1
|
Zhu MM, Dai J, Dai Z, Peng Y, Zhao YY. GCN2 kinase activation mediates pulmonary vascular remodeling and pulmonary arterial hypertension. JCI Insight 2024; 9:e177926. [PMID: 39316438 PMCID: PMC11530134 DOI: 10.1172/jci.insight.177926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive increase of pulmonary vascular resistance and remodeling that result in right heart failure. Recessive mutations of EIF2AK4 gene (encoding general control nonderepressible 2 kinase, GCN2) are linked to heritable pulmonary veno-occlusive disease (PVOD) in patients but rarely in patients with PAH. The role of GCN2 kinase activation in the pathogenesis of PAH remains unclear. Here, we show that GCN2 was hyperphosphorylated and activated in pulmonary vascular endothelial cells (ECs) of hypoxic mice, monocrotaline-treated rats, and patients with idiopathic PAH. Unexpectedly, loss of GCN2 kinase activity in Eif2ak4-/- mice with genetic disruption of the kinase domain induced neither PVOD nor pulmonary hypertension (PH) but inhibited hypoxia-induced PH. RNA-sequencing analysis suggested endothelin-1 (Edn1) as a downstream target of GCN2. GCN2 mediated hypoxia-induced Edn1 expression in human lung ECs via HIF-2α. Restored Edn1 expression in ECs of Eif2ak4-/- mice partially reversed the reduced phenotype of hypoxia-induced PH. Furthermore, GCN2 kinase inhibitor A-92 treatment attenuated PAH in monocrotaline-treated rats. These studies demonstrate that GCN2 kinase activation mediates pulmonary vascular remodeling and PAH at least partially through Edn1. Thus, targeting GCN2 kinase activation is a promising therapeutic strategy for treatment of PAH in patients without EIF2AK4 loss-of-function mutations.
Collapse
Affiliation(s)
- Maggie M. Zhu
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jingbo Dai
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi Peng
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Genetic Medicine and Nanotechnology Development Center (GeneMeNDer), Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pharmacology and Medicine and
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Dey N, Koumenis C, Ruggero D, Fuchs SY, Diehl JA. miR-217 Regulates Normal and Tumor Cell Fate Following Induction of Endoplasmic Reticulum Stress. Mol Cancer Res 2024; 22:360-372. [PMID: 38236939 PMCID: PMC10987263 DOI: 10.1158/1541-7786.mcr-23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.
Collapse
Affiliation(s)
- Neekkan Dey
- Department of Biochemistry, Case Comprehensive Cancer Center; Case Western Reserve University, Cleveland, OH 44106, USA
| | - Costas Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davide Ruggero
- Departments of Urology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Serge Y. Fuchs
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Alan Diehl
- Department of Biochemistry, Case Comprehensive Cancer Center; Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Wang R, Huang Y, He J, Jin S, Li X, Tan K, Xia W. The endoplasmic reticulum stress-related genes and molecular typing predicts prognosis and reveals characterization of tumor immune microenvironment in lung squamous cell carcinoma. Discov Oncol 2024; 15:37. [PMID: 38363409 PMCID: PMC10873263 DOI: 10.1007/s12672-024-00887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) acts critical roles on cell growth, proliferation, and metastasis in various cancers. However, the relationship between ERs and lung squamous cell carcinoma (LUSC) prognoses still remains unclear. METHODS The consensus clustering analysis of ERS-related genes and the differential expression analysis between clusters were investigated in LUSC based on TCGA database. Furthermore, ERS-related prognostic risk models were constructed by LASSO regression and Cox regression analyses. Then, the predictive effect of the risk model was evaluated by Kaplan-Meier, Cox regression, and ROC Curve analyses, as well as validated in the GEO cohort. According to the optimal threshold, patients with LUSC were divided into high- and low- risk groups, and somatic mutations, immune cell infiltration, chemotherapy response and immunotherapy effect were systematically analyzed. RESULTS Two ERS-related clusters were identified in patients with LUSC that had distinct patterns of immune cell infiltration. A 5-genes ERS-related prognostic risk model and nomogram were constructed and validated. Kaplan-Meier curves and Cox regression analysis showed that ERS risk score was an independent prognostic factor (p < 0.001, HR = 1.317, 95% CI = 1.159-1.496). Patients with low-risk scores presented significantly lower TIDE scores and significantly lower IC50 values for common chemotherapy drugs such as cisplatin and gemcitabine. CONCLUSION ERS-related risk signature has certain prognostic value and may be a potential therapeutic target and prognostic biomarker for LUSC patients.
Collapse
Affiliation(s)
- Ruolan Wang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Yanhua Huang
- Department of Procurement Management, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Juan He
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Shan Jin
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Xin Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Kun Tan
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Wei Xia
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China.
| |
Collapse
|
5
|
van Zyl E, Peneycad C, Perehiniak E, McKay BC. Cyclin-dependent kinase inhibitor 1 plays a more prominent role than activating transcription factor 4 or the p53 tumour suppressor in thapsigargin-induced G1 arrest. PeerJ 2023; 11:e16683. [PMID: 38130926 PMCID: PMC10734451 DOI: 10.7717/peerj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Background Thapsigargin (Tg) is a compound that inhibits the SERCA calcium transporter leading to decreased endoplasmic reticulum (ER) Ca2+ levels. Many ER chaperones are required for proper folding of membrane-associated and secreted proteins, and they are Ca2+ dependent. Therefore, Tg leads to the accumulation of misfolded proteins in the ER, activating the unfolded protein response (UPR) to help restore homeostasis. Tg reportedly induces cell cycle arrest and apoptosis in many cell types but how these changes are linked to the UPR remains unclear. The activating transcription factor 4 (ATF4) plays a key role in regulating ER stress-induced gene expression so we sought to determine if ATF4 is required for Tg-induced cell cycle arrest and apoptosis using ATF4-deficient cells. Methods Two-parameter flow cytometric analysis of DNA replication and DNA content was used to assess the effects of Tg on cell cycle distribution in isogenic HCT116-derived cell lines either expressing or lacking ATF4. For comparison, we similarly assessed the Tg response in isogenic cell lines deleted of the p53 tumour suppressor and the p53-regulated p21WAF1 cyclin-dependent kinase inhibitor important in G1 and G2 arrests induced by DNA damage. Results Tg led to a large depletion of the S phase population with a prominent increase in the proportion of HCT116 cells in the G1 phase of the cell cycle. Importantly, this effect was largely independent of ATF4. We found that loss of p21WAF1 but not p53 permitted Tg treated cells to enter S phase and synthesize DNA. Therefore, p21WAF1plays an important role in these Tg-induced cell cycle alterations while ATF4 and p53 do not. Remarkably, the ATF4-, p53-and p21WAF1-deficient cell lines were all more sensitive to Tg-induced apoptosis. Taken together, p21WAF1 plays a larger role in regulating Tg-induced G1 and G2 arrests than ATF4 or p53 but these proteins similarly contribute to protection from Tg-induced apoptosis. This work highlights the complex network of stress responses that are activated in response to ER stress.
Collapse
Affiliation(s)
- Erin van Zyl
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Claire Peneycad
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Evan Perehiniak
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Bruce C. McKay
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
6
|
Ma Z, Horrocks J, Mir DA, Cox M, Ruzga M, Rollins J, Rogers AN. The integrated stress response protects against ER stress but is not required for altered translation and lifespan from dietary restriction in Caenorhabditis elegans. Front Cell Dev Biol 2023; 11:1263344. [PMID: 38161330 PMCID: PMC10755965 DOI: 10.3389/fcell.2023.1263344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
The highly conserved integrated stress response (ISR) reduces and redirects mRNA translation in response to certain forms of stress and nutrient limitation. It is activated when kinases phosphorylate a key residue in the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). General Control Nonderepressible-2 (GCN2) is activated to phosphorylate eIF2α by the presence of uncharged tRNA associated with nutrient scarcity, while protein kinase R-like ER kinase-1 (PERK) is activated during the ER unfolded protein response (UPRER). Here, we investigated the role of the ISR during nutrient limitation and ER stress with respect to changes in protein synthesis, translationally driven mRNA turnover, and survival in Caenorhabditis elegans. We found that, while GCN2 phosphorylates eIF2α when nutrients are restricted, the ability to phosphorylate eIF2α is not required for changes in translation, nonsense-mediated decay, or lifespan associated with dietary restriction (DR). Interestingly, loss of both GCN2 and PERK abolishes increased lifespan associated with dietary restriction, indicating the possibility of other substrates for these kinases. The ISR was not dispensable under ER stress conditions, as demonstrated by the requirement for PERK and eIF2α phosphorylation for decreased translation and wild type-like survival. Taken together, results indicate that the ISR is critical for ER stress and that other translation regulatory mechanisms are sufficient for increased lifespan under dietary restriction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aric N. Rogers
- MDI Biological Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
7
|
Gauthier-Coles G, Rahimi F, Bröer A, Bröer S. Inhibition of GCN2 Reveals Synergy with Cell-Cycle Regulation and Proteostasis. Metabolites 2023; 13:1064. [PMID: 37887389 PMCID: PMC10609202 DOI: 10.3390/metabo13101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The integrated stress response is a signaling network comprising four branches, each sensing different cellular stressors, converging on the phosphorylation of eIF2α to downregulate global translation and initiate recovery. One of these branches includes GCN2, which senses cellular amino acid insufficiency and participates in maintaining amino acid homeostasis. Previous studies have shown that GCN2 is a viable cancer target when amino acid stress is induced by inhibiting an additional target. In this light, we screened numerous drugs for their potential to synergize with the GCN2 inhibitor TAP20. The drug sensitivity of six cancer cell lines to a panel of 25 compounds was assessed. Each compound was then combined with TAP20 at concentrations below their IC50, and the impact on cell growth was evaluated. The strongly synergistic combinations were further characterized using synergy analyses and matrix-dependent invasion assays. Inhibitors of proteostasis and the MEK-ERK pathway, as well as the pan-CDK inhibitors, flavopiridol, and seliciclib, were potently synergistic with TAP20 in two cell lines. Among their common CDK targets was CDK7, which was more selectively targeted by THZ-1 and synergized with TAP20. Moreover, these combinations were partially synergistic when assessed using matrix-dependent invasion assays. However, TAP20 alone was sufficient to restrict invasion at concentrations well below its growth-inhibitory IC50. We conclude that GCN2 inhibition can be further explored in vivo as a cancer target.
Collapse
Affiliation(s)
- Gregory Gauthier-Coles
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
- School of Medicine, Yale University, New Haven, CT 06504, USA
| | - Farid Rahimi
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| |
Collapse
|
8
|
Kwakye J, Ariyo OW, Ghareeb AFA, Hartono E, Sovi S, Aryal B, Milfort MC, Fuller AL, Rekaya R, Aggrey SE. Effect of Glucose Supplementation on Apoptosis in the Pectoralis major of Chickens Raised under Thermoneutral or Heat Stress Environment. Genes (Basel) 2023; 14:1922. [PMID: 37895271 PMCID: PMC10606071 DOI: 10.3390/genes14101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Reduced feed intake during heat stress (HS) disrupts glucose homeostasis, thereby resulting in endoplasmic reticulum (ER) stress and triggering apoptosis in chickens. We hypothesize that glucose supplementation could reduce apoptosis in chickens raised under HS. This study comprised 456 28-day-old broiler chickens randomly assigned to four treatment combinations under glucose supplementation and HS. The treatments were TN0, TN6, HS0, and HS6 with two glucose levels (0% and 6%) and two temperature levels (25 °C (thermoneutral-TN) and 35 °C (8.00 AM to 8.00 PM, (HS)). After 7 days post-HS, the blood glucose level for the HS6 group was higher than for TN0, TN6, and HS0. We studied the mRNA expression of genes and caspase-3 activity in the four experimental groups. The expressions of GCN2, ATF4, CHOP, and FOXO3a increased during HS regardless of glucose supplementation, while PERK and MAFbx increased only under HS with glucose supplementation. We show that under TN conditions, glucose supplementation led to a significant increase in cellular apoptosis in the Pectoralis (P.) major. However, under HS with glucose, the level of apoptosis was similar to that of chickens raised under TN conditions with no glucose supplementation. The utility of glucose to curtail apoptosis under HS should be tested under other intense models of HS.
Collapse
Affiliation(s)
- Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Evan Hartono
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Selorm Sovi
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.K.); (O.W.A.); (A.F.A.G.); (E.H.); (S.S.); (B.A.); (M.C.M.); (A.L.F.)
| |
Collapse
|
9
|
Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1377-1388. [PMID: 36309104 DOI: 10.1016/j.ajpath.2022.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 85% to 90% of all liver cancer cases. It is a hepatocyte-derived primary tumor, causing 550,000 deaths per year, ranking it as one of the most common cancers worldwide. The liver is a highly metabolic organ with multiple functions, including digestion, detoxification, breakdown of fats, and production of bile and cholesterol, in addition to storage of vitamins, glycogen, and minerals, and synthesizing plasma proteins and clotting factors. Due to these fundamental and diverse functions, the malignant transformation of hepatic cells can have a severe impact on the liver's metabolism. Furthermore, tumorigenesis is often accompanied by activation of the endoplasmic reticulum (ER) stress pathways, which are known to be highly intertwined with several metabolic pathways. Because HCC is characterized by changes in the metabolome and by an aberrant activation of the ER stress pathways, the aim of this review was to summarize the current knowledge that links ER stress and metabolism in HCC, thereby focusing on potential therapeutic targets.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Ubink
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Mukhopadhyay S, Amodeo ME, Lee ASY. eIF3d controls the persistent integrated stress response. Mol Cell 2023; 83:3303-3313.e6. [PMID: 37683648 PMCID: PMC10528100 DOI: 10.1016/j.molcel.2023.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Cells respond to intrinsic and extrinsic stresses by reducing global protein synthesis and activating gene programs necessary for survival. Here, we show that the integrated stress response (ISR) is driven by the non-canonical cap-binding protein eIF3d that acts as a critical effector to control core stress response orchestrators, the translation factor eIF2α and the transcription factor ATF4. We find that during persistent stress, eIF3d activates the translation of the kinase GCN2, inducing eIF2α phosphorylation and inhibiting general protein synthesis. In parallel, eIF3d upregulates the m6A demethylase ALKBH5 to drive 5' UTR-specific demethylation of stress response genes, including ATF4. Ultimately, this cascade converges on ATF4 expression by increasing mRNA engagement of translation machinery and enhancing ribosome bypass of upstream open reading frames (uORFs). Our results reveal that eIF3d acts in a life-or-death decision point during chronic stress and uncover a synergistic signaling mechanism in which translational cascades complement transcriptional amplification to control essential cellular processes.
Collapse
Affiliation(s)
- Shaoni Mukhopadhyay
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria E Amodeo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amy S Y Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib alters MDSC differentiation and function by activation of GCN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552588. [PMID: 37645997 PMCID: PMC10461929 DOI: 10.1101/2023.08.09.552588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.
Collapse
|
12
|
Deshmukh K, Apte U. The Role of Endoplasmic Reticulum Stress Response in Liver Regeneration. Semin Liver Dis 2023; 43:279-292. [PMID: 37451282 PMCID: PMC10942737 DOI: 10.1055/a-2129-8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Exposure to hepatotoxic chemicals is involved in liver disease-related morbidity and mortality worldwide. The liver responds to damage by triggering compensatory hepatic regeneration. Physical agent or chemical-induced liver damage disrupts hepatocyte proteostasis, including endoplasmic reticulum (ER) homeostasis. Post-liver injury ER experiences a homeostatic imbalance, followed by active ER stress response signaling. Activated ER stress response causes selective upregulation of stress response genes and downregulation of many hepatocyte genes. Acetaminophen overdose, carbon tetrachloride, acute and chronic alcohol exposure, and physical injury activate the ER stress response, but details about the cellular consequences of the ER stress response on liver regeneration remain unclear. The current data indicate that inhibiting the ER stress response after partial hepatectomy-induced liver damage promotes liver regeneration, whereas inhibiting the ER stress response after chemical-induced hepatotoxicity impairs liver regeneration. This review summarizes key findings and emphasizes the knowledge gaps in the role of ER stress in injury and regeneration.
Collapse
Affiliation(s)
- Kshitij Deshmukh
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
13
|
Wang W, Hawkridge AM, Ma Y, Zhang B, Mangrum JB, Hassan ZH, He T, Blat S, Guo C, Zhou H, Liu J, Wang XY, Fang X. Ubiquitin-like protein 5 is a novel player in the UPR-PERK arm and ER stress-induced cell death. J Biol Chem 2023; 299:104915. [PMID: 37315790 PMCID: PMC10339194 DOI: 10.1016/j.jbc.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Adam M Hawkridge
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yibao Ma
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bei Zhang
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John B Mangrum
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zaneera H Hassan
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Tianhai He
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sofiya Blat
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
14
|
Sánchez-Vera I, Núñez-Vázquez S, Saura-Esteller J, Cosialls AM, Heib J, Nadal Rodríguez P, Ghashghaei O, Lavilla R, Pons G, Gil J, Iglesias-Serret D. The Prohibitin-Binding Compound Fluorizoline Activates the Integrated Stress Response through the eIF2α Kinase HRI. Int J Mol Sci 2023; 24:ijms24098064. [PMID: 37175767 PMCID: PMC10179266 DOI: 10.3390/ijms24098064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Fluorizoline is a synthetic molecule that induces apoptosis, by selectively targeting prohibitins (PHBs), through induction of the BH3-only protein NOXA. This induction is transcriptionally regulated by the integrated stress response (ISR)-related transcription factors ATF3 and ATF4. Here, we evaluate the role of the four eIF2α kinases, to decipher which is responsible for the mechanism of ISR activation triggered by fluorizoline in HeLa and HAP1 cells. First, we demonstrated the involvement of the eIF2α kinases using ISR inhibitor (ISRIB) and by simultaneous downregulation of all four eIF2α kinases, as both approaches were able to increase cell resistance to fluorizoline-induced apoptosis. Furthermore, we confirmed that fluorizoline treatment results in endoplasmic reticulum (ER) stress, as evidenced by PERK activation. Despite PERK activation, this kinase was not directly involved in the ISR activation by fluorizoline. In this regard, we found that the eIF2α kinases are capable of compensating for each other's loss of function. Importantly, we demonstrated that the mitochondrial-stress-related eIF2α kinase HRI mediates ISR activation after fluorizoline treatment.
Collapse
Affiliation(s)
- Ismael Sánchez-Vera
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Judith Heib
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Pau Nadal Rodríguez
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Rodolfo Lavilla
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Daniel Iglesias-Serret
- Departament d'Infermeria Fonamental i Medicoquirúrgica, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| |
Collapse
|
15
|
Zhao C, Guo H, Hou Y, Lei T, Wei D, Zhao Y. Multiple Roles of the Stress Sensor GCN2 in Immune Cells. Int J Mol Sci 2023; 24:ijms24054285. [PMID: 36901714 PMCID: PMC10002013 DOI: 10.3390/ijms24054285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302
| |
Collapse
|
16
|
Mast cells inhibit colorectal cancer development by inducing ER stress through secreting Cystatin C. Oncogene 2023; 42:209-223. [PMID: 36402931 DOI: 10.1038/s41388-022-02543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
Mast cells (MCs) are abundantly distributed in the human intestinal mucosa and submucosa. However, their roles and mechanisms in the development of colorectal cancer (CRC) are still unclear. In the present research, we found that the infiltration density of MCs in CRC tissues was positively correlated with improved patients' prognoses. Moreover, MCs suppressed the growth and induced the apoptosis of CRC cells in vitro and in vivo but had no effect on normal colonic epithelial cells. The present study revealed that MCs specifically induced endoplasmic reticulum stress (ERS) and activated the unfolded protein response (UPR) in CRC cells but not in normal cells, which led to the suppression of CRC development in vivo. Furthermore, we found that the secreted Cystatin C protein was the key factor for the MC-induced ERS in CRC cells. This work is of significance for uncovering the antitumor function of MCs in CRC progression and identifying the potential of CRC to respond to MC-targeted immunotherapy.
Collapse
|
17
|
Galoian K, Dahl V, Perez A, Denny C, Becker B, Sedani A, Moran A, Martinez D, Hoyt A, Brown J. PRP-1, a toll-like receptor ligand, upregulates the unfolded protein response in human chondrosarcoma cells. Cancer Treat Res Commun 2022; 33:100644. [PMID: 36368296 DOI: 10.1016/j.ctarc.2022.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Previous studies showed that proline-rich polypeptide (PRP-1) is a ligand for innate immunity toll-like receptors (TLR), and an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1) which induces the death of chondrosarcoma cancer stem cells (CSC). The aim of this study was to investigate the effect of PRP-1 on the regulation of unfolded protein response (UPR) in human chondrosarcoma cells. MATERIALS AND METHODS Lysates were prepared from a monolayer (bulk or ALDHhigh population), or spheroids chondrosarcoma cell cultures and treated with PRP-1 or control, followed by protein levels quantification by western blotting and mRNA expression by RT-qPCR of protein-RNA-like endoplasmic reticulum kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1α), and X-box binding protein (XBP1). RESULTS The PRP-1 has been shown to increase the expression of PERK, eIF2α, ATF4, CHOP, ATF6, IRE1α, and XBP1, on both protein and mRNA levels. CONCLUSION PRP-1 activated UPR branches in monolayer, spheroid, and stem cell populations of human chondrosarcoma.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Victoria Dahl
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andres Perez
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carina Denny
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States.
| | - Beatrice Becker
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil Sedani
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alexandra Moran
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Martinez
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aaron Hoyt
- Loyola University Medical Centre, Chicago, IL, United States
| | - Jeffrey Brown
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
18
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
19
|
KLF16 enhances stress tolerance of colorectal carcinomas by modulating nucleolar homeostasis and translational reprogramming. Mol Ther 2022; 30:2828-2843. [PMID: 35524408 PMCID: PMC9372374 DOI: 10.1016/j.ymthe.2022.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions. But the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-Like Factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis, nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance stress tolerance of CRC cells and provides a potential therapeutic vulnerability.
Collapse
|
20
|
Furnish M, Boulton DP, Genther V, Grofova D, Ellinwood ML, Romero L, Lucia MS, Cramer SD, Caino MC. MIRO2 regulates prostate cancer cell growth via GCN1-dependent stress signaling. Mol Cancer Res 2022; 20:607-621. [PMID: 34992146 DOI: 10.1158/1541-7786.mcr-21-0374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
There is a continued need to identify novel therapeutic targets to prevent the mortality associated with prostate cancer. In this context, Mitochondrial Rho GTPase 2 (MIRO2) mRNA was upregulated in metastatic prostate cancer compared to localized tumors, and higher MIRO2 levels were correlated with poor patient survival. Using human cell lines that represent androgen-independent or -sensitive prostate cancer, we showed that MIRO2 depletion impaired cell growth, colony formation and tumor growth in mice. Network analysis of MIRO2's binding partners identified metabolism and cellular responses to extracellular stimuli as top over-represented pathways. The top hit on our screen, General Control Non-derepressible 1 (GCN1), was overexpressed in prostate cancer, and interacted with MIRO2 in prostate cancer cell lines and in primary prostate cancer cells. Functional analysis of MIRO2 mutations present in prostate cancer patients led to the identification of MIRO2 159L, which increased GCN1 binding. Importantly, MIRO2 was necessary for efficient GCN1-mediated GCN2 kinase signaling and induction of the transcription factor ATF4 levels. Further, MIRO2's effect on regulating prostate cancer cell growth was mediated by ATF4. Finally, levels of activated GCN2 and ATF4 were correlated with MIRO2 expression in prostate cancer xenografts. Both MIRO2 and activated GCN2 levels were higher in hypoxic areas of prostate cancer xenografts. Overall, we propose that targeting the MIRO2-GCN1 axis may be a valuable strategy to halt prostate cancer growth. Implications: MIRO2/GCN1/GCN2 constitute a novel mitochondrial signaling pathway that controls androgen-independent and androgen-sensitive prostate cancer cell growth.
Collapse
Affiliation(s)
- Madison Furnish
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
- Pharmacology Graduate Program, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Dillon P Boulton
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
- Pharmacology Graduate Program, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Victoria Genther
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Denisa Grofova
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Mitchell Lee Ellinwood
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - M Scott Lucia
- Department of Pathology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - M Cecilia Caino
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| |
Collapse
|
21
|
Asadi MR, Moslehian MS, Sabaie H, Poornabi M, Ghasemi E, Hassani M, Hussen BM, Taheri M, Rezazadeh M. Stress Granules in the Anti-Cancer Medications Mechanism of Action: A Systematic Scoping Review. Front Oncol 2021; 11:797549. [PMID: 35004322 PMCID: PMC8739770 DOI: 10.3389/fonc.2021.797549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Stress granule (SG) formation is a well-known cellular mechanism for minimizing stress-related damage and increasing cell survival. In addition to playing a critical role in the stress response, SGs have emerged as critical mediators in human health. It seems logical that SGs play a key role in cancer cell formation, development, and metastasis. Recent studies have shown that many SG components contribute to the anti-cancer medications' responses through tumor-associated signaling pathways and other mechanisms. SG proteins are known for their involvement in the translation process, control of mRNA stability, and capacity to function in both the cytoplasm and nucleus. The current systematic review aimed to include all research on the impact of SGs on the mechanism of action of anti-cancer medications and was conducted using a six-stage methodological framework and the PRISMA guideline. Prior to October 2021, a systematic search of seven databases for eligible articles was performed. Following the review of the publications, the collected data were subjected to quantitative and qualitative analysis. Notably, Bortezomib, Sorafenib, Oxaliplatin, 5-fluorouracil, Cisplatin, and Doxorubicin accounted for the majority of the medications examined in the studies. Overall, this systematic scoping review attempts to demonstrate and give a complete overview of the function of SGs in the mechanism of action of anti-cancer medications by evaluating all research.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziye Poornabi
- Student Research Committee, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Elham Ghasemi
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maryam Rezazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Watanabe Y, Sasaki T, Miyoshi S, Shimizu M, Yamauchi Y, Sato R. Insulin-induced genes INSIG1 and INSIG2 mediate oxysterol-dependent activation of the PERK-eIF2α-ATF4 axis. J Biol Chem 2021; 297:100989. [PMID: 34298014 PMCID: PMC8363831 DOI: 10.1016/j.jbc.2021.100989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced genes (INSIGs) encode endoplasmic reticulum–resident proteins that regulate intracellular cholesterol metabolism. Oxysterols are oxygenated derivatives of cholesterol, some of which orchestrate lipid metabolism via interaction with INSIGs. Recently, it was reported that expression of activating transcription factor-4 (ATF4) was induced by certain oxysterols; the precise of mechanism is unclear. Herein, we show that INSIGs mediate ATF4 upregulation upon interaction with oxysterol. Oxysterols that possess a high affinity for INSIG, such as 27- and 25-hydroxycholesterol (25HC), markedly induced the increase of ATF4 protein when compared with other oxysterols. In addition, ATF4 upregulation by these oxysterols was attenuated in INSIG1/2-deficient Chinese hamster ovary cells and recovered by either INSIG1 or INSIG2 rescue. Mechanistic studies revealed that the binding of 25HC to INSIG is critical for increased ATF4 protein via activation of protein kinase RNA-activated–like ER kinase and eukaryotic translation initiation factor 2α. Knockout of INSIG1 or INSIG2 in human hepatoma Huh7 cells attenuated ATF4 protein upregulation, indicating that only one of the endogenous INSIGs, unlike overexpression of intrinsic INSIG1 or INSIG2, was insufficient for ATF4 induction. Furthermore, ATF4 proactively upregulated the cell death–inducible gene expression, such as Chop, Chac1, and Trb3, thereby markedly reducing cell viability with 25HC. These findings support a model whereby that INSIGs sense an increase in oxysterol in the endoplasmic reticulum and induce an increase of ATF4 protein via the protein kinase RNA-activated–like ER kinase–eukaryotic translation initiation factor 2α pathway, thereby promoting cell death.
Collapse
Affiliation(s)
- Yuichi Watanabe
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Shoko Miyoshi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
23
|
Huang R, Li G, Wang K, Wang Z, Zeng F, Hu H, Jiang T. Comprehensive Analysis of the Clinical and Biological Significances of Endoplasmic Reticulum Stress in Diffuse Gliomas. Front Cell Dev Biol 2021; 9:619396. [PMID: 34307339 PMCID: PMC8301220 DOI: 10.3389/fcell.2021.619396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background As a critical organelle for protein and lipid synthesis, the dysfunction of endoplasmic reticulum has a significant impact on multiple biological processes of cells. Thus, in this study, we constructed an ER stress-related risk signature to investigate the functional roles of ER stress in gliomas. Methods A total of 626 samples from TCGA RNA-seq dataset (training cohort) and 310 samples from CGGA RNA-seq dataset (validation cohort) were enrolled in this study. Clinical information and genomic profiles were also obtained. The ER stress signature was developed by the LASSO regression model. The prognostic value of the risk signature was evaluated by Cox regression, Kaplan-Meier and ROC Curve analyses. Bioinformatics analysis and experiment in vitro were performed to explore the biological implication of this signature. Results We found that the ER stress-related signature was tightly associated with major clinicopathological features and genomic alterations of gliomas. Kaplan-Meier curve and Cox regression analysis indicated that ER stress activation was an independent prognostic factor for patients with glioma. Besides, we also constructed an individualized prognosis prediction model through Nomogram and ROC Curve analysis. Bioinformatics analysis suggested that ER stress activation also promoted the malignant progression of glioma and participated in the regulation of tumor immune microenvironment, especially the infiltration of macrophages in M2 phase. These results were further validated in IHC analysis and cell biology experiments. Conclusion The ER stress activation had a high prognostic value and could serve as a promising target for developing individualized treatment of glioma.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Kuanyu Wang
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Gamma Knife Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| |
Collapse
|
24
|
Vps34 and TOR Kinases Coordinate HAC1 mRNA Translation in the Presence or Absence of Ire1-Dependent Splicing. Mol Cell Biol 2021; 41:e0066220. [PMID: 33972394 DOI: 10.1128/mcb.00662-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, an mRNA, called HAC1, exists in a translationally repressed form in the cytoplasm. Under conditions of cellular stress, such as when unfolded proteins accumulate inside the endoplasmic reticulum (ER), an RNase Ire1 removes an intervening sequence (intron) from the HAC1 mRNA by nonconventional cytosolic splicing. Removal of the intron results in translational derepression of HAC1 mRNA and production of a transcription factor that activates expression of many enzymes and chaperones to increase the protein-folding capacity of the cell. Here, we show that Ire1-mediated RNA cleavage requires Watson-Crick base pairs in two RNA hairpins, which are located at the HAC1 mRNA exon-intron junctions. Then, we show that the translational derepression of HAC1 mRNA can occur independent of cytosolic splicing. These results are obtained from HAC1 variants that translated an active Hac1 protein from the unspliced mRNA. Additionally, we show that the phosphatidylinositol-3-kinase Vps34 and the nutrient-sensing kinases TOR and GCN2 are key regulators of HAC1 mRNA translation and consequently the ER stress responses. Collectively, our data suggest that the cytosolic splicing and the translational derepression of HAC1 mRNA are coordinated by unique and parallel networks of signaling pathways.
Collapse
|
25
|
Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer's disease development: The results of genetic interaction analyses of human data. Mech Ageing Dev 2021; 196:111477. [PMID: 33798591 PMCID: PMC8173104 DOI: 10.1016/j.mad.2021.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Emerging evidence from experimental and clinical research suggests that stress-related genes may play key roles in AD development. The fact that genome-wide association studies were not able to detect a contribution of such genes to AD indicates the possibility that these genes may influence AD non-linearly, through interactions of their products. In this paper, we selected two stress-related genes (GCN2/EIF2AK4 and APP) based on recent findings from experimental studies which suggest that the interplay between these genes might influence AD in humans. To test this hypothesis, we evaluated the effects of interactions between SNPs in these two genes on AD occurrence, using the Health and Retirement Study data on white indidividuals. We found several interacting SNP-pairs whose associations with AD remained statistically significant after correction for multiple testing. These findings emphasize the importance of nonlinear mechanisms of polygenic AD regulation that cannot be detected in traditional association studies. To estimate collective effects of multiple interacting SNP-pairs on AD, we constructed a new composite index, called Interaction Polygenic Risk Score, and showed that its association with AD is highly statistically significant. These results open a new avenue in the analyses of mechanisms of complex multigenic AD regulation.
Collapse
Affiliation(s)
| | - Deqing Wu
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | | - Olivia Bagley
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | |
Collapse
|
26
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
27
|
Liu Y, Cheng A, Wang M, Mao S, Ou X, Yang Q, Wu Y, Gao Q, Liu M, Zhang S, Huang J, Jia R, Zhu D, Chen S, Zhao X, Yu Y, Liu Y, Zhang L, Tian B, Pan L. Duck Hepatitis A Virus Type 1 Induces eIF2α Phosphorylation-Dependent Cellular Translation Shutoff via PERK/GCN2. Front Microbiol 2021; 12:624540. [PMID: 33912143 PMCID: PMC8072014 DOI: 10.3389/fmicb.2021.624540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most deadly pathogens that endanger the duck industry. Most viruses usually turn off host translation after infection to facilitate viral replication and translation. For the first time report to our knowledge, DHAV-1 can induce eIF2α phosphorylation and inhibit cellular translation in duck embryo fibroblasts (DEFs). Moreover, the activity of DHAV-1 in the cells caused obvious eIF2α phosphorylation, which has nothing to do with the viral protein. Subsequently, we screened two kinases (PERK and GCN2) that affect eIF2α phosphorylation through inhibitors and shRNA. Notably, the role of GCN2 in other picornaviruses has not been reported. In addition, when the phosphorylation of eIF2α induced by DHAV-1 is inhibited, the translation efficiency of DEFs restores to a normal level, indicating that DHAV-1 induced cellular translation shutoff is dependent on eIF2α phosphorylation.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Kim J, Lee S, Kim H, Lee H, Seong KM, Youn H, Youn B. Autophagic Organelles in DNA Damage Response. Front Cell Dev Biol 2021; 9:668735. [PMID: 33912571 PMCID: PMC8072393 DOI: 10.3389/fcell.2021.668735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important subcellular event engaged in the maintenance of cellular homeostasis via the degradation of cargo proteins and malfunctioning organelles. In response to cellular stresses, like nutrient deprivation, infection, and DNA damaging agents, autophagy is activated to reduce the damage and restore cellular homeostasis. One of the responses to cellular stresses is the DNA damage response (DDR), the intracellular pathway that senses and repairs damaged DNA. Proper regulation of these pathways is crucial for preventing diseases. The involvement of autophagy in the repair and elimination of DNA aberrations is essential for cell survival and recovery to normal conditions, highlighting the importance of autophagy in the resolution of cell fate. In this review, we summarized the latest information about autophagic recycling of mitochondria, endoplasmic reticulum (ER), and ribosomes (called mitophagy, ER-phagy, and ribophagy, respectively) in response to DNA damage. In addition, we have described the key events necessary for a comprehensive understanding of autophagy signaling networks. Finally, we have highlighted the importance of the autophagy activated by DDR and appropriate regulation of autophagic organelles, suggesting insights for future studies. Especially, DDR from DNA damaging agents including ionizing radiation (IR) or anti-cancer drugs, induces damage to subcellular organelles and autophagy is the key mechanism for removing impaired organelles.
Collapse
Affiliation(s)
- Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
29
|
Piecyk M, Triki M, Laval PA, Dragic H, Cussonneau L, Fauvre J, Duret C, Aznar N, Renno T, Manié SN, Chaveroux C, Ferraro-Peyret C. Pemetrexed Hinders Translation Inhibition upon Low Glucose in Non-Small Cell Lung Cancer Cells. Metabolites 2021; 11:metabo11040198. [PMID: 33810430 PMCID: PMC8067050 DOI: 10.3390/metabo11040198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Genetic alterations in non-small cell lung cancers (NSCLC) stimulate the generation of energy and biomass to promote tumor development. However, the efficacy of the translation process is finely regulated by stress sensors, themselves often controlled by nutrient availability and chemotoxic agents. Yet, the crosstalk between therapeutic treatment and glucose availability on cell mass generation remains understudied. Herein, we investigated the impact of pemetrexed (PEM) treatment, a first-line agent for NSCLC, on protein synthesis, depending on high or low glucose availability. PEM treatment drastically repressed cell mass and translation when glucose was abundant. Surprisingly, inhibition of protein synthesis caused by low glucose levels was partially dampened upon co-treatment with PEM. Moreover, PEM counteracted the elevation of the endoplasmic reticulum stress (ERS) signal produced upon low glucose availability, providing a molecular explanation for the differential impact of the drug on translation according to glucose levels. Collectively, these data indicate that the ERS constitutes a molecular crosstalk between microenvironmental stressors, contributing to translation reprogramming and proteostasis plasticity.
Collapse
Affiliation(s)
- Marie Piecyk
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
- Hospices Civils de Lyon, Biopathology of Tumours, CPE, GHE Hospital, 69500 Bron, France
| | - Mouna Triki
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
| | - Pierre-Alexandre Laval
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
| | - Helena Dragic
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
| | - Laura Cussonneau
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR1019, 63122 Clermont-Ferrand, France;
| | - Joelle Fauvre
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
| | - Cédric Duret
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
| | - Nicolas Aznar
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
| | - Toufic Renno
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
| | - Serge N. Manié
- Inserm U1242, Centre de Lutte Contre le Cancer Eugène Marquis, Université de Rennes, 35042 Rennes, France;
| | - Cédric Chaveroux
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
- Correspondence: (C.C.); (C.F.-P.)
| | - Carole Ferraro-Peyret
- Cancer Research Centre of Lyon, Université Lyon, INSERM 1052, CNRS 5286, 69008 Lyon, France; (M.P.); (M.T.); (P.-A.L.); (H.D.); (J.F.); (C.D.); (N.A.); (T.R.)
- Hospices Civils de Lyon, Biopathology of Tumours, CPE, GHE Hospital, 69500 Bron, France
- Correspondence: (C.C.); (C.F.-P.)
| |
Collapse
|
30
|
Latorre-Muro P, O'Malley KE, Bennett CF, Perry EA, Balsa E, Tavares CDJ, Jedrychowski M, Gygi SP, Puigserver P. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab 2021; 33:598-614.e7. [PMID: 33592173 PMCID: PMC7962155 DOI: 10.1016/j.cmet.2021.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or β-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine E O'Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
31
|
Khomari F, Nabi-Afjadi M, Yarahmadi S, Eskandari H, Bahreini E. Effects of Cell Proteostasis Network on the Survival of SARS-CoV-2. Biol Proced Online 2021; 23:8. [PMID: 33618659 PMCID: PMC7899210 DOI: 10.1186/s12575-021-00145-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023] Open
Abstract
The proteostasis network includes all the factors that control the function of proteins in their native state and minimize their non-functional or harmful reactions. The molecular chaperones, the important mediator in the proteostasis network can be considered as any protein that contributes to proper folding and assembly of other macromolecules, through maturating of unfolded or partially folded macromolecules, refolding of stress-denatured proteins, and modifying oligomeric assembly, otherwise it leads to their proteolytic degradation. Viruses that use the hosts' gene expression tools and protein synthesis apparatus to survive and replicate, are obviously protected by such a host chaperone system. This means that many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread. During viral infection, increase in endoplasmic reticulum (ER) stress due to high expression of viral proteins enhances the level of heat shock proteins (HSPs) and induces cell apoptosis or necrosis. Indeed, evidence suggests that ER stress and the induction of unfolded protein response (UPR) may be a major aspect of the corona-host virus interaction. In addition, several clinical reports have confirmed the autoimmune phenomena in COVID-19-patients, and a strong association between this autoimmunity and severe SARS-CoV-2 infection. Part of such autoimmunity is due to shared epitopes among the virus and host. This article reviews the proteostasis network and its relationship to the immune system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fateme Khomari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Hanie Eskandari
- Department of Biology, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| |
Collapse
|
32
|
The Structure, Activation and Signaling of IRE1 and Its Role in Determining Cell Fate. Biomedicines 2021; 9:biomedicines9020156. [PMID: 33562589 PMCID: PMC7914947 DOI: 10.3390/biomedicines9020156] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Inositol-requiring enzyme type 1 (IRE1) is a serine/threonine kinase acting as one of three branches of the Unfolded Protein Response (UPR) signaling pathway, which is activated upon endoplasmic reticulum (ER) stress conditions. It is known to be capable of inducing both pro-survival and pro-apoptotic cellular responses, which are strictly related to numerous human pathologies. Among others, IRE1 activity has been confirmed to be increased in cancer, neurodegeneration, inflammatory and metabolic disorders, which are associated with an accumulation of misfolded proteins within ER lumen and the resulting ER stress conditions. Emerging evidence suggests that genetic or pharmacological modulation of IRE1 may have a significant impact on cell viability, and thus may be a promising step forward towards development of novel therapeutic strategies. In this review, we extensively describe the structural analysis of IRE1 molecule, the molecular dynamics associated with IRE1 activation, and interconnection between it and the other branches of the UPR with regard to its potential use as a therapeutic target. Detailed knowledge of the molecular characteristics of the IRE1 protein and its activation may allow the design of specific kinase or RNase modulators that may act as drug candidates.
Collapse
|
33
|
Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 2021; 47:101169. [PMID: 33484951 PMCID: PMC7887651 DOI: 10.1016/j.molmet.2021.101169] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The global rise of metabolic disorders, such as obesity, type 2 diabetes, and cardiovascular disease, demands a thorough molecular understanding of the cellular mechanisms that govern health or disease. The endoplasmic reticulum (ER) is a key organelle for cellular function and metabolic adaptation and, therefore disturbed ER function, known as "ER stress," is a key feature of metabolic disorders. SCOPE OF REVIEW As ER stress remains a poorly defined phenomenon, this review provides a general guide to understanding the nature, etiology, and consequences of ER stress in metabolic disorders. We define ER stress by its type of stressor, which is driven by proteotoxicity, lipotoxicity, and/or glucotoxicity. We discuss the implications of ER stress in metabolic disorders by reviewing evidence implicating ER phenotypes and organelle communication, protein quality control, calcium homeostasis, lipid and carbohydrate metabolism, and inflammation as key mechanisms in the development of ER stress and metabolic dysfunction. MAJOR CONCLUSIONS In mammalian biology, ER is a phenotypically and functionally diverse platform for nutrient sensing, which is critical for cell type-specific metabolic control by hepatocytes, adipocytes, muscle cells, and neurons. In these cells, ER stress is a distinct, transient state of functional imbalance, which is usually resolved by the activation of adaptive programs such as the unfolded protein response (UPR), ER-associated protein degradation (ERAD), or autophagy. However, challenges to proteostasis also impact lipid and glucose metabolism and vice versa. In the ER, sensing and adaptive measures are integrated and failure of the ER to adapt leads to aberrant metabolism, organelle dysfunction, insulin resistance, and inflammation. In conclusion, the ER is intricately linked to a wide spectrum of cellular functions and is a critical component in maintaining and restoring metabolic health.
Collapse
Affiliation(s)
- Imke L Lemmer
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Nazia Hilal
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany; Department of Molecular Metabolism, 665 Huntington Avenue, Harvard T.H. Chan School of Public Health, 02115 Boston, MA, USA.
| |
Collapse
|
34
|
Yashin AI, Wu D, Arbeev K, Yashkin AP, Akushevich I, Bagley O, Duan M, Ukraintseva S. Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:357-379. [PMID: 34825130 PMCID: PMC8612394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan. METHODS Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS). RESULTS Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study. CONCLUSION Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Collapse
|
35
|
Ma RH, Ni ZJ, Thakur K, Zhang F, Zhang YY, Zhang JG, Wei ZJ. Natural Compounds Play Therapeutic Roles in Various Human Pathologies via Regulating Endoplasmic Reticulum Pathway. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases. Metab Brain Dis 2020; 35:1241-1250. [PMID: 32681467 DOI: 10.1007/s11011-020-00600-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
Eukaryotic initiation factor 2 (eIF2α) pathway is overactivated in Alzheimer disease and is probably associated with synaptic and memory deficiencies. EIF2α protein is principally in charge of the regulation of protein synthesis in eukaryotic cells. Four kinases responsible for eIF2α phosphorylation at ser-51 are: General control non-derepressible-2 kinase (GCN2), double-stranded RNA-activated protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and heme-regulated inhibitor kinase (HRI) are the four kinases. They lead to reduced levels of general translation and paradoxical increase of stress-responsive mRNAs expression including the B-secretase (BACE1) and the transcriptional modulator activating transcription factor 4 (ATF4), which in turn accelerates the beta-amyloidogenesis, tau phosphorylation, proapoptotic pathway induction and autophagy elements formation leading to the main pathological hallmarks of AD. Findings suggest that genetic or pharmacological inhibition of correspondent kinases can restore memory and prevent neurodegeneration. This implies that inhibition of eIF2α phosphorylation through respondent kinases is indeed a feasible prospect of clinical application. This review discusses recent therapeutic approaches targeting eIF2α pathway and provides an overview of the links between correspondent kinases overactivation with neurodegeneration in AD.
Collapse
Affiliation(s)
- Reza Moradi Majd
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahsa Mayeli
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Farzaneh Rahmani
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
37
|
6-Shogaol mediated ROS production and apoptosis via endoplasmic reticulum and mitochondrial pathways in human endometrial carcinoma Ishikawa cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Yadav AK, Jang BC. Anti-Survival and Pro-Apoptotic Effects of 6-Shogaol on SW872 Human Liposarcoma Cells via Control of the Intrinsic Caspase Pathway, STAT-3, AMPK, and ER Stress. Biomolecules 2020; 10:biom10101380. [PMID: 32998376 PMCID: PMC7650770 DOI: 10.3390/biom10101380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Notably, 6-Shogaol, a bioactive natural substance, has anticancer effects on many types of tumors. Up to date, the anticancer effect and mode of action of 6-Shogaol on liposarcoma are not known. In this study, we investigated whether 6-Shogaol inhibits the growth of SW872 and 93T449 cells, two different human liposarcoma cell lines. Of note, 6-Shogaol inhibited the growth of SW872 and 93T449 cells without affecting that of normal 3T3-L1 preadipocytes. Specifically, 6-Shogaol further induced the apoptosis of SW872 cells, as evidenced by nuclear DNA fragmentation, increased sub G1 population, activation of the intrinsic caspase pathway, and PARP cleavage. However, pretreatment with either z-VAD-fmk, a pan-caspase inhibitor, or N-acetylcysteine, an antioxidant, attenuated the 6-Shogaol’s growth-suppressive and apoptosis-inducing effects on SW872 cells. Moreover, 6-Shogaol activated AMPK while inhibited STAT-3 in SW872 cells, and siRNA-based genetic silencing of AMPK or STAT-3 considerably blocked the growth-suppressive and apoptotic response of 6-Shogaol to SW872 cells. Moreover, 6-Shogaol also upregulated the expression and phosphorylation of GRP-78, eIF-2α, ATF4, and CHOP, known ER stress markers, in SW872 cells, illustrating the induction of ER stress. These findings collectively demonstrate that 6-Shogaol has strong antigrowth and proapoptotic effects on SW872 cells through regulation of the intrinsic caspase pathway, oxidative stress, STAT-3, AMPK, and ER stress.
Collapse
|
39
|
Piazzi M, Bavelloni A, Faenza I, Blalock W. Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118769. [PMID: 32512016 PMCID: PMC7273171 DOI: 10.1016/j.bbamcr.2020.118769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase (GSK)-3α/β and the double-stranded RNA-dependent kinase PKR are two sentinel kinases that carry-out multiple similar yet distinct functions in both the cytosol and the nucleus. While these kinases belong to separate signal transduction cascades, they demonstrate an uncanny propensity to regulate many of the same proteins either through direct phosphorylation or by altering transcription/translation, including: c-MYC, NF-κB, p53 and TAU, as well as each another. A significant number of studies centered on the GSK3 kinases have led to the identification of the GSK3 interactome and a number of substrates, which link GSK3 activity to metabolic control, translation, RNA splicing, ribosome biogenesis, cellular division, DNA repair and stress/inflammatory signaling. Interestingly, many of these same pathways and processes are controlled by PKR, but unlike the GSK3 kinases, a clear picture of proteins interacting with PKR and a complete listing of its substrates is still missing. In this review, we take a detailed look at what is known about the PKR and GSK3 kinases, how these kinases interact to influence common cellular processes (innate immunity, alternative splicing, translation, glucose metabolism) and how aberrant activation of these kinases leads to diseases such as Alzheimer's disease (AD), diabetes mellitus (DM) and cancer. GSK3α/β and PKR are major regulators of cellular homeostasis and the response to stress/inflammation and infection. GSK3α/β and PKR interact with and/or modify many of the same proteins and affect the expression of similar genes. A balance between AKT and PKR nuclear signaling may be responsible for regulating the activation of nuclear GSK3β. GSK3α/β- and PKR-dependent signaling influence major molecular mechanisms of the cell through similar intermediates. Aberrant activation of GSK3α/β and PKR is highly involved in cancer, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bavelloni
- Laboratoria di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - William Blalock
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
40
|
Mick E, Titov DV, Skinner OS, Sharma R, Jourdain AA, Mootha VK. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. eLife 2020; 9:e49178. [PMID: 32463360 PMCID: PMC7255802 DOI: 10.7554/elife.49178] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is associated with activation of the integrated stress response (ISR) but the underlying triggers remain unclear. We systematically combined acute mitochondrial inhibitors with genetic tools for compartment-specific NADH oxidation to trace mechanisms linking different forms of mitochondrial dysfunction to the ISR in proliferating mouse myoblasts and in differentiated myotubes. In myoblasts, we find that impaired NADH oxidation upon electron transport chain (ETC) inhibition depletes asparagine, activating the ISR via the eIF2α kinase GCN2. In myotubes, however, impaired NADH oxidation following ETC inhibition neither depletes asparagine nor activates the ISR, reflecting an altered metabolic state. ATP synthase inhibition in myotubes triggers the ISR via a distinct mechanism related to mitochondrial inner-membrane hyperpolarization. Our work dispels the notion of a universal path linking mitochondrial dysfunction to the ISR, instead revealing multiple paths that depend both on the nature of the mitochondrial defect and on the metabolic state of the cell.
Collapse
Affiliation(s)
- Eran Mick
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Denis V Titov
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Owen S Skinner
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Rohit Sharma
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Alexis A Jourdain
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
41
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
42
|
Rusinek K, Sołek P, Tabęcka-Łonczyńska A, Koziorowski M, Mytych J. Focus on the Role of Klotho Protein in Neuro-Immune Interactions in HT-22 Cells Upon LPS Stimulation. Cells 2020; 9:E1231. [PMID: 32429346 PMCID: PMC7290853 DOI: 10.3390/cells9051231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is defined as the activation of the brain's innate immune system in response to an inflammatory challenge and is considered to be a prominent feature of neurodegenerative diseases. The contribution of overactivated neuroglial cells to neuroinflammation and neurodegenerative disorders is well documented, however, the role of hippocampal neurons in the neuroinflammatory process remains fragmentary. In this study, we show for the first time, that klotho acts as a signal transducer between pro-survival and pro-apoptotic crosstalk mediated by ER stress in HT-22 hippocampal neuronal cells during LPS challenge. In control HT-22 cells, LPS treatment results in activation of the IRE1α-p38 MAPK pathway leading to increased secretion of anti-inflammatory IL-10, and thus, providing adaptation mechanism. On the other hand, in klotho-deficient HT-22 cells, LPS induces oxi-nitrosative stress and genomic instability associated with telomere dysfunctions leading to p53/p21-mediated cell cycle arrest and, in consequence, to ER stress, inflammation as well as of apoptotic cell death. Therefore, these results indicate that klotho serves as a part of the cellular defense mechanism engaged in the protection of neuronal cells against LPS-mediated neuroinflammation, emerging issues linked with neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia 2, 36-100 Kolbuszowa, Poland; (K.R.); (P.S.); (A.T.-Ł.); (M.K.)
| |
Collapse
|
43
|
Song J, Ding W, Liu B, Liu D, Xia Z, Zhang L, Cui L, Luo Y, Jia X, Feng L. Anticancer effect of caudatin in diethylnitrosamine‑induced hepatocarcinogenesis in rats. Mol Med Rep 2020; 22:697-706. [PMID: 32626931 PMCID: PMC7339819 DOI: 10.3892/mmr.2020.11135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
An overwhelming endoplasmic reticulum stress (ERS) and the following unfolded protein response (UPR) can induce hepatic inflammation, fibrosis and hepatocellular carcinoma (HCC). Caudatin, one of the species of C-21 steroidal glycosides mainly isolated from the roots of Cynanchum bungei Decne, exhibits potent anticancer activities in vivo. However, the effect of caudatin on HCC remains unclear. In the present study, a diethylnitrosamine (DEN)-induced HCC model was established. Nodules and tumors in rat livers were monitored by T2-/T1-weighted-magnetic resonance imaging (MRI) using a 1.5 T scanner. Caudatin reduced the number and size of nodules and alleviated the inflammatory foci in the liver. In addition, the hepatic pro-inflammatory levels of interleukin (IL) 6, monocyte chemoattractant protein 1 and IL-1β were decreased in caudatin-treated rats. The DEN-induced surge in malondialdehyde, aspartate aminotransferase, alanine transaminase and TBIL were alleviated following caudatin treatment. The expression of ERS chaperones glucose-regulated protein, 94 kDa, glucose-regulated protein, 78 kDa and protein disulfide-isomerase A4 and the proliferation marker Ki-67 in liver nodules were all downregulated by caudatin as demonstrated by immunohistochemistry, reverse transcription-quantitative PCR and western blot analysis. Caudatin reduced the cytoprotective ERS sensor activating transcription factor 6-mediated signal transduction and inhibited the PKR-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 pathway. However, the effect of caudatin on inositol requiring enzyme 1 signaling was negligible. In conclusion, restoration of the dysregulated UPR program was involved in the antitumor efficacy of caudatin without inducing cumulative hepatotoxicity.
Collapse
Affiliation(s)
- Jie Song
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Wenbo Ding
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Bojia Liu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Dan Liu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Zhi Xia
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Li Zhang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Li Cui
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Yi Luo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| |
Collapse
|
44
|
Palma S, Raffa CI, Garcia-Fabiani MB, Ferretti VA, Zwenger A, Perez Verdera PV, Llontop A, Rojas Bilbao E, Cuartero V, Abba MC, Lacunza E. RHBDD2 overexpression promotes a chemoresistant and invasive phenotype to rectal cancer tumors via modulating UPR and focal adhesion genes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165810. [PMID: 32339641 DOI: 10.1016/j.bbadis.2020.165810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
The current standard of care for locally advanced rectal cancer (RC) is neoadjuvant radio-chemotherapy (NRC) with 5-fluorouracil (5Fu) as the main drug, followed by surgery and adjuvant chemotherapy. While a group of patients will achieve a pathological complete response, a significant percentage will not respond to the treatment. The Unfolding Protein Response (UPR) pathway is generally activated in tumors and results in resistance to radio-chemotherapy. We previously showed that RHBDD2 gene is overexpressed in the advanced stages of colorectal cancer (CRC) and that it could modulate the UPR pathway. Moreover, RHBDD2 expression is induced by 5Fu. In this study, we demonstrate that the overexpression of RHBDD2 in CACO2 cell line confers resistance to 5Fu, favors cell migration, adhesion and proliferation and has a profound impact on the expression of both, the UPR genes BiP, PERK and CHOP, and on the cell adhesion genes FAK and PXN. We also determined that RHBDD2 binds to BiP protein, the master UPR regulator. Finally, we confirmed that a high expression of RHBDD2 in RC tumors after NRC treatment is associated with the development of local or distant metastases. The collected evidence positions RHBDD2 as a promising prognostic biomarker to predict the response to neoadjuvant therapy in patients with RC.
Collapse
Affiliation(s)
- S Palma
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C I Raffa
- Gastroenterology and Proctology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M B Garcia-Fabiani
- Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - V A Ferretti
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - A Zwenger
- Grupo Oncológico Cooperativo del Sur (GOCS), Neuquén, Argentina
| | | | - A Llontop
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - E Rojas Bilbao
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - V Cuartero
- Clinic Oncology Department, Functional Unit of Digestive Tumors, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - E Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
45
|
Hamada Y, Furumoto Y, Izutani A, Taniuchi S, Miyake M, Oyadomari M, Teranishi K, Shimomura N, Oyadomari S. Nanosecond pulsed electric fields induce the integrated stress response via reactive oxygen species-mediated heme-regulated inhibitor (HRI) activation. PLoS One 2020; 15:e0229948. [PMID: 32155190 PMCID: PMC7064201 DOI: 10.1371/journal.pone.0229948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
The integrated stress response (ISR) is one of the most important cytoprotective mechanisms and is integrated by phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Four eIF2α kinases, heme-regulated inhibitor (HRI), double-stranded RNA-dependent protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and general control nonderepressible 2 (GCN2), are activated in response to several stress conditions. We previously reported that nanosecond pulsed electric fields (nsPEFs) are a potential therapeutic tool for ISR activation. In this study, we examined which eIF2α kinase is activated by nsPEF treatment. To assess the responsible eIF2α kinase, we used previously established eIF2α kinase quadruple knockout (4KO) and single eIF2α kinase-rescued 4KO mouse embryonic fibroblast (MEF) cells. nsPEFs 70 ns in duration with 30 kV/cm electric fields caused eIF2α phosphorylation in wild-type (WT) MEF cells. On the other hand, nsPEF-induced eIF2α phosphorylation was completely abolished in 4KO MEF cells and was recovered by HRI overexpression. CM-H2DCFDA staining showed that nsPEFs generated reactive oxygen species (ROS), which activated HRI. nsPEF-induced eIF2α phosphorylation was blocked by treatment with the ROS scavenger N-acetyl-L-cysteine (NAC). Our results indicate that the eIF2α kinase HRI is responsible for nsPEF-induced ISR activation and is activated by nsPEF-generated ROS.
Collapse
Affiliation(s)
- Yoshimasa Hamada
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yuji Furumoto
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Akira Izutani
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Miho Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Teranishi
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Naoyuki Shimomura
- Institute of Technology and Science, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
46
|
Gao X, Jiang L, Gong Y, Chen X, Ying M, Zhu H, He Q, Yang B, Cao J. Stress granule: A promising target for cancer treatment. Br J Pharmacol 2019; 176:4421-4433. [PMID: 31301065 DOI: 10.1111/bph.14790] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Stress granules (SGs) are primarily composed of mRNAs that stall at translation initiation and usually appear in the cytoplasm under unusual physiological or pathological conditions such as hypoxia, oxidative stress, and viral infection. Recent studies have indicated that several components of SGs participate in tumourigenesis and cancer metastasis through tumour-associated signalling pathways as well as other mechanisms. Furthermore, some chemotherapy drugs have been reported to induce SGs. Thus, the roles of SGs in cancer treatment have attracted considerable interest. Importantly, disturbing the recruitment of SGs components or microtubule polymerization, as well as other strategies that can abolish SGs formation, is reported to inhibit tumour progression, suggesting that targeting SGs could be a promising strategy for cancer treatment. In this review, we summarize the relationship between SGs and cancer, as well as recent advances in targeting SGs, in the interest of providing new opportunities for cancer treatment.
Collapse
Affiliation(s)
- Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanling Gong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobing Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Karagöz GE, Aragón T, Acosta-Alvear D. Recent advances in signal integration mechanisms in the unfolded protein response. F1000Res 2019; 8. [PMID: 31723416 PMCID: PMC6833987 DOI: 10.12688/f1000research.19848.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Since its discovery more than 25 years ago, great progress has been made in our understanding of the unfolded protein response (UPR), a homeostatic mechanism that adjusts endoplasmic reticulum (ER) function to satisfy the physiological demands of the cell. However, if ER homeostasis is unattainable, the UPR switches to drive cell death to remove defective cells in an effort to protect the health of the organism. This functional dichotomy places the UPR at the crossroads of the adaptation versus apoptosis decision. Here, we focus on new developments in UPR signaling mechanisms, in the interconnectivity among the signaling pathways that make up the UPR in higher eukaryotes, and in the coordination between the UPR and other fundamental cellular processes.
Collapse
Affiliation(s)
- G Elif Karagöz
- Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, Pamplona, Spain
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
48
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
49
|
Boye E, Grallert B. eIF2α phosphorylation and the regulation of translation. Curr Genet 2019; 66:293-297. [PMID: 31485739 DOI: 10.1007/s00294-019-01026-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022]
Abstract
We discuss novel insight into the role and consequences of the phosphorylation of the translation initiation factor eIF2α in the context of stress responses and cell-cycle regulation. eIF2α is centrally located to regulate translation and its phosphorylation in response to different environmental challenges is one of the best characterized stress-response pathways. In addition to its role in stress management, eIF2α phosphorylation is also linked to cell-cycle progression and memory consolidation in the nervous system. The best known consequences of eIF2α phosphorylation are downregulation of global translation and stimulation of translation of some mRNAs. However, recent evidence shows that (i) eIF2α phosphorylation is not always required for the downregulation of global translation after exposure to stress and (ii) eIF2α phosphorylation does not necessarily lead to the downregulation of global translation. These results suggest that the textbook view of eIF2α phosphorylation needs to be revised and that there must be additional regulatory mechanisms at play.
Collapse
Affiliation(s)
- Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
50
|
Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases. Int J Mol Sci 2019; 20:ijms20153675. [PMID: 31357546 PMCID: PMC6695876 DOI: 10.3390/ijms20153675] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vascular disorders continues to rise worldwide. Parallel with that, new pathophysiological pathways have been discovered, providing possible remedies for prevention and therapy in vascular diseases. Growing evidence suggests that endoplasmic reticulum (ER) stress is involved in a number of vasculopathies, including atherosclerosis, vascular brain events, and diabetes. Heme, which is released from hemoglobin or other heme proteins, triggers various pathophysiological consequence, including heme stress as well as ER stress. The potentially toxic free heme is converted by heme oxygenases (HOs) into carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is reduced to bilirubin (BR). Redox-active iron is oxidized and stored by ferritin, an iron sequestering protein which exhibits ferroxidase activity. In recent years, CO, BV, and BR have been shown to control cellular processes such as inflammation, apoptosis, and antioxidant defense. This review covers our current knowledge about how heme induced endoplasmic reticulum stress (HIERS) participates in the pathogenesis of vascular disorders and highlights recent discoveries in the molecular mechanisms of HO-mediated cytoprotection in heme stress and ER stress, as well as crosstalk between ER stress and HO-1. Furthermore, we focus on the translational potential of HIERS and heme oxygenase-1 (HO-1) in atherosclerosis, diabetes mellitus, and brain hemorrhage.
Collapse
|