1
|
Morita W, Snelling SJB, Wheway K, Watkins B, Appleton L, Murphy RJ, Carr AJ, Dakin SG. Comparison of Cellular Responses to TGF-β1 and BMP-2 Between Healthy and Torn Tendons. Am J Sports Med 2021; 49:1892-1903. [PMID: 34081556 DOI: 10.1177/03635465211011158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons heal by fibrotic repair, increasing the likelihood of reinjury. Animal tendon injury and overuse models have identified transforming growth factor beta (TGF-β) and bone morphogenetic proteins (BMPs) as growth factors actively involved in the development of fibrosis, by mediating extracellular matrix synthesis and cell differentiation. PURPOSE To understand how TGF-β and BMPs contribute to fibrotic processes using tendon-derived cells isolated from healthy and diseased human tendons. STUDY DESIGN Controlled laboratory study. METHODS Tendon-derived cells were isolated from patients with a chronic rotator cuff tendon tear (large to massive, diseased) and healthy hamstring tendons of patients undergoing anterior cruciate ligament repair. Isolated cells were incubated with TGF-β1 (10 ng/mL) or BMP-2 (100 ng/mL) for 3 days. Gene expression was measured by real-time quantitative polymerase chain reaction. Cell signaling pathway activation was determined by Western blotting. RESULTS TGF-β1 treatment induced ACAN mRNA expression in both cell types but less in the diseased compared with healthy cells (P < .05). BMP-2 treatment induced BGN mRNA expression in healthy but not diseased cells (P < .01). In the diseased cells, TGF-β1 treatment induced increased ACTA2 mRNA expression (P < .01) and increased small mothers against decapentaplegic (SMAD) signaling (P < .05) compared with those of healthy cells. Moreover, BMP-2 treatment induced ACTA2 mRNA expression in the diseased cells only (P < .05). CONCLUSION Diseased tendon-derived cells show reduced expression of the proteoglycans aggrecan and biglycan in response to TGF-β1 and BMP-2 treatments. These same treatments induced enhanced fibrotic differentiation and canonical SMAD cell signaling in diseased compared with healthy cells. CLINICAL RELEVANCE Findings from this study suggest that diseased tendon-derived cells respond differently than healthy cells in the presence of TGF-β1 and BMP-2. The altered responses of diseased cells may influence fibrotic repair processes during tendon healing.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Louise Appleton
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Richard J Murphy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Brighton and Sussex University NHS Trust, Royal Sussex County Hospital, Brighton, UK
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Matsumoto S, Yokota S, Chosa N, Kyakumoto S, Kimura H, Kamo M, Satoh K, Ishisaki A. Receptor tyrosine kinase ligands and inflammatory cytokines cooperatively suppress the fibrogenic activity in temporomandibular-joint-derived fibroblast-like synoviocytes via mitogen-activated protein kinase kinase/extracellular signal-regulated kinase. Exp Ther Med 2020; 20:1967-1974. [PMID: 32782506 PMCID: PMC7401313 DOI: 10.3892/etm.2020.8944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/08/2020] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA)-related fibrosis is a possible cause of temporomandibular joint (TMJ) stiffness. However, the molecular mechanisms underlying the fibrogenic activity in fibroblast-like synoviocytes (FLSs) remain to be clarified. The present study examined the effects of receptor tyrosine kinase (RTK) ligands, such as fibroblast growth factor (FGF)-1 and epidermal growth factor (EGF), on myofibroblastic differentiation of the FLS cell line FLS1, which is derived from the mouse TMJ. The present study revealed that both FGF-1 and EGF dose-dependently suppressed the expression of the myofibroblast (MF) markers, including α-smooth muscle actin (α-SMA) and type I collagen, in FLS1 cells. Additionally, both FGF-1 and EGF activated extracellular signal-regulated kinase (ERK) in FLS1 cells. In addition, the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor U0126 abrogated the FGF-1- and EGF-mediated suppression of MF marker expression. On the other hand, inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, also suppressed the expression of MF markers in FLS1 cells. Importantly, U0126 abrogated the inflammatory cytokine-mediated suppression of MF marker expression. Interestingly, RTK ligands and inflammatory cytokines additively suppressed the expression of type I collagen. These results suggested that RTK ligands and inflammatory cytokines cooperatively inhibited the fibrogenic activity in FLSs derived from the TMJ in a MEK/ERK-dependent manner. The present findings partially clarify the molecular mechanisms underlying the development of OA-related fibrosis in the TMJ and may aid in identifying therapeutic targets for this condition. Additionally, FGF-1 and EGF could be therapeutically utilized to prevent OA-related fibrosis around the inflammatory TMJ.
Collapse
Affiliation(s)
- Shikino Matsumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan.,Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Iwate 020-8505, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Hitomichi Kimura
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Iwate 020-8505, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| |
Collapse
|
3
|
Wang A, Cao S, Aboelkassem Y, Valdez-Jasso D. Quantification of uncertainty in a new network model of pulmonary arterial adventitial fibroblast pro-fibrotic signalling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190338. [PMID: 32448066 PMCID: PMC7287331 DOI: 10.1098/rsta.2019.0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Here, we present a novel network model of the pulmonary arterial adventitial fibroblast (PAAF) that represents seven signalling pathways, confirmed to be important in pulmonary arterial fibrosis, as 92 reactions and 64 state variables. Without optimizing parameters, the model correctly predicted 80% of 39 results of input-output and inhibition experiments reported in 20 independent papers not used to formulate the original network. Parameter uncertainty quantification (UQ) showed that this measure of model accuracy is robust to changes in input weights and half-maximal activation levels (EC50), but is more affected by uncertainty in the Hill coefficient (n), which governs the biochemical cooperativity or steepness of the sigmoidal activation function of each state variable. Epistemic uncertainty in model structure, due to the reliance of some network components and interactions on experiments using non-PAAF cell types, suggested that this source of uncertainty had a smaller impact on model accuracy than the alternative of reducing the network to only those interactions reported in PAAFs. UQ highlighted model parameters that can be optimized to improve prediction accuracy and network modules where there is the greatest need for new experiments. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
| | | | | | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92092, USA
| |
Collapse
|
4
|
Inflammation Associated Pancreatic Tumorigenesis: Upregulation of Succinate Dehydrogenase (Subunit B) Reduces Cell Growth of Pancreatic Ductal Epithelial Cells. Cancers (Basel) 2019; 12:cancers12010042. [PMID: 31877753 PMCID: PMC7016879 DOI: 10.3390/cancers12010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is amongst the most fatal malignancies and its development is highly associated with inflammatory processes such as chronic pancreatitis (CP). Since the succinate dehydrogenase subunit B (SDHB) is regarded as tumor suppressor that is lost during cancer development, this study investigated the impact of M1-macrophages as part of the inflammatory microenvironment on the expression as well as function of SDHB in benign and premalignant pancreatic ductal epithelial cells (PDECs). Immunohistochemical analyses on pancreatic tissue sections from CP patients and control individuals revealed a stronger SDHB expression in ducts of CP tissues being associated with a greater abundance of macrophages compared to ducts in control tissues. Accordingly, indirect co-culture with M1-macrophages led to clearly elevated SDHB expression and SDH activity in benign H6c7-pBp and premalignant H6c7-kras PDECs. While siRNA-mediated SDHB knockdown in these cells did not affect glucose and lactate uptake after co-culture, SDHB knockdown significantly promoted PDEC growth which was associated with increased proliferation and decreased effector caspase activity particularly in co-cultured PDECs. Overall, these data indicate that SDHB expression and SDH activity are increased in PDECs when exposed to pro-inflammatory macrophages as a counterregulatory mechanism to prevent excessive PDEC growth triggered by the inflammatory environment.
Collapse
|
5
|
Azofeifa JG, Allen MA, Hendrix JR, Read T, Rubin JD, Dowell RD. Enhancer RNA profiling predicts transcription factor activity. Genome Res 2018; 28:334-344. [PMID: 29449408 PMCID: PMC5848612 DOI: 10.1101/gr.225755.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Transcription factors (TFs) exert their regulatory influence through the binding of enhancers, resulting in coordination of gene expression programs. Active enhancers are often characterized by the presence of short, unstable transcripts termed enhancer RNAs (eRNAs). While their function remains unclear, we demonstrate that eRNAs are a powerful readout of TF activity. We infer sites of eRNA origination across hundreds of publicly available nascent transcription data sets and show that eRNAs initiate from sites of TF binding. By quantifying the colocalization of TF binding motif instances and eRNA origins, we derive a simple statistic capable of inferring TF activity. In doing so, we uncover dozens of previously unexplored links between diverse stimuli and the TFs they affect.
Collapse
Affiliation(s)
- Joseph G Azofeifa
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Josephina R Hendrix
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular and Developmental Biology
| | - Timothy Read
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Robin D Dowell
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular and Developmental Biology
| |
Collapse
|
6
|
Jimi S, Kimura M, De Francesco F, Riccio M, Hara S, Ohjimi H. Acceleration Mechanisms of Skin Wound Healing by Autologous Micrograft in Mice. Int J Mol Sci 2017; 18:ijms18081675. [PMID: 28767054 PMCID: PMC5578065 DOI: 10.3390/ijms18081675] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
A micrograft technique, which minces tissue into micro-fragments >50 μm, has been recently developed. However, its pathophysiological mechanisms in wound healing are unclear yet. We thus performed a wound healing study using normal mice. A humanized mouse model of a skin wound with a splint was used. After total skin excision, tissue micro-fragments obtained by the Rigenera protocol were infused onto the wounds. In the cell tracing study, GFP-expressing green mice and SCID mice were used. Collagen stains including Picrosirius red (PSR) and immunohistological stains for α-smooth muscle actin (αSMA), CD31, transforming growth factor-β1 (TGF-β1) and neutrophils were evaluated for granulation tissue development. GFP-positive cells remained in granulation tissue seven days after infusion, but vanished after 13 days. Following the infusion of the tissue micrograft solution onto the wound, TGF-β1 expression was transiently upregulated in granulation tissue in the early phase. Subsequently, αSMA-expressing myofibroblasts increased in number in thickened granulation tissue with acceleration of neovascularization and collagen matrix maturation. On such granulation tissue, regenerative epithelial healing progressed, resulting in wound area reduction. Alternative alteration after the micrograft may have increased αSMA-expressing myofibroblasts in granulation tissue, which may act on collagen accumulation, neovascularization and wound contraction. All of these changes are favorable for epithelial regeneration on wound.
Collapse
Affiliation(s)
- Shiro Jimi
- Central Laboratory for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan.
| | - Masahiko Kimura
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 8140180, Japan.
| | - Francesco De Francesco
- Department of Reconstructive Plastic Surgery-Hand Surgery, AOU "Ospedali Riuniti", 60126 Ancona, Italy.
| | - Michele Riccio
- Department of Reconstructive Plastic Surgery-Hand Surgery, AOU "Ospedali Riuniti", 60126 Ancona, Italy.
| | - Shuuji Hara
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 8140180, Japan.
| | - Hiroyuki Ohjimi
- Departments of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan.
| |
Collapse
|
7
|
Wang Y, Terrell AM, Riggio BA, Anand D, Lachke SA, Duncan MK. β1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis. Invest Ophthalmol Vis Sci 2017; 58:3896-3922. [PMID: 28763805 PMCID: PMC5539801 DOI: 10.1167/iovs.17-21721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose Previous research showed that the absence of β1-integrin from the mouse lens after embryonic day (E) 13.5 (β1MLR10) leads to the perinatal apoptosis of lens epithelial cells (LECs) resulting in severe microphthalmia. This study focuses on elucidating the molecular connections between β1-integrin deletion and this phenotype. Methods RNA sequencing was performed to identify differentially regulated genes (DRGs) in β1MLR10 lenses at E15.5. By using bioinformatics analysis and literature searching, Egr1 (early growth response 1) was selected for further study. The activation status of certain signaling pathways (focal adhesion kinase [FAK]/Erk, TGF-β, and Akt signaling) was studied via Western blot and immunohistochemistry. Mice lacking both β1-integrin and Egr1 genes from the lenses were created (β1MLR10/Egr1-/-) to study their relationship. Results RNA sequencing identified 120 DRGs that include candidates involved in the cellular stress response, fibrosis, and/or apoptosis. Egr1 was investigated in detail, as it mediates cellular stress responses in various cell types, and is recognized as an upstream regulator of numerous other β1MLR10 lens DRGs. In β1MLR10 mice, Egr1 levels are elevated shortly after β1-integrin loss from the lens. Further, pErk1/2 and pAkt are elevated in β1MLR10 LECs, thus providing the potential signaling mechanism that causes Egr1 upregulation in the mutant. Indeed, deletion of Egr1 from β1MLR10 lenses partially rescues the microphthalmia phenotype. Conclusions β1-integrin regulates the appropriate levels of Erk1/2 and Akt phosphorylation in LECs, whereas its deficiency results in the overexpression of Egr1, culminating in reduced cell survival. These findings provide insight into the molecular mechanism underlying the microphthalmia observed in β1MLR10 mice.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Anne M. Terrell
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Brittany A. Riggio
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
8
|
Hypoxia-inducible factor-1α promotes glomerulosclerosis and regulates COL1A2 expression through interactions with Smad3. Kidney Int 2016; 90:797-808. [PMID: 27503806 DOI: 10.1016/j.kint.2016.05.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
Abstract
The function of hypoxia-inducible factor-1α (HIF-1α) in chronic kidney disease is disputed. Here we report that interactions of HIF-1α with transforming growth factor-β (TGF-β) signaling may promote its fibrotic effects. Knockout of HIF-1α is protective against glomerulosclerosis and glomerular type-I collagen accumulation in a mouse podocyte ablation model. Transcriptional analysis of cultured renal cells showed that α2(I) collagen expression is directly regulated by HIF-1α binding to a functional hypoxia-responsive element in its promoter at -335 relative to the transcription start site. Activation of COL1A2 transcription by HIF-1α occurred in the absence of hypoxia and is strongly enhanced by TGF-β signaling. TGF-β, in addition to increasing HIF-1α levels, increased both HIF-1α binding to the COL1A2 promoter and HIF-1α N-terminal transactivation domain activity. These effects of TGF-β on HIF-1α were inhibited in Smad3-null mouse embryonic fibroblasts, suggesting a requirement for Smad3. Phosphorylated Smad3 also associated with the -335 hypoxia-responsive element of the COL1A2 promoter independent of a Smad DNA binding sequence. Smad3 binding to the -335 hypoxia-responsive element required HIF-1α both in vitro and in kidney lysate from the disease model, suggesting formation of an HIF-1α-Smad3 transcriptional complex. Thus, HIF-1α-Smad3 has a novel interaction in glomerulosclerosis.
Collapse
|
9
|
Liu X, Hubchak SC, Browne JA, Schnaper HW. Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation. Cell Signal 2014; 26:2276-83. [PMID: 24905473 DOI: 10.1016/j.cellsig.2014.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 12/23/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling plays an important and complex role in renal fibrogenesis. The seemingly simple TGF-β/Smad cascade is intensively regulated at several levels, including crosstalk with other signaling pathways. Epidermal growth factor (EGF) is a potent mitogen for epithelial cells and is elevated in diseased kidneys. In this study, we examined its effect on TGF-β-induced fibrotic changes in human proximal tubular epithelial cells. Simultaneous treatment with EGF specifically inhibited basal and TGF-β-induced type-I collagen and α-smooth muscle actin (αSMA) expression at both mRNA and protein levels. These effects were prevented by inhibition of either the EGF receptor kinase or its downstream MEK kinase but not by blockade of either the JNK or PI3K pathway. Overexpression of a constitutively active MEK1 construct mimicked the inhibitory effect of EGF. Further, EGF suppressed Smad transcriptional activities, as shown by reduced activation of ARE-luc and SBE-luc. Both reductions were prevented by MEK inhibition. However, EGF did not block Smad2 or Smad3 phosphorylation by TGF-β, or Smad2/3 nuclear import. Finally EGF induced the phosphorylation and expression of TGIF, a known TGF-β/Smad repressor. Both the phosphorylation and the induction were blocked by a MEK inhibitor. Overexpression of TGIF abolished TGF-β-induced αSMA promoter activity. Together these results suggest that EGF inhibits two TGF-β-stimulated markers of EMT through EGF receptor tyrosine kinase and downstream ERK activation, but not through PI3K or JNK. The inhibition results from effector mechanisms downstream of Smads, and most likely involves the transcriptional repressor, TGIF.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Susan C Hubchak
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - James A Browne
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - H William Schnaper
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Willis WL, Hariharan S, David JJ, Strauch AR. Transglutaminase-2 mediates calcium-regulated crosslinking of the Y-box 1 (YB-1) translation-regulatory protein in TGFβ1-activated myofibroblasts. J Cell Biochem 2014; 114:2753-69. [PMID: 23804301 DOI: 10.1002/jcb.24624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/25/2013] [Indexed: 01/23/2023]
Abstract
Myofibroblast differentiation is required for wound healing and accompanied by activation of smooth muscle α-actin (SMαA) gene expression. The stress-response protein, Y-box binding protein-1 (YB-1) binds SMαA mRNA and regulates its translational activity. Activation of SMαA gene expression in human pulmonary myofibroblasts by TGFβ1 was associated with formation of denaturation-resistant YB-1 oligomers with selective affinity for a known translation-silencer sequence in SMαA mRNA. We have determined that YB-1 is a substrate for the protein-crosslinking enzyme transglutaminase 2 (TG2) that catalyzes calcium-dependent formation of covalent γ-glutamyl-isopeptide linkages in response to reactive oxygen signaling. TG2 transamidation reactions using intact cells, cell lysates, and recombinant YB-1 revealed covalent crosslinking of the 50 kDa YB-1 polypeptide into protein oligomers that were distributed during SDS-PAGE over a 75-250 kDa size range. In vitro YB-1 transamidation required nanomolar levels of calcium and was enhanced by the presence of SMαA mRNA. In human pulmonary fibroblasts, YB-1 crosslinking was inhibited by (a) anti-oxidant cystamine, (b) the reactive-oxygen antagonist, diphenyleneiodonium, (c) competitive inhibition of TG2 transamidation using the aminyl-surrogate substrate, monodansylcadaverine, and (d) transfection with small-interfering RNA specific for human TG2 mRNA. YB-1 crosslinking was partially reversible as a function of oligomer-substrate availability and TG2 enzyme concentration. Intracellular calcium accumulation and peroxidative stress in injury-activated myofibroblasts may govern SMαA mRNA translational activity during wound healing via TG2-mediated crosslinking of the YB-1 mRNA-binding protein.
Collapse
Affiliation(s)
- William L Willis
- Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| | | | | | | |
Collapse
|
11
|
Jonczyk MS, Simon M, Kumar S, Fernandes VE, Sylvius N, Mallon AM, Denny P, Andrew PW. Genetic factors regulating lung vasculature and immune cell functions associate with resistance to pneumococcal infection. PLoS One 2014; 9:e89831. [PMID: 24594938 PMCID: PMC3940657 DOI: 10.1371/journal.pone.0089831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is an important human pathogen responsible for high mortality and morbidity worldwide. The susceptibility to pneumococcal infections is controlled by as yet unknown genetic factors. To elucidate these factors could help to develop new medical treatments and tools to identify those most at risk. In recent years genome wide association studies (GWAS) in mice and humans have proved successful in identification of causal genes involved in many complex diseases for example diabetes, systemic lupus or cholesterol metabolism. In this study a GWAS approach was used to map genetic loci associated with susceptibility to pneumococcal infection in 26 inbred mouse strains. As a result four candidate QTLs were identified on chromosomes 7, 13, 18 and 19. Interestingly, the QTL on chromosome 7 was located within S. pneumoniae resistance QTL (Spir1) identified previously in a linkage study of BALB/cOlaHsd and CBA/CaOlaHsd F2 intercrosses. We showed that only a limited number of genes encoded within the QTLs carried phenotype-associated polymorphisms (22 genes out of several hundred located within the QTLs). These candidate genes are known to regulate TGFβ signalling, smooth muscle and immune cells functions. Interestingly, our pulmonary histopathology and gene expression data demonstrated, lung vasculature plays an important role in resistance to pneumococcal infection. Therefore we concluded that the cumulative effect of these candidate genes on vasculature and immune cells functions as contributory factors in the observed differences in susceptibility to pneumococcal infection. We also propose that TGFβ-mediated regulation of fibroblast differentiation plays an important role in development of invasive pneumococcal disease. Gene expression data submitted to the NCBI Gene Expression Omnibus Accession No: GSE49533 SNP data submitted to NCBI dbSNP Short Genetic Variation http://www.ncbi.nlm.nih.gov/projects/SNP/snp_viewTable.cgi?handle=MUSPNEUMONIA.
Collapse
Affiliation(s)
- Magda S. Jonczyk
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Michelle Simon
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Saumya Kumar
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Vitor E. Fernandes
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Nicolas Sylvius
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Paul Denny
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Peter W. Andrew
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc Natl Acad Sci U S A 2013; 110:16850-5. [PMID: 24082095 DOI: 10.1073/pnas.1316764110] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myocardin-related transcription factors (MRTFs) regulate cellular contractility and motility by associating with serum response factor (SRF) and activating genes involved in cytoskeletal dynamics. We reported previously that MRTF-A contributes to pathological cardiac remodeling by promoting differentiation of fibroblasts to myofibroblasts following myocardial infarction. Here, we show that forced expression of MRTF-A in dermal fibroblasts stimulates contraction of a collagen matrix, whereas contractility of MRTF-A null fibroblasts is impaired under basal conditions and in response to TGF-β1 stimulation. We also identify an isoxazole ring-containing small molecule, previously shown to induce smooth muscle α-actin gene expression in cardiac progenitor cells, as an agonist of myofibroblast differentiation. Isoxazole stimulates myofibroblast differentiation via induction of MRTF-A-dependent gene expression. The MRTF-SRF signaling axis is activated in response to skin injury, and treatment of dermal wounds with isoxazole accelerates wound closure and suppresses the inflammatory response. These results reveal an important role for MRTF-SRF signaling in dermal myofibroblast differentiation and wound healing and suggest that targeting MRTFs pharmacologically may prove useful in treating diseases associated with inappropriate myofibroblast activity.
Collapse
|
13
|
Arancibia R, Oyarzún A, Silva D, Tobar N, Martínez J, Smith PC. Tumor Necrosis Factor-α Inhibits Transforming Growth Factor-β–Stimulated Myofibroblastic Differentiation and Extracellular Matrix Production in Human Gingival Fibroblasts. J Periodontol 2013; 84:683-93. [DOI: 10.1902/jop.2012.120225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
van Nieuwenhoven FA, Hemmings KE, Porter KE, Turner NA. Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function. Matrix Biol 2013; 32:399-406. [PMID: 23583823 DOI: 10.1016/j.matbio.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/22/2022]
Abstract
During cardiac remodeling, cardiac fibroblasts (CF) are influenced by increased levels of interleukin-1α (IL-1α) and transforming growth factor-β1 (TGFβ1). The present study investigated the interaction between these two important cytokines on function of human CF and their differentiation to myofibroblasts (CMF). CF were isolated from human atrial appendage and exposed to IL-1α and/or TGFβ1 (both 0.1 ng/ml). mRNA expression levels of selected genes were determined after 6-24h by real-time RT-PCR, while protein levels were analyzed at 24-48 h by ELISA or western blot. Activation of canonical signaling pathways (NFκB, Smad3, p38 MAPK) was determined by western blotting. Differentiation to CMF was examined by collagen gel contraction assays. Exposure of CF to IL-1α alone enhanced levels of IL-6, IL-8, matrix metalloproteinase-3 (MMP3) and collagen III (COL3A1), but reduced the CMF markers α-smooth muscle actin (αSMA) and connective tissue growth factor (CTGF/CCN2). By contrast, TGFβ1 alone had minor effects on IL-6, IL-8 and MMP3 levels, but significantly increased levels of the CMF markers αSMA, CTGF, COL1A1 and COL3A1. Co-stimulation with both IL-1α and TGFβ1 increased MMP3 expression synergistically. Furthermore, while TGFβ1 had no effect on IL-1α-induced IL-6 or IL-8 levels, co-stimulation inhibited the TGFβ1-induced increase in αSMA and blocked the gel contraction caused by TGFβ1. Combining IL-1α and TGFβ1 had no apparent effect on their canonical signaling pathways. In conclusion, IL-1α and TGFβ1 act synergistically to stimulate MMP3 expression in CF. Moreover, IL-1α has a dominant inhibitory effect on the phenotypic switch of CF to CMF induced by TGFβ1.
Collapse
Affiliation(s)
- Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Strauch AR, Hariharan S. Dynamic Interplay of Smooth Muscle α-Actin Gene-Regulatory Proteins Reflects the Biological Complexity of Myofibroblast Differentiation. BIOLOGY 2013; 2:555-86. [PMID: 24832798 PMCID: PMC3960882 DOI: 10.3390/biology2020555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 01/06/2023]
Abstract
Myofibroblasts (MFBs) are smooth muscle-like cells that provide contractile force required for tissue repair during wound healing. The leading agonist for MFB differentiation is transforming growth factor β1 (TGFβ1) that induces transcription of genes encoding smooth muscle α-actin (SMαA) and interstitial collagen that are markers for MFB differentiation. TGFβ1 augments activation of Smad transcription factors, pro-survival Akt kinase, and p38 MAP kinase as well as Wingless/int (Wnt) developmental signaling. These actions conspire to activate β-catenin needed for expression of cyclin D, laminin, fibronectin, and metalloproteinases that aid in repairing epithelial cells and their associated basement membranes. Importantly, β-catenin also provides a feed-forward stimulus that amplifies local TGFβ1 autocrine/paracrine signaling causing transition of mesenchymal stromal cells, pericytes, and epithelial cells into contractile MFBs. Complex, mutually interactive mechanisms have evolved that permit several mammalian cell types to activate the SMαA promoter and undergo MFB differentiation. These molecular controls will be reviewed with an emphasis on the dynamic interplay between serum response factor, TGFβ1-activated Smads, Wnt-activated β-catenin, p38/calcium-activated NFAT protein, and the RNA-binding proteins, Purα, Purβ, and YB-1, in governing transcriptional and translational control of the SMαA gene in injury-activated MFBs.
Collapse
Affiliation(s)
- Arthur Roger Strauch
- Department of Physiology & Cell Biology and the Ohio State Biochemistry Program, the Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Seethalakshmi Hariharan
- Department of Physiology & Cell Biology and the Ohio State Biochemistry Program, the Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Kawashima T, Yamazaki R, Matsuzawa Y, Yamaura E, Takabatake M, Otake S, Ikawa Y, Nakamura H, Fujino H, Murayama T. Contrary effects of sphingosine-1-phosphate on expression of α-smooth muscle actin in transforming growth factor β1-stimulated lung fibroblasts. Eur J Pharmacol 2012; 696:120-9. [PMID: 23041148 DOI: 10.1016/j.ejphar.2012.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β1 (TGFβ1) plays a pivotal role in fibrosis in various organs including the lung. Following pulmonary injury, TGFβ1 stimulates conversion of fibroblasts to myofibroblasts that are mainly characterized by up-regulation of α-smooth muscle actin (αSMA) expression, and the resulting excess production of extracellular matrix proteins causes fibrosis with loss of alveolar function. The present study was undertaken to define the role of the sphingosine-1-phosphate (S1P) pathway in TGFβ1-induced expression of αSMA in human fetal lung fibroblasts, HFL1 cells. Analysis of mRNA revealed the existence of S1P(1), S1P(2), and S1P(3) receptor mRNAs. Treatment with TGFβ1 increased sphingosine kinase (SphK) activity and S1P(3) receptor mRNA at 24h after stimulation, and pharmacological data showed the involvement of sphingomyelinase, SphK, and S1P(3) receptor in the TGFβ1-induced up-regulation of αSMA with and without serum. Treatment with pertussis toxin and S1P(1) receptor antagonist W146 enhanced αSMA expression by TGFβ1/serum, and S1P decreased and increased αSMA levels with and without serum, respectively. TGFβ1 increased cyclooxygenase-2 expression in a manner dependent on serum and the sphingomyelinase/SphK pathway, and the response was decreased by pertussis toxin. Prostaglandin E(2), formed by TGFβ1/serum stimulation, decreased the TGFβ1-induced expression of αSMA via EP prostanoid receptor. These data suggest that S1P formed by TGFβ1 stimulation has diverse effects on the expression of αSMA, inhibition via the S1P(1) receptor-mediated and serum-dependent expression of cyclooxygenase-2 and the resulting formation of prostaglandin E(2), and stimulation via the S1P(3) receptor in a serum-independent manner.
Collapse
Affiliation(s)
- Tatsuo Kawashima
- Department of Internal Medicine, Toho University School of Medicine, Sakura Hospital, Sakura City, Chiba 285-8741, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 2012; 58:182-8. [PMID: 22885638 DOI: 10.1016/j.vph.2012.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblasts (CF) play a pivotal role in the repair and remodeling of the heart that occur following myocardial infarction (MI). The transition through the inflammatory, granulation and maturation phases of infarct healing is driven by cellular responses to local levels of cytokines, chemokines and growth factors that fluctuate in a temporal and spatial manner. In the acute inflammatory phase early after MI, CF contribute to the inflammatory milieu through increased secretion of proinflammatory cytokines and chemokines, and they promote extracellular matrix (ECM) degradation by increasing matrix metalloproteinase (MMP) expression and activity. In the granulation phase, CF migrate into the infarct zone, proliferate and produce MMPs and pro-angiogenic molecules to facilitate revascularization. Fibroblasts also undergo a phenotypic change to become myofibroblasts. In the maturation phase, inflammation is reduced by anti-inflammatory cytokines, and increased levels of profibrotic stimuli induce myofibroblasts to synthesize new ECM to form a scar. The scar is contracted through the mechanical force generated by myofibroblasts, preventing cardiac dilation. In this review we discuss the transition from myocardial inflammation to fibrosis with particular focus on how CF respond to alterations in proinflammatory and profibrotic signals. By furthering our understanding of these events, it is hoped that new therapeutic interventions will be developed that selectively reduce adverse myocardial remodeling post-MI, while sparing essential repair mechanisms.
Collapse
|
18
|
Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. BIOCHEMISTRY (MOSCOW) 2012; 76:1402-33. [PMID: 22339596 DOI: 10.1134/s0006297911130049] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review describes the structure and functions of Y-box binding protein 1 (YB-1) and its homologs. Interactions of YB-1 with DNA, mRNAs, and proteins are considered. Data on the participation of YB-1 in DNA reparation and transcription, mRNA splicing and translation are systematized. Results on interactions of YB-1 with cytoskeleton components and its possible role in mRNA localization are discussed. Data on intracellular distribution of YB-1, its redistribution between the nucleus and the cytoplasm, and its secretion and extracellular functions are summarized. The effect of YB-1 on cell differentiation, its involvement in extra- and intracellular signaling pathways, and its role in early embryogenesis are described. The mechanisms of regulation of YB-1 expression in the cell are presented. Special attention is paid to the involvement of YB-1 in oncogenic cell transformation, multiple drug resistance, and dissemination of tumors. Both the oncogenic and antioncogenic activities of YB-1 are reviewed. The potential use of YB-1 in diagnostics and therapy as an early cancer marker and a molecular target is discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
19
|
David JJ, Subramanian SV, Zhang A, Willis WL, Kelm RJ, Leier CV, Strauch AR. Y-box binding protein-1 implicated in translational control of fetal myocardial gene expression after cardiac transplant. Exp Biol Med (Maywood) 2012; 237:593-607. [PMID: 22619371 DOI: 10.1258/ebm.2012.011137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peri-transplant surgical trauma and ischemia/reperfusion injury in accepted murine heterotopic heart grafts has been associated with myofibroblast differentiation, cardiac fibrosis and biomechanical-stress activation of the fetal myocardial smooth muscle α-actin (SMαA) gene. The wound-healing agonists, transforming growth factor β1 and thrombin, are known to coordinate SMαA mRNA transcription and translation in activated myofibroblasts by altering the subcellular localization and mRNA-binding affinity of the Y-box binding protein-1 (YB-1) cold-shock domain (CSD) protein that governs a variety of cellular responses to metabolic stress. YB-1 accumulated in polyribosome-enriched regions of the sarcoplasm proximal to cardiac intercalated discs in accepted heart grafts. YB-1 binding to a purine-rich motif in exon 3 of SMαA mRNA that regulates translational efficiency increased substantially in perfusion-isolated, rod-shaped adult rat cardiomyocytes during phenotypic de-differentiation in the presence of serum-derived growth factors. Cardiomyocyte de-differentiation was accompanied by the loss of a 60 kDa YB-1 variant that was highly expressed in both adult myocardium and freshly isolated myocytes and replacement with the 50 kDa form of YB-1 (p50) typically expressed in myofibroblasts that demonstrated sequence-specific interaction with SMαA mRNA. Accumulation of p50 YB-1 in reprogrammed, de-differentiated myocytes was associated with a 10-fold increase in SMαA protein expression. Endomyocardial biopsies collected from patients up to 14 years after heart transplant showed variable yet coordinately elevated expression of SMαA and p50 YB-1 protein and demonstrable p50 YB-1:SMαA mRNA interaction. The p60 YB-1 variant in human heart graft samples, but neither mouse p60 nor mouse or human p50, reacted with an antibody specific for the phosphoserine 102 modification in the YB-1 CSD. Modulation of YB-1 subcellular compartmentalization and mRNA-binding activity may be linked with reprogramming of contractile protein gene expression in ventricular cardiomyocytes that could contribute to maladaptive remodeling in accepted, long-term heart grafts.
Collapse
Affiliation(s)
- Jason J David
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Shin HW, Cho K, Kim DW, Han DH, Khalmuratova R, Kim SW, Jeon SY, Min YG, Lee CH, Rhee CS, Park JW. Hypoxia-inducible Factor 1 Mediates Nasal Polypogenesis by Inducing Epithelial-to-Mesenchymal Transition. Am J Respir Crit Care Med 2012; 185:944-54. [DOI: 10.1164/rccm.201109-1706oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Bandow K, Kusuyama J, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T. LPS-induced chemokine expression in both MyD88-dependent and -independent manners is regulated by Cot/Tpl2-ERK axis in macrophages. FEBS Lett 2012; 586:1540-6. [PMID: 22673523 DOI: 10.1016/j.febslet.2012.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/09/2012] [Accepted: 04/14/2012] [Indexed: 12/30/2022]
Abstract
LPS signaling is mediated through MyD88-dependent and -independent pathways, activating NF-?B, MAP kinases and IRF3. Cot/Tpl2 is an essential upstream kinase in LPS-mediated activation of ERKs. Here we explore the roles of MyD88 and Cot/Tpl2 in LPS-induced chemokine expression by studying myd88(-/-) and cot/tpl2(-/-) macrophages. Among the nine LPS-responsive chemokines examined, mRNA induction of ccl5, cxcl10, and cxcl13 is mediated through the MyD88-independent pathway. Notably, Cot/Tpl2-ERK signaling axis exerts negative effects on the expression of these three chemokines. In contrast, LPS-induced gene expression of ccl2, ccl7, cxcl2, cxcl3, ccl8, and cxcl9 is mediated in the MyD88-dependent manner. The Cot/Tpl2-ERK axis promotes the expression of the first four and inhibits the expression of the latter two. Thus, LPS induces expression of multiple chemokines through various signaling pathways in macrophages.
Collapse
Affiliation(s)
- Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University, Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Järvinen PM, Myllärniemi M, Liu H, Moore HM, Leppäranta O, Salmenkivi K, Koli K, Latonen L, Band AM, Laiho M. Cysteine-rich protein 1 is regulated by transforming growth factor-β1 and expressed in lung fibrosis. J Cell Physiol 2012; 227:2605-12. [PMID: 21882188 DOI: 10.1002/jcp.23000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-β (TGF-β) is a diverse cytokine regulating growth, apoptosis, differentiation, adhesion, invasion, and extracellular matrix production. Dysregulation of TGF-β is associated with fibrotic disorders and epithelial-mesenchymal transition, and has been linked with idiopathic pulmonary fibrosis (IPF). Cysteine-rich protein 1 (CRP1) is a small LIM-domain containing protein involved in smooth muscle differentiation. Here, we show that TGF-β1 increases the expression of CRP1 protein and that CRP1 levels increase in a biphasic fashion. A rapid transient (15-45 min) increase in CRP1 is followed by a subsequent, sustained increase in CRP1 a few hours afterwards that lasts several days. We find that TGF-β1 regulates the expression of CRP1 through Smad and non-conventional p38 MAPK signaling pathways in a transcription-independent manner and that the induction occurs concomitant with an increase in myofibroblast differentiation. Using CRP1 silencing by shRNA, we identify CRP1 as a novel factor mediating cell contractility. Furthermore, we localize CRP1 to fibroblastic foci in IPF lungs and find that CRP1 is significantly more expressed in IPF as compared to control lung tissue. The results show that CRP1 is a novel TGF-β1 regulated protein that is expressed in fibrotic lesions and may be relevant in the IPF disease.
Collapse
Affiliation(s)
- Päivi M Järvinen
- Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thomson EM, Williams A, Yauk CL, Vincent R. Overexpression of tumor necrosis factor-α in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1413-30. [PMID: 22322299 DOI: 10.1016/j.ajpath.2011.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 12/03/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
Increased production of tumor necrosis factor (TNF)-α and matrix metalloproteinases (MMPs) is a feature of inflammatory lung diseases, including emphysema and fibrosis, but the divergent pathological characteristics that result indicate involvement of other processes in disease pathogenesis. Transgenic mice overexpressing TNF-α in type II alveolar epithelial cells under the control of the surfactant protein (SP)-C promoter develop pulmonary inflammation and emphysema but are resistant to induction of fibrosis by administration of bleomycin or transforming growth factor-β. To study the molecular mechanisms underlying the development of this phenotype, we used a microarray approach to characterize the pulmonary transcriptome of SP-C/TNF-α mice and wild-type littermates. Four-month-old SP-C/TNF-α mice displayed pronounced pulmonary inflammation, airspace enlargement, increased MMP-2 and MMP-9 levels, and altered expression of 2332 probes. The functional assessment of genes with increased expression revealed enrichment of inflammatory/immune responses and proteases, whereas genes involved in protease inhibition, angiogenesis, cross-linking of basement membrane proteins, and myofibroblast differentiation were predominantly decreased. Comparison with multiple lung disease models identified a set of genes unique to the SP-C/TNF-α model and revealed that lack of extracellular matrix production distinguished SP-C/TNF-α mice from fibrosis models. Activation of inflammatory and proteolytic pathways and disruption of maintenance and repair processes are central features of emphysema in this TNF-overexpression model. Impairment of myofibroblast differentiation and extracellular matrix production may underlie resistance to induction of fibrosis.
Collapse
Affiliation(s)
- Errol M Thomson
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
24
|
Abstract
During wound healing, contractile fibroblasts called myofibroblasts regulate the formation and contraction of granulation tissue; however, pathological and persistent myofibroblast activation, which occurs in hypertrophic scars or tissue fibrosis, results in a loss of function. Many reviews outline the cellular and molecular features of myofibroblasts and their roles in a variety of diseases. This review focuses on the origins of myofibroblasts and the factors that control their differentiation and prolonged survival in fibrotic tissues. Pulmonary fibrosis is used to illustrate many key points, but examples from other tissues and models are also included. Myofibroblasts originate mostly from tissue-resident fibroblasts, and also from epithelial and endothelial cells or other mesenchymal precursors. Their differentiation is influenced by cytokines, growth factors, extracellular matrix composition and stiffness, and cell surface molecules such as proteoglycans and THY1, among other factors. Many of these effects are modulated by cell contraction. Myofibroblasts resist programmed cell death, which promotes their accumulation in fibrotic tissues. The cause of resistance to apoptosis in myofibroblasts is under ongoing investigation, but many of the same stimuli that regulate their differentiation are involved. The contributions of oxidative stress, the WNT-β-catenin pathway and PPARγ to myofibroblast differentiation and survival are increasingly appreciated.
Collapse
|
25
|
Schutte SC, Chen Z, Brockbank KGM, Nerem RM. Tissue engineering of a collagen-based vascular media: Demonstration of functionality. Organogenesis 2011; 6:204-11. [PMID: 21220958 DOI: 10.4161/org.6.4.12651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The property of vasoactivity is important for both resistance vessels and larger arteries. Evaluation of smooth muscle cell phenotype is often done in place of functional testing in engineered tissues, assuming a direct correlation between cell phenotype and tissue contractile force. In this study we look at a large panel of vasoactive agents to determine the functionality of our collagen-based tissue. The engineered vascular media elicited a measurable change in force in response to seven of the nine agents used. As part of this characterization, TGF-β1 and TNF-α were used to promote a more contractile and synthetic cell phenotype respectively. Both smooth muscle α-actin and vasoconstriction were evaluated in ring sections. Due to large differences in cell-compaction and cell distribution in the tissues, no correlation was found between α-actin expression and contractile strength. This highlights the need for functional testing of engineered tissue and the importance of cell-matrix interactions in vasoactivity.
Collapse
Affiliation(s)
- Stacey C Schutte
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | |
Collapse
|
26
|
Suppression of osteosarcoma cell invasion by chemotherapy is mediated by urokinase plasminogen activator activity via up-regulation of EGR1. PLoS One 2011; 6:e16234. [PMID: 21283769 PMCID: PMC3024416 DOI: 10.1371/journal.pone.0016234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms of tumour response following chemotherapy are largely unknown. We found that low dose anti-tumour agents up-regulate early growth response 1 (EGR1) expression. EGR1 is a member of the immediate-early gene group of transcription factors which modulate transcription of multiple genes involved in cell proliferation, differentiation, and development. It has been reported that EGR1 act as either tumour promoting factor or suppressor. We therefore examined the expression and function of EGR1 in osteosarcoma. METHODS We investigated the expression of EGR1 in human osteosarcoma cell lines and biopsy specimens. We next examined the expression of EGR1 following anti-tumour agents treatment. To examine the function of EGR1 in osteosarcoma, we assessed the tumour growth and invasion in vitro and in vivo. RESULTS Real-time PCR revealed that EGR1 was down-regulated both in osteosarcoma cell lines and osteosarcoma patients' biopsy specimens. In addition, EGR1 was up-regulated both in osteosarcoma patient' specimens and osteosarcoma cell lines following anti-tumour agent treatment. Although forced expression of EGR1 did not prevent osteosarcoma growth, forced expression of EGR1 prevented osteosarcoma cell invasion in vitro. In addition, forced expression of EGR1 promoted down-regulation of urokinase plasminogen activator, urokinase receptor, and urokinase plasminogen activity. Xenograft mice models showed that forced expression of EGR1 prevents osteosarcoma cell migration into blood vessels. CONCLUSIONS These findings suggest that although chemotherapy could not prevent osteosarcoma growth in chemotherapy-resistant patients, it did prevent osteosarcoma cell invasion by down-regulation of urokinase plasminogen activity via up-regulation of EGR1 during chemotherapy periods.
Collapse
|
27
|
Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B, Lassègue B, San Martín A, Griendling KK. NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor. Free Radic Biol Med 2011; 50:354-62. [PMID: 21074607 PMCID: PMC3032946 DOI: 10.1016/j.freeradbiomed.2010.11.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 10/12/2010] [Accepted: 11/04/2010] [Indexed: 12/18/2022]
Abstract
In contrast to other cell types, vascular smooth muscle cells modify their phenotype in response to external signals. NADPH oxidase 4 (Nox4) is critical for maintenance of smooth muscle gene expression; however, the underlying mechanisms are incompletely characterized. Using smooth muscle α-actin (SMA) as a prototypical smooth muscle gene and transforming growth factor-β (TGF-β) as a differentiating agent, we examined Nox4-dependent signaling. TGF-β increases Nox4 expression and activity in human aortic smooth muscle cells (HASMC). Transfection of HASMC with siRNA against Nox4 (siNox4) abolishes TGF-β-induced SMA expression and stress fiber formation. siNox4 also significantly inhibits TGF-β-stimulated p38MAPK phosphorylation, as well as that of its substrate, mitogen-activated protein kinase-activated protein kinase-2. Moreover, the p38MAPK inhibitor SB-203580 nearly completely blocks the SMA increase induced by TGF-β. Inhibition of either p38MAPK or NADPH oxidase-derived reactive oxygen species impairs the TGF-β-induced phosphorylation of Ser103 on serum response factor (SRF) and reduces its transcriptional activity. Binding of SRF to myocardin-related transcription factor (MRTF) is also necessary, because downregulation of MRTF by siRNA abolishes TGF-β-induced SMA expression. Taken together, these data suggest that Nox4 regulates SMA expression via activation of a p38MAPK/SRF/MRTF pathway in response to TGF-β.
Collapse
Affiliation(s)
- Abel Martin-Garrido
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abdul-Salam VB, Wharton J, Cupitt J, Berryman M, Edwards RJ, Wilkins MR. Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension. Circulation 2010; 122:2058-67. [PMID: 21041689 DOI: 10.1161/circulationaha.110.972745] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension is a disorder of vascular remodeling causing increased resistance to pulmonary blood flow. The expression of proteins in lungs from pulmonary arterial hypertension patients was investigated in an unbiased approach to further understand the pathobiology of this disease. METHODS AND RESULTS Label-free liquid chromatography tandem mass spectrometry was used to compare protein profiles in surgical samples of lungs from 8 patients with pulmonary arterial hypertension and 8 control subjects. More than 300 proteins were detected. On the basis of robust criteria, the levels of 25 proteins varied between the 2 groups. The majority of upregulated proteins were associated with cell growth, proliferation, and cell metabolism. Novel findings included an increased expression of chloride intracellular channel 4, receptor for advanced glycation end products, and periostin. Increased expression of chloride intracellular channel 4, a multifunctional protein involved in angiogenesis, and several signaling pathways implicated in pulmonary arterial hypertension--transforming growth factor-β, vascular endothelial growth factor, and bone morphogenetic protein--was confirmed by Western blotting and localized predominantly to endothelial cells in occlusive and plexiform vascular lesions. CONCLUSIONS Label-free proteomics identified differences in the expression of several proteins in the pulmonary arterial hypertension lung, many of which are relevant to the disease process. Increased expression of chloride intracellular channel 4 may be pertinent to the disorganized angiogenesis of plexiform lesions.
Collapse
Affiliation(s)
- Vahitha B Abdul-Salam
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
29
|
Romero DG, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II-regulated transcription regulatory genes in adrenal steroidogenesis. Physiol Genomics 2010; 42A:259-66. [PMID: 20876845 DOI: 10.1152/physiolgenomics.00098.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription regulatory genes are crucial modulators of cell physiology and metabolism whose intracellular levels are tightly controlled in response to extracellular stimuli. We previously reported a set of 29 transcription regulatory genes modulated by angiotensin II in H295R human adrenocortical cells and their roles in regulating the expression of the last and unique enzymes of the glucocorticoid and mineralocorticoid biosynthetic pathways, 11β-hydroxylase and aldosterone synthase, respectively, using gene expression reporter assays. To study the effect of this set of transcription regulatory genes on adrenal steroidogenesis, H295R cells were transfected by high-efficiency nucleofection and aldosterone and cortisol were measured in cell culture supernatants under basal and angiotensin II-stimulated conditions. BCL11B, BHLHB2, CITED2, ELL2, HMGA1, MAFF, NFIL3, PER1, SERTAD1, and VDR significantly stimulated aldosterone secretion, while EGR1, FOSB, and ZFP295 decreased aldosterone secretion. BTG2, HMGA1, MITF, NR4A1, and ZFP295 significantly increased cortisol secretion, while BCL11B, NFIL3, PER1, and SIX2 decreased cortisol secretion. We also report the effect of some of these regulators on the expression of endogenous aldosterone synthase and 11β-hydroxylase under basal and angiotensin II-stimulated conditions. In summary, this study reports for the first time the effects of a set of angiotensin II-modulated transcription regulatory genes on aldosterone and cortisol secretion and the expression levels of the last and unique enzymes of the mineralocorticoid and glucocorticoid biosynthetic pathways. Abnormal regulation of mineralocorticoid or glucocorticoid secretion is involved in several pathophysiological conditions. These transcription regulatory genes may be involved in adrenal steroidogenesis pathologies; thus they merit additional study as potential candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Damian G Romero
- Endocrinology, G. V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | |
Collapse
|
30
|
Fortin J, Bernard DJ. SMAD3 and EGR1 physically and functionally interact in promoter-specific fashion. Cell Signal 2010; 22:936-43. [PMID: 20149866 DOI: 10.1016/j.cellsig.2010.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/30/2010] [Indexed: 11/25/2022]
Abstract
Gonadotropin-releasing hormone (GNRH1) stimulates luteinizing hormone beta subunit (LHB/Lhb) transcription. The transforming growth factor beta superfamily ligand activin A partially inhibits this effect on the human LHB promoter while potentiating GNRH1-induction of the murine Lhb gene. Here, we investigated the mechanisms underlying the species-specific modulation of the GNRH1 response by activin signalling. GNRH1 stimulates LHB/Lhb transcription via induction of early-growth response 1 (EGR1), which binds to the proximal promoter of both species. Activin A decreased GNRH1-induced recruitment of EGR1 to the human, but not murine, promoter. We hypothesized that the activin A signalling protein, SMAD3, might play a role in this system. Indeed, we observed both physical and functional interactions between SMAD3 and EGR1. The two proteins interacted via the SMAD3 MH2 domain and the EGR1 DNA-binding domain. Analogous to the species-specific activin A effect on the GNRH1 response, SMAD3 over-expression partially inhibited EGR1-induction of the human promoter, while potentiating EGR1-induced murine Lhb promoter activity. The proximal murine Lhb promoter contains three minimal SMAD-binding elements (SBEs) that are absent from human LHB. Introduction of the SBEs into the human promoter converted SMAD3 from an inhibitor to a stimulator of EGR1-induced transcription. The converse was observed when the SBEs in the murine promoter were replaced by the corresponding human sequences. Together, our results suggest a model in which activin A inhibits GNRH1-induction of human LHB transcription via an interaction between SMAD3 and EGR1 that inhibits the latter's recruitment to the proximal promoter. In contrast, in mouse, the presence of SBEs in the promoter allows SMAD3 and EGR1 to function synergistically to regulate Lhb transcription. The basis for their functional cooperativity is not completely clear, but may involve enhancement of EGR1's physical interaction with other important co-factors, including paired-like homeodomain transcription factor 1 (PITX1).
Collapse
Affiliation(s)
- Jérôme Fortin
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1315, Montréal, QC, Canada H3G 1Y6
| | | |
Collapse
|
31
|
Mattyasovszky SG, Hofmann A, Brochhausen C, Ritz U, Kuhn S, Wollstädter J, Schulze-Koops H, Müller LP, Watzer B, Rommens PM. The effect of the pro-inflammatory cytokine tumor necrosis factor-alpha on human joint capsule myofibroblasts. Arthritis Res Ther 2010; 12:R4. [PMID: 20064200 PMCID: PMC2875629 DOI: 10.1186/ar2902] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 11/17/2009] [Accepted: 01/08/2010] [Indexed: 11/26/2022] Open
Abstract
Introduction Previous studies have shown that the number of myoblastically differentiated fibroblasts known as myofibroblasts (MFs) is significantly increased in stiff joint capsules, indicating their crucial role in the pathogenesis of post-traumatic joint stiffness. Although the mode of MFs' function has been well defined for different diseases associated with tissue fibrosis, the underlying mechanisms of their regulation in the pathogenesis of post-traumatic joint capsule contracture are largely unknown. Methods In this study, we examined the impact of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) on cellular functions of human joint capsule MFs. MFs were challenged with different concentrations of TNF-α with or without both its specifically inactivating antibody infliximab (IFX) and cyclooxygenase-2 (COX2) inhibitor diclofenac. Cell proliferation, gene expression of both alpha-smooth muscle actin (α-SMA) and collagen type I, the synthesis of prostaglandin derivates E2, F1A, and F2A, as well as the ability to contract the extracellular matrix were assayed in monolayers and in a three-dimensional collagen gel contraction model. The α-SMA and COX2 protein expressions were evaluated by immunofluorescence staining and Western blot analysis. Results The results indicate that TNF-α promotes cell viability and proliferation of MFs, but significantly inhibits the contraction of the extracellular matrix in a dose-dependent manner. This effect was associated with downregulation of α-SMA and collagen type I by TNF-α application. Furthermore, we found a significant time-dependent upregulation of prostaglandin E2 synthesis upon TNF-α treatment. The effect of TNF-α on COX2-positive MFs could be specifically prevented by IFX and partially reduced by the COX2 inhibitor diclofenac. Conclusions Our results provide evidence that TNF-α specifically modulates the function of MFs through regulation of prostaglandin E2 synthesis and therefore may play a crucial role in the pathogenesis of joint capsule contractures.
Collapse
Affiliation(s)
- Stefan G Mattyasovszky
- Department of Trauma and Orthopaedic Surgery, Johannes Gutenberg University School of Medicine, Langenbeckstr, 1, 55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kimani PW, Holmes AJ, Grossmann RE, McGowan SE. PDGF-Ralpha gene expression predicts proliferation, but PDGF-A suppresses transdifferentiation of neonatal mouse lung myofibroblasts. Respir Res 2009; 10:119. [PMID: 19939260 PMCID: PMC2799395 DOI: 10.1186/1465-9921-10-119] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 11/25/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Ralpha, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Ralpha correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (alphaSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects alphaSMA or modifies stimulation by transforming growth factor beta (TGFbeta). METHODS Using flow cytometry we examined PDGF-Ralpha, alphaSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Ralpha expression. Using real-time RT-PCR we quantified alphaSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFbeta. RESULTS The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Ralpha. At P4, more of the higher than lower PDGF-Ralpha + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the alphaSMA + but not the alphaSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Ralpha + and alphaSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Ralpha + and alphaSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Ralpha- and alphaSMA-. More of the PDGF-Ralpha + than - fibroblasts contained alphaSMA at both P4 and P12. In the lung, proximate alphaSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Ralpha at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Ralpha-, but not in PDGF-Ralpha + cells. In Mlg fibroblasts, alphaSMA mRNA increased after exposure to TGFbeta, but declined after treatment with PDGF-A. CONCLUSION During both septal eruption (P4) and elongation (P12), alveolar PDGF-Ralpha may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate alphaSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Ralpha more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFbeta may overshadow the antagonistic effects of PDGF-A/PDGF-Ralpha signaling, enhancing alphaSMA-abundance in PDGF-Ralpha-expressing fibroblasts.
Collapse
Affiliation(s)
- Patricia W Kimani
- Molecular and Cellular Biology Ph.D. program, University of Iowa, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|