1
|
de Jager L, Jansen KI, Hoogebeen R, Akhmanova A, Kapitein LC, Förster F, Howes SC. StableMARK-decorated microtubules in cells have expanded lattices. J Cell Biol 2025; 224:e202206143. [PMID: 39387699 PMCID: PMC11471893 DOI: 10.1083/jcb.202206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Microtubules are crucial in cells and are regulated by various mechanisms like posttranslational modifications, microtubule-associated proteins, and tubulin isoforms. Recently, the conformation of the microtubule lattice has also emerged as a potential regulatory factor, but it has remained unclear to what extent different lattices co-exist within the cell. Using cryo-electron tomography, we find that, while most microtubules have a compacted lattice (∼41 Å monomer spacing), approximately a quarter of the microtubules displayed more expanded lattice spacings. The addition of the microtubule-stabilizing agent Taxol increased the lattice spacing of all microtubules, consistent with results on reconstituted microtubules. Furthermore, correlative cryo-light and electron microscopy revealed that the stable subset of microtubules labeled by StableMARK, a marker for stable microtubules, predominantly displayed a more expanded lattice spacing (∼41.9 Å), further suggesting a close connection between lattice expansion and microtubule stability. The coexistence of different lattices and their correlation with stability implicate lattice spacing as an important factor in establishing specific microtubule subsets.
Collapse
Affiliation(s)
- Leanne de Jager
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Klara I. Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Robin Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Stuart C. Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
3
|
Sun S, Xu Z, He L, Shen Y, Yan Y, Lv X, Zhu X, Li W, Tian WY, Zheng Y, Lin S, Sun Y, Li L. Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed α-tubulin lactylation. Nat Commun 2024; 15:8377. [PMID: 39333081 PMCID: PMC11437170 DOI: 10.1038/s41467-024-52729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Posttranslational modifications (PTMs) of tubulin, termed the "tubulin code", play important roles in regulating microtubule functions within subcellular compartments for specialized cellular activities. While numerous tubulin PTMs have been identified, a comprehensive understanding of the complete repertoire is still underway. In this study, we report that α-tubulin lactylation is catalyzed by HDAC6 by using lactate to increase microtubule dynamics in neurons. We identify lactylation on lysine 40 of α-tubulin in the soluble tubulin dimers. Notably, lactylated α-tubulin enhances microtubule dynamics and facilitates neurite outgrowth and branching in cultured hippocampal neurons. Moreover, we discover an unexpected function of HDAC6, acting as the primary lactyltransferase to catalyze α-tubulin lactylation. HDAC6-catalyzed lactylation is a reversible process, dependent on lactate concentrations. Intracellular lactate concentration triggers HDAC6 to lactylate α-tubulin, a process dependent on its deacetylase activity. Additionally, the lactyltransferase activity may be conserved in HDAC family proteins. Our study reveals the primary role of HDAC6 in regulating α-tubulin lactylation, establishing a link between cell metabolism and cytoskeleton functions.
Collapse
Affiliation(s)
- Shuangshuang Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhe Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liying He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yihui Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuqing Yan
- Department of Pain management, HuaDong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xubing Lv
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xujing Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Wei-Ya Tian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yongjun Zheng
- Department of Pain management, HuaDong Hospital Affiliated to Fudan University, Shanghai, China
| | - Sen Lin
- Department of Neurology, 2nd Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
4
|
Bak J, Brummelkamp TR, Perrakis A. Decoding microtubule detyrosination: enzyme families, structures, and functional implications. FEBS Lett 2024; 598:1453-1464. [PMID: 38811347 DOI: 10.1002/1873-3468.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Microtubules are a major component of the cytoskeleton and can accumulate a plethora of modifications. The microtubule detyrosination cycle is one of these modifications; it involves the enzymatic removal of the C-terminal tyrosine of α-tubulin on assembled microtubules and the re-ligation of tyrosine on detyrosinated tubulin dimers. This modification cycle has been implicated in cardiac disease, neuronal development, and mitotic defects. The vasohibin and microtubule-associated tyrosine carboxypeptidase enzyme families are responsible for microtubule detyrosination. Their long-sought discovery allows to review and summarise differences and similarities between the two enzymes families and discuss how they interplay with other modifications and functions of the tubulin code.
Collapse
Affiliation(s)
- Jitske Bak
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Montgomery AC, Mendoza CS, Garbouchian A, Quinones GB, Bentley M. Polarized transport requires AP-1-mediated recruitment of KIF13A and KIF13B at the trans-Golgi. Mol Biol Cell 2024; 35:ar61. [PMID: 38446634 PMCID: PMC11151104 DOI: 10.1091/mbc.e23-10-0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Neurons are polarized cells that require accurate membrane trafficking to maintain distinct protein complements at dendritic and axonal membranes. The Kinesin-3 family members KIF13A and KIF13B are thought to mediate dendrite-selective transport, but the mechanism by which they are recruited to polarized vesicles and the differences in the specific trafficking role of each KIF13 have not been defined. We performed live-cell imaging in cultured hippocampal neurons and found that KIF13A is a dedicated dendrite-selective kinesin. KIF13B confers two different transport modes, dendrite- and axon-selective transport. Both KIF13s are maintained at the trans-Golgi network by interactions with the heterotetrameric adaptor protein complex AP-1. Interference with KIF13 binding to AP-1 resulted in disruptions to both dendrite- and axon-selective trafficking. We propose that AP-1 is the molecular link between the sorting of polarized cargoes into vesicles and the recruitment of kinesins that confer polarized transport.
Collapse
Affiliation(s)
- Andrew C Montgomery
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Christina S Mendoza
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alex Garbouchian
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Geraldine B Quinones
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
6
|
Alberti C, Rizzo F, Anastasia A, Comi G, Corti S, Abati E. Charcot-Marie-tooth disease type 2A: An update on pathogenesis and therapeutic perspectives. Neurobiol Dis 2024; 193:106467. [PMID: 38452947 DOI: 10.1016/j.nbd.2024.106467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Mutations in the gene encoding MFN2 have been identified as associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a broad clinical phenotype involving the entire nervous system. MFN2, a dynamin-like GTPase protein located on the outer mitochondrial membrane, is well-known for its involvement in mitochondrial fusion. Numerous studies have demonstrated its participation in a network crucial for various other mitochondrial functions, including mitophagy, axonal transport, and its controversial role in endoplasmic reticulum (ER)-mitochondria contacts. Considerable progress has been made in the last three decades in elucidating the disease pathogenesis, aided by the generation of animal and cellular models that have been instrumental in studying disease physiology. A review of the literature reveals that, up to now, no definitive pharmacological treatment for any CMT2A variant has been established; nonetheless, recent years have witnessed substantial progress. Many treatment approaches, especially concerning molecular therapy, such as histone deacetylase inhibitors, peptide therapy to increase mitochondrial fusion, the new therapeutic strategies based on MF1/MF2 balance, and SARM1 inhibitors, are currently in preclinical testing. The literature on gene silencing and gene replacement therapies is still limited, except for a recent study by Rizzo et al.(Rizzo et al., 2023), which recently first achieved encouraging results in in vitro and in vivo models of the disease. The near-future goal for these promising therapies is to progress to the stage of clinical translation.
Collapse
Affiliation(s)
- Claudia Alberti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Federica Rizzo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Anastasia
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Comi
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy; Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy; Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy; Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
7
|
Andreu-Carbó M, Egoldt C, Velluz MC, Aumeier C. Microtubule damage shapes the acetylation gradient. Nat Commun 2024; 15:2029. [PMID: 38448418 PMCID: PMC10918088 DOI: 10.1038/s41467-024-46379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The properties of single microtubules within the microtubule network can be modulated through post-translational modifications (PTMs), including acetylation within the lumen of microtubules. To access the lumen, the enzymes could enter through the microtubule ends and at damage sites along the microtubule shaft. Here we show that the acetylation profile depends on damage sites, which can be caused by the motor protein kinesin-1. Indeed, the entry of the deacetylase HDAC6 into the microtubule lumen can be modulated by kinesin-1-induced damage sites. In contrast, activity of the microtubule acetylase αTAT1 is independent of kinesin-1-caused shaft damage. On a cellular level, our results show that microtubule acetylation distributes in an exponential gradient. This gradient results from tight regulation of microtubule (de)acetylation and scales with the size of the cells. The control of shaft damage represents a mechanism to regulate PTMs inside the microtubule by giving access to the lumen.
Collapse
Affiliation(s)
| | - Cornelia Egoldt
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | | | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
8
|
Riboul DV, Crill S, Oliva CD, Restifo MG, Joseph R, Joseph K, Nguyen KC, Hall DH, Fily Y, Macleod GT. Ultrastructural analysis reveals mitochondrial placement independent of synapse placement in fine caliber C. elegans neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542959. [PMID: 37398149 PMCID: PMC10312582 DOI: 10.1101/2023.05.30.542959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neurons rely on mitochondria for an efficient supply of ATP and other metabolites. However, while neurons are highly elongated, mitochondria are discrete and limited in number. Due to the slow rates of diffusion over long distances it follows that neurons would benefit from an ability to control the distribution of mitochondria to sites of high metabolic activity, such as synapses. It is assumed that neurons' possess this capacity, but ultrastructural data over substantial portions of a neuron's extent that would allow for tests of such hypotheses are scarce. Here, we mined the Caenorhabditis elegans electron micrographs of John White and Sydney Brenner and found systematic differences in average mitochondrial length (ranging from 1.3 to 2.4 μm), volume density (3.7% to 6.5%) and diameter (0.18 to 0.24 μm) between neurons of different neurotransmitter type and function, but found limited differences in mitochondrial morphometrics between axons and dendrites of the same neurons. Analyses of distance intervals found mitochondria to be distributed randomly with respect to presynaptic specializations, and an indication that mitochondria were displaced from postsynaptic specializations. Presynaptic specializations were primarily localized to varicosities, but mitochondria were no more likely to be found in synaptic varicosities than non-synaptic varicosities. Consistently, mitochondrial volume density was no greater in varicosities with synapses. Therefore, beyond the capacity to disperse mitochondria throughout their length, at least in C. elegans, fine caliber neurons manifest limited sub-cellular control of mitochondrial size and distribution.
Collapse
|
9
|
Nambiar A, Manjithaya R. Driving autophagy - the role of molecular motors. J Cell Sci 2024; 137:jcs260481. [PMID: 38329417 DOI: 10.1242/jcs.260481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Most of the vesicular transport pathways inside the cell are facilitated by molecular motors that move along cytoskeletal networks. Autophagy is a well-explored catabolic pathway that is initiated by the formation of an isolation membrane known as the phagophore, which expands to form a double-membraned structure that captures its cargo and eventually moves towards the lysosomes for fusion. Molecular motors and cytoskeletal elements have been suggested to participate at different stages of the process as the autophagic vesicles move along cytoskeletal tracks. Dynein and kinesins govern autophagosome trafficking on microtubules through the sequential recruitment of their effector proteins, post-translational modifications and interactions with LC3-interacting regions (LIRs). In contrast, myosins are actin-based motors that participate in various stages of the autophagic flux, as well as in selective autophagy pathways. However, several outstanding questions remain with regard to how the dominance of a particular motor protein over another is controlled, and to the molecular mechanisms that underlie specific disease variants in motor proteins. In this Review, we aim to provide an overview of the role of molecular motors in autophagic flux, as well as highlight their dysregulation in diseases, such as neurodegenerative disorders and pathogenic infections, and ageing.
Collapse
Affiliation(s)
- Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
10
|
Selvarasu K, Singh AK, Dakshinamoorthy A, Sreenivasmurthy SG, Iyaswamy A, Radhakrishnan M, Patnaik S, Huang JD, Williams LL, Senapati S, Durairajan SSK. Interaction of Tau with Kinesin-1: Effect of Kinesin-1 Heavy Chain Elimination on Autophagy-Mediated Mutant Tau Degradation. Biomedicines 2023; 12:5. [PMID: 38275365 PMCID: PMC10813313 DOI: 10.3390/biomedicines12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Natively unfolded tau has a low propensity to form aggregates, but in tauopathies, such as Alzheimer's disease (AD), tau aggregates into paired helical filaments (PHFs) and neurofibrillary tangles (NFTs). Multiple intracellular transport pathways utilize kinesin-1, a plus-end-directed microtubule-based motor. Kinesin-1 is crucial in various neurodegenerative diseases as it transports multiple cargoes along the microtubules (MT). Kinesin-1 proteins cannot progress along MTs due to an accumulation of tau on their surfaces. Although kinesin-1-mediated neuronal transport dysfunction is well-documented in other neurodegenerative diseases, its role in AD has received less attention. Very recently, we have shown that knocking down and knocking out of kinesin-1 heavy chain (KIF5B KO) expression significantly reduced the level and stability of tau in cells and tau transgenic mice, respectively. Here, we report that tau interacts with the motor domain of KIF5B in vivo and in vitro, possibly through its microtubule-binding repeat domain. This interaction leads to the inhibition of the ATPase activity of the motor domain. In addition, the KIF5B KO results in autophagy initiation, which subsequently assists in tau degradation. The mechanisms behind KIF5B KO-mediated tau degradation seem to involve its interaction with tau, promoting the trafficking of tau through retrograde transport into autophagosomes for subsequent lysosomal degradation of tau. Our results suggest how KIF5B removal facilitates the movement of autophagosomes toward lysosomes for efficient tau degradation. This mechanism can be enabled through the downregulation of kinesin-1 or the disruption of the association between kinesin-1 and tau, particularly in cases when neurons perceive disturbances in intercellular axonal transport.
Collapse
Affiliation(s)
- Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Avinash Dakshinamoorthy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (A.D.); (S.S.)
| | | | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Moorthi Radhakrishnan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leonard L. Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Sanjib Senapati
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (A.D.); (S.S.)
| | - Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
11
|
Bensel BM, Previs S, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. "Spatial Relationships Matter: Kinesin-1 Molecular Motors Transport Liposome Cargo Through 3D Microtubule Intersections In Vitro". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569616. [PMID: 38076816 PMCID: PMC10705568 DOI: 10.1101/2023.12.01.569616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections in vitro. Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war. Once resolved, the directional outcomes at 2D MT intersections have a straight to turn ratio of 1.1; whereas at 3D MT intersections, liposomes more frequently go straight (straight to turn ratio of 1.8), highlighting that spatial relationships at intersections bias directional outcomes. Using 3D super-resolution microscopy (STORM), we define the gap between intersecting MTs and the liposome azimuthal approach angle heading into the intersection. We develop an in silico model in which kinesin-1 motors diffuse on the liposome surface, simultaneously engage the intersecting MTs, generate forces and detach from MTs governed by the motors' mechanochemical cycle, and undergo a tug-of-war with the winning team determining the directional outcome in 3D. The model predicts that 1-3 motors typically engage the MT, consistent with optical trapping measurements. Modeled liposomes also predominantly go straight through 3D intersections over a range of intersection gaps and liposome approach angles, even when obstructed by the crossing MT. Our observations and modeling offer mechanistic insights into how cells might tune the MT cytoskeleton, cargo, and motors to modulate cargo transport.
Collapse
Affiliation(s)
- Brandon M Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Samantha Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| |
Collapse
|
12
|
Nicot S, Gillard G, Impheng H, Joachimiak E, Urbach S, Mochizuki K, Wloga D, Juge F, Rogowski K. A family of carboxypeptidases catalyzing α- and β-tubulin tail processing and deglutamylation. SCIENCE ADVANCES 2023; 9:eadi7838. [PMID: 37703372 PMCID: PMC10499314 DOI: 10.1126/sciadv.adi7838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Tubulin posttranslational modifications represent an important mechanism involved in the regulation of microtubule functions. The most widespread among them are detyrosination, α∆2-tubulin, and polyglutamylation. Here, we describe a family of tubulin-modifying enzymes composed of two closely related proteins, KIAA0895L and KIAA0895, which have tubulin metallocarboxypeptidase activity and thus were termed TMCP1 and TMCP2, respectively. We show that TMCP1 (also known as MATCAP) acts as α-tubulin detyrosinase that also catalyzes α∆2-tubulin. In contrast, TMCP2 preferentially modifies βI-tubulin by removing three amino acids from its C terminus, generating previously unknown βI∆3 modification. We show that βI∆3-tubulin is mostly found on centrioles and mitotic spindles and in cilia. Moreover, we demonstrate that TMCPs also remove posttranslational polyglutamylation and thus act as tubulin deglutamylases. Together, our study describes the identification and comprehensive biochemical analysis of a previously unknown type of tubulin-modifying enzymes involved in the processing of α- and β-tubulin C-terminal tails and deglutamylation.
Collapse
Affiliation(s)
- Simon Nicot
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Ghislain Gillard
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Hathaichanok Impheng
- Department of Physiology, Faculty of Medical science, Naresuan University, Phitsanulok 65000, Thailand
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Serge Urbach
- Functional Proteomics Platform (FPP), IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Kazufumi Mochizuki
- Epigenetic Chromatin Regulation team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - François Juge
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| | - Krzysztof Rogowski
- Tubulin Code team, Institute of Human Genetics, Université Montpellier, CNRS, Montpellier, France
| |
Collapse
|
13
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
14
|
Mann JR, McKenna ED, Mawrie D, Papakis V, Alessandrini F, Anderson EN, Mayers R, Ball HE, Kaspi E, Lubinski K, Baron DM, Tellez L, Landers JE, Pandey UB, Kiskinis E. Loss of function of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. SCIENCE ADVANCES 2023; 9:eadi5548. [PMID: 37585529 PMCID: PMC10431718 DOI: 10.1126/sciadv.adi5548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Loss-of-function variants in NIMA-related kinase 1 (NEK1) constitute a major genetic cause of amyotrophic lateral sclerosis (ALS), accounting for 2 to 3% of all cases. However, how NEK1 mutations cause motor neuron (MN) dysfunction is unknown. Using mass spectrometry analyses for NEK1 interactors and NEK1-dependent expression changes, we find functional enrichment for proteins involved in the microtubule cytoskeleton and nucleocytoplasmic transport. We show that α-tubulin and importin-β1, two key proteins involved in these processes, are phosphorylated by NEK1 in vitro. NEK1 is essential for motor control and survival in Drosophila models in vivo, while using several induced pluripotent stem cell (iPSC)-MN models, including NEK1 knockdown, kinase inhibition, and a patient mutation, we find evidence for disruptions in microtubule homeostasis and nuclear import. Notably, stabilizing microtubules with two distinct classes of drugs restored NEK1-dependent deficits in both pathways. The capacity of NEK1 to modulate these processes that are critically involved in ALS pathophysiology renders this kinase a formidable therapeutic candidate.
Collapse
Affiliation(s)
- Jacob R. Mann
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. McKenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vasileios Papakis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Francesco Alessandrini
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ryan Mayers
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hannah E. Ball
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evan Kaspi
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katherine Lubinski
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Desiree M. Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liana Tellez
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Zaninello M, Bean C. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Biomolecules 2023; 13:938. [PMID: 37371518 DOI: 10.3390/biom13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The highly specialized structure and function of neurons depend on a sophisticated organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is regulated by a dynamic balance between active transport and stable docking events. This system is finely tuned to respond to changes in environmental conditions and neuronal activity. In this review, we summarize the mechanisms by which mitochondria are selectively transported in different compartments, taking into account the structure of the cytoskeleton, the molecular motors and the metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons have been shown to also mediate their transfer between cells. This so-named intercellular transport of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
16
|
Lavrsen K, Rajendraprasad G, Leda M, Eibes S, Vitiello E, Katopodis V, Goryachev AB, Barisic M. Microtubule detyrosination drives symmetry breaking to polarize cells for directed cell migration. Proc Natl Acad Sci U S A 2023; 120:e2300322120. [PMID: 37216553 PMCID: PMC10235987 DOI: 10.1073/pnas.2300322120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
To initiate directed movement, cells must become polarized, establishing a protrusive leading edge and a contractile trailing edge. This symmetry-breaking process involves reorganization of cytoskeleton and asymmetric distribution of regulatory molecules. However, what triggers and maintains this asymmetry during cell migration remains largely elusive. Here, we established a micropatterning-based 1D motility assay to investigate the molecular basis of symmetry breaking required for directed cell migration. We show that microtubule (MT) detyrosination drives cell polarization by directing kinesin-1-based transport of the adenomatous polyposis coli (APC) protein to cortical sites. This is essential for the formation of cell's leading edge during 1D and 3D cell migration. These data, combined with biophysical modeling, unveil a key role for MT detyrosination in the generation of a positive feedback loop linking MT dynamics and kinesin-1-based transport. Thus, symmetry breaking during cell polarization relies on a feedback loop driven by MT detyrosination that supports directed cell migration.
Collapse
Affiliation(s)
- Kirstine Lavrsen
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Elisa Vitiello
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Vasileios Katopodis
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Andrew B. Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| |
Collapse
|
17
|
Yonemura Y, Sakai Y, Nakata R, Hagita-Tatsumoto A, Miyasaka T, Misonou H. Active Transport by Cytoplasmic Dynein Maintains the Localization of MAP2 in Developing Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538370. [PMID: 37163107 PMCID: PMC10168327 DOI: 10.1101/2023.04.26.538370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MAP2 has been widely used as a marker of neuronal dendrites because of its extensive restriction in the somatodendritic region of neurons. Despite that, how the precise localization of such a soluble protein is established and maintained against thermal forces and diffusion has been elusive and long remained a mystery in neuroscience. In this study, we aimed to uncover the mechanism behind how MAP2 is retained in the somatodendritic region. Using GFP-tagged MAP2 expressed in cultured hippocampal neurons, we discovered a crucial protein region responsible for the localization of MAP2, the serine/proline-rich (S/P) region. Our pulse-chase live-cell imaging revealed the slow but steady migration of MAP2 toward distal dendrites, which was not observed in a MAP2 mutant lacking the S/P region, indicating that S/P-dependent transport is vital for the proper localization of MAP2. Furthermore, our experiments using an inhibitor of cytoplasmic Dynein, ciliobrevin D, as well as Dynein knockdown, showed that cytoplasmic Dynein is involved in the transport of MAP2 in dendrites. We also found that Dynein complex binds to MAP2 through the S/P region in heterologous cells. Using mathematical modeling based on experimental data, we confirmed that an intermittent active transport mechanism is essential. Thus, we propose that the cytoplasmic Dynein recruits and transports free MAP2 toward distal dendrites, thereby maintaining the precise dendritic localization of MAP2 in neurons. Our findings shed light on the previously unknown mechanism behind MAP2 localization and provide a new direction for soluble protein trafficking research in the field of cell biology of neurons.
Collapse
|
18
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Xu A, Basant A, Schleich S, Newsome TP, Way M. Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection. J Cell Sci 2023; 136:jcs260175. [PMID: 36093836 PMCID: PMC9659004 DOI: 10.1242/jcs.260175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Collapse
Affiliation(s)
- Amadeus Xu
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Angika Basant
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sibylle Schleich
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Timothy P. Newsome
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
20
|
Ptacek J, Snajdr I, Schimer J, Kutil Z, Mikesova J, Baranova P, Havlinova B, Tueckmantel W, Majer P, Kozikowski A, Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int J Mol Sci 2023; 24:4720. [PMID: 36902164 PMCID: PMC10003107 DOI: 10.3390/ijms24054720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cyril Barinka
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
21
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
22
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
23
|
Imanaka C, Shimada S, Ito S, Kamada M, Iguchi T, Konishi Y. A model for generating differences in microtubules between axonal branches depending on the distance from terminals. Brain Res 2023; 1799:148166. [PMID: 36402177 DOI: 10.1016/j.brainres.2022.148166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
In the remodeling of axonal arbor, the growth and retraction of branches are differentially regulated within a single axon. Although cell-autonomously generated differences in microtubule (MT) turnover are thought to be involved in selective branch regulation, the cellular system whereby neurons generate differences of MTs between axonal branches has not been clarified. Because MT turnover tends to be slower in longer branches compared with neighboring shorter branches, feedback regulation depending on branch length is thought to be involved. In the present study, we generated a model of MT lifetime in axonal terminal branches by adapting a length-dependent model in which parameters for MT dynamics were constant in the arbor. The model predicted that differences in MT lifetime between neighboring branches could be generated depending on the distance from terminals. In addition, the following points were predicted. Firstly, destabilization of MTs throughout the arbor decreased the differences in MT lifetime between branches. Secondly, differences of MT lifetime existed even before MTs entered the branch point. In axonal MTs in primary neurons, treatment with a low concentration of nocodazole significantly decreased the differences of detyrosination (deTyr) and tyrosination (Tyr) of tubulins, indicators of MT turnover. Expansion microscopy of the axonal shaft before the branch point revealed differences in deTyr/Tyr modification on MTs. Our model recapitulates the differences in MT turnover between branches and provides a feedback mechanism for MT regulation that depends on the axonal arbor geometry.
Collapse
Affiliation(s)
- Chiaki Imanaka
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Shimada
- Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shino Ito
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Marina Kamada
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Tokuichi Iguchi
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan; Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui 910-3190, Japan
| | - Yoshiyuki Konishi
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan.
| |
Collapse
|
24
|
Yang X, Ma Z, Lian P, Xu Y, Cao X. Common mechanisms underlying axonal transport deficits in neurodegenerative diseases: a mini review. Front Mol Neurosci 2023; 16:1172197. [PMID: 37168679 PMCID: PMC10164940 DOI: 10.3389/fnmol.2023.1172197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the accumulation of pathogenic proteins and abnormal localization of organelles. These pathological features may be related to axonal transport deficits in neurons, which lead to failures in pathological protein targeting to specific sites for degradation and organelle transportation to designated areas needed for normal physiological functioning. Axonal transport deficits are most likely early pathological events in such diseases and gradually lead to the loss of axonal integrity and other degenerative changes. In this review, we investigated reports of mechanisms underlying the development of axonal transport deficits in a variety of common neurodegenerative diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease to provide new ideas for therapeutic targets that may be used early in the disease process. The mechanisms can be summarized as follows: (1) motor protein changes including expression levels and post-translational modification alteration; (2) changes in microtubules including reducing stability and disrupting tracks; (3) changes in cargoes including diminished binding to motor proteins. Future studies should determine which axonal transport defects are disease-specific and whether they are suitable therapeutic targets in neurodegenerative diseases.
Collapse
|
25
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
26
|
Szczesna E, Zehr EA, Cummings SW, Szyk A, Mahalingan KK, Li Y, Roll-Mecak A. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing. Dev Cell 2022; 57:2497-2513.e6. [PMID: 36347241 PMCID: PMC9665884 DOI: 10.1016/j.devcel.2022.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and β-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on β-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.
Collapse
Affiliation(s)
- Ewa Szczesna
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kishore K Mahalingan
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Schelski M, Bradke F. Microtubule retrograde flow retains neuronal polarization in a fluctuating state. SCIENCE ADVANCES 2022; 8:eabo2336. [PMID: 36332023 PMCID: PMC9635824 DOI: 10.1126/sciadv.abo2336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In developing vertebrate neurons, a neurite is formed by more than a hundred microtubules. While individual microtubules are dynamic, the microtubule array has been regarded as stationary. Using live-cell imaging of neurons in culture or in brain slices, combined with photoconversion techniques and pharmacological manipulations, we uncovered that the microtubule array flows retrogradely within neurites to the soma. This flow drives cycles of microtubule density, a hallmark of the fluctuating state before axon formation, thereby inhibiting neurite growth. The motor protein dynein fuels this process. Shortly after axon formation, microtubule retrograde flow slows down in the axon, reducing microtubule density cycles and enabling axon extension. Thus, keeping neurites short is an active process. Microtubule retrograde flow is a previously unknown type of cytoskeletal dynamics, which changes the hitherto axon-centric view of neuronal polarization.
Collapse
Affiliation(s)
- Max Schelski
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
- International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Frank Bradke
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| |
Collapse
|
28
|
Kawano D, Pinter K, Chlebowski M, Petralia RS, Wang YX, Nechiporuk AV, Drerup CM. NudC regulated Lis1 stability is essential for the maintenance of dynamic microtubule ends in axon terminals. iScience 2022; 25:105072. [PMID: 36147950 PMCID: PMC9485903 DOI: 10.1016/j.isci.2022.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal. NudC, a dynein regulator, is crucial for axon terminal structure NudC mutation leads to a near complete loss of Lis1 protein in axon terminals Lis1 deficits cause accumulation of dynein and cargo in axon terminals Local elevation of dynein increases axon terminal microtubule stability
Collapse
Affiliation(s)
- Dane Kawano
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex V Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
Green A, Hossain T, Eckmann DM. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front Cell Dev Biol 2022; 10:1010232. [PMID: 36340034 PMCID: PMC9626967 DOI: 10.3389/fcell.2022.1010232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are cell organelles that play pivotal roles in maintaining cell survival, cellular metabolic homeostasis, and cell death. Mitochondria are highly dynamic entities which undergo fusion and fission, and have been shown to be very motile in vivo in neurons and in vitro in multiple cell lines. Fusion and fission are essential for maintaining mitochondrial homeostasis through control of morphology, content exchange, inheritance of mitochondria, maintenance of mitochondrial DNA, and removal of damaged mitochondria by autophagy. Mitochondrial motility occurs through mechanical and molecular mechanisms which translocate mitochondria to sites of high energy demand. Motility also plays an important role in intracellular signaling. Here, we review key features that mediate mitochondrial dynamics and explore methods to advance the study of mitochondrial motility as well as mitochondrial dynamics-related diseases and mitochondrial-targeted therapeutics.
Collapse
Affiliation(s)
- Adam Green
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - David M. Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
- Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH, United States
- *Correspondence: David M. Eckmann,
| |
Collapse
|
30
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
31
|
Costa AC, Sousa MM. The Role of Spastin in Axon Biology. Front Cell Dev Biol 2022; 10:934522. [PMID: 35865632 PMCID: PMC9294387 DOI: 10.3389/fcell.2022.934522] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are highly polarized cells with elaborate shapes that allow them to perform their function. In neurons, microtubule organization—length, density, and dynamics—are essential for the establishment of polarity, growth, and transport. A mounting body of evidence shows that modulation of the microtubule cytoskeleton by microtubule-associated proteins fine tunes key aspects of neuronal cell biology. In this respect, microtubule severing enzymes—spastin, katanin and fidgetin—a group of microtubule-associated proteins that bind to and generate internal breaks in the microtubule lattice, are emerging as key modulators of the microtubule cytoskeleton in different model systems. In this review, we provide an integrative view on the latest research demonstrating the key role of spastin in neurons, specifically in the context of axonal cell biology. We focus on the function of spastin in the regulation of microtubule organization, and axonal transport, that underlie its importance in the intricate control of axon growth, branching and regeneration.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| | - Monica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| |
Collapse
|
32
|
Thyagarajan P, Feng C, Lee D, Shorey M, Rolls MM. Microtubule polarity is instructive for many aspects of neuronal polarity. Dev Biol 2022; 486:56-70. [PMID: 35341730 PMCID: PMC9058238 DOI: 10.1016/j.ydbio.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
Many neurons in bilaterian animals are polarized with functionally distinct axons and dendrites. Microtubule polarity, microtubule stability, and the axon initial segment (AIS) have all been shown to influence polarized transport in neurons. Each of these cytoskeletal cues could act independently to control axon and dendrite identity, or there could be a hierarchy in which one acts upstream of the others. Here we test the hypothesis that microtubule polarity acts as a master regulator of neuronal polarity by using a Drosophila genetic background in which some dendrites have normal minus-end-out microtubule polarity and others have the axonal plus-end-out polarity. In these mosaic dendrite arbors, we found that ribosomes, which are more abundant in dendrites than axons, were reduced in plus-end-out dendrites, while an axonal cargo was increased. In addition, we determined that microtubule stability was different in plus-end-out and minus-end-out dendrites, with plus-end-out ones having more stable microtubules like axons. Similarly, we found that ectopic diffusion barriers, like those at the AIS, formed at the base of dendrites with plus-end-out regions. Thus, changes in microtubule polarity were sufficient to rearrange other cytoskeletal features associated with neuronal polarization. However, overall neuron shape was maintained with only subtle changes in branching in mosaic arbors. We conclude that microtubule polarity can act upstream of many aspects of intracellular neuronal polarization, but shape is relatively resilient to changes in microtubule polarity in vivo.
Collapse
Affiliation(s)
- Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Lee
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
33
|
Meka DP, Kobler O, Hong S, Friedrich CM, Wuesthoff S, Henis M, Schwanke B, Krisp C, Schmuelling N, Rueter R, Ruecker T, Betleja E, Cheng T, Mahjoub MR, Soba P, Schlüter H, Fornasiero EF, Calderon de Anda F. Centrosome-dependent microtubule modifications set the conditions for axon formation. Cell Rep 2022; 39:110686. [PMID: 35443171 PMCID: PMC10150443 DOI: 10.1016/j.celrep.2022.110686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 12/27/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Microtubule (MT) modifications are critical during axon development, with stable MTs populating the axon. How these modifications are spatially coordinated is unclear. Here, via high-resolution microscopy, we show that early developing neurons have fewer somatic acetylated MTs restricted near the centrosome. At later stages, however, acetylated MTs spread out in soma and concentrate in growing axon. Live imaging in early plated neurons of the MT plus-end protein, EB3, show increased displacement and growth rate near the MTOC, suggesting local differences that might support axon selection. Moreover, F-actin disruption in early developing neurons, which show fewer somatic acetylated MTs, does not induce multiple axons, unlike later stages. Overexpression of centrosomal protein 120 (Cep120), which promotes MT acetylation/stabilization, induces multiple axons, while its knockdown downregulates proteins modulating MT dynamics and stability, hampering axon formation. Collectively, we show how centrosome-dependent MT modifications contribute to axon formation.
Collapse
Affiliation(s)
- Durga Praveen Meka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Shuai Hong
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Carina Meta Friedrich
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Souhaila Wuesthoff
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melad Henis
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Anatomy and Histology, Faculty of Veterinary Medicine, New Valley University, 72511 El-Kharga, Egypt
| | - Birgit Schwanke
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nessa Schmuelling
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - René Rueter
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tabitha Ruecker
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ewelina Betleja
- Department of Medicine (Nephrology Division), Washington University, St. Louis, MO 63110, USA
| | - Tao Cheng
- Department of Medicine (Nephrology Division), Washington University, St. Louis, MO 63110, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St. Louis, MO 63110, USA
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115 Bonn, Germany; Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Froylan Calderon de Anda
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
34
|
Ubiquitin Proteasome System and Microtubules Are Master Regulators of Central and Peripheral Nervous System Axon Degeneration. Cells 2022; 11:cells11081358. [PMID: 35456037 PMCID: PMC9033047 DOI: 10.3390/cells11081358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Axonal degeneration is an active process that differs from neuronal death, and it is the hallmark of many disorders affecting the central and peripheral nervous system. Starting from the analyses of Wallerian degeneration, the simplest experimental model, here we describe how the long projecting neuronal populations affected in Parkinson’s disease and chemotherapy-induced peripheral neuropathies share commonalities in the mechanisms and molecular players driving the earliest phase of axon degeneration. Indeed, both dopaminergic and sensory neurons are particularly susceptible to alterations of microtubules and axonal transport as well as to dysfunctions of the ubiquitin proteasome system and protein quality control. Finally, we report an updated review on current knowledge of key molecules able to modulate these targets, blocking the on-going axonal degeneration and inducing neuronal regeneration. These molecules might represent good candidates for disease-modifying treatment, which might expand the window of intervention improving patients’ quality of life.
Collapse
|
35
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
36
|
Bär J, Popp Y, Bucher M, Mikhaylova M. Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119241. [PMID: 35181405 DOI: 10.1016/j.bbamcr.2022.119241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
Microtubules (MTs) mediate various cellular functions such as structural support, chromosome segregation, and intracellular transport. To achieve this, the pivotal properties of MTs have to be changeable and tightly controlled. This is enabled by a high variety of tubulin posttranslational modifications, which influence MT properties directly, via altering the MT lattice structurally, or indirectly by changing MT interaction partners. Here, the distinction between these direct and indirect effects of MT PTMs are exemplified by acetylation of the luminal α-tubulin K40 resulting in decreased rigidity of MTs, and by MT detyrosination which decreases interaction with depolymerizing proteins, thus causing more stable MTs. We discuss how these PTMs are reversed and regulated, e.g. on the level of enzyme transcription, localization, and activity via various signalling pathways including the conventional calcium-dependent proteases calpains and how advances in microscopy techniques and development of live-sensors facilitate the understanding of MT PTM interaction and effects.
Collapse
Affiliation(s)
- Julia Bär
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Yannes Popp
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Michael Bucher
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Marina Mikhaylova
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
37
|
Kang Y, Yin S, Liu J, Jiang Y, Huang Z, Chen L, Shao L. Nano-graphene oxide depresses neurotransmission by blocking retrograde transport of mitochondria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127660. [PMID: 34772551 DOI: 10.1016/j.jhazmat.2021.127660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The application of graphene-family nanomaterials (GFNs) in neuromedicine has recently gained increased attention, but the associated exposure risk for synaptic function and the underlying mechanism remains obscure. The results of this study utilizing nanosized graphene oxide (nGO) suggest that they exert depressive effects on neurotransmission, mainly due to energy deficiency at synaptic contacts. Mitophagy is activated but fails to renew mitochondria and maintain mitochondrial-mediated energy metabolism because of blockage of autophagosome transport through the microtubule system from the axonal terminal to the soma. Further investigation of the underlying mechanism indicates that nGO increases the level of microtubule detyrosination, which restrains loading of the dynactin-dynein motor complex onto microtubules and subsequently inhibits the efficacy of the retrograde transport route. Thus, our study reveals the underlying mechanism by which nGO depresses neurotransmission, and contributes to our understanding of the neurobiological effects of GFNs.
Collapse
Affiliation(s)
- Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Suhan Yin
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanping Jiang
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Zhendong Huang
- School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
38
|
Peris L, Parato J, Qu X, Soleilhac JM, Lanté F, Kumar A, Pero ME, Martínez-Hernández J, Corrao C, Falivelli G, Payet F, Gory-Fauré S, Bosc C, Blanca Ramirez M, Sproul A, Brocard J, Di Cara B, Delagrange P, Buisson A, Goldberg Y, Moutin MJ, Bartolini F, Andrieux A. OUP accepted manuscript. Brain 2022; 145:2486-2506. [PMID: 35148384 PMCID: PMC9337816 DOI: 10.1093/brain/awab436] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer’s disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-β peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-β peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-β peptide-induced synaptic damage and that this balance is lost in Alzheimer’s disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer’s disease.
Collapse
Affiliation(s)
- Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julie Parato
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Natural Sciences, SUNY ESC, Brooklyn, NY 11201, USA
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jean Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - José Martínez-Hernández
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Charlotte Corrao
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Giulia Falivelli
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Floriane Payet
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marian Blanca Ramirez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | | | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yves Goldberg
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
39
|
Jang S, Hwang J, Jeong HS. The Role of Histone Acetylation in Mesenchymal Stem Cell Differentiation. Chonnam Med J 2022; 58:6-12. [PMID: 35169553 PMCID: PMC8813658 DOI: 10.4068/cmj.2022.58.1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/06/2022] Open
Abstract
The mechanism and action concerning epigenetic modifications, especially that of histone modifications, are not fully understood. However, it is clear that histone modifications play an essential role in several biological processes that are involved in cell proliferation and differentiation. In this article, we focused on how histone acetylation may result in differentiation into mesenchymal stem cells as well as histone acetylation function. Moreover, histone acetylation followed by the action of histone deacetylase inhibitors, which can result in the differentiation of stem cells into other types of cells such as adipocytes, chondrocytes, osteocytes, neurons, and other lineages, were also reviewed.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
40
|
Sanyal C, Pietsch N, Ramirez Rios S, Peris L, Carrier L, Moutin MJ. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2021; 137:46-62. [PMID: 34924330 DOI: 10.1016/j.semcdb.2021.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Among the variety of post-translational modifications to which microtubules are subjected, the detyrosination/re-tyrosination cycle is specific to tubulin. It is conserved by evolution and characterized by the enzymatic removal and re-addition of a gene-encoded tyrosine residue at the C-terminus of α-tubulin. Detyrosinated tubulin can be further converted to Δ2-tubulin by the removal of an additional C-terminal glutamate residue. Detyrosinated and Δ2-tubulin are carried by stable microtubules whereas tyrosinated microtubules are present on dynamic polymers. The cycle regulates trafficking of many cargo transporting molecular motors and is linked to the microtubule dynamics via regulation of microtubule interactions with specific cellular effectors such as kinesin-13. Here, we give an historical overview of the general features discovered for the cycle. We highlight the recent progress toward structure and functioning of the enzymes that keep the levels of tyrosinated and detyrosinated tubulin in cells, the long-known tubulin tyrosine ligase and the recently discovered vasohibin-SVBP complexes. We further describe how the cycle controls microtubule functions in healthy neurons and cardiomyocytes and how deregulations of the cycle are involved in dysfunctions of these highly differentiated cells, leading to neurodegeneration and heart failure in humans.
Collapse
Affiliation(s)
- Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sacnicte Ramirez Rios
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
41
|
Motor usage imprints microtubule stability along the shaft. Dev Cell 2021; 57:5-18.e8. [PMID: 34883065 DOI: 10.1016/j.devcel.2021.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Tubulin dimers assemble into dynamic microtubules, which are used by molecular motors as tracks for intracellular transport. Organization and dynamics of the microtubule network are commonly thought to be regulated at the polymer ends, where tubulin dimers can be added or removed. Here, we show that molecular motors running on microtubules cause exchange of dimers along the shaft in vitro and in cells. These sites of dimer exchange act as rescue sites where depolymerizing microtubules stop shrinking and start re-growing. Consequently, the average length of microtubules increases depending on how frequently they are used as motor tracks. An increase of motor activity densifies the cellular microtubule network and enhances cell polarity. Running motors leave marks in the shaft, serving as traces of microtubule usage to organize the polarity landscape of the cell.
Collapse
|
42
|
Waddell J, Banerjee A, Kristian T. Acetylation in Mitochondria Dynamics and Neurodegeneration. Cells 2021; 10:cells10113031. [PMID: 34831252 PMCID: PMC8616140 DOI: 10.3390/cells10113031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are a unique intracellular organelle due to their evolutionary origin and multifunctional role in overall cellular physiology and pathophysiology. To meet the specific spatial metabolic demands within the cell, mitochondria are actively moving, dividing, or fusing. This process of mitochondrial dynamics is fine-tuned by a specific group of proteins and their complex post-translational modifications. In this review, we discuss the mitochondrial dynamics regulatory enzymes, their adaptor proteins, and the effect of acetylation on the activity of fusion and fission machinery as a ubiquitous response to metabolic stresses. Further, we discuss the role of intracellular cytoskeleton structures and their post-translational modifications in the modulation of mitochondrial fusion and fission. Finally, we review the role of mitochondrial dynamics dysregulation in the pathophysiology of acute brain injury and the treatment strategies based on modulation of NAD+-dependent deacetylation.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3418
| |
Collapse
|
43
|
Wilson DW. Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses 2021; 13:v13081622. [PMID: 34452486 PMCID: PMC8402756 DOI: 10.3390/v13081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The alphaherpesviruses are pathogens of the mammalian nervous system. Initial infection is commonly at mucosal epithelia, followed by spread to, and establishment of latency in, the peripheral nervous system. During productive infection, viral gene expression, replication of the dsDNA genome, capsid assembly and genome packaging take place in the infected cell nucleus, after which mature nucleocapsids emerge into the cytoplasm. Capsids must then travel to their site of envelopment at cytoplasmic organelles, and enveloped virions need to reach the cell surface for release and spread. Transport at each of these steps requires movement of alphaherpesvirus particles through a crowded and viscous cytoplasm, and for distances ranging from several microns in epithelial cells, to millimeters or even meters during egress from neurons. To solve this challenging problem alphaherpesviruses, and their assembly intermediates, exploit microtubule- and actin-dependent cellular motors. This review focuses upon the mechanisms used by alphaherpesviruses to recruit kinesin, myosin and dynein motors during assembly and egress.
Collapse
Affiliation(s)
- Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; ; Tel.: +1-718-430-2305
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
44
|
Marchal GA, Jouni M, Chiang DY, Pérez-Hernández M, Podliesna S, Yu N, Casini S, Potet F, Veerman CC, Klerk M, Lodder EM, Mengarelli I, Guan K, Vanoye CG, Rothenberg E, Charpentier F, Redon R, George AL, Verkerk AO, Bezzina CR, MacRae CA, Burridge PW, Delmar M, Galjart N, Portero V, Remme CA. Targeting the Microtubule EB1-CLASP2 Complex Modulates Na V1.5 at Intercalated Discs. Circ Res 2021; 129:349-365. [PMID: 34092082 PMCID: PMC8298292 DOI: 10.1161/circresaha.120.318643] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Mariam Jouni
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - David Y Chiang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA (D.Y.C., C.A.M.)
| | | | - Svitlana Podliesna
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Nuo Yu
- Department of Cell Biology, Erasmus Medical Centre Rotterdam, The Netherlands (N.Y., N.G.)
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Franck Potet
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Christiaan C Veerman
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Mischa Klerk
- Department of Medical Biology, Amsterdam UMC - location AMC, The Netherlands (M.K., A.O.V.)
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany (K.G.)
| | - Carlos G Vanoye
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology (E.R.), NYU School of Medicine
| | - Flavien Charpentier
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Richard Redon
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Alfred L George
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Arie O Verkerk
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
- Department of Medical Biology, Amsterdam UMC - location AMC, The Netherlands (M.K., A.O.V.)
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Calum A MacRae
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA (D.Y.C., C.A.M.)
| | - Paul W Burridge
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Mario Delmar
- Division of Cardiology (M.P.-H., M.D.), NYU School of Medicine
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Centre Rotterdam, The Netherlands (N.Y., N.G.)
| | - Vincent Portero
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| |
Collapse
|
45
|
Shen S, Picci C, Ustinova K, Benoy V, Kutil Z, Zhang G, Tavares MT, Pavlíček J, Zimprich CA, Robers MB, Van Den Bosch L, Bařinka C, Langley B, Kozikowski AP. Tetrahydroquinoline-Capped Histone Deacetylase 6 Inhibitor SW-101 Ameliorates Pathological Phenotypes in a Charcot-Marie-Tooth Type 2A Mouse Model. J Med Chem 2021; 64:4810-4840. [PMID: 33830764 DOI: 10.1021/acs.jmedchem.0c02210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a promising therapeutic target for the treatment of neurodegenerative disorders. SW-100 (1a), a phenylhydroxamate-based HDAC6 inhibitor (HDAC6i) bearing a tetrahydroquinoline (THQ) capping group, is a highly potent and selective HDAC6i that was shown to be effective in mouse models of Fragile X syndrome and Charcot-Marie-Tooth disease type 2A (CMT2A). In this study, we report the discovery of a new THQ-capped HDAC6i, termed SW-101 (1s), that possesses excellent HDAC6 potency and selectivity, together with markedly improved metabolic stability and druglike properties compared to SW-100 (1a). X-ray crystallography data reveal the molecular basis of HDAC6 inhibition by SW-101 (1s). Importantly, we demonstrate that SW-101 (1s) treatment elevates the impaired level of acetylated α-tubulin in the distal sciatic nerve, counteracts progressive motor dysfunction, and ameliorates neuropathic symptoms in a CMT2A mouse model bearing mutant MFN2. Taken together, these results bode well for the further development of SW-101 (1s) as a disease-modifying HDAC6i.
Collapse
Affiliation(s)
- Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cristina Picci
- School of Health, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Kseniya Ustinova
- Institute of Biotechnology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Veronick Benoy
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Guiping Zhang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Maurício T Tavares
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jiří Pavlíček
- Institute of Biotechnology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Chad A Zimprich
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Brett Langley
- School of Health, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | | |
Collapse
|
46
|
Parato J, Bartolini F. The microtubule cytoskeleton at the synapse. Neurosci Lett 2021; 753:135850. [PMID: 33775740 DOI: 10.1016/j.neulet.2021.135850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
In neurons, microtubules (MTs) provide routes for transport throughout the cell and structural support for dendrites and axons. Both stable and dynamic MTs are necessary for normal neuronal functions. Research in the last two decades has demonstrated that MTs play additional roles in synaptic structure and function in both pre- and postsynaptic elements. Here, we review current knowledge of the functions that MTs perform in excitatory and inhibitory synapses, as well as in the neuromuscular junction and other specialized synapses, and discuss the implications that this knowledge may have in neurological disease.
Collapse
Affiliation(s)
- Julie Parato
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States; SUNY Empire State College, Department of Natural Sciences, 177 Livingston Street, Brooklyn, NY, 11201, United States
| | - Francesca Bartolini
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States.
| |
Collapse
|
47
|
Shafiq M, Zafar S, Younas N, Noor A, Puig B, Altmeppen HC, Schmitz M, Matschke J, Ferrer I, Glatzel M, Zerr I. Prion protein oligomers cause neuronal cytoskeletal damage in rapidly progressive Alzheimer's disease. Mol Neurodegener 2021; 16:11. [PMID: 33618749 PMCID: PMC7898440 DOI: 10.1186/s13024-021-00422-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background High-density oligomers of the prion protein (HDPs) have previously been identified in brain tissues of patients with rapidly progressive Alzheimer’s disease (rpAD). The current investigation aims at identifying interacting partners of HDPs in the rpAD brains to unravel the pathological involvement of HDPs in the rapid progression. Methods HDPs from the frontal cortex tissues of rpAD brains were isolated using sucrose density gradient centrifugation. Proteins interacting with HDPs were identified by co-immunoprecipitation coupled with mass spectrometry. Further verifications were carried out using proteomic tools, immunoblotting, and confocal laser scanning microscopy. Results We identified rpAD-specific HDP-interactors, including the growth arrest specific 2-like 2 protein (G2L2). Intriguingly, rpAD-specific disturbances were found in the localization of G2L2 and its associated proteins i.e., the end binding protein 1, α-tubulin, and β-actin. Discussion The results show the involvement of HDPs in the destabilization of the neuronal actin/tubulin infrastructure. We consider this disturbance to be a contributing factor for the rapid progression in rpAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00422-x.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Saima Zafar
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany. .,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Neelam Younas
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Aneeqa Noor
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.,Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hermann Clemens Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Isidre Ferrer
- Institut de Neuropatologica, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Carrer Feixa LLarga sn, 08907, Hospitalet de LLobregat, CIBERNED, Barcelona, Spain
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| |
Collapse
|
48
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
49
|
Arru C, Serra E, Porcu C, Gadau SD. Confocal investigation on colocalization between tubulin posttranslational modifications and associated proteins in rat C6 glioma cells. J Struct Biol 2020; 213:107676. [PMID: 33279655 DOI: 10.1016/j.jsb.2020.107676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme is the most lethal brain tumor. In the study of mechanisms underlying its development attention has been paid to the microtubular network of its cells, mainly on βIII tubulin, considered as a marker of malignancy. In the present work, we chose to investigate the tubulin code in glioblastoma cells, analyzing the degree of interaction between tubulin post-translational modifications and different proteins associated with them. The pattern of diverse associated proteins such as EB-1, CLIP-170 and kinesin-1 and their degree of co-distribution with the most abundant post-translational tubulin modifications (tyrosination, acetylation and polyglutamylation) were evaluated. Through immunofluorescence we have shown that EB-1, CLIP-170 and kinesin-1 were well detectable in glioblastoma cells. The double fluorescence and colocalization index between the post-translational modifications of tubulin and associated proteins showed that tyrosinated α-tubulin has significantly high affinity with EB-1, CLIP-170 and kinesin-1, while for acetylated and polyglutamylated tubulin, the degree of interaction with the three associated proteins evaluated was less apparent. Data presented in this paper underline the importance of a thorough analysis of the microtubular mechanics in glioblastoma cells. This may suggest new experimental therapeutic approaches able to act more selectively on the microtubular network of cells in this type of cancer.
Collapse
Affiliation(s)
- Caterina Arru
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Elisa Serra
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Sergio D Gadau
- Department of Veterinary Medicine, University of Sassari, Italy.
| |
Collapse
|
50
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|