1
|
Mitchell A, Frontini M, Islam S, Sivapalaratnam S, Krishnan A. Increased bleeding and thrombosis in myeloproliferative neoplasms mediated through altered expression of inherited platelet disorder genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541977. [PMID: 37292725 PMCID: PMC10245891 DOI: 10.1101/2023.05.23.541977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An altered thrombo-hemorrhagic profile has long been observed in patients with myeloproliferative neoplasms (MPNs). We hypothesized that this observed clinical phenotype may result from altered expression of genes known to harbor genetic variants in bleeding, thrombotic, or platelet disorders. Here, we identify 32 genes from a clinically validated gene panel that were also significantly differentially expressed in platelets from MPN patients as opposed to healthy donors. This work begins to unravel previously unclear mechanisms underlying an important clinical reality in MPNs. Knowledge of altered platelet gene expression in MPN thrombosis/bleeding diathesis opens opportunities to advance clinical care by: (1) enabling risk stratification, in particular, for patients undergoing invasive procedures, and (2) facilitating tailoring of treatment strategies for those at highest risk, for example, in the form of antifibrinolytics, desmopressin or platelet transfusions (not current routine practice). Marker genes identified in this work may also enable prioritization of candidates in future MPN mechanistic as well as outcome studies.
Collapse
Affiliation(s)
- Alan Mitchell
- Department of Clinical Haematology, Barts Health NHS Trust, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW
| | - Mattia Frontini
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW
| | | | - Suthesh Sivapalaratnam
- Department of Clinical Haematology, Barts Health NHS Trust, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW
- Blizard Institute, Queen Mary University London
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine
| |
Collapse
|
2
|
Liu RJY, Al-Molieh Y, Chen SZ, Drobac M, Urban D, Chen CH, Yao HHY, Geng RSQ, Li L, Pluthero FG, Benlekbir S, Rubinstein JL, Kahr WHA. The Sec1/Munc18 protein VPS33B forms a uniquely bidirectional complex with VPS16B. J Biol Chem 2023; 299:104718. [PMID: 37062417 DOI: 10.1016/j.jbc.2023.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Loss of function variants of VPS33B and VIPAS39 (encoding VPS16B) are causative for arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1/Munc18 (SM) protein family, and thus thought to facilitate vesicular fusion via interaction with SNARE complexes, as does its paralog VPS33A in the homotypic fusion and vacuole sorting (HOPS) complex. VPS33B and VPS16B have been shown to associate, but little is known about the composition, structure or function of the VPS33B/VPS16B complex. We show here that human VPS33B/VPS16B is a high molecular weight complex, which we expressed in yeast to obtain material for structural, composition and stability analysis. Circular dichroism data indicate VPS33B/VPS16B has a well-folded α-helical secondary structure, for which size exclusion chromatography-multi angle light scattering revealed a MW of ∼315 kDa. Quantitative immunoblotting indicated the complex has a VPS33B:VPS16B ratio of 2:3. Expression of ARC syndrome-causing VPS33B missense variants showed that L30P disrupts complex formation, but not S243F or H344D. Truncated VPS16B containing amino acids 143-316 was sufficient to form a complex with VPS33B. Small angle X-ray scattering and negative staining electron microscopy revealed a two-lobed shape for VPS33B/VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. From this we propose a structure for VPS33B/VPS16B that allows the copies of VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus their associated membrane components. Thus our observations reveal the only known potentially bidirectional SM protein complex.
Collapse
Affiliation(s)
- Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yusef Al-Molieh
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shao Z Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marko Drobac
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chang H Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
3
|
Li-Leger E, Feichtinger R, Flibotte S, Holzkamp H, Schnabel R, Moerman DG. Identification of essential genes in Caenorhabditis elegans through whole genome sequencing of legacy mutant collections. G3-GENES GENOMES GENETICS 2021; 11:6373896. [PMID: 34550348 PMCID: PMC8664450 DOI: 10.1093/g3journal/jkab328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
It has been estimated that 15%–30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III–V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.
Collapse
Affiliation(s)
- Erica Li-Leger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Richard Feichtinger
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heinke Holzkamp
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Ralf Schnabel
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
4
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Mechanism of platelet α-granule biogenesis: study of cargo transport and the VPS33B-VPS16B complex in a model system. Blood Adv 2020; 3:2617-2626. [PMID: 31501156 DOI: 10.1182/bloodadvances.2018028969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Platelet α-granules play important roles in platelet function. They contain hundreds of proteins that are synthesized by the megakaryocyte or taken up by endocytosis. The trafficking pathways that mediate platelet α-granule biogenesis are incompletely understood, especially with regard to cargo synthesized by the megakaryocyte. Vacuolar-protein sorting 33B (VPS33B) and VPS16B are essential proteins for α-granule biogenesis, but they are largely uncharacterized. Here, we adapted a powerful method to directly map the pathway followed by newly synthesized cargo proteins to reach α-granules. Using this method, we revealed the recycling endosome as a key intermediate compartment in α-granule biogenesis. We then used CRISPR/Cas9 gene editing to knock out VPS33B in pluripotent stem cell-derived immortalized megakaryocyte cells (imMKCLs). Consistent with the observations in platelets from patients with VPS33B mutation, VPS33B-knockout (KO) imMKCLs have drastically reduced levels of α-granule proteins platelet factor 4, von Willebrand factor, and P-selectin. VPS33B and VPS16B form a distinct and small complex in imMKCLs with the same hydrodynamic radius as the recombinant VPS33B-VPS16B heterodimer purified from bacteria. Mechanistically, the VPS33B-VPS16B complex ensures the correct trafficking of α-granule proteins. VPS33B deficiency results in α-granule cargo degradation in lysosomes. VPS16B steady-state levels are significantly lower in VPS33B-KO imMKCLs, suggesting that VPS16B is destabilized in the absence of its partner. Exogenous expression of green fluorescent protein-VPS33B in VPS33B-KO imMKCLs reconstitutes the complex, which localizes to the recycling endosome, further defining this compartment as a key intermediate in α-granule biogenesis. These results advance our understanding of platelet α-granule biogenesis and open new avenues for the study of these organelles.
Collapse
|
6
|
Da Costa R, Bordessoules M, Guilleman M, Carmignac V, Lhussiez V, Courot H, Bataille A, Chlémaire A, Bruno C, Fauque P, Thauvin C, Faivre L, Duplomb L. Vps13b is required for acrosome biogenesis through functions in Golgi dynamic and membrane trafficking. Cell Mol Life Sci 2020; 77:511-529. [PMID: 31218450 PMCID: PMC11104845 DOI: 10.1007/s00018-019-03192-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023]
Abstract
The sperm acrosome is a lysosome-related organelle that develops using membrane trafficking from the Golgi apparatus as well as the endolysosomal compartment. How vesicular trafficking is regulated in spermatids to form the acrosome remains to be elucidated. VPS13B, a RAB6-interactor, was recently shown involved in endomembrane trafficking. Here, we report the generation of the first Vps13b-knockout mouse model and show that male mutant mice are infertile due to oligoasthenoteratozoospermia. This phenotype was explained by a failure of Vps13b deficient spermatids to form an acrosome. In wild-type spermatids, immunostaining of Vps13b and Rab6 revealed that they transiently locate to the acrosomal inner membrane. Spermatids lacking Vps13b did not present with the Golgi structure that characterizes wild-type spermatids and showed abnormal targeting of PNA- and Rab6-positive Golgi-derived vesicles to Eea1- and Lamp2-positive structures. Altogether, our results uncover a function of Vps13b in the regulation of the vesicular transport between Golgi apparatus, acrosome, and endolysosome.
Collapse
Affiliation(s)
- Romain Da Costa
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France.
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France.
| | - Morgane Bordessoules
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| | - Magali Guilleman
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Virginie Carmignac
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Centre de Référence Maladies Génétique à Expression Cutanée MAGEC-Mosaique, CHU Dijon, Dijon, France
| | - Vincent Lhussiez
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
| | - Hortense Courot
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
| | - Amandine Bataille
- Plateforme d'Imagerie Cellulaire CellImaP/DimaCell, Inserm LNC UMR1231, 21000, Dijon, France
| | - Amandine Chlémaire
- Plateforme d'Imagerie Cellulaire CellImaP/DimaCell, Inserm LNC UMR1231, 21000, Dijon, France
| | - Céline Bruno
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Patricia Fauque
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Christel Thauvin
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon, 21000, Dijon, France
| | - Laurence Faivre
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, 21000, Dijon, France
| | - Laurence Duplomb
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| |
Collapse
|
7
|
Liu Z, Liu J, Li Y, Wang H, Liang Z, Deng X, Fu Q, Fang W, Xu P. VPS33B suppresses lung adenocarcinoma metastasis and chemoresistance to cisplatin. Genes Dis 2020; 8:307-319. [PMID: 33997178 PMCID: PMC8093570 DOI: 10.1016/j.gendis.2019.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
The presence of VPS33B in tumors has rarely been reported. Downregulated VPS33B protein expression is an unfavorable factor that promotes the pathogenesis of lung adenocarcinoma (LUAD). Overexpressed VPS33B was shown to reduce the migration, invasion, metastasis, and chemoresistance of LUAD cells to cisplatin (DDP) in vivo and in vitro. Mechanistic analyses have indicated that VPS33B first suppresses epidermal growth factor receptor (EGFR) Ras/ERK signaling, which further reduces the expression of the oncogenic factor c-Myc. Downregulated c-Myc expression reduces the rate at which it binds the p53 promoter and weakens its transcription inhibition; therefore, decreased c-Myc stimulates p53 expression, leading to decreased epithelial-to-mesenchymal transition (EMT) signal. NESG1 has been shown to be an unfavorable indicator of non-small-cell lung cancer (NSCLC). Here, NESG1 was identified as an interactive protein of VPS33B. In addition, NESG1 was found to exhibit mutual stimulation with VPS33B via reduced RAS/ERK/c-Jun-mediated transcription repression. Knockdown of NESG1 activated EGFR/Ras/ERK/c-Myc signaling and further downregulated p53 expression, which thus activated EMT signaling and promoted LUAD migration and invasion. Finally, we observed that nicotine suppressed VPS33B expression by inducing PI3K/AKT/c-Jun-mediated transcription suppression. Our study demonstrates that VPS33B as a tumor suppressor is significantly involved in the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Zhen Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, 510095, PR China.,Cancer Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, PR China
| | - Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510310, PR China
| | - Yang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, 510095, PR China
| | - Hao Wang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510310, PR China
| | - Zixi Liang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510310, PR China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510310, PR China
| | - Qiaofen Fu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510310, PR China.,Cancer Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, PR China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510310, PR China.,Cancer Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, PR China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510310, PR China.,Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518034, PR China
| |
Collapse
|
8
|
Bezler A, Braukmann F, West SM, Duplan A, Conconi R, Schütz F, Gönczy P, Piano F, Gunsalus K, Miska EA, Keller L. Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment. PLoS Genet 2019; 15:e1007905. [PMID: 30735500 PMCID: PMC6383947 DOI: 10.1371/journal.pgen.1007905] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/21/2019] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues.
Collapse
Affiliation(s)
- Alexandra Bezler
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Sean M. West
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Arthur Duplan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Raffaella Conconi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Bioinformatics Core Facility; SIB Swiss Institute of Bioinformatics and Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fabio Piano
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin Gunsalus
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eric A. Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Nag S, Rani S, Mahanty S, Bissig C, Arora P, Azevedo C, Saiardi A, van der Sluijs P, Delevoye C, van Niel G, Raposo G, Setty SRG. Rab4A organizes endosomal domains for sorting cargo to lysosome-related organelles. J Cell Sci 2018; 131:jcs.216226. [PMID: 30154210 PMCID: PMC6151265 DOI: 10.1242/jcs.216226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sudeshna Nag
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Shikha Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Christin Bissig
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Pooja Arora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Cedric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| |
Collapse
|
10
|
Proteomic and Biochemical Comparison of the Cellular Interaction Partners of Human VPS33A and VPS33B. J Mol Biol 2018; 430:2153-2163. [PMID: 29778605 PMCID: PMC6005816 DOI: 10.1016/j.jmb.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/21/2018] [Accepted: 05/11/2018] [Indexed: 01/18/2023]
Abstract
Multi-subunit tethering complexes control membrane fusion events in eukaryotic cells. Class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) are two such complexes, both containing the Sec1/Munc18 protein subunit VPS33A. Metazoans additionally possess VPS33B, which has considerable sequence similarity to VPS33A but does not integrate into CORVET or HOPS complexes and instead stably interacts with VIPAR. It has been recently suggested that VPS33B and VIPAR comprise two subunits of a novel multi-subunit tethering complex (named “CHEVI”), perhaps analogous in configuration to CORVET and HOPS. We utilized the BioID proximity biotinylation assay to compare and contrast the interactomes of VPS33A and VPS33B. Overall, few proteins were identified as associating with both VPS33A and VPS33B, suggesting that these proteins have distinct sub-cellular localizations. Consistent with previous reports, we observed that VPS33A was co-localized with many components of class III phosphatidylinositol 3-kinase (PI3KC3) complexes: PIK3C3, PIK3R4, NRBF2, UVRAG and RUBICON. Although VPS33A clearly co-localized with several subunits of CORVET and HOPS in this assay, no proteins with the canonical CORVET/HOPS domain architecture were found to co-localize with VPS33B. Instead, we identified that VPS33B interacts directly with CCDC22, a member of the CCC complex. CCDC22 does not co-fractionate with VPS33B and VIPAR in gel filtration of human cell lysates, suggesting that CCDC22 interacts transiently with VPS33B/VIPAR rather than forming a stable complex with these proteins in cells. We also observed that the protein complex containing VPS33B and VIPAR is considerably smaller than CORVET/HOPS, suggesting that the CHEVI complex comprises just VPS33B and VIPAR. VPS33A and VPS33B co-localize with distinct sets of cellular proteins. VPS33A co-localizes with PI3KC3 complex members. VPS33B interacts directly with CCDC22, a member of the CCC complex. VPS33B and VIPAR do not assemble into a larger stable multi-subunit tethering complex.
Collapse
|
11
|
Jonker CTH, Galmes R, Veenendaal T, Ten Brink C, van der Welle REN, Liv N, de Rooij J, Peden AA, van der Sluijs P, Margadant C, Klumperman J. Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat Commun 2018; 9:792. [PMID: 29476049 PMCID: PMC5824891 DOI: 10.1038/s41467-018-03226-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking.
Collapse
Affiliation(s)
- C T H Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Ophthalmology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - R Galmes
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - C Ten Brink
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - R E N van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - N Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J de Rooij
- Section Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht Universty, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - A A Peden
- Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - P van der Sluijs
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH Utrecht, The Netherlands
| | - C Margadant
- Department of Molecular Cell Biology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Chen CH, Lo RW, Urban D, Pluthero FG, Kahr WHA. α-granule biogenesis: from disease to discovery. Platelets 2017; 28:147-154. [DOI: 10.1080/09537104.2017.1280599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chang Hua Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Richard W. Lo
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Fred G. Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Walter H. A. Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
13
|
Abstract
Platelet dense granules (DGs) are membrane bound compartments that store polyphosphate and small molecules such as ADP, ATP, Ca2+, and serotonin. The release of DG contents plays a central role in platelet aggregation to form a hemostatic plug. Accordingly, congenital deficiencies in the biogenesis of platelet DGs underlie human genetic disorders that cause storage pool disease and manifest with prolonged bleeding. DGs belong to a family of lysosome-related organelles, which also includes melanosomes, the compartments where the melanin pigments are synthesized. These organelles share several characteristics including an acidic lumen and, at least in part, the molecular machinery involved in their biogenesis. As a result, many genes affect both DG and melanosome biogenesis and the corresponding patients present not only with bleeding but also with oculocutaneous albinism. The identification and characterization of such genes has been instrumental in dissecting the pathways responsible for organelle biogenesis. Because the study of melanosome biogenesis has advanced more rapidly, this knowledge has been extrapolated to explain how DGs are produced. However, some progress has recently been made in studying platelet DG biogenesis directly in megakaryocytes and megakaryocytoid cells. DGs originate from an endosomal intermediate compartment, the multivesicular body. Maturation and differentiation into a DG begins when newly synthesized DG-specific proteins are delivered from early/recycling endosomal compartments. The machinery that orchestrates this vesicular trafficking is composed of a combination of both ubiquitous and cell type-specific proteins. Here, we review the current knowledge on DG biogenesis. In particular, we focus on the individual human and murine genes encoding the molecular machinery involved in this process and how their deficiencies result in disease.
Collapse
Affiliation(s)
- Andrea L Ambrosio
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| | - Santiago M Di Pietro
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| |
Collapse
|
14
|
Gengyo-Ando K, Kage-Nakadai E, Yoshina S, Otori M, Kagawa-Nagamura Y, Nakai J, Mitani S. Distinct roles of the two VPS33 proteins in the endolysosomal system in Caenorhabditis elegans. Traffic 2016; 17:1197-1213. [PMID: 27558849 DOI: 10.1111/tra.12430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023]
Abstract
Sec1/Munc-18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps-33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps-33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS-33.1 resulted in embryonic lethality. By contrast, vps-33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm-specific organelle. The endocytosis defect in the vps-33.1 mutant was not restored by the expression of VPS-33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS-33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS-33.2 has tissue/organelle specific functions in C. elegans.
Collapse
Affiliation(s)
- Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan. .,Brain and Body System Science Institute, Saitama University, Saitama, Japan. .,Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Muneyoshi Otori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuko Kagawa-Nagamura
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Banushi B, Forneris F, Straatman-Iwanowska A, Strange A, Lyne AM, Rogerson C, Burden JJ, Heywood WE, Hanley J, Doykov I, Straatman KR, Smith H, Bem D, Kriston-Vizi J, Ariceta G, Risteli M, Wang C, Ardill RE, Zaniew M, Latka-Grot J, Waddington SN, Howe SJ, Ferraro F, Gjinovci A, Lawrence S, Marsh M, Girolami M, Bozec L, Mills K, Gissen P. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis. Nat Commun 2016; 7:12111. [PMID: 27435297 PMCID: PMC4961739 DOI: 10.1038/ncomms12111] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 06/01/2016] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues.
Collapse
Affiliation(s)
- Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Federico Forneris
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Via Ferrata 9/A – 27100, Pavia, Italy
- Division of Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Adam Strange
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Anne-Marie Lyne
- Department of Statistical Science, University College London, London WC1E 6BT, UK
| | - Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Wendy E. Heywood
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Joanna Hanley
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ivan Doykov
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kornelis R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, UK
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Danai Bem
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Universitat Autonoma Barcelona, 119-129-08035 Barcelona, Spain
| | - Maija Risteli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, 90220 Oulu, Finland
- Unit of Cancer Research and Translational Medicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
| | - Chunguang Wang
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
- Medical Microbiology and Immunology, Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
| | | | | | - Julita Latka-Grot
- Children's Memorial Health Institute, 04-730 Warsaw, 20 Dzieci Polskich Avenue, Poland
| | - Simon N. Waddington
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - S. J. Howe
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Asllan Gjinovci
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Scott Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Girolami
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Laurent Bozec
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Kevin Mills
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute of Child Health, University College London, London WC1N 1EH, UK
- Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH, UK
| |
Collapse
|
16
|
Spang A. Membrane Tethering Complexes in the Endosomal System. Front Cell Dev Biol 2016; 4:35. [PMID: 27243003 PMCID: PMC4860415 DOI: 10.3389/fcell.2016.00035] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.
Collapse
Affiliation(s)
- Anne Spang
- Biozentrum, Growth & Development, University of Basel Basel, Switzerland
| |
Collapse
|
17
|
Gueho A, Bosmani C, Gopaldass N, Molle V, Soldati T, Letourneur F. Dictyostelium EHD associates with Dynamin and participates in phagosome maturation. J Cell Sci 2016; 129:2354-67. [DOI: 10.1242/jcs.182857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
C-terminal EHDs (Eps15 homology-domain-containing proteins) are newly identified key regulators of endosomal membrane trafficking. Here we show that D. discoideum contains a single EHD protein that localizes to endosomal compartments and newly formed phagosomes. We provide the first evidence that EHD regulates phagosome maturation. Deletion of EHD results in defects in intraphagosomal proteolysis and acidification. These defects are linked to early delivery of lysosomal enzymes and fast retrieval of the vacuolar H+-ATPase in maturing phagosomes. We also demonstrate that EHD physically interacts with DymA. Our results indicate that EHD and DymA can associate independently to endomembranes, and yet they share identical kinetics of phagosome recruitment and release during phagosome maturation. Functional analysis of ehd−, dymA−, and double dymA−/ehd− knock-out strains indicate that DymA and EHD play non-redundant and independent functions in phagosome maturation. Finally, we show that the absence of EHD leads to increase tubulation of endosomes, indicating that EHD participates in the scission of endosomal tubules as reported for DymA.
Collapse
Affiliation(s)
- Aurélie Gueho
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Navin Gopaldass
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - François Letourneur
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
18
|
Galmes R, ten Brink C, Oorschot V, Veenendaal T, Jonker C, van der Sluijs P, Klumperman J. Vps33B is required for delivery of endocytosed cargo to lysosomes. Traffic 2015; 16:1288-305. [DOI: 10.1111/tra.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Romain Galmes
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
- Present address: Institut Jacques Monod; CNRS, UMR7592, Université Paris Diderot; Sorbonne Paris Cité F-75013 Paris France
| | - Corlinda ten Brink
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Viola Oorschot
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
- Present address: Monash Micro Imaging; 15 Innovation Walk, Strip 1 Monash Biotechnology, Monash University; Clayton VIC 3800 Australia
| | - Tineke Veenendaal
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Caspar Jonker
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Peter van der Sluijs
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Judith Klumperman
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| |
Collapse
|
19
|
van der Kant R, Jonker CTH, Wijdeven RH, Bakker J, Janssen L, Klumperman J, Neefjes J. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity. J Biol Chem 2015; 290:30280-90. [PMID: 26463206 DOI: 10.1074/jbc.m115.688440] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 01/30/2023] Open
Abstract
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.
Collapse
Affiliation(s)
- Rik van der Kant
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Caspar T H Jonker
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Ruud H Wijdeven
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Jeroen Bakker
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Lennert Janssen
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Judith Klumperman
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Jacques Neefjes
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| |
Collapse
|
20
|
Li Z, Blissard G. The vacuolar protein sorting genes in insects: A comparative genome view. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:211-225. [PMID: 25486452 DOI: 10.1016/j.ibmb.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
In eukaryotic cells, regulated vesicular trafficking is critical for directing protein transport and for recycling and degradation of membrane lipids and proteins. Through carefully regulated transport vesicles, the endomembrane system performs a large and important array of dynamic cellular functions while maintaining the integrity of the cellular membrane system. Genetic studies in yeast Saccharomyces cerevisiae have identified approximately 50 vacuolar protein sorting (VPS) genes involved in vesicle trafficking, and most of these genes are also characterized in mammals. The VPS proteins form distinct functional complexes, which include complexes known as ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III. Little is known about the orthologs of VPS proteins in insects. Here, with the newly annotated Manduca sexta genome, we carried out genomic comparative analysis of VPS proteins in yeast, humans, and 13 sequenced insect genomes representing the Orders Hymenoptera, Diptera, Hemiptera, Phthiraptera, Lepidoptera, and Coleoptera. Amino acid sequence alignments and domain/motif structure analyses reveal that most of the components of ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III are evolutionarily conserved across yeast, insects, and humans. However, in contrast to the VPS gene expansions observed in the human genome, only four VPS genes (VPS13, VPS16, VPS33, and VPS37) were expanded in the six insect Orders. Additionally, VPS2 was expanded only in species from Phthiraptera, Lepidoptera, and Coleoptera. These studies provide a baseline for understanding the evolution of vesicular trafficking across yeast, insect, and human genomes, and also provide a basis for further addressing specific functional roles of VPS proteins in insects.
Collapse
Affiliation(s)
- Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Wartosch L, Günesdogan U, Graham SC, Luzio JP. Recruitment of VPS33A to HOPS by VPS16 Is Required for Lysosome Fusion with Endosomes and Autophagosomes. Traffic 2015; 16:727-42. [PMID: 25783203 PMCID: PMC4510706 DOI: 10.1111/tra.12283] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild-type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.
Collapse
Affiliation(s)
- Lena Wartosch
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Wellcome Trust/MRC BuildingUniversity of CambridgeCambridgeCB2 0XYUK
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeCB2 1QNUK
| | | | - J. Paul Luzio
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Wellcome Trust/MRC BuildingUniversity of CambridgeCambridgeCB2 0XYUK
| |
Collapse
|
22
|
Berruti G, Paiardi C. USP8/UBPy-regulated sorting and the development of sperm acrosome: the recruitment of MET. Reproduction 2015; 149:633-44. [DOI: 10.1530/rep-14-0671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 01/12/2023]
Abstract
The acrosome is a peculiar vacuole that at fertilization undergoes the acrosome reaction (AR), an event unique in the sperm life. Contents released promote sperm penetration through oocyte's investments; membranous components are involved in sperm–egg interaction/fusion. Therefore, both constituents play a role in fertilization. The biogenesis of this vacuole, however, has not been clarified yet; recently, it has been proposed as a novel lysosome-related organelle (LRO). Our research focuses on the involvement of the endosomal pathway in acrosomogenesis starting from the early phases. The trafficking sorted by USP8/UBPy, an endosomal regulator recently described as a compelling candidate for male fertility gene, was investigated in comparison to that of SP56, a marker of the biosynthetic pathway. Mouse spermatids were double/triple immunolabeled and examined by confocal microscopy. The contribution of the vesicular traffic assisted by the cortical microtubule array was also evaluated in nocodazole-treated spermatids. USP8/UBPy-sorted cargo contributes early to acrosomogenesis and its trafficking is microtubule mediated. It was identified, through co-immunoprecipitation/co-immunolocalization assays, that the membrane receptor MET, described herein for the first time in spermatids, as an USP8/UBPy-target substrate is delivered to the acrosome. MET and USP8/UBPy still colocalize in epididymal spermatozoa. Following the AR, MET and USP8/UBPy show a distinct fate. MET, in particular, translocates at the PAS, the post acrosomal segment known to harbor sperm-borne factors involved in oocyte activation. Overall, our results support the concept of the acrosome as a LRO and provide evidence for the identification of MET as a tyrosine kinase receptor that may play a role in fertilization.
Collapse
|
23
|
Perini ED, Schaefer R, Stöter M, Kalaidzidis Y, Zerial M. Mammalian CORVET Is Required for Fusion and Conversion of Distinct Early Endosome Subpopulations. Traffic 2014; 15:1366-89. [DOI: 10.1111/tra.12232] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Enrico D. Perini
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Ramona Schaefer
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
- Faculty of Bioengineering and Bioinformatics; Moscow State University; 119991 Moscow Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| |
Collapse
|
24
|
Zlatic SA, Tornieri K, L'hernault SW, Faundez V. Metazoan cell biology of the HOPS tethering complex. CELLULAR LOGISTICS 2014; 1:111-117. [PMID: 21922076 DOI: 10.4161/cl.1.3.17279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 01/09/2023]
Abstract
Membrane fusion with vacuoles, the lysosome equivalent of the yeast Saccharomyces cerevisiae, is among the best understood membrane fusion events. Our precise understanding of this fusion machinery stems from powerful genetics and elegant in vitro reconstitution assays. Central to vacuolar membrane fusion is the multi-subunit tether the HO motypic fusion and Protein Sorting (HOPS) complex, a complex of proteins that organizes other necessary components of the fusion machinery. We lack a similarly detailed molecular understanding of membrane fusion with lysosomes or lysosome-related organelles in metazoans. However, it is likely that fundamental principles of how rabs, SNAREs and HOPS tethers work to fuse membranes with lysosomes and related organelles are conserved between Saccharomyces cerevisiae and metazoans. Here, we discuss emerging differences in the coat-dependent mechanisms that govern HOPS complex subcellular distribution between Saccharomyces cerevisiae and metazoans. These differences reside upstream of the membrane fusion event. We propose that the differences in how coats segregate class C Vps/HOPS tethers to organelles and domains of metazoan cells are adaptations to complex architectures that characterize metazoan cells such as those of neuronal and epithelial tissues.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Graduate Program in Biochemistry, Cell and Developmental Biology; Emory University; Atlanta, GA USA
| | | | | | | |
Collapse
|
25
|
Berruti G, Paiardi C. Acrosome biogenesis: Revisiting old questions to yield new insights. SPERMATOGENESIS 2014; 1:95-98. [PMID: 22319656 DOI: 10.4161/spmg.1.2.16820] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 01/23/2023]
Abstract
The acrosome is a unique membranous organelle located over the anterior part of the sperm nucleus that is highly conserved throughout evolution. This acidic vacuole contains a number of hydrolytic enzymes that, when secreted, help the sperm penetrate the egg's coats. Although acrosome biogenesis is an important aspect of spermiogenesis, the molecular mechanism(s) that regulates this event remains unknown. Active trafficking from the Golgi apparatus is involved in acrosome formation, but experimental evidence indicates that trafficking of vesicles out of the Golgi also occurs during acrosomogenesis. Unfortunately, this second aspect of acrosome biogenesis remains poorly studied. In this article, we briefly discuss how the biosynthetic and endocytic pathways, assisted by a network of microtubules, tethering factors, motor proteins and small GTPases, relate and connect to give rise to the sperm-specific vacuole, with a particular emphasis placed on the endosomal compartment. It is hoped that this information will be useful to engage more studies on acrosome biogenesis by focusing attention towards suggested directions.
Collapse
Affiliation(s)
- Giovanna Berruti
- Department of Biology; Laboratory of Cellular and Molecular Biology of Reproduction; University of Milan; Milan, Italy
| | | |
Collapse
|
26
|
Lachmann J, Glaubke E, Moore PS, Ungermann C. The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET. CELLULAR LOGISTICS 2014; 4:e970840. [PMID: 25750764 DOI: 10.4161/21592780.2014.970840] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
Membrane fusion in the endocytic pathway is mediated by a protein machinery consistent of Rab GTPases, tethering factors and SNAREs. In yeast, the endosomal CORVET and lysosomal HOPS tethering complexes share 4 of their 6 subunits. The 2 additional subunits in each complex - Vps3 and Vps8 for CORVET, and the homologous Vps39 and Vps41 for HOPS - bind directly to Rab5 and Rab7, respectively. In humans, all subunits for HOPS have been described. However, human CORVET remains poorly characterized and a homolog of Vps3 is still missing. Here we characterize 2 previously identified Vps39 isoforms, hVps39-1/hVam6/TLP and hVps39-2/TRAP1, in yeast and HEK293 cells. None of them can compensate the loss of the endogenous yeast Vps39, though the specific interaction of hVps39-1 with the virus-specific LT protein was reproduced. Both human Vps39 proteins show a cytosolic localization in yeast and mammalian cells. However, hVps39-2/TRAP1 strongly co-localizes with co-expressed Rab5 and interacts directly with Rab5-GTP in vitro. We conclude that hVps39-2/TRAP1 is an endosomal protein and an effector of Rab5, suggesting a role of the protein as a subunit of the putative human CORVET complex.
Collapse
Affiliation(s)
- Jens Lachmann
- Department of Biology/Chemistry; Biochemistry Section; University of Osnabruck ; Osnabrück, Germany
| | - Elina Glaubke
- Department of Biology/Chemistry; Biochemistry Section; University of Osnabruck ; Osnabrück, Germany
| | - Patrick S Moore
- University of Pittsburgh Cancer Institute; Cancer Virology Program ; Pittsburgh, PA USA
| | - Christian Ungermann
- Department of Biology/Chemistry; Biochemistry Section; University of Osnabruck ; Osnabrück, Germany
| |
Collapse
|
27
|
Zhou Y, Zhang J. Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome: from molecular genetics to clinical features. Ital J Pediatr 2014; 40:77. [PMID: 25239142 PMCID: PMC4422138 DOI: 10.1186/s13052-014-0077-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare but fatal autosomal recessive multisystem disorder caused by mutations in the VPS33B or VIPAR gene. The classical presentation of ARC includes congenital joint contractures, renal tubular dysfunction, and cholestasis. Additional features include ichthyosis, central nervous system malformation, platelet anomalies, and severe failure to thrive. Diagnosis of ARC syndrome relies on clinical features, organ biopsy, and mutational analysis. However, no specific treatment currently exists for this syndrome. CONCLUSION This is an overview of the latest knowledge regarding the genetic features and clinical manifestations of ARC syndrome. Greater awareness and understanding of this syndrome should allow more timely intervention with potential for improving long-term outcome.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Department of Cardiology, No. 3 People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, Mohe Road, Baoshan District, 201900, Shanghai, China.
| | - Junfeng Zhang
- Department of Cardiology, No. 3 People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, Mohe Road, Baoshan District, 201900, Shanghai, China.
| |
Collapse
|
28
|
Abstract
Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- National Institute of Dental and Craniofacial Research, National Institutes of Health30 Convent Drive, Bethesda, MD 20892-4340USA
| | - Paul A. Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute30 Flemington Road, The University of Melbourne, Victoria 3010Australia
| |
Collapse
|
29
|
Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, Yang L, Tang H, Zhang X, Duan E, Zhao X, Gao F, Li W. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res 2014; 24:852-69. [PMID: 24853953 DOI: 10.1038/cr.2014.70] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/13/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in the process of fertilization. The molecular mechanism underlying the biogenesis of this lysosome-related organelle (LRO) is still largely unknown. Here, we show that germ cell-specific Atg7-knockout mice were infertile due to a defect in acrosome biogenesis and displayed a phenotype similar to human globozoospermia; this reproductive defect was successfully rescued by intracytoplasmic sperm injections. Furthermore, the depletion of Atg7 in germ cells did not affect the early stages of development of germ cells, but at later stages of spermatogenesis, the proacrosomal vesicles failed to fuse into a single acrosomal vesicle during the Golgi phase, which finally resulted in irregular or nearly round-headed spermatozoa. Autophagic flux was disrupted in Atg7-depleted germ cells, finally leading to the failure of LC3 conjugation to Golgi apparatus-derived vesicles. In addition, Atg7 partially regulated another globozoospermia-related protein, Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC), during acrosome biogenesis. Finally, the injection of either autophagy or lysosome inhibitors into testis resulted in a similar phenotype to that of germ cell-specific Atg7-knockout mice. Altogether, our results uncover a new role for Atg7 in the biogenesis of the acrosome, and we provide evidence to support the autolysosome origination hypothesis for the acrosome.
Collapse
Affiliation(s)
- Hongna Wang
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Wan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xixia Li
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Tang
- College of Life Sciences, Hebei United University, Tangshan, Hebei 063000, China
| | - Xiujun Zhang
- College of Life Sciences, Hebei United University, Tangshan, Hebei 063000, China
| | - Enkui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyang Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
30
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
31
|
Ma X, Zhu Y, Li C, Xue P, Zhao Y, Chen S, Yang F, Miao L. Characterisation of Caenorhabditis elegans sperm transcriptome and proteome. BMC Genomics 2014; 15:168. [PMID: 24581041 PMCID: PMC4028957 DOI: 10.1186/1471-2164-15-168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/13/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although sperm is transcriptionally and translationally quiescent, complex populations of RNAs, including mRNAs and non-coding RNAs, exist in sperm. Previous microarray analysis of germ cell mutants identified hundreds of sperm genes in Caenorhabditis elegans. To take a more comprehensive view on C. elegans sperm genes, here, we isolate highly pure sperm cells and employ high-throughput technologies to obtain sperm transcriptome and proteome. RESULTS First, sperm transcriptome consists of considerable amounts of non-coding RNAs, many of which have not been annotated and may play functional roles during spermatogenesis. Second, apart from kinases/phosphatases as previously reported, ion binding proteins are also enriched in sperm, underlying the crucial roles of intracellular ions in post-translational regulation in sperm. Third, while the majority of sperm genes/proteins have low abundance, a small number of sperm genes/proteins are hugely enriched in sperm, implying that sperm only rely on a small set of proteins for post-translational regulation. Lastly, by extensive RNAi screening of sperm enriched genes, we identified a few genes that control fertility. Our further analysis reveals a tight correlation between sperm transcriptome and sperm small RNAome, suggesting that the endogenous siRNAs strongly repress sperm genes. This leads to an idea that the inefficient RNAi screening of sperm genes, a phenomenon currently with unknown causes, might result from the competition between the endogenous RNAi pathway and the exogenous RNAi pathway. CONCLUSIONS Together, the obtained sperm transcriptome and proteome serve as valuable resources to systematically study spermatogenesis in C. elegans.
Collapse
Affiliation(s)
- Xuan Ma
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingjie Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, China
| | - Chunfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, China
| | - Peng Xue
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmei Zhao
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilin Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Miao
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Delahaye JL, Foster OK, Vine A, Saxton DS, Curtin TP, Somhegyi H, Salesky R, Hermann GJ. Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell 2014; 25:1073-96. [PMID: 24501423 PMCID: PMC3967972 DOI: 10.1091/mbc.e13-09-0521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome-lysosome fusion and the consumption of AP-3-containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type-specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1-related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences.
Collapse
Affiliation(s)
- Jared L Delahaye
- Department of Biology, Lewis & Clark College, Portland, OR 97219 Program in Biochemistry and Molecular Biology, Lewis & Clark College, Portland, OR 97219
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Balderhaar HJK, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 2013; 126:1307-16. [PMID: 23645161 DOI: 10.1242/jcs.107805] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.
Collapse
Affiliation(s)
- Henning J kleine Balderhaar
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
34
|
Liu Z, Wang B, He R, Zhao Y, Miao L. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:299-308. [PMID: 24239721 DOI: 10.1016/j.bbamcr.2013.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.
Collapse
Affiliation(s)
- Zhiyu Liu
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruijun He
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmei Zhao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
35
|
Tornieri K, Zlatic SA, Mullin AP, Werner E, Harrison R, L'hernault SW, Faundez V. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes. Hum Mol Genet 2013; 22:5215-28. [PMID: 23918659 DOI: 10.1093/hmg/ddt378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.
Collapse
|
36
|
Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proc Natl Acad Sci U S A 2013; 110:13345-50. [PMID: 23901104 DOI: 10.1073/pnas.1307074110] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multisubunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for late endosome-lysosome and autophagosome-lysosome fusion in mammals. We have determined the crystal structure of the human HOPS subunit Vps33A, confirming its identity as a Sec1/Munc18 family member. We show that HOPS subunit Vps16 recruits Vps33A to the human HOPS complex and that residues 642-736 are necessary and sufficient for this interaction, and we present the crystal structure of Vps33A in complex with Vps16(642-736). Mutations at the binding interface disrupt the Vps33A-Vps16 interaction both in vitro and in cells, preventing recruitment of Vps33A to the HOPS complex. The Vps33A-Vps16 complex provides a structural framework for studying the association between Sec1/Munc18 proteins and tethering complexes.
Collapse
|
37
|
Solinger JA, Spang A. Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J 2013; 280:2743-57. [PMID: 23351085 DOI: 10.1111/febs.12151] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/10/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
Endocytosis describes the processes by which proteins, peptides and solutes, and also pathogens, enter the cell. Endocytosed material progresses to endosomes. Genetic studies in yeast, worms, flies and mammals have identified a set of universally conserved proteins that are essential for early-to-late endosome transition and lysosome biogenesis, and for endolysosomal trafficking pathways, including autophagy. The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. In addition, several of the CORVET and HOPS subunits have diversified in metazoans, and probably form additional specialized complexes to accomodate the higher complexity of trafficking pathways in these cells. Recent studies offer new insights into the complex relationships between CORVET and HOPS complexes and other factors of the endolysosomal pathway. Interactions with V-ATPase, the ESCRT machinery, phosphoinositides, the cytoskeleton and the Rab switch suggest an intricate cooperative network for endosome maturation. Accumulating evidence supports the view that endosomal tethering complexes implement a regulatory logic that governs endomembrane identity and dynamics.
Collapse
|
38
|
|
39
|
van der Kant R, Fish A, Janssen L, Janssen H, Krom S, Ho N, Brummelkamp T, Carette J, Rocha N, Neefjes J. Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L. J Cell Sci 2013; 126:3462-74. [DOI: 10.1242/jcs.129270] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases such as Niemann-Pick Type C disease and ARC syndrome, yet little is know about regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex; RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150glued subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150Glued interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and times microtubule minus-end transport and fusion, two major events in endosomal biology.
Collapse
|
40
|
Pols MS, ten Brink C, Gosavi P, Oorschot V, Klumperman J. The HOPS proteins hVps41 and hVps39 are required for homotypic and heterotypic late endosome fusion. Traffic 2012; 14:219-32. [PMID: 23167963 DOI: 10.1111/tra.12027] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022]
Abstract
The homotypic fusion and protein sorting (HOPS) complex is a multisubunit tethering complex that in yeast regulates membrane fusion events with the vacuole, the yeast lysosome. Mammalian homologs of all HOPS components have been found, but little is known about their function. Here, we studied the role of hVps41 and hVps39, two components of the putative human HOPS complex, in the endo-lysosomal pathway of human cells. By expressing hemagglutinin (HA)-tagged constructs, we show by immunoelectron microscopy (immunoEM) that both hVps41 and hVps39 associate with the limiting membrane of late endosomes as well as lysosomes. Small interference RNA (siRNA)-mediated knockdown of hVps41 or hVps39 resulted in an accumulation of late endosomes, a depletion in the number of lysosomes and a block in the degradation of endocytosed cargo. Lysosomal pH and cathepsin B activity remained unaltered in these conditions. By immunoEM we found that hVps41 or hVps39 knockdown impairs homotypic fusion between late endosomes as well as heterotypic fusion between late endosomes and lysosomes. Thus, our data show that both hVps41 and hVps39 are required for late endosomal-lysosomal fusion events and the delivery of endocytic cargo to lysosomes in human cells.
Collapse
Affiliation(s)
- Maaike S Pols
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Smith H, Galmes R, Gogolina E, Straatman-Iwanowska A, Reay K, Banushi B, Bruce CK, Cullinane AR, Romero R, Chang R, Ackermann O, Baumann C, Cangul H, Cakmak Celik F, Aygun C, Coward R, Dionisi-Vici C, Sibbles B, Inward C, Ae Kim C, Klumperman J, Knisely AS, Watson SP, Gissen P. Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Hum Mutat 2012; 33:1656-64. [PMID: 22753090 PMCID: PMC3746110 DOI: 10.1002/humu.22155] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022]
Abstract
Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare autosomal recessive multisystem disorder caused by mutations in vacuolar protein sorting 33 homologue B (VPS33B) and VPS33B interacting protein, apical-basolateral polarity regulator (VIPAR). Cardinal features of ARC include congenital joint contractures, renal tubular dysfunction, cholestasis, severe failure to thrive, ichthyosis, and a defect in platelet alpha-granule biogenesis. Most patients with ARC do not survive past the first year of life. We report two patients presenting with a mild ARC phenotype, now 5.5 and 3.5 years old. Both patients were compound heterozygotes with the novel VPS33B donor splice-site mutation c.1225+5G>C in common. Immunoblotting and complementary DNA analysis suggest expression of a shorter VPS33B transcript, and cell-based assays show that c.1225+5G>C VPS33B mutant retains some ability to interact with VIPAR (and thus partial wild-type function). This study provides the first evidence of genotype-phenotype correlation in ARC and suggests that VPS33B c.1225+5G>C mutation predicts a mild ARC phenotype. We have established an interactive online database for ARC (https://grenada.lumc.nl/LOVD2/ARC) comprising all known variants in VPS33B and VIPAR. Also included in the database are 15 novel pathogenic variants in VPS33B and five in VIPAR.
Collapse
Affiliation(s)
- Holly Smith
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, United Kingdom
- University College London Institute of Child Health, University College LondonLondon, United Kingdom
| | - Romain Galmes
- Department of Cell Biology, University Medical CenterUtrecht, the Netherlands
| | - Ekaterina Gogolina
- Medical Research Council Laboratory for Molecular Cell Biology, University College LondonLondon, United Kingdom
- University College London Institute of Child Health, University College LondonLondon, United Kingdom
- Medical School, Edinburgh UniversityEdinburgh, United Kingdom
| | - Anna Straatman-Iwanowska
- Medical Research Council Laboratory for Molecular Cell Biology, University College LondonLondon, United Kingdom
- University College London Institute of Child Health, University College LondonLondon, United Kingdom
| | - Kim Reay
- West Midlands Regional Genetics Laboratory, Birmingham Women's HospitalBirmingham, United Kingdom
| | - Blerida Banushi
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, United Kingdom
- University College London Institute of Child Health, University College LondonLondon, United Kingdom
| | - Christopher K Bruce
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, United Kingdom
| | - Andrew R Cullinane
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of HealthBethesda, Maryland
| | - Rene Romero
- Emory Children's Center Division of Gastroenterology, Hepatology, and NutritionAtlanta, Georgia
| | - Richard Chang
- Division of Metabolic Disorders, Children's Hospital of Orange CountyOrange, California
| | | | | | - Hakan Cangul
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, United Kingdom
| | | | - Canan Aygun
- Neonatology Unit, Mayis UniversitySamsun, Turkey
| | - Richard Coward
- Bristol Royal Hospital for Sick ChildrenBristol, United Kingdom
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesú Children's Hospital IRCCSRome, Italy
| | - Barbara Sibbles
- Erasmus University Medical Center, Sophia Children's HospitalRotterdam, the Netherlands
| | - Carol Inward
- Bristol Royal Hospital for Sick ChildrenBristol, United Kingdom
| | - Chong Ae Kim
- Department of Pediatrics, Instituto da Criança, University of Sao PauloSao Paulo, Brazil
| | - Judith Klumperman
- Department of Cell Biology, University Medical CenterUtrecht, the Netherlands
| | - A S Knisely
- Institute of Liver Studies/Histopathology, King's College HospitalLondon, United Kingdom
| | - Steven P Watson
- The Platelet Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, United Kingdom
| | - Paul Gissen
- Medical Research Council Laboratory for Molecular Cell Biology, University College LondonLondon, United Kingdom
- University College London Institute of Child Health, University College LondonLondon, United Kingdom
- Inherited Metabolic Diseases, Great Ormond Street HospitalLondon, United Kingdom
| |
Collapse
|
42
|
Ma X, Zhao Y, Sun W, Shimabukuro K, Miao L. Transformation: how do nematode sperm become activated and crawl? Protein Cell 2012; 3:755-61. [PMID: 22903434 PMCID: PMC4875351 DOI: 10.1007/s13238-012-2936-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/09/2012] [Indexed: 01/16/2023] Open
Abstract
Nematode sperm undergo a drastic physiological change during spermiogenesis (sperm activation). Unlike mammalian flagellated sperm, nematode sperm are amoeboid cells and their motility is driven by the dynamics of a cytoskeleton composed of major sperm protein (MSP) rather than actin found in other crawling cells. This review focuses on sperm from Caenorhabditis elegans and Ascaris suum to address the roles of external and internal factors that trigger sperm activation and power sperm motility. Nematode sperm can be activated in vitro by several factors, including Pronase and ionophores, and in vivo through the TRY-5 and SPE-8 pathways. Moreover, protease and protease inhibitors are crucial regulators of sperm maturation. MSP-based sperm motility involves a coupled process of protrusion and retraction, both of which have been reconstituted in vitro. Sperm motility is mediated by phosphorylation signals, as illustrated by identification of several key components (MPOP, MFPs and MPAK) in Ascaris and the characterization of GSP-3/4 in C. elegans.
Collapse
Affiliation(s)
- Xuan Ma
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yanmei Zhao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Sun
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, Ube National College of Technology, Ube, Yamaguchi, 755-8555 Japan
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
43
|
The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet α-granule biogenesis. Blood 2012; 120:5032-40. [PMID: 23002115 DOI: 10.1182/blood-2012-05-431205] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Patients with platelet α or dense δ-granule defects have bleeding problems. Although several proteins are known to be required for δ-granule development, less is known about α-granule biogenesis. Our previous work showed that the BEACH protein NBEAL2 and the Sec1/Munc18 protein VPS33B are required for α-granule biogenesis. Using a yeast two-hybrid screen, mass spectrometry, coimmunoprecipitation, and bioinformatics studies, we identified VPS16B as a VPS33B-binding protein. Immunoblotting confirmed VPS16B expression in various human tissues and cells including megakaryocytes and platelets, and also in megakaryocytic Dami cells. Characterization of platelets from a patient with arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome containing mutations in C14orf133 encoding VPS16B revealed pale-appearing platelets in blood films and electron microscopy revealed a complete absence of α-granules, whereas δ-granules were observed. Soluble and membrane-bound α-granule proteins were reduced or undetectable, suggesting that both releasable and membrane-bound α-granule constituents were absent. Immunofluorescence microscopy of Dami cells stably expressing GFP-VPS16B revealed that similar to VPS33B, GFP-VPS16B colocalized with markers of the trans-Golgi network, late endosomes and α-granules. We conclude that VPS16B, similar to its binding partner VPS33B, is essential for megakaryocyte and platelet α-granule biogenesis.
Collapse
|
44
|
Ishii A, Kamimori K, Hiyoshi M, Kido H, Ohta T, Konishi H. Inhibitory effect of SPE-39 due to tyrosine phosphorylation and ubiquitination on the function of Vps33B in the EGF-stimulated cells. FEBS Lett 2012; 586:2245-50. [PMID: 22677173 DOI: 10.1016/j.febslet.2012.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022]
Abstract
Although SPE-39 is a binding protein to Vps33B that is one of the subunit in the mammalian HOPS complex, the elements of SPE-39 function remain unknown. Here, we show that tyrosine phosphorylation of SPE-39 following EGF stimulation plays a role in the stability of SPE-39 itself. Ubiquitination of the C-terminal region of SPE-39 was also elevated in response to EGF stimulation, and this process was regulated by the phosphorylation of Tyr-11 in SPE-39. However, association of Vps33B with SPE-39 inhibited the elevation of ubiquitination of SPE-39 following EGF stimulation, which might be responsible for the stabilization of SPE-39. Furthermore, an opposing functional relationship between SPE-39 and Vps33B on the downregulation of the EGF receptor was observed in EGF-stimulated COS-7 cells.
Collapse
Affiliation(s)
- Ayumi Ishii
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Dou J, Chen L, Hu Y, Miao L. Cholesterol and the biosynthesis of glycosphingolipids are required for sperm activation in Caenorhabditis elegans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:934-42. [DOI: 10.1016/j.bbalip.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
46
|
Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin). Proc Natl Acad Sci U S A 2012; 109:1542-7. [PMID: 22307610 DOI: 10.1073/pnas.1109912109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spermiogenesis is a series of poorly understood morphological, physiological and biochemical processes that occur during the transition of immotile spermatids into motile, fertilization-competent spermatozoa. Here, we identified a Serpin (serine protease inhibitor) family protein (As_SRP-1) that is secreted from spermatids during nematode Ascaris suum spermiogenesis (also called sperm activation) and we showed that As_SRP-1 has two major functions. First, As_SRP-1 functions in cis to support major sperm protein (MSP)-based cytoskeletal assembly in the spermatid that releases it, thereby facilitating sperm motility acquisition. Second, As_SRP-1 released from an activated sperm inhibits, in trans, the activation of surrounding spermatids by inhibiting vas deferens-derived As_TRY-5, a trypsin-like serine protease necessary for sperm activation. Because vesicular exocytosis is necessary to create fertilization-competent sperm in many animal species, components released during this process might be more important modulators of the physiology and behavior of surrounding sperm than was previously appreciated.
Collapse
|
47
|
|
48
|
Zlatic SA, Tornieri K, L'Hernault SW, Faundez V. Clathrin-dependent mechanisms modulate the subcellular distribution of class C Vps/HOPS tether subunits in polarized and nonpolarized cells. Mol Biol Cell 2011; 22:1699-715. [PMID: 21411634 PMCID: PMC3093322 DOI: 10.1091/mbc.e10-10-0799] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Coats define the composition of carriers budding from organelles. In addition, coats interact with membrane tethers required for vesicular fusion. The yeast AP-3 (Adaptor Protein Complex 3) coat and the class C Vps/HOPS (HOmotypic fusion and Protein Sorting) tether follow this model as their interaction occurs at the carrier fusion step. Here we show that mammalian Vps class C/HOPS subunits and clathrin interact and that acute perturbation of clathrin function disrupts the endosomal distribution of Vps class C/HOPS tethers in HEK293T and polarized neuronal cells. Vps class C/HOPS subunits and clathrin exist in complex with either AP-3 or hepatocyte growth factor receptor substrate (Hrs). Moreover, Vps class C/HOPS proteins cofractionate with clathrin-coated vesicles, which are devoid of Hrs. Expression of FK506 binding protein (FKBP)-clathrin light chain chimeras, to inhibit clathrin membrane association dynamics, increased Vps class C/HOPS subunit content in rab5 endosomal compartments. Additionally, Vps class C/HOPS subunits were concentrated at tips of neuronal processes, and their delivery was impaired by expression of FKBP-clathrin chimeras and AP20187 incubation. These data support a model in which Vps class C/HOPS subunits incorporate into clathrin-coated endosomal domains and carriers in mammalian cells. We propose that vesicular (AP-3) and nonvesicular (Hrs) clathrin mechanisms segregate class C Vps/HOPS tethers to organelles and domains of mammalian cells bearing complex architectures.
Collapse
|
49
|
Akbar MA, Tracy C, Kahr WHA, Krämer H. The full-of-bacteria gene is required for phagosome maturation during immune defense in Drosophila. ACTA ACUST UNITED AC 2011; 192:383-90. [PMID: 21282466 PMCID: PMC3101095 DOI: 10.1083/jcb.201008119] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophilafob encodes a homolog of the Vps16 HOPS complex subunit, required for phagosome maturation and digestion of engulfed pathogens. Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is a fatal recessive disorder caused by mutations in the VPS33B or VPS16B genes. Both encode homologues of the Vps33p and Vps16p subunits of the HOPS complex necessary for fusions of vacuoles in yeast. Here, we describe a mutation in the full-of-bacteria (fob) gene, which encodes Drosophila Vps16B. Flies null for fob are homozygous viable and fertile. They exhibit, however, a defect in their immune defense that renders them hypersensitive to infections with nonpathogenic bacteria. fob hemocytes (fly macrophages) engulf bacteria but fail to digest them. Phagosomes undergo early steps of maturation and transition to a Rab7-positive stage, but do not mature to fully acidified phagolysosomes. This reflects a specific requirement of fob in the fusion of phagosomes with late endosomes/lysosomes. In contrast, cargo of autophagosomes as well as endosomes exhibit normal lysosomal delivery in fob cells. These findings suggest that defects in phagosome maturation may contribute to symptoms of ARC patients including recurring infections.
Collapse
Affiliation(s)
- Mohammed Ali Akbar
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
50
|
Paiardi C, Pasini ME, Gioria M, Berruti G. Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. SPERMATOGENESIS 2011; 1:52-62. [PMID: 21866276 DOI: 10.4161/spmg.1.1.14698] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022]
Abstract
The acrosome is a unique organelle that plays an important role at fertilization and during sperm morphogenesis and that is absent in globozoospermia, an inherited infertility syndrome in humans. At the light of recent experimental evidence, the acrosome is considered a lysosome-related organelle to whose biogenesis both the endocytic and biosynthetic pathways contribute. Vps54 is a vesicular sorting protein involved in the retrograde traffic; the recessive Vps54(L967Q) mutation in the mouse results in the wobbler phenotype, characterized by motor-neuron degeneration and male infertility. Here we have investigated the spatio-temporal occurrence/progression of the wobbler fertility disorder starting from mice at post-natal day 35, the day of the first event of spermiation. We show that the pathogenesis of wobbler infertility originates at the first spermiogenetic wave, affecting acrosome formation and sperm head elongation. Vps54(L967Q)-labeled vesicles, on the contrary of the wild-type Vps54-labeled ones, are not able to coalesce into a larger vesicle that develops, flattens and shapes to give rise to the acrosome. Evidence that it is the malfunctioning of the endocytic traffic to hamper the development of the acrosome comes out from the study on UBPy. UBPy, a deubiquitinating enzyme, is a marker of acrosome biogenesis from the endocytic pathway. In wobbler spermatids UBPy-positive endosomes remain single, scattered vesicles that do not contribute to acrosome formation. As secondary defect of wobbler spermiogenesis, spermatid mitochondria are misorted; moreover, with the progression of the age/disease also Sertoli-germ cell adhesions are compromised suggesting a derailment in the endocytic route that underlies their restructuring.
Collapse
Affiliation(s)
- Chiara Paiardi
- Department of Biology; Laboratory of cellular and Molecular Biology of Reproduction; University of Milano; Milan, Italy
| | | | | | | |
Collapse
|