles. In addition, we could show that, during mitosis, the central FG protein NUP62, two inner ring components and Gle1 depart from the NPCs, while all other tested NUPs remained at the NE. This leads to the conclusion that indeed a partial disassembly of the NPCs takes place, which contributes to permeabilisation of the NE during semi-closed mitosis.
Collapse
|
9
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
10
|
Hamed M, Antonin W. Dunking into the Lipid Bilayer: How Direct Membrane Binding of Nucleoporins Can Contribute to Nuclear Pore Complex Structure and Assembly. Cells 2021; 10:3601. [PMID: 34944108 PMCID: PMC8700311 DOI: 10.3390/cells10123601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Nuclear pore complexes (NPCs) mediate the selective and highly efficient transport between the cytoplasm and the nucleus. They are embedded in the two membrane structure of the nuclear envelope at sites where these two membranes are fused to pores. A few transmembrane proteins are an integral part of NPCs and thought to anchor these complexes in the nuclear envelope. In addition, a number of nucleoporins without membrane spanning domains interact with the pore membrane. Here we review our current knowledge of how these proteins interact with the membrane and how this interaction can contribute to NPC assembly, stability and function as well as shaping of the pore membrane.
Collapse
Affiliation(s)
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
11
|
Cheng J, Allgeyer ES, Richens JH, Dzafic E, Palandri A, Lewków B, Sirinakis G, St Johnston D. A single-molecule localization microscopy method for tissues reveals nonrandom nuclear pore distribution in Drosophila. J Cell Sci 2021; 134:jcs259570. [PMID: 34806753 PMCID: PMC8729783 DOI: 10.1242/jcs.259570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/19/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) can provide nanoscale resolution in thin samples but has rarely been applied to tissues because of high background from out-of-focus emitters and optical aberrations. Here, we describe a line scanning microscope that provides optical sectioning for SMLM in tissues. Imaging endogenously-tagged nucleoporins and F-actin on this system using DNA- and peptide-point accumulation for imaging in nanoscale topography (PAINT) routinely gives 30 nm resolution or better at depths greater than 20 µm. This revealed that the nuclear pores are nonrandomly distributed in most Drosophila tissues, in contrast to what is seen in cultured cells. Lamin Dm0 shows a complementary localization to the nuclear pores, suggesting that it corrals the pores. Furthermore, ectopic expression of the tissue-specific Lamin C causes the nuclear pores to distribute more randomly, whereas lamin C mutants enhance nuclear pore clustering, particularly in muscle nuclei. Given that nucleoporins interact with specific chromatin domains, nuclear pore clustering could regulate local chromatin organization and contribute to the disease phenotypes caused by human lamin A/C laminopathies.
Collapse
Affiliation(s)
- Jinmei Cheng
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Edward S. Allgeyer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jennifer H. Richens
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Edo Dzafic
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Amandine Palandri
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Bohdan Lewków
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - George Sirinakis
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
12
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
13
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Zhang Y, Chen W, Zeng W, Lu Z, Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to cilia-related abnormal cardiac left-right patterning. Cell Death Dis 2020; 11:1005. [PMID: 33230144 PMCID: PMC7684299 DOI: 10.1038/s41419-020-03214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Defective left–right (LR) organization involving abnormalities in cilia ultrastructure causes laterality disorders including situs inversus (SI) and heterotaxy (Htx) with the prevalence approximately 1/10,000 births. In this study, we describe two unrelated family trios with abnormal cardiac LR patterning. Through whole-exome sequencing (WES), we identified compound heterozygous mutations (c.805-1G >C; p. Ile269GlnfsTer8/c.1117dupA; p.Thr373AsnfsTer19) (c.29T>C; p.Ile10Thr/c.356A>G; p.His119Arg) of NEK3, encoding a NIMA (never in mitosis A)-related kinase, in two affected individuals, respectively. Protein levels of NEK3 were abrogated in Patient-1 with biallelic loss-of function (LoF) NEK3 mutations that causes premature stop codon. Subsequence transcriptome analysis revealed that NNMT (nicotinamide N-methyltransferase) and SIRT2 (sirtuin2) was upregulated by NEK3 knockdown in human retinal pigment epithelial (RPE) cells in vitro, which associates α-tubulin deacetylation by western blot and immunofluorescence. Transmission electron microscopy (TEM) analysis further identified defective ciliary ultrastructure in Patient-1. Furthermore, inner ring components of nuclear pore complex (NPC) including nucleoporin (NUP)205, NUP188, and NUP155 were significantly downregulated in NEK3-silenced cells. In conclusion, we identified biallelic mutations of NEK3 predispose individual to abnormal cardiac left–right patterning via SIRT2-mediated α-tubulin deacetylation and downregulation of inner ring nucleoporins. Our study suggested that NEK3 could be a candidate gene for human ciliopathies.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Weijia Zeng
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Zhouping Lu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Xiangyu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| |
Collapse
|
15
|
Cattelan S, Vidotto M, Devigili A, Pilastro A, Grapputo A. Differential gene regulation in selected lines for high and low sperm production in male guppies. Mol Reprod Dev 2020; 87:430-441. [PMID: 32100427 DOI: 10.1002/mrd.23332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
In species where females mate with more than one male during the same reproductive event, males typically increase the number of sperm produced to boost their fertilization share. Sperm is not limitless, however, and theory predicts that their production will come at the cost of other fitness-related traits, such as body growth or immunocompetence, although these evolutionary trade-offs are notoriously difficult to highlight. To this end, we combined artificial selection for sperm production with a transcriptome analysis using Poecilia reticulata, a fish characterized by intense sperm competition in which the number of sperm transferred during mating is the most important predictor of fertilization success, yet sperm production is highly variable among males. We compared the brain and testes transcriptome in male guppies of lines artificially selected for high and low sperm production by identifying pivotal differentially expressed gene sets that may regulate spermatogenesis and immune function in this species. Despite the small differences in single genes' expression, gene set enrichment analysis showed coordinated gene expression differences associated with several pathways differentially regulated in the two selection lines. High sperm production males showed an upregulation of pathways related to immunosuppression and development of spermatozoa indicating a possible immunological cost of sperm production.
Collapse
|
16
|
Mehta SJK, Kumar V, Mishra RK. Drosophila ELYS regulates Dorsal dynamics during development. J Biol Chem 2020; 295:2421-2437. [PMID: 31941789 DOI: 10.1074/jbc.ra119.009451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/13/2020] [Indexed: 11/06/2022] Open
Abstract
Embryonic large molecule derived from yolk sac (ELYS) is a constituent protein of nuclear pores. It initiates assembly of nuclear pore complexes into functional nuclear pores toward the end of mitosis. Using cellular, molecular, and genetic tools, including fluorescence and Electron microscopy, quantitative PCR, and RNAi-mediated depletion, we report here that the ELYS ortholog (dElys) plays critical roles during Drosophila development. dElys localized to the nuclear rim in interphase cells, but during mitosis it was absent from kinetochores and enveloped chromatin. We observed that RNAi-mediated dElys depletion leads to aberrant development and, at the cellular level, to defects in the nuclear pore and nuclear lamina assembly. Further genetic analyses indicated that dElys depletion re-activates the Dorsal (NF-κB) pathway during late larval stages. Re-activated Dorsal caused untimely expression of the Dorsal target genes in the post-embryonic stages. We also demonstrate that activated Dorsal triggers apoptosis during later developmental stages by up-regulating the pro-apoptotic genes reaper and hid The apoptosis induced by Reaper and Hid was probably the underlying cause for developmental abnormalities observed upon dElys depletion. Moreover, we noted that dElys has conserved structural features, but contains a noncanonical AT-hook-like motif through which it strongly binds to DNA. Together, our results uncover a novel epistatic interaction that regulates Dorsal dynamics by dElys during development.
Collapse
Affiliation(s)
- Saurabh Jayesh Kumar Mehta
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India.
| |
Collapse
|
17
|
Gomez GN, Abrar F, Dodhia MP, Gonzalez FG, Nag A. SARS coronavirus protein nsp1 disrupts localization of Nup93 from the nuclear pore complex. Biochem Cell Biol 2019; 97:758-766. [PMID: 30943371 DOI: 10.1139/bcb-2018-0394] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus nonstructural protein 1 (nsp1) is a key factor in virus-induced down-regulation of host gene expression. In infected cells, nsp1 engages in a multipronged mechanism to inhibit host gene expression by binding to the 40S ribosome to block the assembly of translationally competent ribosome, and then inducing endonucleolytic cleavage and the degradation of host mRNAs. Here, we report a previously undetected mechanism by which nsp1 exploits the nuclear pore complex and disrupts the nuclear-cytoplasmic transport of biomolecules. We identified members of the nuclear pore complex from the nsp1-associated protein assembly and found that the expression of nsp1 in HEK cells disrupts Nup93 localization around the nuclear envelope without triggering proteolytic degradation, while the nuclear lamina remains unperturbed. Consistent with its role in host shutoff, nsp1 alters the nuclear-cytoplasmic distribution of an RNA binding protein, nucleolin. Our results suggest that nsp1, alone, can regulate multiple steps of gene expression including nuclear-cytoplasmic transport.
Collapse
Affiliation(s)
- Garret N Gomez
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Fareeha Abrar
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Maya P Dodhia
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Fabiola G Gonzalez
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Anita Nag
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| |
Collapse
|
18
|
Abstract
During my postdoc interview in June of 1998, I asked Günter why he was moving more towards the nucleus in his latest studies. He said, "Well Joe, that's where everything starts." By the end of the interview, I accepted the postdoc. He had a way of making everything sound so cool. Günter's progression was natural, since the endoplasmic reticulum and the nucleus are the only organelles that share the same membrane. The nuclear envelope extends into a double membrane system with nuclear pore complexes embedded in the pore membrane openings. Even while writing this review, I remember Günter stressing; it is the nuclear pore complex. Just saying nuclear pore doesn't encompass the full magnitude of its significance. The nuclear pore complex is one of the largest collection of proteins that fit together for an overall function: transport. This review will cover the Blobel lab contributions in the quest for the blueprint of the nuclear pore complex from isolation of the nuclear envelope and nuclear lamin to the ring structures.
Collapse
|
19
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
20
|
Abstract
Nuclear pore complexes (NPCs) mediate nucleocytoplasmic exchange. They are exceptionally large protein complexes that fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. About 30 different protein components, termed nucleoporins, assemble in multiple copies into an intricate cylindrical architecture. Here, we review our current knowledge of the structure of nucleoporins and how those come together in situ. We delineate architectural principles on several hierarchical organization levels, including isoforms, posttranslational modifications, nucleoporins, and higher-order oligomerization of nucleoporin subcomplexes. We discuss how cells exploit this modularity to faithfully assemble NPCs.
Collapse
Affiliation(s)
- Bernhard Hampoelz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , ,
| | - Amparo Andres-Pons
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , , .,Current affiliation: Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
| | - Panagiotis Kastritis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , , .,Current affiliation: ZIK HALOmem, Martin Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , , .,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Dubińska-Magiera M, Kozioł K, Machowska M, Piekarowicz K, Filipczak D, Rzepecki R. Emerin Is Required for Proper Nucleus Reassembly after Mitosis: Implications for New Pathogenetic Mechanisms for Laminopathies Detected in EDMD1 Patients. Cells 2019; 8:E240. [PMID: 30871242 PMCID: PMC6468536 DOI: 10.3390/cells8030240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerin is an essential LEM (LAP2, Emerin, MAN1) domain protein in metazoans and an integral membrane protein associated with inner and outer nuclear membranes. Mutations in the human EMD gene coding for emerin result in the rare genetic disorder: Emery⁻Dreifuss muscular dystrophy type 1 (EDMD1). This disease belongs to a broader group called laminopathies-a heterogeneous group of rare genetic disorders affecting tissues of mesodermal origin. EDMD1 phenotype is characterized by progressive muscle wasting, contractures of the elbow and Achilles tendons, and cardiac conduction defects. Emerin is involved in many cellular and intranuclear processes through interactions with several partners: lamins; barrier-to-autointegration factor (BAF), β-catenin, actin, and tubulin. Our study demonstrates the presence of the emerin fraction which associates with mitotic spindle microtubules and centrosomes during mitosis and colocalizes during early mitosis with lamin A/C, BAF, and membranes at the mitotic spindle. Transfection studies with cells expressing EGFP-emerin protein demonstrate that the emerin fusion protein fraction also localizes to centrosomes and mitotic spindle microtubules during mitosis. Transient expression of emerin deletion mutants revealed that the resulting phenotypes vary and are mutant dependent. The most frequent phenotypes include aberrant nuclear shape, tubulin network mislocalization, aberrant mitosis, and mislocalization of centrosomes. Emerin deletion mutants demonstrated different chromatin binding capacities in an in vitro nuclear assembly assay and chromatin-binding properties correlated with the strength of phenotypic alteration in transfected cells. Aberrant tubulin staining and microtubule network phenotype appearance depended on the presence of the tubulin binding region in the expressed deletion mutants. We believe that the association with tubulin might help to "deliver" emerin and associated membranes to decondensing chromatin. Preliminary analyses of cells from Polish patients with EDMD1 revealed that for several mutations thought to be null for emerin protein, a truncated emerin protein was present. We infer that the EDMD1 phenotype may be strengthened by the toxicity of truncated emerin expressed in patients with certain nonsense mutations in EMD.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Katarzyna Kozioł
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Daria Filipczak
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
22
|
Dutta S, Bhattacharyya M, Sengupta K. Changes in the Nuclear Envelope in Laminopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:31-38. [PMID: 30637688 DOI: 10.1007/978-981-13-3065-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Double-membrane-bound nucleus is the major organelle of every metazoan cell, which controls various nuclear processes like chromatin maintenance, DNA replication, transcription and nucleoskeleton-cytoskeleton coupling. Nuclear homeostasis depends on the integrity of nuclear membrane and associated proteins. Lamins, underlying the inner nuclear membrane (INM), play a crucial role in maintaining nuclear homeostasis. In this review, we have focussed on the disruption of nuclear homeostasis due to lamin A/C mutation which produces a plethora of diseases, termed as laminopathies.
Collapse
Affiliation(s)
- Subarna Dutta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | | | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.
| |
Collapse
|
23
|
Han M, Zhao M, Cheng C, Huang Y, Han S, Li W, Tu X, Luo X, Yu X, Liu Y, Chen Q, Ren X, Wang QK, Ke T. Lamin A mutation impairs interaction with nucleoporin NUP155 and disrupts nucleocytoplasmic transport in atrial fibrillation. Hum Mutat 2018; 40:310-325. [PMID: 30488537 DOI: 10.1002/humu.23691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Here, we show the identification and functional characterization of one AF-associated mutation p.Arg399Cys in lamin A/C. Co-immunoprecipitation and GST pull-down assays demonstrate that lamin A/C interacts with NUP155, which is a nucleoporin and causes AF when mutated. Lamin A/C mutation p.Arg399Cys impairs the interaction between lamin A/C and NUP155, and increases extractability of NUP155 from the nuclear envelope (NE). Mutation p.Arg399Cys leads to aggregation of lamin A/C in the nucleus, although it does not impair the integrity of NE upon cellular stress. Mutation p.Arg399Cys inhibits the export of HSP70 mRNA and the nuclear import of HSP70 protein. Electrophysiological studies show that mutation p.Arg399Cys decreases the peak cardiac sodium current by decreasing the cell surface expression level of cardiac sodium channel Nav 1.5, but does not affect IKr potassium current. In conclusion, our results indicate that lamin A/C mutation p.Arg399Cys weakens the interaction between nuclear lamina (lamin A/C) and the nuclear pore complex (NUP155), leading to the development of AF. The findings provide a novel molecular mechanism for the pathogenesis of AF.
Collapse
Affiliation(s)
- Meng Han
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Miao Zhao
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chen Cheng
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, P. R. China
| | - Shengna Han
- Department of Pharmacology, Basic Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenjuan Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xin Tu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xuan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaoling Yu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yinan Liu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Xiang Ren
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qing Kenneth Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Tie Ke
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
24
|
Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. Histochem Cell Biol 2018; 150:593-605. [PMID: 30361777 DOI: 10.1007/s00418-018-1748-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The nuclear pore complex is the main transportation hub for exchange between the cytoplasm and the nucleus. It is built from nucleoporins that form distinct subcomplexes to establish this huge protein complex in the nuclear envelope. Malfunctioning of nucleoporins is well known in human malignancies, such as gene fusions of NUP214 and NUP98 in hematological neoplasms and overexpression of NUP88 in a variety of human cancers. In the past decade, the incremental utilization of next-generation sequencing has unraveled mutations in nucleoporin genes in the context of an increasing number of hereditary diseases, often in a tissue-specific manner. It emerges that, on one hand, the central nervous system and the heart are particularly sensitive to mutations in nucleoporin genes. On the other hand, nucleoporins forming the scaffold structure of the nuclear pore complex are eminently mutation-prone. These novel and exciting associations between nucleoporins and human diseases emphasize the need to shed light on these unanticipated tissue-specific roles of nucleoporins that may go well beyond their role in nucleocytoplasmic transport. In this review, the current insights into altered nucleoporin function associated with human hereditary disorders will be discussed.
Collapse
|
25
|
Nucleoporin35 is a novel microtubule associated protein functioning in oocyte meiotic spindle architecture. Exp Cell Res 2018; 371:435-443. [PMID: 30195030 DOI: 10.1016/j.yexcr.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023]
Abstract
Nucleoporins (Nups) are a large and diverse family of proteins that mediate nucleocytoplasmic transport at interphase of vertebrate cells. Nups also function in mitosis progression. However, whether Nups are involved in oocyte meiosis progression is still rarely known. In this study, we delineated the roles and regulatory mechanisms of Nucleoporin35 (Nup35) during oocyte meiotic maturation. The immunofluorescent signal of Nup35 was localized in the nuclear membrane at germinal vesicle (GV) stage, the microtubules and spindle at pro-metaphase I (pro-MI), metaphase I (MI), and metaphase II (MII), but to the spindle poles at anaphase I (AI) and telophase I (TI). The dynamic localization pattern of Nup35 during oocyte meiotic maturation implied its specific roles. We also found that Nup35 existed as a putatively phosphorylated form after resumption of meiosis (GVBD), but not at GV stage, implying its functional switch from nuclear membrane to meiotic progression. Further study uncovered that knockdown of Nup35 by specific siRNA significantly compromised the extrusion of first polar body (PBE), but not GVBD, with defects of spindle assembly and chromosome alignment and dissociated some localization signal of p-ERK1/2 from spindle poles to cytoplasm. A defective kinetochore - microtubule attachment (K-MT) was also identified in oocytes after knockdown of Nup35, which activates spindle assembly checkpoint. In conclusion, our results suggest that Nup35 is putatively phosphorylated and released to the cytoplasm after resumption of meiosis, and regulates spindle assembly and chromosome alignment.
Collapse
|
26
|
De Magistris P, Tatarek-Nossol M, Dewor M, Antonin W. A self-inhibitory interaction within Nup155 and membrane binding are required for nuclear pore complex formation. J Cell Sci 2018; 131:jcs.208538. [PMID: 29150488 DOI: 10.1242/jcs.208538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/13/2017] [Indexed: 01/02/2023] Open
Abstract
Nuclear pore complexes (NPCs) are gateways through the nuclear envelope. How they form into a structure containing three rings and integrate into the nuclear envelope remains a challenging paradigm for coordinated assembly of macro-complexes. In vertebrates, the cytoplasmic and nucleoplasmic rings of NPCs are mostly formed by multiple copies of the Nup107-Nup160 complex, whereas the central, or inner ring is composed of Nup53, Nup93, Nup155 and the two paralogues Nup188 and Nup205. Inner ring assembly is only partially understood. Using in vitro nuclear assembly reactions, we show that direct pore membrane binding of Nup155 is crucial for NPC formation. Replacing full-length Nup155 with its N-terminal β-propeller allows assembly of the outer ring components to the NPC backbone that also contains Nup53. However, further assembly, especially recruitment of the Nup93 and Nup62 complexes, is blocked. Self-interaction between the N- and C-terminal domains of Nup155 has an auto-inhibitory function that prevents interaction between the N-terminus of Nup155 and the C-terminal region of Nup53. Nup93 can overcome this block by binding to Nup53, thereby promoting formation of the inner ring and the NPC.
Collapse
Affiliation(s)
- Paola De Magistris
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, 72076 Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Marianna Tatarek-Nossol
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Manfred Dewor
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, 72076 Tübingen, Germany .,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
27
|
Linder MI, Köhler M, Boersema P, Weberruss M, Wandke C, Marino J, Ashiono C, Picotti P, Antonin W, Kutay U. Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of Key Interconnecting Nucleoporins. Dev Cell 2017; 43:141-156.e7. [PMID: 29065306 PMCID: PMC5654724 DOI: 10.1016/j.devcel.2017.08.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/04/2017] [Accepted: 08/25/2017] [Indexed: 01/09/2023]
Abstract
During interphase, the nuclear envelope (NE) serves as a selective barrier between cytosol and nucleoplasm. When vertebrate cells enter mitosis, the NE is dismantled in the process of nuclear envelope breakdown (NEBD). Disassembly of nuclear pore complexes (NPCs) is a key aspect of NEBD, required for NE permeabilization and formation of a cytoplasmic mitotic spindle. Here, we show that both CDK1 and polo-like kinase 1 (PLK1) support mitotic NPC disintegration by hyperphosphorylation of Nup98, the gatekeeper nucleoporin, and Nup53, a central nucleoporin linking the inner NPC scaffold to the pore membrane. Multisite phosphorylation of Nup53 critically contributes to its liberation from its partner nucleoporins, including the pore membrane protein NDC1. Initial steps of NPC disassembly in semi-permeabilized cells can be reconstituted by a cocktail of mitotic kinases including cyclinB-CDK1, NIMA, and PLK1, suggesting that the unzipping of nucleoporin interactions by protein phosphorylation is an important principle underlying mitotic NE permeabilization.
Collapse
Affiliation(s)
- Monika I Linder
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Mario Köhler
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paul Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Marion Weberruss
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Cornelia Wandke
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Joseph Marino
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Caroline Ashiono
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
28
|
Venomics analyses of the skin secretion of Dermatonotus muelleri : Preliminary proteomic and metabolomic profiling. Toxicon 2017; 130:127-135. [DOI: 10.1016/j.toxicon.2017.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/17/2022]
|
29
|
Iwamoto M, Osakada H, Mori C, Fukuda Y, Nagao K, Obuse C, Hiraoka Y, Haraguchi T. Compositionally distinct nuclear pore complexes of functionally distinct dimorphic nuclei in the ciliate Tetrahymena. J Cell Sci 2017; 130:1822-1834. [PMID: 28386019 PMCID: PMC5450191 DOI: 10.1242/jcs.199398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
The nuclear pore complex (NPC), a gateway for nucleocytoplasmic trafficking, is composed of ∼30 different proteins called nucleoporins. It remains unknown whether the NPCs within a species are homogeneous or vary depending on the cell type or physiological condition. Here, we present evidence for compositionally distinct NPCs that form within a single cell in a binucleated ciliate. In Tetrahymena thermophila, each cell contains both a transcriptionally active macronucleus (MAC) and a germline micronucleus (MIC). By combining in silico analysis, mass spectrometry analysis for immuno-isolated proteins and subcellular localization analysis of GFP-fused proteins, we identified numerous novel components of MAC and MIC NPCs. Core members of the Nup107-Nup160 scaffold complex were enriched in MIC NPCs. Strikingly, two paralogs of Nup214 and of Nup153 localized exclusively to either the MAC or MIC NPCs. Furthermore, the transmembrane components Pom121 and Pom82 localize exclusively to MAC and MIC NPCs, respectively. Our results argue that functional nuclear dimorphism in ciliates is likely to depend on the compositional and structural specificity of NPCs.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Chie Mori
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Yasuhiro Fukuda
- Graduate School of Agriculture, Tohoku University, Osaki, Miyagi 989-6711, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.,Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan .,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.,Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
30
|
Mimura Y, Takagi M, Clever M, Imamoto N. ELYS regulates the localization of LBR by modulating its phosphorylation state. J Cell Sci 2016; 129:4200-4212. [PMID: 27802161 PMCID: PMC5117198 DOI: 10.1242/jcs.190678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023] Open
Abstract
Lamin B receptor (LBR), an inner nuclear membrane (INM) protein, contributes to the functional integrity of the nucleus by tethering heterochromatin to the nuclear envelope. We have previously reported that the depletion of embryonic large molecule derived from yolk sac (ELYS; also known as AHCTF1), a component of the nuclear pore complex, from cells perturbs the localization of LBR to the INM, but little is known about the underlying molecular mechanism. In this study, we found that the depletion of ELYS promoted LBR phosphorylation at the residues known to be phosphorylated by cyclin-dependent kinase (CDK) and serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2, respectively). These phosphorylation events were most likely to be counter-balanced by protein phosphatase 1 (PP1), and the depletion of PP1 from cells consistently caused the mislocalization of LBR. These observations point to a new mechanism regulating the localization of LBR, which is governed by an ELYS-mediated phosphorylation network. This phosphorylation-dependent coordination between INM proteins and the nuclear pore complex might be important for the integrity of the nucleus.
Collapse
Affiliation(s)
- Yasuhiro Mimura
- Cellular Dynamics Laboratory, Riken, Saitama 351-0198, Japan
| | | | - Michaela Clever
- Cellular Dynamics Laboratory, Riken, Saitama 351-0198, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, Riken, Saitama 351-0198, Japan
| |
Collapse
|
31
|
O'Byrne JJ, Ryan H, Murray DJ, Regan R, Betts DR, Murphy N, Casey JP, Lynch SA. Bicoronal and metopic craniosynostosis in association with a de novo unbalanced t(2;7) chromosomal translocation. Am J Med Genet A 2016; 173:274-279. [PMID: 27774767 DOI: 10.1002/ajmg.a.38001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/23/2016] [Indexed: 11/05/2022]
Abstract
We report the case of a developmentally appropriate infant male with a de novo unbalanced chromosome translocation involving bands 2q32.1 and 7p21.3. The child was noted to have metopic and bicoronal craniosynostosis with closely spaced eyes, turricephaly, and flattening of the forehead. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James J O'Byrne
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Helen Ryan
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Dylan J Murray
- National Paediatric Craniofacial Centre, Temple Street Children's University Hospital, Dublin, Ireland
| | - Regina Regan
- National Children's Research Centre, Crumlin, Dublin, Ireland
| | - David R Betts
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Nuala Murphy
- Department of Endocrinology, Temple Street Children's University Hospital, Dublin, Ireland
| | - Jillian P Casey
- Academic Centre on Rare Diseases, University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Sally A Lynch
- Academic Centre on Rare Diseases, University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| |
Collapse
|
32
|
A Novel Mutation in Nucleoporin 35 Causes Murine Degenerative Colonic Smooth Muscle Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2254-61. [PMID: 27427419 DOI: 10.1016/j.ajpath.2016.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022]
Abstract
Chronic intestinal pseudo-obstruction (CIPO) is a rare but life-threatening disease characterized by severe intestinal dysmotility. Histopathologic studies in CIPO patients have identified several different mechanisms that appear to be involved in the dysmotility, including defects in neurons, smooth muscle, or interstitial cells of Cajal. Currently there are few mouse models of the various forms of CIPO. We generated a mouse with a point mutation in the RNA recognition motif of the Nup35 gene, which encodes a component of the nuclear pore complex. Nup35 mutants developed a severe megacolon and exhibited a reduced lifespan. Histopathologic examination revealed a degenerative myopathy that developed after birth and specifically affected smooth muscle in the colon; smooth muscle in the small bowel and the bladder were not affected. Furthermore, no defects were found in enteric neurons or interstitial cells of Cajal. Nup35 mice are likely to be a valuable model for the subtype of CIPO characterized by degenerative myopathy. Our study also raises the possibility that Nup35 polymorphisms could contribute to some cases of CIPO.
Collapse
|
33
|
Soheilypour M, Peyro M, Jahed Z, Mofrad MRK. On the Nuclear Pore Complex and Its Roles in Nucleo-Cytoskeletal Coupling and Mechanobiology. Cell Mol Bioeng 2016. [DOI: 10.1007/s12195-016-0443-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
34
|
Interactome Mapping Reveals the Evolutionary History of the Nuclear Pore Complex. PLoS Biol 2016; 14:e1002365. [PMID: 26891179 PMCID: PMC4758718 DOI: 10.1371/journal.pbio.1002365] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/23/2015] [Indexed: 02/08/2023] Open
Abstract
The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes. Dissection of the nuclear pore complex—an ancient eukaryotic molecular machine—exposes a fundamental divergence in structure and function between yeast and humans versus trypanosomes and provides insights into the evolution of the nucleus. Much of the core architecture of the eukaryotic cell was established over one billion years ago. Significantly, many cellular systems possess lineage-specific features, and architectural and compositional variation of complexes and pathways that are likely keyed to specific functional adaptations. The nuclear pore complex (NPC) contributes to many processes, including nucleocytoplasmic transport, interactions with the nuclear lamina, and mRNA processing. We exploited trypanosome parasites to investigate NPC evolution and conservation at the level of protein–protein interactions and composition. We unambiguously assigned NPC components to specific substructures and found that the NPC structural scaffold is generally conserved, albeit with lineage-specific elements. However, there is significant variation in pore membrane proteins and an absence of critical components involved in mRNA export in fungi and animals (opisthokonts). This is reflected by the completely symmetric localization of all trypanosome nucleoporins, with the exception of the nuclear basket. This architecture is highly distinct from opisthokonts. We also identify features that suggest a Ran-dependent system for mRNA export in trypanosomes, a system that may presage distinct mechanisms of protein and mRNA transport in animals and fungi. Our study highlights that shared composition of macromolecular assemblies does not necessarily equate to shared architecture. Identification of lineage-specific features within the trypanosome NPC significantly advances our understanding of mechanisms of nuclear transport, gene expression, and evolution of the nucleus.
Collapse
|
35
|
Weberruss M, Antonin W. Perforating the nuclear boundary – how nuclear pore complexes assemble. J Cell Sci 2016; 129:4439-4447. [DOI: 10.1242/jcs.194753] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
The nucleus is enclosed by the nuclear envelope, a double membrane which creates a selective barrier between the cytoplasm and the nuclear interior. Its barrier and transport characteristics are determined by nuclear pore complexes (NPCs) that are embedded within the nuclear envelope, and control molecular exchange between the cytoplasm and nucleoplasm. In this Commentary, we discuss the biogenesis of these huge protein assemblies from approximately one thousand individual proteins. We will summarize current knowledge about distinct assembly modes in animal cells that are characteristic for different cell cycle phases and their regulation.
Collapse
Affiliation(s)
- Marion Weberruss
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, Tübingen 72076, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, Tübingen 72076, Germany
| |
Collapse
|
36
|
Pleiner T, Bates M, Trakhanov S, Lee CT, Schliep JE, Chug H, Böhning M, Stark H, Urlaub H, Görlich D. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 2015; 4:e11349. [PMID: 26633879 PMCID: PMC4755751 DOI: 10.7554/elife.11349] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022] Open
Abstract
Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2 nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks – each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target.
Collapse
Affiliation(s)
- Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Mark Bates
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Erik Schliep
- 3D Electron Cryo-Microscopy Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Hema Chug
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marc Böhning
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Holger Stark
- 3D Electron Cryo-Microscopy Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
37
|
Schwartz M, Travesa A, Martell SW, Forbes DJ. Analysis of the initiation of nuclear pore assembly by ectopically targeting nucleoporins to chromatin. Nucleus 2015; 6:40-54. [PMID: 25602437 PMCID: PMC4615246 DOI: 10.1080/19491034.2015.1004260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Nuclear pore complexes (NPCs) form the gateway to the nucleus, mediating virtually all nucleocytoplasmic trafficking. Assembly of a nuclear pore complex requires the organization of many soluble sub-complexes into a final massive structure embedded in the nuclear envelope. By use of a LacI/LacO reporter system, we were able to assess nucleoporin (Nup) interactions, show that they occur with a high level of specificity, and identify nucleoporins sufficient for initiation of the complex process of NPC assembly in vivo. Eleven nucleoporins from different sub-complexes were fused to LacI-CFP and transfected separately into a human cell line containing a stably integrated LacO DNA array. The LacI-Nup fusion proteins, which bound to the array, were examined for their ability to recruit endogenous nucleoporins to the intranuclear LacO site. Many could recruit nucleoporins of the same sub-complex and a number could also recruit other sub-complexes. Strikingly, Nup133 and Nup107 of the Nup107/160 subcomplex and Nup153 and Nup50 of the nuclear pore basket recruited a near full complement of nucleoporins to the LacO array. Furthermore, Nup133 and Nup153 efficiently targeted the LacO array to the nuclear periphery. Our data support a hierarchical, seeded assembly pathway and identify Nup133 and Nup153 as effective “seeds” for NPC assembly. In addition, we show that this system can be applied to functional studies of individual nucleoporin domains as well as to specific nucleoporin disease mutations. We find that the R391H cardiac arrhythmia/sudden death mutation of Nup155 prevents both its subcomplex assembly and nuclear rim targeting of the LacO array.
Collapse
Affiliation(s)
- Michal Schwartz
- a Section of Cell and Developmental Biology; Division of Biological Sciences 0347; University of California-San Diego ; La Jolla , CA USA
| | | | | | | |
Collapse
|
38
|
Complex Commingling: Nucleoporins and the Spindle Assembly Checkpoint. Cells 2015; 4:706-25. [PMID: 26540075 PMCID: PMC4695854 DOI: 10.3390/cells4040706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022] Open
Abstract
The segregation of the chromosomes during mitosis is an important process, in which the replicated DNA content is properly allocated into two daughter cells. To ensure their genomic integrity, cells present an essential surveillance mechanism known as the spindle assembly checkpoint (SAC), which monitors the bipolar attachment of the mitotic spindle to chromosomes to prevent errors that would result in chromosome mis-segregation and aneuploidy. Multiple components of the nuclear pore complex (NPC), a gigantic protein complex that forms a channel through the nuclear envelope to allow nucleocytoplasmic exchange of macromolecules, were shown to be critical for faithful cell division and implicated in the regulation of different steps of the mitotic process, including kinetochore and spindle assembly as well as the SAC. In this review, we will describe current knowledge about the interconnection between the NPC and the SAC in an evolutional perspective, which primarily relies on the two mitotic checkpoint regulators, Mad1 and Mad2. We will further discuss the role of NPC constituents, the nucleoporins, in kinetochore and spindle assembly and the formation of the mitotic checkpoint complex during mitosis and interphase.
Collapse
|
39
|
Miyake N, Tsukaguchi H, Koshimizu E, Shono A, Matsunaga S, Shiina M, Mimura Y, Imamura S, Hirose T, Okudela K, Nozu K, Akioka Y, Hattori M, Yoshikawa N, Kitamura A, Cheong HI, Kagami S, Yamashita M, Fujita A, Miyatake S, Tsurusaki Y, Nakashima M, Saitsu H, Ohashi K, Imamoto N, Ryo A, Ogata K, Iijima K, Matsumoto N. Biallelic Mutations in Nuclear Pore Complex Subunit NUP107 Cause Early-Childhood-Onset Steroid-Resistant Nephrotic Syndrome. Am J Hum Genet 2015; 97:555-66. [PMID: 26411495 DOI: 10.1016/j.ajhg.2015.08.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2022] Open
Abstract
The nuclear pore complex (NPC) is a huge protein complex embedded in the nuclear envelope. It has central functions in nucleocytoplasmic transport, nuclear framework, and gene regulation. Nucleoporin 107 kDa (NUP107) is a component of the NPC central scaffold and is an essential protein in all eukaryotic cells. Here, we report on biallelic NUP107 mutations in nine affected individuals who are from five unrelated families and show early-onset steroid-resistant nephrotic syndrome (SRNS). These individuals have pathologically focal segmental glomerulosclerosis, a condition that leads to end-stage renal disease with high frequency. NUP107 is ubiquitously expressed, including in glomerular podocytes. Three of four NUP107 mutations detected in the affected individuals hamper NUP107 binding to NUP133 (nucleoporin 133 kDa) and NUP107 incorporation into NPCs in vitro. Zebrafish with nup107 knockdown generated by morpholino oligonucleotides displayed hypoplastic glomerulus structures and abnormal podocyte foot processes, thereby mimicking the pathological changes seen in the kidneys of the SRNS individuals with NUP107 mutations. Considering the unique properties of the podocyte (highly differentiated foot-process architecture and slit membrane and the inability to regenerate), we propose a "podocyte-injury model" as the pathomechanism for SRNS due to biallelic NUP107 mutations.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Kansai Medical University, Osaka 570-8507, Japan.
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akemi Shono
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | - Shintaro Imamura
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yuko Akioka
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Norishige Yoshikawa
- Center for Clinical Research and Development, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Akiko Kitamura
- Department of Immunology & Parasitology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul 03080, Korea; Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul 03080, Korea; Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Shoji Kagami
- Department of Pediatrics, University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Michiaki Yamashita
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenichi Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN, Wako 351-0198, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| |
Collapse
|
40
|
Stuwe T, Bley CJ, Thierbach K, Petrovic S, Schilbach S, Mayo DJ, Perriches T, Rundlet EJ, Jeon YE, Collins LN, Huber FM, Lin DH, Paduch M, Koide A, Lu V, Fischer J, Hurt E, Koide S, Kossiakoff AA, Hoelz A. Architecture of the fungal nuclear pore inner ring complex. Science 2015; 350:56-64. [PMID: 26316600 DOI: 10.1126/science.aac9176] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022]
Abstract
The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. We present the reconstitution and interdisciplinary analyses of the ~425-kilodalton inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1•Nup49•Nup57 channel nucleoporin heterotrimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT•Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three-dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. We propose that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation.
Collapse
Affiliation(s)
- Tobias Stuwe
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Christopher J Bley
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Karsten Thierbach
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Stefan Petrovic
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Sandra Schilbach
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel J Mayo
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Thibaud Perriches
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Emily J Rundlet
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Young E Jeon
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Leslie N Collins
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel H Lin
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Marcin Paduch
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Vincent Lu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica Fischer
- Biochemistry Center of Heidelberg University, 69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, 69120 Heidelberg, Germany
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - André Hoelz
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
41
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
42
|
Xu L, Pan L, Li J, Huang B, Feng J, Li C, Wang S, The E, Liu Y, Yuan T, Zhen L, Liang D, Liu Y, Li L, Cui Y, Jiang X, Peng L, Chen YH. Nucleoporin 35 regulates cardiomyocyte pH homeostasis by controlling Na+-H+ exchanger-1 expression. J Mol Cell Biol 2015; 7:476-85. [PMID: 26260029 DOI: 10.1093/jmcb/mjv054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
The mammalian nuclear pore complex is comprised of ∼ 30 different nucleoporins (Nups). It governs the nuclear import of gene expression modulators and the export of mRNAs. In cardiomyocytes, Na(+)-H(+) exchanger-1 (NHE1) is an integral membrane protein that exclusively regulates intracellular pH (pHi) by exchanging one intracellular H(+) for one extracellular Na(+). However, the role of Nups in cardiac NHE1 expression remains unknown. We herein report that Nup35 regulates cardiomyocyte NHE1 expression by controlling the nucleo-cytoplasmic trafficking of nhe1 mRNA. The N-terminal domain of Nup35 determines nhe1 mRNA nuclear export by targeting the 5'-UTR (-412 to -213 nt) of nhe1 mRNA. Nup35 ablation weakens the resistance of cardiomyocytes to an acid challenge by depressing NHE1 expression. Moreover, we identify that Nup35 and NHE1 are simultaneously downregulated in ischemic cardiomyocytes both in vivo and in vitro. Enforced expression of Nup35 effectively counteracts the anoxia-induced intracellular acidification. We conclude that Nup35 selectively regulates cardiomyocyte pHi homeostasis by posttranscriptionally controlling NHE1 expression. This finding reveals a novel regulatory mechanism of cardiomyocyte pHi, and may provide insight into the therapeutic strategy for ischemic cardiac diseases.
Collapse
Affiliation(s)
- Liang Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Lei Pan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bijun Huang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Feng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Changming Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shiyi Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Erlinda The
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuan Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tianyou Yuan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Lixiao Zhen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dandan Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Yingyu Cui
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Jiang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Luying Peng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Institute of Medical Genetics, Tongji University, Shanghai 200092, China Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
43
|
Quantifying nucleoporin stoichiometry inside single nuclear pore complexes in vivo. Sci Rep 2015; 5:9372. [PMID: 25797490 PMCID: PMC4894440 DOI: 10.1038/srep09372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/02/2015] [Indexed: 11/25/2022] Open
Abstract
The nuclear pore complex (NPC) is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring-scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. NPCs are composed of ~30 different nucleoporins (Nups), averaged at 8, 16 or 32 copies per NPC. This estimate has not been confirmed for individual NPCs in living cells due to the inherent difficulty of counting proteins inside single supramolecular complexes. Here we used single-molecule SPEED microscopy to directly count the copy-number of twenty-four different Nups within individual NPCs of live yeast, and found agreement as well as significant deviation from previous estimates. As expected, we counted 8 copies of four peripheral Nups and 16 copies of fourteen scaffold Nups. Unexpectedly, we counted a maximum of 16 copies of Nsp1 and Nic96, rather than 32 as previously estimated; and found only 10–15 copies of six other Nups, rather than 8 or 16 copies as expected. This in situ molecular-counting technology can test structure-function models of NPCs and other supramolecular structures in cells.
Collapse
|
44
|
Vollmer B, Antonin W. The diverse roles of the Nup93/Nic96 complex proteins - structural scaffolds of the nuclear pore complex with additional cellular functions. Biol Chem 2014; 395:515-28. [PMID: 24572986 DOI: 10.1515/hsz-2013-0285] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/22/2014] [Indexed: 11/15/2022]
Abstract
Nuclear pore complexes mediate the transport between the cell nucleoplasm and cytoplasm. These 125 MDa structures are among the largest assemblies found in eukaryotes, built from proteins organized in distinct subcomplexes that act as building blocks during nuclear pore complex biogenesis. In this review, we focus on one of these subcomplexes, the Nup93 complex in metazoa and its yeast counterpart, the Nic96 complex. We discuss its essential function in nuclear pore complex assembly as a linker between the nuclear membrane and the central part of the pore and its various roles in nuclear transport processes and beyond.
Collapse
|
45
|
Kerr ARW, Schirmer EC. FG repeats facilitate integral protein trafficking to the inner nuclear membrane. Commun Integr Biol 2014. [DOI: 10.4161/cib.16052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Goto C, Tamura K, Fukao Y, Shimada T, Hara-Nishimura I. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis. THE PLANT CELL 2014; 26:2143-2155. [PMID: 24824484 PMCID: PMC4079374 DOI: 10.1105/tpc.113.122168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/16/2014] [Accepted: 04/23/2014] [Indexed: 05/18/2023]
Abstract
In animals, the nuclear lamina is a fibrillar meshwork on the inner surface of the nuclear envelope, composed of coiled-coil lamin proteins and lamin binding membrane proteins. Plants also have a meshwork on the inner surface of the nuclear envelope, but little is known about its composition other than the presence of members of the CROWDED NUCLEI (CRWN) protein family, possible plant lamin analogs. Here, we describe a candidate lamina component, based on two Arabidopsis thaliana mutants (kaku2 and kaku4) with aberrant nuclear morphology. The responsible gene in kaku2 encodes CRWN1, and the responsible gene in kaku4 encodes a plant-specific protein of unknown function (KAKU4) that physically interacts with CRWN1 and its homolog CRWN4. Immunogold labeling revealed that KAKU4 localizes at the inner nuclear membrane. KAKU4 deforms the nuclear envelope in a dose-dependent manner, in association with nuclear membrane invagination and stack formation. The KAKU4-dependent nuclear envelope deformation was enhanced by overaccumulation of CRWN1, although KAKU4 can deform the nuclear envelope even in the absence of CRWN1 and/or CRWN4. Together, these results suggest that plants have evolved a unique lamina-like structure to modulate nuclear shape and size.
Collapse
Affiliation(s)
- Chieko Goto
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
47
|
Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 2014; 141:962-73. [PMID: 24496632 DOI: 10.1242/dev.098327] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Takagi M, Imamoto N. Control of nuclear size by NPC proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:571-91. [PMID: 24563366 DOI: 10.1007/978-1-4899-8032-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The architecture of the cell nucleus in cancer cells is often altered in a manner associated with the tumor type and aggressiveness. Therefore, it has been the central criterion in the pathological diagnosis and prognosis of cancer. However, the molecular mechanism behind these observed changes in nuclear morphology, including size, remains completely unknown. Based on our current understanding of the physiology of the nuclear pore complex (NPC) and its constituents, which are collectively referred to as nucleoporins (Nups), we discuss how the structural and functional ablation of the NPC and Nups could directly or indirectly contribute to the changes in nuclear size observed in cancer cells.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN, WAKO, Saitama, 351-0198, Japan,
| | | |
Collapse
|
49
|
Eisenhardt N, Redolfi J, Antonin W. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J Cell Sci 2013; 127:908-21. [PMID: 24363447 DOI: 10.1242/jcs.141739] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) are the gateways for nucleocytoplasmic exchange. The ordered assembly of these huge complexes from several hundred individual components into an intricate protein interaction network which deforms the two membranes of the nuclear envelope into a pore is only rudimentarily understood. Here, we show that the interaction between Nup53 and the integral pore membrane protein Ndc1 is essential for vertebrate NPC assembly. The Ndc1 binding site on Nup53 overlaps with a region that induces membrane bending and is specifically required to modulate this activity, suggesting that the membrane-deforming capability of Nup53 is adjusted during the NPC assembly process. We further demonstrate that the interaction of Nup53 and Nup155 has a crucial role in NPC formation as the main determinant of recruitment of Nup155 to the assembling pore. Overall, our results pinpoint the diversity of interaction modes accomplished by Nup53, highlighting this protein as an essential link between the pore membrane and the NPC, and as a crucial factor in the formation of the pore membrane.
Collapse
Affiliation(s)
- Nathalie Eisenhardt
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany
| | | | | |
Collapse
|
50
|
Akiyama K, Noguchi J, Hirose M, Kajita S, Katayama K, Khalaj M, Tsuji T, Fairfield H, Byers C, Reinholdt L, Ogura A, Kunieda T. A mutation in the nuclear pore complex gene Tmem48 causes gametogenesis defects in skeletal fusions with sterility (sks) mice. J Biol Chem 2013; 288:31830-41. [PMID: 24045954 DOI: 10.1074/jbc.m113.492306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal fusions with sterility (sks) is an autosomal recessive mutation of mouse that results in male and female sterility because of defects in gametogenesis. The mutants also have skeletal malformations with fused vertebrae and ribs. We examined testicular phenotypes of sks/sks mice to investigate the defects in spermatogenesis. Histological and immunocytochemical analyses and expression analyses of the marker genes demonstrated that spermatogenesis is arrested at mid to late pachytene stage of meiotic prophase with defective synapsis of the homologous chromosomes. Next, we determined the precise chromosomal localization of the sks locus on a 0.3-Mb region of mouse chromosome 4 by linkage analysis. By sequencing the positional candidate genes in this region and whole exome sequencing, we found a GG to TT nucleotide substitution in exon 6 of the Tmem48 gene that encodes a putative transmembrane protein with six transmembrane domains. The nucleotide substitution causes aberrant splicing, which deletes exon 6 of the Tmem48 transcript. Specific expression of TMEM48 was observed in germ cells of males and females. Furthermore, the phenotypes of the sks mutant were completely rescued by the transgenesis of a genomic fragment containing the wild-type Tmem48 gene. These findings indicate that the Tmem48 mutation is responsible for the gametogenesis defects and skeletal malformations in the sks mice. The TMEM48 protein is a nuclear membrane protein comprising the nuclear pore complex; its exact function in the nuclear pore complex is still unknown. Our finding suggested that the nuclear pore complex plays an important role in mammalian gametogenesis and skeletal development.
Collapse
Affiliation(s)
- Kouyou Akiyama
- From the Graduate School of Environmental and Life Science and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|