1
|
Smit ER, Romijn M, Langerhorst P, van der Zwaan C, van der Staaij H, Rotteveel J, van Kaam AH, Fustolo-Gunnink SF, Hoogendijk AJ, Onland W, Finken MJJ, van den Biggelaar M. Distinct protein patterns related to postnatal development in small for gestational age preterm infants. Pediatr Res 2024:10.1038/s41390-024-03481-0. [PMID: 39152333 DOI: 10.1038/s41390-024-03481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Preterm infants, especially those born small for gestational age (SGA), are at risk of short-term and long-term health complications. Characterization of changes in circulating proteins postnatally in preterm infants may provide valuable fundamental insights into this population. Here, we investigated postnatal developmental patterns in preterm infants and explored protein signatures that deviate between SGA infants and appropriate for gestational age (AGA) infants using a mass spectrometry (MS)-based proteomics workflow. METHODS Longitudinal serum samples obtained at postnatal days 0, 3, 7, 14, and 28 from 67 preterm infants were analyzed using unbiased MS-based proteomics. RESULTS 314 out of 833 quantified serum proteins change postnatally, including previously described age-related changes in immunoglobulins, hemoglobin subunits, and new developmental patterns, e.g. apolipoproteins (APOA4) and terminal complement cascade (C9) proteins. Limited differences between SGA and AGA infants were found at birth while longitudinal monitoring revealed 69 deviating proteins, including insulin-sensitizing hormone adiponectin, platelet proteins, and 24 proteins with an annotated function in the immune response. CONCLUSIONS This study shows the potential of MS-based serum profiling in defining circulating protein trajectories in the preterm infant population and its ability to identify longitudinal alterations in protein levels associated with SGA. IMPACT Postnatal changes of circulating proteins in preterm infants have not fully been elucidated but may contribute to development of health complications. Mass spectrometry-based analysis is an attractive approach to study circulating proteins in preterm infants with limited material. Longitudinal plasma profiling reveals postnatal developmental-related patterns in preterm infants (314/833 proteins) including previously described changes, but also previously unreported proteins. Longitudinal monitoring revealed an immune response signature between SGA and AGA infants. This study highlights the importance of taking postnatal changes into account for translational studies in preterm infants.
Collapse
Affiliation(s)
- Eva R Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Michelle Romijn
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Langerhorst
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Hilde van der Staaij
- Sanquin Research & Lab Services, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joost Rotteveel
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Suzanne F Fustolo-Gunnink
- Sanquin Research & Lab Services, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Wes Onland
- Department of Neonatology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Martijn J J Finken
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
2
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Adiponectin Is a Contributing Factor of Low Appendicular Lean Mass in Older Community-Dwelling Women: A Cross-Sectional Study. J Clin Med 2022; 11:jcm11237175. [PMID: 36498747 PMCID: PMC9740541 DOI: 10.3390/jcm11237175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a chronic, sterile, low-grade inflammation that develops with advanced age in the absence of overt infection and may contribute to the pathophysiology of sarcopenia, a progressive and generalized skeletal muscle disorder. Furthermore, a series of biomarkers linked to sarcopenia occurrence have emerged. To aid diagnostic and treatment strategies for low muscle mass in sarcopenia and other related conditions, the objective of this work was to investigate potential biomarkers associated with appendicular lean mass in community-dwelling older women. This is a cross-sectional study with 71 older women (75 ± 7 years). Dual-energy X-ray absorptiometry was used to assess body composition. Plasmatic blood levels of adipokines (i.e., adiponectin, leptin, and resistin), tumor necrosis factor (TNF) and soluble receptors (sTNFr1 and sTNFr2), interferon (INF), brain-derived neurotrophic factor (BDNF), and interleukins (IL-2, IL-4, IL-5, IL-6, IL-8, and IL-10) were determined by enzyme-linked immunosorbent assay. Older women with low muscle mass showed higher plasma levels of adiponectin, sTNFr1, and IL-8 compared to the regular muscle mass group. In addition, higher adiponectin plasma levels explained 14% of the lower appendicular lean mass. High adiponectin plasmatic blood levels can contribute to lower appendicular lean mass in older, community-dwelling women.
Collapse
|
4
|
Bernacchioni C, Squecco R, Gamberi T, Ghini V, Schumacher F, Mannelli M, Garella R, Idrizaj E, Cencetti F, Puliti E, Bruni P, Turano P, Fiaschi T, Donati C. S1P Signalling Axis Is Necessary for Adiponectin-Directed Regulation of Electrophysiological Properties and Oxidative Metabolism in C2C12 Myotubes. Cells 2022; 11:713. [PMID: 35203362 PMCID: PMC8869893 DOI: 10.3390/cells11040713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.S.); (R.G.); (E.I.)
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, 50019 Florence, Italy; (V.G.); (P.T.)
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Rachele Garella
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.S.); (R.G.); (E.I.)
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.S.); (R.G.); (E.I.)
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Elisa Puliti
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, 50019 Florence, Italy; (V.G.); (P.T.)
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| |
Collapse
|
5
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
6
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Tran D, Myers S, McGowan C, Henstridge D, Eri R, Sonda S, Caruso V. 1-Deoxysphingolipids, Early Predictors of Type 2 Diabetes, Compromise the Functionality of Skeletal Myoblasts. Front Endocrinol (Lausanne) 2021; 12:772925. [PMID: 35002962 PMCID: PMC8739520 DOI: 10.3389/fendo.2021.772925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
Metabolic dysfunction, dysregulated differentiation, and atrophy of skeletal muscle occur as part of a cluster of abnormalities associated with the development of Type 2 diabetes mellitus (T2DM). Recent interest has turned to the attention of the role of 1-deoxysphingolipids (1-DSL), atypical class of sphingolipids which are found significantly elevated in patients diagnosed with T2DM but also in the asymptomatic population who later develop T2DM. In vitro studies demonstrated that 1-DSL have cytotoxic properties and compromise the secretion of insulin from pancreatic beta cells. However, the role of 1-DSL on the functionality of skeletal muscle cells in the pathophysiology of T2DM still remains unclear. This study aimed to investigate whether 1-DSL are cytotoxic and disrupt the cellular processes of skeletal muscle precursors (myoblasts) and differentiated cells (myotubes) by performing a battery of in vitro assays including cell viability adenosine triphosphate assay, migration assay, myoblast fusion assay, glucose uptake assay, and immunocytochemistry. Our results demonstrated that 1-DSL significantly reduced the viability of myoblasts in a concentration and time-dependent manner, and induced apoptosis as well as cellular necrosis. Importantly, myoblasts were more sensitive to the cytotoxic effects induced by 1-DSL rather than by saturated fatty acids, such as palmitate, which are critical mediators of skeletal muscle dysfunction in T2DM. Additionally, 1-DSL significantly reduced the migration ability of myoblasts and the differentiation process of myoblasts into myotubes. 1-DSL also triggered autophagy in myoblasts and significantly reduced insulin-stimulated glucose uptake in myotubes. These findings demonstrate that 1-DSL directly compromise the functionality of skeletal muscle cells and suggest that increased levels of 1-DSL observed during the development of T2DM are likely to contribute to the pathophysiology of muscle dysfunction detected in this disease.
Collapse
Affiliation(s)
- Duyen Tran
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen Myers
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Courtney McGowan
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
- Sport Performance Optimization Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Darren Henstridge
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Rajaraman Eri
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Sabrina Sonda
- School of Health Science, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Institute for Research on Pain, Istituto di Formazione e Ricerca in Scienze Algologiche (ISAL) Foundation, Rimini, Italy
- *Correspondence: Vanni Caruso,
| |
Collapse
|
8
|
Abou-Samra M, Selvais CM, Dubuisson N, Brichard SM. Adiponectin and Its Mimics on Skeletal Muscle: Insulin Sensitizers, Fat Burners, Exercise Mimickers, Muscling Pills … or Everything Together? Int J Mol Sci 2020; 21:ijms21072620. [PMID: 32283840 PMCID: PMC7178193 DOI: 10.3390/ijms21072620] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Adiponectin (ApN) is a hormone abundantly secreted by adipocytes and it is known to be tightly linked to the metabolic syndrome. It promotes insulin-sensitizing, fat-burning, and anti-atherosclerotic actions, thereby effectively counteracting several metabolic disorders, including type 2 diabetes, obesity, and cardiovascular diseases. ApN is also known today to possess powerful anti-inflammatory/oxidative and pro-myogenic effects on skeletal muscles exposed to acute or chronic inflammation and injury, mainly through AdipoR1 (ApN specific muscle receptor) and AMP-activated protein kinase (AMPK) pathway, but also via T-cadherin. In this review, we will report all the beneficial and protective properties that ApN can exert, specifically on the skeletal muscle as a target tissue. We will highlight its effects and mechanisms of action, first in healthy skeletal muscle including exercised muscle, and second in diseased muscle from a variety of pathological conditions. In the end, we will go over some of AdipoRs agonists that can be easily produced and administered, and which can greatly mimic ApN. These interesting and newly identified molecules could pave the way towards future therapeutic approaches to potentially prevent or combat not only skeletal muscle disorders but also a plethora of other diseases with sterile inflammation or metabolic dysfunction.
Collapse
|
9
|
Gamberi T, Magherini F, Mannelli M, Chrisam M, Cescon M, Castagnaro S, Modesti A, Braghetta P, Fiaschi T. Role of adiponectin in the metabolism of skeletal muscles in collagen VI-related myopathies. J Mol Med (Berl) 2019; 97:793-801. [PMID: 30927046 DOI: 10.1007/s00109-019-01766-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
The role of adiponectin has been particularly deepened in diabetic muscles while the study of adiponectin in hereditary myopathies has been marginally investigated. Here, we report the study about adiponectin effects in Col6a1-/- (collagen VI-null) mice. Col6a1-/- mice show myophatic phenotype closer to that of patients with Bethlem myopathy, thus representing an excellent animal model for the study of this hereditary disease. Our findings demonstrate that Col6a1-/- mice have decreased plasma adiponectin content and diseased myoblasts have an impaired autocrine secretion of the hormone. Moreover, Col6a1-/- myoblasts show decreased glucose uptake and mitochondria with depolarized membrane potential and impaired functionality, as supported by decreased oxygen consumption. Exogenous addition of globular adiponectin modifies the features of Col6a1-/- myoblasts, becoming closer to that of the healthy myoblasts. Indeed, globular adiponectin enhances glucose uptake in Col6a1-/- myoblasts, modifies mitochondrial membrane potential, and restores oxygen consumption, turning closer to those of wild-type myoblasts. Finally, increase of plasma adiponectin level in Col6a1-/- mice is induced by fasting, a condition that has been previously shown to lead to the amelioration of the dystrophic phenotype. Collectively, our results demonstrate that exogenous replenishment of adiponectin reverses metabolic abnormalities observed in Col6a1-/- myoblasts. KEY MESSAGES: Col6a1-/- mice have decreased level of plasma adiponectin. Myoblasts from Col6a1-/- muscles have impaired local adiponectin secretion. Col6a1-/- myoblasts reveal altered metabolic features. Addition of exogenous adiponectin ameliorates Col6a1-/- metabolic features.
Collapse
Affiliation(s)
- Tania Gamberi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Francesca Magherini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Michele Mannelli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Martina Chrisam
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Matilde Cescon
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Silvia Castagnaro
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Alessandra Modesti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy
| | - Paola Braghetta
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padua, Italy
| | - Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
10
|
Adiponectin in Myopathies. Int J Mol Sci 2019; 20:ijms20071544. [PMID: 30934785 PMCID: PMC6480168 DOI: 10.3390/ijms20071544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
In skeletal muscle, adiponectin has varied and pleiotropic functions, ranging from metabolic, anti-inflammatory, insulin-sensitizing to regenerative roles. Despite the important functions exerted by adiponectin, the study of the hormone in myopathies is still marginal. Myopathies include inherited and non-inherited/acquired neuromuscular pathologies characterized by muscular degeneration and weakness. This review reports current knowledge about adiponectin in myopathies, regarding in particular the role of adiponectin in some hereditary myopathies (as Duchenne muscular dystrophy) and non-inherited/acquired myopathies (such as idiopathic inflammatory myopathies and fibromyalgia). These studies show that some myopathies are characterized by decreased concentration of plasma adiponectin and that hormone replenishment induces beneficial effects in the diseased muscles. Overall, these findings suggest that adiponectin could constitute a future new therapeutic approach for the improvement of the abnormalities caused by myopathies.
Collapse
|
11
|
Krause MP, Milne KJ, Hawke TJ. Adiponectin-Consideration for its Role in Skeletal Muscle Health. Int J Mol Sci 2019; 20:ijms20071528. [PMID: 30934678 PMCID: PMC6480271 DOI: 10.3390/ijms20071528] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Adiponectin regulates metabolism through blood glucose control and fatty acid oxidation, partly mediated by downstream effects of adiponectin signaling in skeletal muscle. More recently, skeletal muscle has been identified as a source of adiponectin expression, fueling interest in the role of adiponectin as both a circulating adipokine and a locally expressed paracrine/autocrine factor. In addition to being metabolically responsive, skeletal muscle functional capacity, calcium handling, growth and maintenance, regenerative capacity, and susceptibility to chronic inflammation are all strongly influenced by adiponectin stimulation. Furthermore, physical exercise has clear links to adiponectin expression and circulating concentrations in healthy and diseased populations. Greater physical activity is generally related to higher adiponectin expression while lower adiponectin levels are found in inactive obese, pre-diabetic, and diabetic populations. Exercise training typically restores plasma adiponectin and is associated with improved insulin sensitivity. Thus, the role of adiponectin signaling in skeletal muscle has expanded beyond that of a metabolic regulator to include several aspects of skeletal muscle function and maintenance critical to muscle health, many of which are responsive to, and mediated by, physical exercise.
Collapse
Affiliation(s)
- Matthew P Krause
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Kevin J Milne
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
12
|
Teng S, Huang P. The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Res Ther 2019; 10:103. [PMID: 30898146 PMCID: PMC6427880 DOI: 10.1186/s13287-019-1186-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In addition to its primary function to provide movement and maintain posture, the skeletal muscle plays important roles in energy and glucose metabolism. In healthy humans, skeletal muscle is the major site for postprandial glucose uptake and impairment of this process contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). A key component to the maintenance of skeletal muscle integrity and plasticity is the presence of muscle progenitor cells, including satellite cells, fibroadipogenic progenitors, and some interstitial progenitor cells associated with vessels (myo-endothelial cells, pericytes, and mesoangioblasts). In this review, we aim to discuss the emerging concepts related to these progenitor cells, focusing on the identification and characterization of distinct progenitor cell populations, and the impact of obesity and T2DM on these cells. The recent advances in stem cell therapies by targeting diabetic and obese muscle are also discussed.
Collapse
Affiliation(s)
- Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
13
|
Diniz TA, Aquino Júnior JCJ, Mosele FC, Cabral-Santos C, Lima Junior EAD, Teixeira AADS, Lira FS, Rosa Neto JC. Exercise-induced AMPK activation and IL-6 muscle production are disturbed in adiponectin knockout mice. Cytokine 2019; 119:71-80. [PMID: 30903866 DOI: 10.1016/j.cyto.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adiponectin exhibits anti-inflammatory actions and is mainly expressed in adipose tissue. However, recent studies have shown that adiponectin can also be secreted by skeletal muscle fibers with autocrine and paracrine effects. OBJECTIVES To analyze the role of adiponectin in the metabolic and inflammatory response of skeletal muscle after acute exhaustive aerobic exercise. METHODS C57BL/6 (WT) and adiponectin knockout (AdKO) mice underwent four days of treadmill running adaptation and at the fifth day, they performed an incremental maximum test to determine the maximum speed (Vmax). Acute exercise consisted of one hour at 60% Vmax. Mice were euthanatized 2 and 24 h after acute exercise session. RESULTS Serum and gastrocnemius adiponectin increased after 2-hours of acute exercise. NEFA concentrations were lower in non-exercise AdKO, and decreased 2-hours after exercise only in WT. No differences were found in muscle triacylglycerol content; however, glycogen content was higher in AdKO in non-exercise (p-value = 0.005). WT showed an increase in AMP-activated protein kinase (AMPK) phosphorylation 2-hours after exercise and its level went back to normal after 24-hours. Otherwise, exercise was not able to modify AMPK in the same way as in AdKO. WT showed an increase in the phosphorylation of ACC (Ser79) 2-hours after exercise and return to normal after 24-hours of exercise (p-value < 0.05), kinects that was not observed in AdKO mice. IL-10 and IL-6 concentration was completely different among genotypes. In WT, these cytokines were increased at 2 (p-value < 0.01) and 24 h (p-value < 0.001) after exercise when compared with AdKO. NF-κBp65 protein and gene expression were not different between genotypes. CONCLUSION Adiponectin influences muscle metabolism, mainly by the decrease in exercise-induced AMPK phosphorylation, inflammatory profile and IL-6 in the muscle.
Collapse
Affiliation(s)
- Tiego A Diniz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Francielle Caroline Mosele
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Carolina Cabral-Santos
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Edson Alves de Lima Junior
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - José Cesar Rosa Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
14
|
Gamberi T, Modesti A, Magherini F, D'Souza DM, Hawke T, Fiaschi T. Activation of autophagy by globular adiponectin is required for muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:694-702. [DOI: 10.1016/j.bbamcr.2016.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/14/2023]
|
15
|
Fiaschi T, Magherini F, Gamberi T, Modesti PA, Modesti A. Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cell Mol Life Sci 2014; 71:1917-25. [PMID: 24322911 PMCID: PMC11113778 DOI: 10.1007/s00018-013-1537-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 02/04/2023]
Abstract
The great interest that scientists have for adiponectin is primarily due to its central metabolic role. Indeed, the major function of this adipokine is the control of glucose homeostasis that it exerts regulating liver and muscle metabolism. Adiponectin has insulin-sensitizing action and leads to down-regulation of hepatic gluconeogenesis and an increase of fatty acid oxidation. In addition, adiponectin is reported to play an important role in the inhibition of inflammation. The hormone is secreted in full-length form, which can either assemble into complexes or be converted into globular form by proteolytic cleavage. Over the past few years, emerging publications reveal a more varied and pleiotropic action of this hormone. Many studies emphasize a key role of adiponectin during tissue regeneration and show that adiponectin deficiency greatly inhibits the mechanisms underlying tissue renewal. This review deals with the role of adiponectin in tissue regeneration, mainly referring to skeletal muscle regeneration, a process in which adiponectin is deeply involved. In this tissue, globular adiponectin increases proliferation, migration and myogenic properties of both resident stem cells (namely satellite cells) and non-resident muscle precursors (namely mesoangioblasts). Furthermore, skeletal muscle could be a site for the local production of the globular form that occurs in an inflamed environment. Overall, these recent findings contribute to highlight an intriguing function of adiponectin in addition to its well-recognized metabolic action.
Collapse
Affiliation(s)
- Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Universita' degli Studi di Firenze, Viale Morgagni 50, 50134, Florence, Italy,
| | | | | | | | | |
Collapse
|
16
|
Abstract
The beneficial metabolic effects of adiponectin which confer insulin-sensitizing and anti-diabetic effects are well established. Skeletal muscle is an important target tissue for adiponectin where it regulates glucose and fatty acid metabolism directly and via insulin sensitizing effects. Cell surface receptors and the intracellular signaling events via which adiponectin orchestrates metabolism are now becoming well characterized. The initially accepted dogma of adiponectin action was that the physiological effects were mediated via endocrine effects of adipose-derived adiponectin. However, in recent years it has been established that skeletal muscle can also produce and secrete adiponectin that can elicit important functional effects. There is evidence that skeletal muscle adiponectin resistance may develop in obesity and play a role in the pathogenesis of diabetes. In summary, adiponectin acting in an autocrine and endocrine manner has important metabolic and insulin sensitizing effects on skeletal muscle which contribute to the overall anti-diabetic outcome of adiponectin action.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
17
|
Goto A, Ohno Y, Ikuta A, Suzuki M, Ohira T, Egawa T, Sugiura T, Yoshioka T, Ohira Y, Goto K. Up-regulation of adiponectin expression in antigravitational soleus muscle in response to unloading followed by reloading, and functional overloading in mice. PLoS One 2013; 8:e81929. [PMID: 24324732 PMCID: PMC3855747 DOI: 10.1371/journal.pone.0081929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate the expression level of adiponectin and its related molecules in hypertrophied and atrophied skeletal muscle in mice. The expression was also evaluated in C2C12 myoblasts and myotubes. Both mRNA and protein expression of adiponectin, mRNA expression of adiponectin receptor (AdipoR) 1 and AdipoR2, and protein expression of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) were observed in C2C12 myoblasts. The expression levels of these molecules in myotubes were higher than those in myoblasts. The expression of adiponectin-related molecules in soleus muscle was observed at mRNA (adiponectin, AdipoR1, AdipoR2) and protein (adiponectin, APPL1) levels. The protein expression levels of adiponectin and APPL1 were up-regulated by 3 weeks of functional overloading. Down-regulation of AdipoR1 mRNA, but not AdipoR2 mRNA, was observed in atrophied soleus muscle. The expression of adiponectin protein, AdipoR1 mRNA, and APPL1 protein was up-regulated during regrowth of unloading-associated atrophied soleus muscle. Mechanical loading, which could increase skeletal muscle mass, might be a useful stimulus for the up-regulations of adiponectin and its related molecules in skeletal muscle.
Collapse
Affiliation(s)
- Ayumi Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
| | - Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
| | - Akihiro Ikuta
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
| | - Miho Suzuki
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
| | - Tomotaka Ohira
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
| | - Tatsuro Egawa
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takao Sugiura
- Department of Exercise and Health Sciences, Yamaguchi University, Yamaguchi, Japan
| | | | | | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Aichi, Japan
- * E-mail:
| |
Collapse
|
18
|
Will K, Kuzinski J, Kalbe C, Palin MF, Rehfeldt C. Effects of leptin and adiponectin on the growth of porcine myoblasts are associated with changes in p44/42 MAPK signaling. Domest Anim Endocrinol 2013; 45:196-205. [PMID: 24209504 DOI: 10.1016/j.domaniend.2013.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022]
Abstract
We hypothesized that both adiponectin and leptin affect the growth of porcine skeletal muscle cells, with fatty acids acting as modifiers in adipokine action and that both adipokines influence the gene expression of their receptors. Therefore, the objective of this study was to investigate the effects of recombinant adiponectin and leptin on cell number (DNA) and DNA synthesis rate with and without oleic acid supplementation, on cell death, and on key intracellular signaling molecules of proliferating porcine myoblasts in vitro. Moreover, the mRNA expression of genes encoding for the leptin and adiponectin receptors (LEPR, ADIPOR1, ADIPOR2) as affected by leptin or adiponectin was examined. Recombinant porcine adiponectin (40 μg/mL) and leptin (20 ng/mL) increased DNA synthesis rate, measured as [(3)H]-thymidine incorporation (P < 0.01), reduced cell viability in terms of lactate dehydrogenase release (P < 0.05), or lowered DNA content after 24 h (P < 0.05). In adiponectin-treated cultures, oleic acid supplementation increased DNA synthesis rate and reduced cell number in a dose-dependent manner (P < 0.05). Both adiponectin (P = 0.07) and leptin (P < 0.05) induced a transient activation of p44/42 mitogen-activated protein kinase (MAPK) after 15 min, followed by decreases after 60 and 180 min (P < 0.05). Adiponectin tended to increase c-fos activation (P = 0.08) and decreased p53 activation at 180 min (P = 0.03). Both adiponectin and leptin down-regulated the abundance of ADIPOR2 mRNA and, transiently, of LEPR mRNA (P < 0.05). In conclusion, adiponectin and leptin may adversely affect the growth of porcine myoblasts, which is related to p44/42 MAPK signaling and associated with changes in ligand receptor gene expression.
Collapse
Affiliation(s)
- K Will
- Institute for Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
19
|
Low-level laser therapy (LLLT) (660nm) alters gene expression during muscle healing in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 120:29-35. [DOI: 10.1016/j.jphotobiol.2013.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 01/01/2023]
|
20
|
Zhu XL, Qin XQ, Xiang Y, Tan YR, Qu XP, Liu HJ. Adipokine adiponectin is a potential protector to human bronchial epithelial cell for regulating proliferation, wound repair and apoptosis: comparison with leptin and resistin. Peptides 2013; 40:34-41. [PMID: 23220445 DOI: 10.1016/j.peptides.2012.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Epidemiological data indicate an increasing incidence of asthma in the obese individuals recent decades, while very little is known about the possible association between them. Here, we compared the roles of adipocyte-derived factors, including leptin, adiponectin and resistin on proliferation, wound repair and apoptosis in human bronchial epithelial cells (HBECs) which play an important role in the pathogenesis of asthma. The results showed that exogenous globular adiponectin (gAd) promoted proliferation, cell-cycle and wound repair of HBECs. This effect may be relevant to Ca(2+)/calmodulin signal pathway. Besides, gAd inhibited apoptosis induced by ozone and release of lactate dehydrogenase (LDH) of HBECs via regulated adipoR1 and reactive oxygen species. No effects of leptin or resistin on proliferation, wound repair and apoptosis of HBECs were detectable. These data indicate that airway epithelium is the direct target of gAd which plays an important role in protecting HBECs from mechanical or oxidant injuries and may have therapeutic implications in the treatment of asthma.
Collapse
Affiliation(s)
- Xiao Lin Zhu
- Department of Physiology, School of Basic Medical Science Central South University, Changsha, China
| | | | | | | | | | | |
Collapse
|
21
|
Fiaschi T, Giannoni E, Taddei ML, Chiarugi P. Globular adiponectin activates motility and regenerative traits of muscle satellite cells. PLoS One 2012; 7:e34782. [PMID: 22629295 PMCID: PMC3356356 DOI: 10.1371/journal.pone.0034782] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/09/2012] [Indexed: 12/31/2022] Open
Abstract
Regeneration of adult injured skeletal muscle is due to activation of satellite cells, a population of stem cells resident beneath the basal lamina. Thus, information on soluble factors affecting satellite cell activation, as well as migration towards injury and fusion into new myofibers are essential. Here, we show that globular adiponectin (gAd), positively affects several features of muscle satellite cells. gAd activates satellite cells to exit quiescence and increases their recruitment towards myotubes. gAd elicits in satellite cells a specific motility program, involving activation of the small GTPase Rac1, as well as expression of Snail and Twist transcription factors driving a proteolytic motility, useful to reach the site of injury. We show that satellite cells produce autocrine full length adiponectin (fAd), which is converted to gAd by activated macrophages. In turns, gAd concurs to attract to the site of injury both satellite cells and macrophages and induces myogenesis in muscle satellite cells. Thus, these findings add a further role for gAd in skeletal muscle, including the hormone among factors participating in muscle regeneration.
Collapse
Affiliation(s)
- Tania Fiaschi
- Department of Biochemical Science, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Biochemical Science, University of Florence, Florence, Italy
| | | | - Paola Chiarugi
- Department of Biochemical Science, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
22
|
Bosurgi L, Corna G, Vezzoli M, Touvier T, Cossu G, Manfredi AA, Brunelli S, Rovere-Querini P. Transplanted mesoangioblasts require macrophage IL-10 for survival in a mouse model of muscle injury. THE JOURNAL OF IMMUNOLOGY 2012; 188:6267-77. [PMID: 22573810 DOI: 10.4049/jimmunol.1102680] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to verify whether macrophages influence the fate of transplanted mesoangioblasts--vessel-associated myogenic precursors--in a model of sterile toxin-induced skeletal muscle injury. We have observed that in the absence of macrophages, transplanted mesoangioblasts do not yield novel fibers. Macrophages retrieved from skeletal muscles at various times after injury display features that resemble those of immunoregulatory macrophages. Indeed, they secrete IL-10 and express CD206 and CD163 membrane receptors and high amounts of arginase I. We have reconstituted the muscle-associated macrophage population by injecting polarized macrophages before mesoangioblast injection: alternatively activated, immunoregulatory macrophages only support mesoangioblast survival and function. This action depends on the secretion of IL-10 in the tissue. Our results reveal an unanticipated role for tissue macrophages in mesoangioblast function. Consequently, the treatment of muscle disorders with mesoangioblasts should take into consideration coexisting inflammatory pathways, whose activation may prove crucial for its success.
Collapse
Affiliation(s)
- Lidia Bosurgi
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Effects of leptin and adiponectin on proliferation and protein metabolism of porcine myoblasts. Histochem Cell Biol 2012; 138:271-87. [DOI: 10.1007/s00418-012-0949-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2012] [Indexed: 02/01/2023]
|
24
|
Bi P, Kuang S. Meat Science and Muscle Biology Symposium: stem cell niche and postnatal muscle growth. J Anim Sci 2012; 90:924-35. [PMID: 22100594 PMCID: PMC3437673 DOI: 10.2527/jas.2011-4594] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality.
Collapse
Affiliation(s)
- P. Bi
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - S. Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
25
|
Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol 2012; 226:380-93. [PMID: 21953325 DOI: 10.1002/path.3000] [Citation(s) in RCA: 431] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anoikis is a programmed cell death occurring upon cell detachment from the correct extracellular matrix, thus disrupting integrin ligation. It is a critical mechanism in preventing dysplastic cell growth or attachment to an inappropriate matrix. Anoikis prevents detached epithelial cells from colonizing elsewhere and is thus essential for tissue homeostasis and development. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are crucial steps during tumour progression and metastatic spreading of cancer cells, anoikis deregulation has now evoked particular attention from the scientific community. The aim of this review is to analyse the molecular mechanisms governing both anoikis and anoikis resistance, focusing on their regulation in physiological processes, as well as in several diseases, including metastatic cancers, cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- M L Taddei
- Department of Biochemical Sciences, University of Florence, and Tumour Institute and Centre for Research, Transfer and High Education DenoTHE, Florence, Italy
| | | | | | | |
Collapse
|
26
|
Xiao X, Dong Y, Zhong J, Cao R, Zhao X, Wen G, Liu J. Adiponectin protects endothelial cells from the damages induced by the intermittent high level of glucose. Endocrine 2011; 40:386-93. [PMID: 21948177 DOI: 10.1007/s12020-011-9531-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/30/2011] [Indexed: 11/24/2022]
Abstract
Globular adiponectin (gAd) has anti-atherogenic effects on the vascular wall. Intermittent hyperglycemia induces endothelial cells (ECs) injury but the physiological factors that may protect against ECs damage are largely unknown. In the present study, we investigated the effect of gAd on ECs dysfunction induced by intermittent high glucose. The gAd significantly attenuated intermittent high glucose-induced apoptosis and oxidative stress in human umbilical vein endothelial cells. This was achieved by decreasing caspase-3 and 3-nitrotyrosine protein expression, increasing nitric oxide (NO) secretion and phosphorylation of Akt, AMPK, and endothelial nitric oxide synthase protein expression. Pretreatment with a phosphatidylinositol 3' kinase (PI3K) inhibitor, LY294002, partly reversed adiponectin's anti-apoptotic effect. Taken together, our results indicate that gAd acts as a critical physiological factor which protects against fluctuating high glucose-induced endothelial damage. It may act via attenuating apoptosis and increasing synthesis of NO through both the PI3K/AKT and AMPK signaling pathway to reduce oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Xinhua Xiao
- Department of Metabolism & Endocrinology, The First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, 421001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Dadson K, Liu Y, Sweeney G. Adiponectin action: a combination of endocrine and autocrine/paracrine effects. Front Endocrinol (Lausanne) 2011; 2:62. [PMID: 22649379 PMCID: PMC3355882 DOI: 10.3389/fendo.2011.00062] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022] Open
Abstract
The widespread physiological actions of adiponectin have now been well characterized as clinical studies and works in animal models have established strong correlations between circulating adiponectin level and various disease-related outcomes. Thus, conventional thinking attributes many of adiponectin's beneficial effects to endocrine actions of adipose-derived adiponectin. However, it is now clear that several tissues can themselves produce adiponectin and there is growing evidence that locally produced adiponectin can mediate functionally important autocrine or paracrine effects. In this review article we discuss regulation of adiponectin production, its mechanism of action via receptor isoforms and signaling pathways, and its principal physiological effects (i.e., metabolic and cardiovascular). The role of endocrine actions of adiponectin and changes in local production of adiponectin or its receptors in whole body physiology is discussed.
Collapse
Affiliation(s)
- Keith Dadson
- Department of Biology, York UniversityToronto, ON, Canada
| | - Ying Liu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York UniversityToronto, ON, Canada
- Institut Pasteur KoreaSeoul, South Korea
| |
Collapse
|
28
|
Leicht SF, Schwarz TM, Hermann PC, Seissler J, Aicher A, Heeschen C. Adiponectin pretreatment counteracts the detrimental effect of a diabetic environment on endothelial progenitors. Diabetes 2011; 60:652-61. [PMID: 21270275 PMCID: PMC3028367 DOI: 10.2337/db10-0240] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE It has been shown that vascular progenitors from patients with diabetes are dysfunctional. However, therapeutic strategies to counteract their reduced functional capacity are still lacking. Because adiponectin has reported salutary effects on endothelial function, we investigated the functional effects of globular adiponectin (gAcrp), the active domain of adiponectin, on isolated endothelial colony-forming cells (ECFC). RESEARCH DESIGN AND METHODS ECFC were isolated from peripheral blood of type 2 diabetic patients (dmECFC) and compared with ECFC of healthy young volunteers (yECFC) and nondiabetic age-matched control subjects (hECFC). Cells were treated with gAcrp for 48 h followed by assessment of cell counts, cell cycle analysis, and migration capacity. For in vivo evaluation, human ECFC were injected into normoglycemic or streptozotocin-induced hyperglycemic nu/nu mice after hind limb ischemia. RESULTS Whereas dmECFC were functionally impaired compared with yECFC and hECFC, gAcrp significantly enhanced their in vitro proliferation and migratory activity. In vitro effects were significantly stronger in hECFC compared with dmECFC and were mediated through the cyclooxygenase-2 pathway. Most important, however, we observed a profound and sustained increase of the in vivo neovascularization in mice receiving gAcrp-pretreated dmECFC compared with untreated dmECFC under both normoglycemic and hyperglycemic conditions. CONCLUSIONS Pretreatment of ECFC with gAcrp enhanced the functional capacity of ECFC in vitro and in vivo in normoglycemic and hyperglycemic environments. Therefore, preconditioning of dmECFC with gAcrp may be a novel approach to counteract their functional impairment in diabetes.
Collapse
Affiliation(s)
- Simon F. Leicht
- Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Experimental Medicine, School of Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Theresa M. Schwarz
- Department of Experimental Medicine, School of Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Patrick C. Hermann
- Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Jochen Seissler
- Diabetes Centre, School of Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Alexandra Aicher
- School of Science and Technology, Nottingham Trent University, Nottingham, U.K
| | - Christopher Heeschen
- Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Corresponding author: Christopher Heeschen,
| |
Collapse
|