1
|
Mount HO, Urbanus ML, Zangari F, Gingras AC, Ensminger AW. The Legionella pneumophila effector PieF modulates mRNA stability through association with eukaryotic CCR4-NOT. mSphere 2025; 10:e0089124. [PMID: 39699231 PMCID: PMC11774319 DOI: 10.1128/msphere.00891-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
The eukaryotic CCR4-NOT deadenylase complex is a highly conserved regulator of mRNA metabolism that influences the expression of the complete transcriptome, representing a prime target for a generalist bacterial pathogen. We show that a translocated bacterial effector protein, PieF (Lpg1972) of Legionella pneumophila, directly interacts with the CNOT7/8 nuclease module of CCR4-NOT, with a dissociation constant in the low nanomolar range. PieF is a robust in vitro inhibitor of the DEDD-type nuclease, CNOT7, acting in a stoichiometric, dose-dependent manner. Heterologous expression of PieF phenocopies knockout of the CNOT7 ortholog (POP2) in Saccharomyces cerevisiae, resulting in 6-azauracil sensitivity. In mammalian cells, expression of PieF leads to a variety of quantifiable phenotypes: PieF silences gene expression and reduces mRNA steady-state levels when artificially tethered to a reporter transcript, and its overexpression results in the nuclear exclusion of CNOT7. PieF expression also disrupts the association between CNOT6/6L EEP-type nucleases and CNOT7. Adding to the complexities of PieF activity in vivo, we identified a separate domain of PieF responsible for binding to eukaryotic kinases. Unlike what we observe for CNOT6/6L, we show that these interactions can occur concomitantly with PieF's binding to CNOT7. Collectively, this work reveals a new, highly conserved target of L. pneumophila effectors and suggests a mechanism by which the pathogen may be modulating host mRNA stability and expression during infection. IMPORTANCE The intracellular bacterial pathogen Legionella pneumophila targets conserved eukaryotic pathways to establish a replicative niche inside host cells. With a host range that spans billions of years of evolution (from protists to humans), the interaction between L. pneumophila and its hosts frequently involves conserved eukaryotic pathways (protein translation, ubiquitination, membrane trafficking, autophagy, and the cytoskeleton). Here, we present the identification of a new, highly conserved host target of L. pneumophila effectors: the CCR4-NOT complex. CCR4-NOT modulates mRNA stability in eukaryotes from yeast to humans, making it an attractive target for a generalist pathogen, such as L. pneumophila. We show that the uncharacterized L. pneumophila effector PieF specifically targets one component of this complex, the deadenylase subunit CNOT7/8. We show that the interaction between PieF and CNOT7 is direct, occurs with high affinity, and reshapes the catalytic activity, localization, and composition of the complex across evolutionarily diverse eukaryotic cells.
Collapse
Affiliation(s)
| | - Malene L. Urbanus
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Zangari
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zhang Y, Liu G, Ding H, Fan B. High expression of CNOT6L contributes to the negative development of type 2 diabetes. Sci Rep 2024; 14:24723. [PMID: 39433858 PMCID: PMC11494123 DOI: 10.1038/s41598-024-76095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by reduced responsiveness of body cells to insulin, leading to elevated blood sugar levels. CNOT6L is involved in glucose metabolism, insulin secretion regulation, pancreatic beta-cell proliferation, and apoptosis. These functions may be closely related to the pathogenesis of T2D. However, the exact molecular mechanisms linking CNOT6L to T2D remain unclear. Therefore, this study aims to elucidate the role of CNOT6L in T2D. METHODS The T2D datasets GSE163980 and GSE26168 profiles were downloaded from the Gene Expression Omnibusdatabase generated by GPL20115 and GPL6883.The R package limma was used to screen differentially expressed genes (DEGs). A weighted gene co-expression network analysis was performed. Construction and analysis of the protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis, and comparative toxicogenomics database (CTD) analysis were performed. Target Scan was used to screen miRNAs that regulate central DEGs. The results were verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), western blotting (WB), and blood glucose measurements in mice. RESULTS A total of 1951 DEGs were identified. GO and KEGG enrichment analysis revealed that differentially expressed genes were mainly enriched in the insulin signaling pathway, ECM-receptor interaction, and PPAR signaling pathway. Metascape analysis indicated enrichment primarily in the cAMP signaling pathway and enzyme-linked receptor protein signaling pathway. WGCNA analysis yielded 50 intersecting genes. PPI network construction and algorithm identification identified two core genes (CNOT6L and GRIN2B), among which CNOT6L gene was associated with multiple miRNAs. CTD analysis revealed associations of core genes with type 2 diabetes, diabetic complications, dyslipidemia, hyperglycemia, and inflammation. WB and RT-qPCR results showed that in different pathways, CNOT6L protein and mRNA levels were upregulated in type 2 diabetes. CONCLUSION CNOT6L is highly expressed in type 2 diabetes mellitus, and can cause diabetes complications, inflammation and other physiological processes by regulating miRNA, PPAR and other related signaling pathways, with poor prognosis. CNOT6L can be used as a potential therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Guihong Liu
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Haiyan Ding
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Bingge Fan
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
3
|
Wang H, Wang W, Wang Z, Li X. Transcriptomic correlates of cell cycle checkpoints with distinct prognosis, molecular characteristics, immunological regulation, and therapeutic response in colorectal adenocarcinoma. Front Immunol 2023; 14:1291859. [PMID: 38143740 PMCID: PMC10749195 DOI: 10.3389/fimmu.2023.1291859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Backgrounds Colorectal adenocarcinoma (COAD), accounting for the most common subtype of colorectal cancer (CRC), is a kind of malignant digestive tumor. Some cell cycle checkpoints (CCCs) have been found to contribute to CRC progression, whereas the functional roles of a lot of CCCs, especially the integrated role of checkpoint mechanism in the cell cycle, remain unclear. Materials and methods The Genomic Data Commons (GDC) The Cancer Genome Atlas (TCGA) COAD cohort was retrieved as the training dataset, and GSE24551 and GSE29623 were downloaded from Gene Expression Omnibus (GEO) as the validation datasets. A total of 209 CCC-related genes were derived from the Gene Ontology Consortium and were subsequently enrolled in the univariate, multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses, finally defining a CCC signature. Cell proliferation and Transwell assay analyses were utilized to evaluate the functional roles of signature-related CCCs. The underlying CCC signature, molecular characteristics, immune-related features, and therapeutic response were finally estimated. The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for the evaluation of chemotherapeutic responses. Results The aberrant gene expression of CCCs greatly contributed to COAD development and progression. Univariate Cox regression analysis identified 27 CCC-related genes significantly affecting the overall survival (OS) of COAD patients; subsequently, LASSO analysis determined a novel CCC signature. Noticeably, CDK5RAP2, MAD1L1, NBN, RGCC, and ZNF207 were first identified to be correlated with the prognosis of COAD, and it was proven that all of them were significantly correlated with the proliferation and invasion of HCT116 and SW480 cells. In TCGA COAD cohort, CCC signature robustly stratified COAD patients into high and low CCC score groups (median OS: 57.24 months vs. unreached, p< 0.0001), simultaneously, with the good AUC values for OS prediction at 1, 2, and 3 years were 0.74, 0.78, and 0.77. Furthermore, the prognostic capacity of the CCC signature was verified in the GSE24551 and GSE29623 datasets, and the CCC signature was independent of clinical features. Moreover, a higher CCC score always indicated worse OS, regardless of clinical features, histological subtypes, or molecular subgroups. Intriguingly, functional enrichment analysis confirmed the CCC score was markedly associated with extracellular, matrix and immune (chemokine)-related signaling, cell cycle-related signaling, and metabolisms. Impressively, a higher CCC score was positively correlated with a majority of chemokines, receptors, immunostimulators, and anticancer immunity, indicating a relatively immune-promoting microenvironment. In addition, GSE173839, GSE25066, GSE41998, and GSE194040 dataset analyses of the underlying CCC signature suggested that durvalumab with olaparib and paclitaxel, taxane-anthracycline chemotherapy, neoadjuvant cyclophosphamide/doxorubicin with ixabepilone or paclitaxel, and immunotherapeutic strategies might be suitable for COAD patients with higher CCC score. Eventually, the GDSC database analysis showed that lower CCC scores were likely to be more sensitive to 5-fluorouracil, bosutinib, gemcitabine, gefitinib, methotrexate, mitomycin C, and temozolomide, while patients with higher CCC score seemed to have a higher level of sensitivity to bortezomib and elesclomol. Conclusion The novel CCC signature exhibited a good ability for prognosis prediction for COAD patients, and the CCC score was found to be highly correlated with molecular features, immune-related characteristics, and therapeutic responses, which would greatly promote clinical management and precision medicine for COAD.
Collapse
Affiliation(s)
- Heng Wang
- Department of Colorectal Surgery, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Kafri M, Patena W, Martin L, Wang L, Gomer G, Ergun SL, Sirkejyan AK, Goh A, Wilson AT, Gavrilenko SE, Breker M, Roichman A, McWhite CD, Rabinowitz JD, Cross FR, Wühr M, Jonikas MC. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 2023; 186:5638-5655.e25. [PMID: 38065083 PMCID: PMC10760936 DOI: 10.1016/j.cell.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Collapse
Affiliation(s)
- Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lance Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gillian Gomer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Arthur K Sirkejyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia E Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Asael Roichman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Zhao Q, Pavanello L, Bartlam M, Winkler GS. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Front Genet 2023; 14:1233842. [PMID: 37876592 PMCID: PMC10590902 DOI: 10.3389/fgene.2023.1233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation. Degradation via the deadenylation-dependent 5'-3' degradation pathway can be induced by trans-acting factors binding the mRNA, such as RNA-binding proteins recognising sequence elements and the miRNA-induced repression complex. These factors recruit the core mRNA degradation machinery that carries out the following steps: i) shortening of the poly(A) tail by the Ccr4-Not and Pan2-Pan3 poly (A)-specific nucleases (deadenylases); ii) removal of the 5'cap structure by the Dcp1-Dcp2 decapping complex that is recruited by the Lsm1-7-Pat1 complex; and iii) degradation of the mRNA body by the 5'-3' exoribonuclease Xrn1. In this review, the biochemical function of the nucleases and accessory proteins involved in deadenylation-dependent mRNA degradation will be reviewed with a particular focus on structural aspects of the proteins and enzymes involved.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | | |
Collapse
|
6
|
Hagkarim NC, Hajkarim MC, Suzuki T, Fujiwara T, Winkler GS, Stewart GS, Grand RJ. Disruption of the Mammalian Ccr4-Not Complex Contributes to Transcription-Mediated Genome Instability. Cells 2023; 12:1868. [PMID: 37508532 PMCID: PMC10378556 DOI: 10.3390/cells12141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian Ccr4-Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. It is involved in the control of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, and nuclear RNA surveillance; the Ccr4-Not complex also plays a central role in the regulation of mRNA decay. Growing evidence suggests that gene transcription has a vital role in shaping the landscape of genome replication and is also a potent source of replication stress and genome instability. Here, we have examined the effects of the inactivation of the Ccr4-Not complex, via the depletion of the scaffold subunit CNOT1, on DNA replication and genome integrity in mammalian cells. In CNOT1-depleted cells, the elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which, together with R-loop accumulation, results in replication fork slowing, DNA damage, and senescence. Furthermore, we have shown that the stability of TBP mRNA increases in the absence of CNOT1, which may explain its elevated protein expression in CNOT1-depleted cells. Finally, we have shown the activation of mitogen-activated protein kinase signalling as evidenced by ERK1/2 phosphorylation in the absence of CNOT1, which may be responsible for the observed cell cycle arrest at the border of G1/S.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Morteza Chalabi Hajkarim
- Department of Medicine Haematology & Oncology, Columbia University, New York City, NY 10032, USA
| | - Toru Suzuki
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka City 577-8502, Japan
| | | | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Kordaß T, Chao TY, Osen W, Eichmüller SB. Novel microRNAs modulating ecto-5'-nucleotidase expression. Front Immunol 2023; 14:1199374. [PMID: 37409119 PMCID: PMC10318900 DOI: 10.3389/fimmu.2023.1199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction The expression of immune checkpoint molecules (ICMs) by cancer cells is known to counteract tumor-reactive immune responses, thereby promoting tumor immune escape. For example, upregulated expression of ecto-5'-nucleotidase (NT5E), also designated as CD73, increases extracellular levels of immunosuppressive adenosine, which inhibits tumor attack by activated T cells. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Thus, the binding of miRNAs to the 3'-untranslated region of target mRNAs either blocks translation or induces degradation of the targeted mRNA. Cancer cells often exhibit aberrant miRNA expression profiles; hence, tumor-derived miRNAs have been used as biomarkers for early tumor detection. Methods In this study, we screened a human miRNA library and identified miRNAs affecting the expression of ICMs NT5E, ENTPD1, and CD274 in the human tumor cell lines SK-Mel-28 (melanoma) and MDA-MB-231 (breast cancer). Thereby, a set of potential tumor-suppressor miRNAs that decreased ICM expression in these cell lines was defined. Notably, this study also introduces a group of potential oncogenic miRNAs that cause increased ICM expression and presents the possible underlying mechanisms. The results of high-throughput screening of miRNAs affecting NT5E expression were validated in vitro in 12 cell lines of various tumor entities. Results As result, miR-1285-5p, miR-155-5p, and miR-3134 were found to be the most potent inhibitors of NT5E expression, while miR-134-3p, miR-6859-3p, miR-6514-3p, and miR-224-3p were identified as miRNAs that strongly enhanced NT5E expression levels. Discussion The miRNAs identified might have clinical relevance as potential therapeutic agents and biomarkers or therapeutic targets, respectively.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Tsu-Yang Chao
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
9
|
Ruffenach G, Medzikovic L, Aryan L, Li M, Eghbali M. HNRNPA2B1: RNA-Binding Protein That Orchestrates Smooth Muscle Cell Phenotype in Pulmonary Arterial Hypertension. Circulation 2022; 146:1243-1258. [PMID: 35993245 PMCID: PMC9588778 DOI: 10.1161/circulationaha.122.059591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND RNA-binding proteins are master orchestrators of gene expression regulation. They regulate hundreds of transcripts at once by recognizing specific motifs. Thus, characterizing RNA-binding proteins targets is critical to harvest their full therapeutic potential. However, such investigation has often been restricted to a few RNA-binding protein targets, limiting our understanding of their function. In cancer, the RNA-binding protein HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2B1; A2B1) promotes the pro-proliferative/anti-apoptotic phenotype. The same phenotype in pulmonary arterial smooth muscle cells (PASMCs) is responsible for the development of pulmonary arterial hypertension (PAH). However, A2B1 function has never been investigated in PAH. METHOD Through the integration of computational and experimental biology, the authors investigated the role of A2B1 in human PAH-PASMC. Bioinformatics and RNA sequencing allowed them to investigate the transcriptome-wide function of A2B1, and RNA immunoprecipitation and A2B1 silencing experiments allowed them to decipher the intricate molecular mechanism at play. In addition, they performed a preclinical trial in the monocrotaline-induced pulmonary hypertension rat model to investigate the relevance of A2B1 inhibition in mitigating pulmonary hypertension severity. RESULTS They found that A2B1 expression and its nuclear localization are increased in human PAH-PASMC. Using bioinformatics, they identified 3 known motifs of A2B1 and all mRNAs carrying them. In PAH-PASMC, they demonstrated the complementary nonredundant function of A2B1 motifs because all motifs are implicated in different aspects of the cell cycle. In addition, they showed that in PAH-PASMC, A2B1 promotes the expression of its targets. A2B1 silencing in PAH-PASMC led to a decrease of all tested mRNAs carrying an A2B1 motif and a concomitant decrease in proliferation and resistance to apoptosis. Last, in vivo A2B1 inhibition in the lungs rescued pulmonary hypertension in rats. CONCLUSIONS Through the integration of computational and experimental biology, the study revealed the role of A2B1 as a master orchestrator of the PAH-PASMC phenotype and its relevance as a therapeutic target in PAH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine,David Geffen School of Medicine, University of California, Los Angeles
| | - Lejla Medzikovic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine,David Geffen School of Medicine, University of California, Los Angeles
| | - Laila Aryan
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine,David Geffen School of Medicine, University of California, Los Angeles
| | - Min Li
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine,David Geffen School of Medicine, University of California, Los Angeles
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine,David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
10
|
Kyritsis A, Papanastasi E, Kokkori I, Maragozidis P, Chatzileontiadou DSM, Pallaki P, Labrou M, Zarogiannis SG, Chrousos GP, Vlachakis D, Gourgoulianis KI, Balatsos NAA. Integrated Deadenylase Genetic Association Network and Transcriptome Analysis in Thoracic Carcinomas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103102. [PMID: 35630580 PMCID: PMC9145511 DOI: 10.3390/molecules27103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
The poly(A) tail at the 3′ end of mRNAs determines their stability, translational efficiency, and fate. The shortening of the poly(A) tail, and its efficient removal, triggers the degradation of mRNAs, thus, regulating gene expression. The process is catalyzed by a family of enzymes, known as deadenylases. As the dysregulation of gene expression is a hallmark of cancer, understanding the role of deadenylases has gained additional interest. Herein, the genetic association network shows that CNOT6 and CNOT7 are the most prevalent and most interconnected nodes in the equilibrated diagram. Subsequent silencing and transcriptomic analysis identifies transcripts possibly regulated by specific deadenylases. Furthermore, several gene ontologies are enriched by common deregulated genes. Given the potential concerted action and overlapping functions of deadenylases, we examined the effect of silencing a deadenylase on the remaining ones. Our results suggest that specific deadenylases target unique subsets of mRNAs, whilst at the same time, multiple deadenylases may affect the same mRNAs with overlapping functions.
Collapse
Affiliation(s)
- Athanasios Kyritsis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
| | - Eirini Papanastasi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Ioanna Kokkori
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Department of Pneumonology-Oncology, Theagenio Cancer Hospital, 540 07 Thessaloniki, Greece
| | - Panagiotis Maragozidis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Paschalina Pallaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Maria Labrou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Sotirios G. Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 415 00 Larissa, Greece
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (G.P.C.); (D.V.)
- UNESCO Chair on Adolescent Health Care, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Dimitrios Vlachakis
- University Research Institute of Maternal and Child Health and Precision Medicine, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (G.P.C.); (D.V.)
- UNESCO Chair on Adolescent Health Care, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| | - Nikolaos A. A. Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| |
Collapse
|
11
|
Zhang Q, Pavanello L, Potapov A, Bartlam M, Winkler GS. Structure of the human Ccr4-Not nuclease module using X-ray crystallography and electron paramagnetic resonance spectroscopy distance measurements. Protein Sci 2022; 31:758-764. [PMID: 34923703 PMCID: PMC8862426 DOI: 10.1002/pro.4262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4. The Caf1 deadenylase subunit binds the MIF4G domain of the large subunit CNOT1 (Not1) that is the scaffold of the complex. The Ccr4 nuclease is connected to the complex via its leucine-rich repeat (LRR) domain, which binds Caf1, whereas the catalytic activity of Ccr4 is provided by its EEP domain. While the relative positions of the MIF4G domain of CNOT1, the Caf1 subunit, and the LRR domain of Ccr4 are clearly defined in current models, the position of the EEP nuclease domain of Ccr4 is ambiguous. Here, we use X-ray crystallography, the AlphaFold resource of predicted protein structures, and pulse electron paramagnetic resonance spectroscopy to determine and validate the position of the EEP nuclease domain of Ccr4 resulting in an improved model of the human Ccr4-Not nuclease module.
Collapse
Affiliation(s)
- Qionglin Zhang
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Lorenzo Pavanello
- School of PharmacyUniversity of NottinghamNottinghamUK,Present address:
LifeArcStevenage Bioscience Catalyst Open Innovation CampusStevenageUK
| | - Alexey Potapov
- School of Physics and Astronomy, Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Mark Bartlam
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | | |
Collapse
|
12
|
Suzuki T, Hoshina M, Nishijima S, Hoshina N, Kikuguchi C, Tomohiro T, Fukao A, Fujiwara T, Yamamoto T. Regulation of CCR4-NOT complex deadenylase activity and cellular responses by MK2-dependent phosphorylation of CNOT2. RNA Biol 2022; 19:234-246. [PMID: 35129087 PMCID: PMC8820811 DOI: 10.1080/15476286.2021.2021676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
CCR4-NOT complex-mediated mRNA deadenylation serves critical functions in multiple biological processes, yet how this activity is regulated is not fully understood. Here, we show that osmotic stress induces MAPKAPK-2 (MK2)-mediated phosphorylation of CNOT2. Programmed cell death is greatly enhanced by osmotic stress in CNOT2-depleted cells, indicating that CNOT2 is responsible for stress resistance of cells. Although wild-type (WT) and non-phosphorylatable CNOT2 mutants reverse this sensitivity, a phosphomimetic form of CNOT2, in which serine at the phosphorylation site is replaced with glutamate, does not have this function. We also show that mRNAs have elongated poly(A) tails in CNOT2-depleted cells and that introduction of CNOT2 WT or a non-phosphorylatable mutant, but not phosphomimetic CNOT2, renders their poly(A) tail lengths comparable to those in control HeLa cells. Consistent with this, the CCR4-NOT complex containing phosphomimetic CNOT2 exhibits less deadenylase activity than that containing CNOT2 WT. These data suggest that CCR4-NOT complex deadenylase activity is regulated by post-translational modification, yielding dynamic control of mRNA deadenylation.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Miyuki Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Naosuke Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chisato Kikuguchi
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Takumi Tomohiro
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | | | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
13
|
CNOT6: A Novel Regulator of DNA Mismatch Repair. Cells 2022; 11:cells11030521. [PMID: 35159331 PMCID: PMC8833972 DOI: 10.3390/cells11030521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
DNA mismatch repair (MMR) is a highly conserved pathway that corrects both base–base mispairs and insertion-deletion loops (IDLs) generated during DNA replication. Defects in MMR have been linked to carcinogenesis and drug resistance. However, the regulation of MMR is poorly understood. Interestingly, CNOT6 is one of four deadenylase subunits in the conserved CCR4-NOT complex and it targets poly(A) tails of mRNAs for degradation. CNOT6 is overexpressed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and androgen-independent prostate cancer cells, which suggests that an altered expression of CNOT6 may play a role in tumorigenesis. Here, we report that a depletion of CNOT6 sensitizes human U2OS cells to N-methyl-N′nitro-N-nitrosoguanidine (MNNG) and leads to enhanced apoptosis. We also demonstrate that the depletion of CNOT6 upregulates MMR and decreases the mutation frequency in MMR-proficient cells. Furthermore, the depletion of CNOT6 increases the stability of mRNA transcripts from MMR genes, leading to the increased expression of MMR proteins. Our work provides insight into a novel CNOT6-dependent mechanism for regulating MMR.
Collapse
|
14
|
Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650431. [PMID: 33816501 PMCID: PMC8017203 DOI: 10.3389/fcell.2021.650431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
The thirst to postpone and even reverse aging progress has never been quenched after all these decades. Unequivocally, mesenchymal stem cells (MSCs), with extraordinary abilities such as self-renewal and multi-directional differentiation, deserve the limelight in this topic. Though having several affable clinical traits, MSCs going through senescence would, on one hand, contribute to age-related diseases and, on the other hand, lead to compromised or even counterproductive therapeutical outcomes. Notably, increasing evidence suggests that non-coding RNAs (ncRNAs) could invigorate various regulatory processes. With even a slight dip or an uptick of expression, ncRNAs would make a dent in or even overturn cellular fate. Thereby, a systematic illustration of ncRNAs identified so far to steer MSCs during senescence is axiomatically an urgent need. In this review, we introduce the general properties and mechanisms of senescence and its relationship with MSCs and illustrate the ncRNAs playing a role in the cellular senescence of MSCs. It is then followed by the elucidation of ncRNAs embodied in extracellular vesicles connecting senescent MSCs with other cells and diversified processes in and beyond the skeletal system. Last, we provide a glimpse into the clinical methodologies of ncRNA-based therapies in MSC-related fields. Hopefully, the intricate relationship between senescence and MSCs will be revealed one day and our work could be a crucial stepping-stone toward that future.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Osaka Dental University, Hirakata, Japan
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Song XH, Liao XY, Zheng XY, Liu JQ, Zhang ZW, Zhang LN, Yan YB. Human Ccr4 and Caf1 Deadenylases Regulate Proliferation and Tumorigenicity of Human Gastric Cancer Cells via Modulating Cell Cycle Progression. Cancers (Basel) 2021; 13:cancers13040834. [PMID: 33671234 PMCID: PMC7922635 DOI: 10.3390/cancers13040834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer cells generally reprogram their gene expression profiles to satisfy continuous growth, proliferation, and metastasis. Most eukaryotic mRNAs are degraded in a deadenylation-dependent pathway, in which deadenylases are the key enzymes. We found that human Ccr4 (hCcr4a/b) and Caf1 (hCaf1a/b), the dominant cytosolic deadenylases, were dysregulated in several types of cancers including stomach adenocarcinoma. Stably knocking down hCaf1a/b or hCcr4a/b blocks cell cycle progression by enhancing the levels of cell cycle inhibitors and by inhibiting the formation of processing bodies, which are cytosolic foci involved in mRNA metabolism. More importantly, depletion of hCaf1a/b or hCcr4a/b dramatically inhibits cell proliferation and tumorigenicity. Our results suggest that perturbating global RNA metabolism may provide a potential novel strategy for cancer treatment. Abstract Cancer cells generally have reprogrammed gene expression profiles to meet the requirements of survival, continuous division, and metastasis. An interesting question is whether the cancer cells will be affected by interfering their global RNA metabolism. In this research, we found that human Ccr4a/b (hCcr4a/b) and Caf1a/b (hCaf1a/b) deadenylases, the catalytic components of the Ccr4-Not complex, were dysregulated in several types of cancers including stomach adenocarcinoma. The impacts of the four deadenylases on cancer cell growth were studied by the establishment of four stable MKN28 cell lines with the knockdown of hCcr4a/b or hCaf1a/b or transient knockdown in several cell lines. Depletion of hCcr4a/b or hCaf1a/b significantly inhibited cell proliferation and tumorigenicity. Mechanistic studies indicated that the cells were arrested at the G2/M phase by knocking down hCaf1a, while arrested at the G0/G1 phase by depleting hCaf1b or hCcr4a/b. The four enzymes did not affect the levels of CDKs and cyclins but modulated the levels of CDK–cyclin inhibitors. We identified that hCcr4a/b, but not hCaf1a/b, targeted the p21 mRNA in the MKN28 cells. Furthermore, depletion of any one of the four deadenylases dramatically impaired processing-body formation in the MKN28 and HEK-293T cells. Our results highlight that perturbating global RNA metabolism may severely affect cancer cell proliferation, which provides a potential novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hui Song
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Xiao-Yan Liao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Xu-Ying Zheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Jia-Qian Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Zhe-Wei Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Li-Na Zhang
- College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: (L.-N.Z.); (Y.-B.Y.); Tel.: +86-10-6739-6342 (L.-N.Z.); +86-10-6278-3477 (Y.-B.Y.)
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
- Correspondence: (L.-N.Z.); (Y.-B.Y.); Tel.: +86-10-6739-6342 (L.-N.Z.); +86-10-6278-3477 (Y.-B.Y.)
| |
Collapse
|
16
|
Yu J, Hu X, Chen X, Zhou Q, Jiang Q, Shi Z, Zhu H. CNOT7 modulates biological functions of ovarian cancer cells via AKT signaling pathway. Life Sci 2021; 268:118996. [PMID: 33412213 DOI: 10.1016/j.lfs.2020.118996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
AIMS CNOT7 plays an important role in many biological processes, providing attractive opportunities for the treatment of malignant tumors. However, the functions and mechanism of CNOT7 in ovarian cancer (OC) have not been elucidated. The purpose of this study was to assess the role of CNOT7 in OC. MATERIALS AND METHODS SKOV3 and A2780 cells were chosen as the cell lines for the experiments of this manuscript via the analysis of the expression of CNOT7 protein and the mRNA level in ovarian surface epithelium (OSE) cells, SKOV3, HO8910 and A2780 cells. The expression of CNOT7 was detected by western blot assays and RT-PCR in A2780 and SKOV3 cells. The MTT assays, colony formation assays and EdU assays were used to measure cell proliferation when CNOT7 was knocked down or overexpressed in A2780 and SKOV3 cells. Furthermore, cell migration and invasion ability were achieved from transwell assays. Cell cycle and apoptosis rate after small interference RNA-CNOT7 (siRNA-CNOT7) were detected by flow cytometry assays. Finally, the cell proliferation, migration and invasion ability were detected when A2780 and SKOV3 cells with CNOT7 overexpression were treated with LY294002. KEY FINDINGS The expression of CNOT7 protein in OC cells, including SKOV3, HO8910 and A2780 cells were significantly higher than that in OSE cells (P < 0.05). The mRNA level of CNOT7 in HO8910 and A2780 cells were significantly higher than that in OSE cells (P < 0.01). However, the mRNA level of CNOT7 in SKOV3 cells was no significant difference compared with OSE cells (P > 0.05). The results suggested that knockdown of CNOT7 could inhibit the cell proliferation, migration and invasion ability in A2780 and SKOV3 cells, and increase cell apoptosis and autophagy. The expression of apoptosis-related molecules (PARP, Caspase3 and Caspase9) and autophagy-related protein (LC3B) were up-regulated after CNOT7 knockdown, while the expression of cycle-related protein (CDK6) and the anti-apoptotic gene (Bcl2) were downregulated. Meanwhile, the opposite results were observed when CNOT7 was overexpressed in A2780 and SKOV3 cells. It is worth noting that the effect of CNOT7 overexpression in A2780 and SKOV3 cells could be partially or completely eliminated by treatment with AKT inhibitor LY294002. SIGNIFICANCE CNOT7 has a carcinogenic effect in OC, and the carcinogenic effect may be achieved via the AKT signaling pathway.
Collapse
Affiliation(s)
- Jiangtao Yu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Xiaoli Hu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Xiuxiu Chen
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Qiangyong Zhou
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Qi Jiang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Zhengzheng Shi
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China.
| | - Haiyan Zhu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China; Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200126, People's Republic of China.
| |
Collapse
|
17
|
Kow RL, Strovas TJ, McMillan PJ, Jacobi AM, Behlke MA, Saxton AD, Latimer CS, Keene CD, Kraemer BC. Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiol Dis 2021; 147:105148. [PMID: 33184027 PMCID: PMC8092974 DOI: 10.1016/j.nbd.2020.105148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.
Collapse
Affiliation(s)
- Rebecca L. Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Timothy J. Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Pamela J. McMillan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - Aleen D. Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Caitlin S. Latimer
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Department of Pathology, University of Washington, Seattle, WA 98195, USA,Corresponding author at: Seattle Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108, USA. (B.C. Kraemer)
| |
Collapse
|
18
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
19
|
Huang Y, Chen S, Qin W, Wang Y, Li L, Li Q, Yuan X. A Novel RNA Binding Protein-Related Prognostic Signature for Hepatocellular Carcinoma. Front Oncol 2020; 10:580513. [PMID: 33251144 PMCID: PMC7673432 DOI: 10.3389/fonc.2020.580513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant and aggressive cancer with high recurrence rates and mortality. Some studies have illustrated that RNA binding proteins (RBPs) were involved in the carcinogenesis and development of multiple cancers, but the roles in HCC were still unclear. We downloaded the RNA-seq and corresponding clinical information of HCC from The Cancer Genome Atlas (TCGA) database, and 330 differentially expressed RBPs were identified between normal and HCC tissues. Through series of the univariate, the least absolute shrinkage selection operator (LASSO), and the stepwise multivariate Cox regression analyses, six prognosis-related key RBPs (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) were screened out from DE RBPs, and a six-RBP gene risk score signature was constructed in training set. Survival analysis indicated that HCC patients with high-risk scores had significantly worse overall survival than low-risk patients, and furthermore, the signature can be used as an independent prognostic indicator. The good accuracy of this prognostic signature was confirmed by the ROC curve analysis and was further validated in the International Cancer Genome Consortium (ICGC) HCC cohort. Besides, a nomogram based on six RBP genes was established and internally validated in the TCGA cohort. Gene set enrichment analysis demonstrated some cancer-related phenotypes were significantly gathered in the high-risk group. Overall, our study first identified an RBP-related six-gene prognostic signature, which could serve as a promising prognostic biomarker and provide some potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Zhao H, Chen C, Chen X, Zhang D, Li J, Yang C, Ren C, Ren X, Fu X, Li Y, He J, Zhao H. Analysis of CNOT Family Gene Expression, Clinicopathological Features, and Prognosis Value in Hepatocellular Carcinoma. DNA Cell Biol 2020; 39:2226-2244. [PMID: 33085544 DOI: 10.1089/dna.2020.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The carbon catabolite repressor 4-negative on TATA (CCR4-NOT) complex, abbreviated CNOT, has deadenylation and 3'-5' exonuclease activity, mediates deadenylation in the degradation of RNA, initiates the exonuclease degradation pathway, and participates in tumor gene regulation. CNOT proteins comprise a family of global transcriptional regulators that are evolutionarily conserved in eukaryotic cells. Several subunit types of the CNOT complex have been discovered; however, little is known about the role of different subunits in tumorigenesis and development. We observed overexpression of CNOT1-11 in liver cancer and correlations with clinicopathological characteristics. The expression of some CNOTs subunits was associated with histological grades, lymph node metastasis, and tumor stages in patients with hepatocellular carcinoma (HCC). Our data suggested that some CNOTs can be used as predictors of poor prognosis in HCC patients. At the same time, we conducted an analysis of CNOTs mutations in HCC patients. Moreover, we selected CNOT6, CNOT10, and CNOT11 for protein interaction network analysis and Gene Ontology enrichment analysis to investigate their related biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, the results of western blot and quantitative reverse transcription-PCR (qRT-PCR) experiments were consistent with the database findings. Results of this study suggest that CNOT6, CNOT10, and CNOT11, acting as regulators of transcription, may play an important role in the development of HCC and may serve as biological markers in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
| | | | | | | | - Jian Li
- Shanxi Medical University, Taiyuan, China
| | - Chuanli Yang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Chongren Ren
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiaojing Ren
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Xifeng Fu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjun Li
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Jiefeng He
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Haoliang Zhao
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Epigenetic Regulation in Mesenchymal Stem Cell Aging and Differentiation and Osteoporosis. Stem Cells Int 2020; 2020:8836258. [PMID: 32963550 PMCID: PMC7501554 DOI: 10.1155/2020/8836258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a reliable source for cell-based regenerative medicine owing to their multipotency and biological functions. However, aging-induced systemic homeostasis disorders in vivo and cell culture passaging in vitro induce a functional decline of MSCs, switching MSCs to a senescent status with impaired self-renewal capacity and biased differentiation tendency. MSC functional decline accounts for the pathogenesis of many diseases and, more importantly, limits the large-scale applications of MSCs in regenerative medicine. Growing evidence implies that epigenetic mechanisms are a critical regulator of the differentiation programs for cell fate and are subject to changes during aging. Thus, we here review epigenetic dysregulations that contribute to MSC aging and osteoporosis. Comprehending detailed epigenetic mechanisms could provide us with a novel horizon for dissecting MSC-related pathogenesis and further optimizing MSC-mediated regenerative therapies.
Collapse
|
22
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Takahashi A, Suzuki T, Soeda S, Takaoka S, Kobori S, Yamaguchi T, Mohamed HMA, Yanagiya A, Abe T, Shigeta M, Furuta Y, Kuba K, Yamamoto T. The CCR4-NOT complex maintains liver homeostasis through mRNA deadenylation. Life Sci Alliance 2020; 3:3/5/e201900494. [PMID: 32238456 PMCID: PMC7119370 DOI: 10.26508/lsa.201900494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
The biological significance of deadenylation in global gene expression is not fully understood. Here, we show that the CCR4-NOT deadenylase complex maintains expression of mRNAs, such as those encoding transcription factors, cell cycle regulators, DNA damage response-related proteins, and metabolic enzymes, at appropriate levels in the liver. Liver-specific disruption of Cnot1, encoding a scaffold subunit of the CCR4-NOT complex, leads to increased levels of mRNAs for transcription factors, cell cycle regulators, and DNA damage response-related proteins because of reduced deadenylation and stabilization of these mRNAs. CNOT1 suppression also results in an increase of immature, unspliced mRNAs (pre-mRNAs) for apoptosis-related and inflammation-related genes and promotes RNA polymerase II loading on their promoter regions. In contrast, mRNAs encoding metabolic enzymes become less abundant, concomitant with decreased levels of these pre-mRNAs. Lethal hepatitis develops concomitantly with abnormal mRNA expression. Mechanistically, the CCR4-NOT complex targets and destabilizes mRNAs mainly through its association with Argonaute 2 (AGO2) and butyrate response factor 1 (BRF1) in the liver. Therefore, the CCR4-NOT complex contributes to liver homeostasis by modulating the liver transcriptome through mRNA deadenylation.
Collapse
Affiliation(s)
- Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, Japan
| | - Shou Soeda
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shohei Takaoka
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shungo Kobori
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | | | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan .,Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, Japan
| |
Collapse
|
24
|
Fang JC, Liu HY, Tsai YC, Chou WL, Chang CC, Lu CA. A CCR4 Association Factor 1, OsCAF1B, Participates in the αAmy3 mRNA Poly(A) Tail Shortening and Plays a Role in Germination and Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:554-564. [PMID: 31782784 DOI: 10.1093/pcp/pcz221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Poly(A) tail (PAT) shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The carbon catabolite repressor 4-associated factor 1s (CAF1s) were shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, a sugar-upregulated CAF1 gene, OsCAF1B, is investigated in rice. Using gain-of-function and dominant-negative mutation analysis, we show that overexpression of OsCAF1B resulted in an accelerated α-amylase gene (αAmy3) mRNA degradation phenomenon, while ectopic expression of a form of OsCAF1B that had lost its deadenylase activity resulted in a delayed αAmy3 mRNA degradation phenomenon in transgenic rice cells. The change in αAmy3 mRNA degradation in transgenic rice is associated with the altered lengths of the αAmy3 mRNA PAT, indicating that OsCAF1B acts as a negative regulator of αAmy3 mRNA stability in rice. Additionally, we found that overexpression of OsCAF1B retards seed germination and seedling growth. These findings indicate that OsCAF1B participates in sugar-induced αAmy3 mRNA degradation and deadenylation and acts a negative factor for germination and seedling development.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| |
Collapse
|
25
|
Mostafa D, Takahashi A, Yanagiya A, Yamaguchi T, Abe T, Kureha T, Kuba K, Kanegae Y, Furuta Y, Yamamoto T, Suzuki T. Essential functions of the CNOT7/8 catalytic subunits of the CCR4-NOT complex in mRNA regulation and cell viability. RNA Biol 2020; 17:403-416. [PMID: 31924127 PMCID: PMC6999631 DOI: 10.1080/15476286.2019.1709747] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shortening of mRNA poly(A) tails (deadenylation) to trigger their decay is mediated mainly by the CCR4-NOT deadenylase complex. While four catalytic subunits (CNOT6, 6L 7, and 8) have been identified in the mammalian CCR4-NOT complex, their individual biological roles are not fully understood. In this study, we addressed the contribution of CNOT7/8 to viability of primary mouse embryonic fibroblasts (MEFs). We found that MEFs lacking CNOT7/8 expression [Cnot7/8-double knockout (dKO) MEFs] undergo cell death, whereas MEFs lacking CNOT6/6L expression (Cnot6/6l-dKO MEFs) remain viable. Co-immunoprecipitation analyses showed that CNOT6/6L are also absent from the CCR4-NOT complex in Cnot7/8-dKO MEFs. In contrast, either CNOT7 or CNOT8 still interacts with other subunits in the CCR4-NOT complex in Cnot6/6l-dKO MEFs. Exogenous expression of a CNOT7 mutant lacking catalytic activity in Cnot7/8-dKO MEFs cannot recover cell viability, even though CNOT6/6L exists to some extent in the CCR4-NOT complex, confirming that CNOT7/8 is essential for viability. Bulk poly(A) tail analysis revealed that mRNAs with longer poly(A) tails are more numerous in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Consistent with elongated poly(A) tails, more mRNAs are upregulated and stabilized in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Importantly, Cnot6/6l-dKO mice are viable and grow normally to adulthood. Taken together, the CNOT7/8 catalytic subunits are essential for deadenylation, which is necessary to maintain cell viability, whereas CNOT6/6L are not.
Collapse
Affiliation(s)
- Dina Mostafa
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Taku Kureha
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yumi Kanegae
- Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
26
|
Shi JW, Huang Y. Screen and classify genes on bladder cancer associated with metastasis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Orellana EA, Li C, Lisevick A, Kasinski AL. Identification and validation of microRNAs that synergize with miR-34a - a basis for combinatorial microRNA therapeutics. Cell Cycle 2019; 18:1798-1811. [PMID: 31258013 DOI: 10.1080/15384101.2019.1634956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Efforts to search for better treatment options for cancer have been a priority, and due to these efforts, new alternative therapies have emerged. For instance, clinically relevant tumor-suppressive microRNAs that target key oncogenic drivers have been identified as potential anti-cancer therapeutics. MicroRNAs are small non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. Aberrant microRNA expression, through misexpression of microRNA target genes, can have profound cellular effects leading to a variety of diseases, including cancer. While altered microRNA expression contributes to a cancerous state, restoration of microRNA expression has therapeutic benefits. For example, ectopic expression of microRNA-34a (miR-34a), a tumor suppressor gene that is a direct transcriptional target of p53 and thus is reduced in p53 mutant tumors, has clear effects on cell proliferation and survival in murine models of cancer. MicroRNA replacement therapies have recently been tested in combination with other agents, including other microRNAs, to simultaneously target multiple pathways to improve the therapeutic response. Thus, we reasoned that other microRNA combinations could collaborate to further improve treatment. To test this hypothesis miR-34a was used in an unbiased cell-based approach to identify combinatorial microRNA pairs with enhanced efficacy over miR-34a alone. This approach identified a subset of microRNAs that was able to enhance the miR-34a antiproliferative activity. These microRNA combinatorial therapeutics could offer superior tumor-suppressive abilities to suppress oncogenic properties compared to a monotherapeutic approach. Collectively these studies aim to address an unmet need of identifying, characterizing, and therapeutically targeting microRNAs for the treatment of cancer.
Collapse
Affiliation(s)
- Esteban A Orellana
- a Department of Biological Sciences , Purdue University , West Lafayette , IN , USA.,b Stem Cell Program, Boston Children's Hospital , Harvard Medical School , Boston , MA , USA
| | - Chennan Li
- a Department of Biological Sciences , Purdue University , West Lafayette , IN , USA
| | - Alexa Lisevick
- a Department of Biological Sciences , Purdue University , West Lafayette , IN , USA
| | - Andrea L Kasinski
- a Department of Biological Sciences , Purdue University , West Lafayette , IN , USA.,c Purdue Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
28
|
Abstract
The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression . It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination . The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland.
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland
| |
Collapse
|
29
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
30
|
PABP Cooperates with the CCR4-NOT Complex to Promote mRNA Deadenylation and Block Precocious Decay. Mol Cell 2019; 70:1081-1088.e5. [PMID: 29932901 DOI: 10.1016/j.molcel.2018.05.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/16/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Multiple deadenylases are known in vertebrates, the PAN2-PAN3 (PAN2/3) and CCR4-NOT (CNOT) complexes, and PARN, yet their differential functions remain ambiguous. Moreover, the role of poly(A) binding protein (PABP) is obscure, limiting our understanding of the deadenylation mechanism. Here, we show that CNOT serves as a predominant nonspecific deadenylase for cytoplasmic poly(A)+ RNAs, and PABP promotes deadenylation while preventing premature uridylation and decay. PAN2/3 selectively trims long tails (>∼150 nt) with minimal effect on transcriptome, whereas PARN does not affect mRNA deadenylation. CAF1 and CCR4, catalytic subunits of CNOT, display distinct activities: CAF1 trims naked poly(A) segments and is blocked by PABPC, whereas CCR4 is activated by PABPC to shorten PABPC-protected sequences. Concerted actions of CAF1 and CCR4 delineate the ∼27 nt periodic PABPC footprints along shortening tail. Our study unveils distinct functions of deadenylases and PABPC, re-drawing the view on mRNA deadenylation and regulation.
Collapse
|
31
|
Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, Yamamoto T. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development 2019; 146:dev.168146. [PMID: 30733279 PMCID: PMC6398447 DOI: 10.1242/dev.168146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
Liver development involves dramatic gene expression changes mediated by transcriptional and post-transcriptional control. Here, we show that the Cnot deadenylase complex plays a crucial role in liver functional maturation. The Cnot3 gene encodes an essential subunit of the Cnot complex. Mice lacking Cnot3 in liver have reduced body and liver masses, and they display anemia and severe liver damage. Histological analyses indicate that Cnot3-deficient (Cnot3−/−) hepatocytes are irregular in size and morphology, resulting in formation of abnormal sinusoids. We observe hepatocyte death, increased abundance of mitotic and mononucleate hepatocytes, and inflammation. Cnot3−/− livers show increased expression of immune response-related, cell cycle-regulating and immature liver genes, while many genes relevant to liver functions, such as oxidation-reduction, lipid metabolism and mitochondrial function, decrease, indicating impaired liver functional maturation. Highly expressed mRNAs possess elongated poly(A) tails and are stabilized in Cnot3−/− livers, concomitant with an increase of the proteins they encode. In contrast, transcription of liver function-related mRNAs was lower in Cnot3−/− livers. We detect efficient suppression of Cnot3 protein postnatally, demonstrating the crucial contribution of mRNA decay to postnatal liver functional maturation. Summary: Regulation of both mRNA transcription and stability plays a crucial role in postnatal liver development; in particular, Cnot complex-mediated mRNA decay is essential for postnatal liver functional maturation.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan
| | - Chisato Kikuguchi
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology, 1919-1 Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Takeshi Nagashima
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology, 1919-1 Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mariko Okada
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan.,Laboratory for Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Yamamoto
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan .,Cell Signal Unit, Okinawa Institute of Science and Technology, 1919-1 Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
32
|
Groves JA, Gillman C, DeLay CN, Kroll TT. Identification of Novel Binding Partners for Transcription Factor Emx2. Protein J 2019; 38:2-11. [PMID: 30628007 DOI: 10.1007/s10930-019-09810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mammalian homolog of Drosophila empty spiracles 2 (Emx2) is a homeobox transcription factor that plays central roles in early development of the inner ear, pelvic and shoulder girdles, cerebral cortex, and urogenital organs. The role for Emx2 is best understood within the context of the development of the neocortical region of the cortex, where Emx2 is expressed in a high posterior-medial to low anterior-lateral gradient that regulates the partitioning of the neocortex into different functional fields that perform discrete computational tasks. Despite several lines of evidence demonstrating an Emx2 concentration-dependent mechanism for establishing functional areas within the developing neocortex, little is known about how Emx2 physically carries out this role. Although several binding partners for Emx2 have been identified (including Sp8, eIF4E, and Pbx1), no screens have been used to identify potential protein binding partners for this protein. We utilized a yeast two-hybrid screen using a library constructed from embryonic mouse cDNA in an attempt to identify novel binding partners for Emx2. This initial screen isolated two potential Emx2-binding partner proteins, Cnot6l and QkI-7. These novel Emx2-binding proteins are involved in multiple levels of mRNA metabolism that including splicing, mRNA export, translation, and destruction, thus making them interesting targets for further study.
Collapse
Affiliation(s)
- Jennifer A Groves
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Cody Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 157 Broad Center, M/C, Pasadena, USA
| | - Cierra N DeLay
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Todd T Kroll
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA.
| |
Collapse
|
33
|
CNOT3 targets negative cell cycle regulators in non-small cell lung cancer development. Oncogene 2018; 38:2580-2594. [DOI: 10.1038/s41388-018-0603-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
|
34
|
Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J 2018; 37:embj.201899333. [PMID: 30478191 DOI: 10.15252/embj.201899333] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Meiotic resumption-coupled degradation of maternal transcripts occurs during oocyte maturation in the absence of mRNA transcription. The CCR4-NOT complex has been identified as the main eukaryotic mRNA deadenylase. In vivo functional and mechanistic information regarding its multiple subunits remains insufficient. Cnot6l, one of four genes encoding CCR4-NOT catalytic subunits, is preferentially expressed in mouse oocytes. Genetic deletion of Cnot6l impaired deadenylation and degradation of a subset of maternal mRNAs during oocyte maturation. Overtranslation of these undegraded mRNAs caused microtubule-chromosome organization defects, which led to activation of spindle assembly checkpoint and meiotic cell cycle arrest at prometaphase. Consequently, Cnot6l -/- female mice were severely subfertile. The function of CNOT6L in maturing oocytes is mediated by RNA-binding protein ZFP36L2, not maternal-to-zygotic transition licensing factor BTG4, which interacts with catalytic subunits CNOT7 and CNOT8 of CCR4-NOT Thus, recruitment of different adaptors by different catalytic subunits ensures stage-specific degradation of maternal mRNAs by CCR4-NOT This study provides the first direct genetic evidence that CCR4-NOT-dependent and particularly CNOT6L-dependent decay of selective maternal mRNAs is a prerequisite for meiotic maturation of oocytes.
Collapse
Affiliation(s)
- Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jia-Li Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jing-Xin Guo
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xing-Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun-Chao Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Hughes KL, Abshire ET, Goldstrohm AC. Regulatory roles of vertebrate Nocturnin: insights and remaining mysteries. RNA Biol 2018; 15:1255-1267. [PMID: 30257600 PMCID: PMC6284557 DOI: 10.1080/15476286.2018.1526541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional control of messenger RNA (mRNA) is an important layer of gene regulation that modulates mRNA decay, translation, and localization. Eukaryotic mRNA decay begins with the catalytic removal of the 3' poly-adenosine tail by deadenylase enzymes. Multiple deadenylases have been identified in vertebrates and are known to have distinct biological roles; among these proteins is Nocturnin, which has been linked to circadian biology, adipogenesis, osteogenesis, and obesity. Multiple studies have investigated Nocturnin's involvement in these processes; however, a full understanding of its molecular function remains elusive. Recent studies have provided new insights by identifying putative Nocturnin-regulated mRNAs in mice and by determining the structure and regulatory activities of human Nocturnin. This review seeks to integrate these new discoveries into our understanding of Nocturnin's regulatory functions and highlight the important remaining unanswered questions surrounding its regulation, biochemical activities, protein partners, and target mRNAs.
Collapse
Affiliation(s)
- Kelsey L. Hughes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth T. Abshire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Romo L, Ashar-Patel A, Pfister E, Aronin N. Alterations in mRNA 3' UTR Isoform Abundance Accompany Gene Expression Changes in Human Huntington's Disease Brains. Cell Rep 2018; 20:3057-3070. [PMID: 28954224 DOI: 10.1016/j.celrep.2017.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
The huntingtin gene has two mRNA isoforms that differ in their 3' UTR length. The relationship of these isoforms with Huntington's disease is not established. We provide evidence that the abundance of huntingtin 3' UTR isoforms differs between patient and control neural stem cells, fibroblasts, motor cortex, and cerebellum. Huntingtin 3' UTR isoforms, including a mid-3' UTR isoform, have different localizations, half-lives, polyA tail lengths, microRNA sites, and RNA-binding protein sites. Isoform shifts in Huntington's disease motor cortex are not limited to huntingtin; 11% of alternatively polyadenylated genes change the abundance of their 3' UTR isoforms. Altered expression of RNA-binding proteins may be associated with aberrant isoform abundance; knockdown of the RNA-binding protein CNOT6 in control fibroblasts leads to huntingtin isoform differences similar to those in disease fibroblasts. These findings demonstrate that mRNA 3' UTR isoform changes are a feature of molecular pathology in the Huntington's disease brain.
Collapse
Affiliation(s)
- Lindsay Romo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Ami Ashar-Patel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Edith Pfister
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
37
|
Chen H, Sirupangi T, Wu ZH, Johnson DL, Laribee RN. The conserved RNA recognition motif and C3H1 domain of the Not4 ubiquitin ligase regulate in vivo ligase function. Sci Rep 2018; 8:8163. [PMID: 29802328 PMCID: PMC5970261 DOI: 10.1038/s41598-018-26576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
The Ccr4-Not complex controls RNA polymerase II (Pol II) dependent gene expression and proteasome function. The Not4 ubiquitin ligase is a Ccr4-Not subunit that has both a RING domain and a conserved RNA recognition motif and C3H1 domain (referred to as the RRM-C domain) with unknown function. We demonstrate that while individual Not4 RING or RRM-C mutants fail to replicate the proteasomal defects found in Not4 deficient cells, mutation of both exhibits a Not4 loss of function phenotype. Transcriptome analysis revealed that the Not4 RRM-C affects a specific subset of Pol II-regulated genes, including those involved in transcription elongation, cyclin-dependent kinase regulated nutrient responses, and ribosomal biogenesis. The Not4 RING, RRM-C, or RING/RRM-C mutations cause a generalized increase in Pol II binding at a subset of these genes, yet their impact on gene expression does not always correlate with Pol II recruitment which suggests Not4 regulates their expression through additional mechanisms. Intriguingly, we find that while the Not4 RRM-C is dispensable for Ccr4-Not association with RNA Pol II, the Not4 RING domain is required for these interactions. Collectively, these data elucidate previously unknown roles for the conserved Not4 RRM-C and RING domains in regulating Ccr4-Not dependent functions in vivo.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Tirupataiah Sirupangi
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Daniel L Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America.
| |
Collapse
|
38
|
Cui Z, Zeng Q, Guo Y, Liu S, Chen J. Integrated bioinformatic changes and analysis of retina with time in diabetic rats. PeerJ 2018; 6:e4762. [PMID: 29785346 PMCID: PMC5960260 DOI: 10.7717/peerj.4762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/23/2018] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common chronic complication of diabetes. It can cause impaired vision and even blindness. However, the pathological mechanism of DR is still unknown. In the present study, we use bioinformatic analysis to reveal the pathological changes of early DR in a streptozotocin (STZ) induced diabetes rat model. The dataset GSE28831 was downloaded from the Gene Expression Omnibus (GEO) database. To clarify the pathological mechanism of early DR, genes which were up-regulated (UP group) or down-regulated (DOWN group) over time were identified. One hundred eighty six genes in the UP group and 85 genes in the DOWN group were defined. There were in total 28 Gene ontology (GO) terms with a P value lower than 0.05 in UP group, including astrocyte development, neutrophil chemotaxis, neutrophil aggregation, mesenchymal cell proliferation and so on. In the DOWN group, there were totally 14 GO terms with a P value lower than 0.05, including visual perception, lens development in camera-type eye, camera-type eye development, bicellular tight junction and so on. Signaling pathways were analyzed with all genes in the UP and DOWN groups, and leukocyte transendothelial migration and tight junction were selected. Protein–protein interaction (PPI) network was constructed and six hub genes Diras3, Actn1, Tssk6, Cnot6l, Tek and Fgf4 were selected with connection degree ≥5. S100a8, S100a9 and Tek may be potential targets for DR diagnosis and treatment. This study provides the basis for the diagnosis and treatment of DR in the future.
Collapse
Affiliation(s)
- Zekai Cui
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Qiaolang Zeng
- The Department of Ophthalmology, The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Shiwei Liu
- The Department of Ophthalmology, The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,The Department of Ophthalmology, The First Clinical Medical College, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.,Aier Eye Institute, Changsha, China
| |
Collapse
|
39
|
CNOT6 regulates a novel pattern of mRNA deadenylation during oocyte meiotic maturation. Sci Rep 2018; 8:6812. [PMID: 29717177 PMCID: PMC5931610 DOI: 10.1038/s41598-018-25187-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
In many cell types, the length of the poly(A) tail of an mRNA is closely linked to its fate - a long tail is associated with active translation, a short tail with silencing and degradation. During mammalian oocyte development, two contrasting patterns of polyadenylation have been identified. Some mRNAs carry a long poly(A) tail during the growth stage and are actively translated, then become deadenylated and down-regulated during the subsequent stage, termed meiotic maturation. Other mRNAs carry a short tail poly(A) tail and are translationally repressed during growth, and their poly(A) tail lengthens and they become translationally activated during maturation. As well, a program of elimination of this ‘maternal’ mRNA is initiated during oocyte maturation. Here we describe a third pattern of polyadenylation: mRNAs are deadenylated in growing oocytes, become polyadenylated during early maturation and then deadenylated during late maturation. We show that the deadenylase, CNOT6, is present in cortical foci of oocytes and regulates deadenylation of these mRNAs, and that PUF-binding elements (PBEs) regulate deadenylation in mature oocytes. Unexpectedly, maintaining a long poly(A) tail neither enhances translation nor inhibits degradation of these mRNAs. Our findings implicate multiple machineries, more complex than previously thought, in regulating mRNA activity in oocytes.
Collapse
|
40
|
Yamaguchi T, Suzuki T, Sato T, Takahashi A, Watanabe H, Kadowaki A, Natsui M, Inagaki H, Arakawa S, Nakaoka S, Koizumi Y, Seki S, Adachi S, Fukao A, Fujiwara T, Natsume T, Kimura A, Komatsu M, Shimizu S, Ito H, Suzuki Y, Penninger JM, Yamamoto T, Imai Y, Kuba K. The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Sci Signal 2018; 11:11/516/eaan3638. [PMID: 29438013 DOI: 10.1126/scisignal.aan3638] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Shortening and removal of the polyadenylate [poly(A)] tail of mRNA, a process called deadenylation, is a key step in mRNA decay that is mediated through the CCR4-NOT (carbon catabolite repression 4-negative on TATA-less) complex. In our investigation of the regulation of mRNA deadenylation in the heart, we found that this complex was required to prevent cell death. Conditional deletion of the CCR4-NOT complex components Cnot1 or Cnot3 resulted in the formation of autophagic vacuoles and cardiomyocyte death, leading to lethal heart failure accompanied by long QT intervals. Cnot3 bound to and shortened the poly(A) tail of the mRNA encoding the key autophagy regulator Atg7. In Cnot3-depleted hearts, Atg7 expression was posttranscriptionally increased. Genetic ablation of Atg7, but not Atg5, increased survival and partially restored cardiac function of Cnot1 or Cnot3 knockout mice. We further showed that in Cnot3-depleted hearts, Atg7 interacted with p53 and modulated p53 activity to induce the expression of genes encoding cell death-promoting factors in cardiomyocytes, indicating that defects in deadenylation in the heart aberrantly activated Atg7 and p53 to promote cell death. Thus, mRNA deadenylation mediated by the CCR4-NOT complex is crucial to prevent Atg7-induced cell death and heart failure, suggesting a role for mRNA deadenylation in targeting autophagy genes to maintain normal cardiac homeostasis.
Collapse
Affiliation(s)
- Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Takashi Suzuki
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Teruki Sato
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Akinori Takahashi
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Hiroyuki Watanabe
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ayumi Kadowaki
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Miyuki Natsui
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Hideaki Inagaki
- Bioscience Education and Research Support Center, Akita University, Akita 010-8543, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shinji Nakaoka
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.,Laboratory for Regulation of Intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Yukio Koizumi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Shinsuke Seki
- Bioscience Education and Research Support Center, Akita University, Akita 010-8543, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Akira Fukao
- Molecular Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Toshinobu Fujiwara
- Molecular Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Ito
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Campus Vienna BioCenter, Vienna 1030, Austria
| | - Tadashi Yamamoto
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Yumiko Imai
- Laboratory for Regulation of Intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
41
|
Sohn EJ, Jung DB, Lee H, Han I, Lee J, Lee H, Kim SH. CNOT2 promotes proliferation and angiogenesis via VEGF signaling in MDA-MB-231 breast cancer cells. Cancer Lett 2017; 412:88-98. [PMID: 29024811 DOI: 10.1016/j.canlet.2017.09.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/24/2022]
Abstract
Here the underlying role of CNOT2, a subunit of CCR4-NOT complex, was elucidated in cancer progression. CNOT2 was overexpressed in HIT-T15, ASPC-1, BXPC-3, PC-3, LNCaP, MCF-7 and MDA-MB-231 cell lines, which was confirmed by Tissue array in various human tumor tissues. Also, CNOT2 depletion suppressed proliferation and colony formation of MDA-MB-231 cells. Of note, microarray revealed decreased expression of CNOT2, VEGF-A, HIF2 alpha (<0.5 fold) and increased expression of UMOD1, LOC727847, MMP4, hCG and other genes (>2.0 fold) in CNOT2 depleted MDA-MB-231 cells compared to untreated control. Consistently, downregulation of VEGF, CNOT2 and HIF2 alpha was verified in CNOT2 depleted MDA-MB-231 cells by RT-qPCR. Additionally, CNOT2 depletion inhibited VEGF induced tube formation in HUVECs and reduced neovascularization in CAM assay. Furthermore, the growth of CNOT2 depleted MDA-MB-231 cells was significantly reduced in Balb/c nude mice along with decreased expression of VEGF and PCNA by immunohistochemistry compared to untreated control group. Overall, our findings provide evidences that CNOT2 promotes proliferation and angiogenesis via VEGF signaling in MDA-MB-231 breast cancer cells as a potent molecular target for breast cancer treatment.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deok-Beom Jung
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - HyoJung Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ihn Han
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jihyun Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyemin Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
42
|
Skeparnias I, Αnastasakis D, Shaukat AN, Grafanaki K, Stathopoulos C. Expanding the repertoire of deadenylases. RNA Biol 2017; 14:1320-1325. [PMID: 28267419 PMCID: PMC5711463 DOI: 10.1080/15476286.2017.1300222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022] Open
Abstract
Deadenylases belong to an expanding family of exoribonucleases involved mainly in mRNA stability and turnover, with the exception of PARN which has additional roles in the biogenesis of several important non-coding RNAs, including miRNAs and piRNAs. Recently, PARN in C. elegans and its homolog PNLDC1 in B. mori were reported as the elusive trimmers mediating piRNA biogenesis. In addition, characterization of mammalian PNLDC1 in comparison to PARN, showed that is specifically expressed in embryonic stem and germ cells, as well as during early embryo development. Moreover, its expression is correlated with epigenetic events mediated by the de novo DNMT3b methyltransferase and knockdown in stem cells upregulates important genes that regulate multipotency. The recent data suggest that at least some new deadenylases may have expanded roles in cell metabolism as regulators of gene expression, through mRNA deadenylation, ncRNAs biogenesis and ncRNA-mediated mRNA targeting, linking essential mechanisms that regulate epigenetic control and transition events during differentiation. The possible roles of mammalian PNLDC1 along those dynamic networks are discussed in the light of new extremely important findings.
Collapse
Affiliation(s)
- Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, Greece
| | | | | | - Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, Greece
| | | |
Collapse
|
43
|
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 2017; 18:386. [PMID: 28521758 PMCID: PMC5437562 DOI: 10.1186/s12864-017-3754-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations. Results Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained). Conclusions Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3754-y) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-Associated MicroRNAs. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:177-205. [PMID: 28838538 PMCID: PMC8436595 DOI: 10.1016/bs.ircmb.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Senescent cells arise as a consequence of cellular damage and can have either a detrimental or advantageous impact on tissues and organs depending on the specific cell type and metabolic state. As senescent cells accumulate in tissues with advancing age, they have been implicated in many age-related declines and diseases. The major facets of senescence include two pathways responsible for establishing and maintaining a senescence program, p53/CDKN1A(p21) and CDKN2A(p16)/RB, as well as the senescence-associated secretory phenotype. Numerous MicroRNAs influence senescence by modulating the abundance of key senescence regulatory proteins, generally by lowering the stability and/or translation of mRNAs that encode such factors. Accordingly, understanding the molecular mechanisms by which MicroRNAs influence senescence will enable diagnostic and therapeutic opportunities directed at senescent cells. Here, we review senescence-associated (SA)-MicroRNAs and discuss their implications in senescence-relevant pathologies.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| |
Collapse
|
45
|
Zhou F, Wang Y, Liu H, Ready N, Han Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Landi MT, Brüske I, Risch A, Ye Y, Wu X, Christiani DC, Goodman G, Chen C, Amos CI, Qingyi W. Susceptibility loci of CNOT6 in the general mRNA degradation pathway and lung cancer risk-A re-analysis of eight GWASs. Mol Carcinog 2017; 56:1227-1238. [PMID: 27805284 PMCID: PMC5354966 DOI: 10.1002/mc.22585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE mRNA degradation is an important regulatory step for controlling gene expression and cell functions. Genetic abnormalities involved in mRNA degradation genes were found to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic variants in the general mRNA degradation pathway in lung cancer risk. EXPERIMENTAL DESIGN Meta-analyses were conducted using summary data from six lung cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional validation of the identified significant susceptibility loci. RESULTS This pathway-based analysis included 6816 single nucleotide polymorphisms (SNP) in 68 genes in 14 463 lung cancer cases and 44 188 controls. In the single-locus analysis, we found that 20 SNPs were associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with a RegulomDB score "1f" was chosen as the tagSNP for further analysis. We found that the rs2453176 T allele was significantly associated with lung cancer risk (odds ratio = 1.11, 95% confidence interval = 1.04-1.18) in the eight GWASs. In the eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, which provided additional biological basis for the observed positive association. CONCLUSION The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung cancer risk. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fei Zhou
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Neal Ready
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University, Göttingen, 37073 Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University, Göttingen, 37073 Göttingen, Germany
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London , SW7 3RP, UK
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David C. Christiani
- Massachusetts General Hospital, Boston, MA 02114, USA, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gary Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Christopher I. Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Wei Qingyi
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
46
|
Chou WL, Chung YL, Fang JC, Lu CA. Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. PLANT MOLECULAR BIOLOGY 2017; 93:79-96. [PMID: 27714489 DOI: 10.1007/s11103-016-0548-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Yue-Lin Chung
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
| |
Collapse
|
47
|
Delis C, Krokida A, Tomatsidou A, Tsikou D, Beta RAA, Tsioumpekou M, Moustaka J, Stravodimos G, Leonidas DD, Balatsos NAA, Papadopoulou KK. AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants. RNA Biol 2016; 13:68-82. [PMID: 26619288 DOI: 10.1080/15476286.2015.1119363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We report the identification and characterization of a novel gene, AtHesperin (AtHESP) that codes for a deadenylase in Arabidopsis thaliana. The gene is under circadian clock-gene regulation and has similarity to the mammalian Nocturnin. AtHESP can efficiently degrade poly(A) substrates exhibiting allosteric kinetics. Size exclusion chromatography and native electrophoresis coupled with kinetic analysis support that the native enzyme is oligomeric with at least 3 binding sites. Knockdown and overexpression of AtHESP in plant lines affects the expression and rhythmicity of the clock core oscillator genes TOC1 and CCA1. This study demonstrates an evolutionary conserved poly(A)-degrading activity in plants and suggests deadenylation as a mechanism involved in the regulation of the circadian clock. A role of AtHESP in stress response in plants is also depicted.
Collapse
Affiliation(s)
- Costas Delis
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Afrodite Krokida
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Anastasia Tomatsidou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Daniela Tsikou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Rafailia A A Beta
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Maria Tsioumpekou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Julietta Moustaka
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Georgios Stravodimos
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Demetres D Leonidas
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Nikolaos A A Balatsos
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Kalliope K Papadopoulou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| |
Collapse
|
48
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
49
|
Ukleja M, Valpuesta JM, Dziembowski A, Cuellar J. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery. Bioessays 2016; 38:1048-58. [PMID: 27502453 DOI: 10.1002/bies.201600092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.
Collapse
Affiliation(s)
- Marta Ukleja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland. .,Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain. .,Institute of Structural and Molecular Biology, University College London and Birkbeck, London, UK.
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
50
|
Faraji F, Hu Y, Yang HH, Lee MP, Winkler GS, Hafner M, Hunter KW. Post-transcriptional Control of Tumor Cell Autonomous Metastatic Potential by CCR4-NOT Deadenylase CNOT7. PLoS Genet 2016; 12:e1005820. [PMID: 26807845 PMCID: PMC4726497 DOI: 10.1371/journal.pgen.1005820] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence supports the role of an aberrant transcriptome as a driver of metastatic potential. Deadenylation is a general regulatory node for post-transcriptional control by microRNAs and other determinants of RNA stability. Previously, we demonstrated that the CCR4-NOT scaffold component Cnot2 is an inherited metastasis susceptibility gene. In this study, using orthotopic metastasis assays and genetically engineered mouse models, we show that one of the enzymatic subunits of the CCR4-NOT complex, Cnot7, is also a metastasis modifying gene. We demonstrate that higher expression of Cnot7 drives tumor cell autonomous metastatic potential, which requires its deadenylase activity. Furthermore, metastasis promotion by CNOT7 is dependent on interaction with CNOT1 and TOB1. CNOT7 ribonucleoprotein-immunoprecipitation (RIP) and integrated transcriptome wide analyses reveal that CNOT7-regulated transcripts are enriched for a tripartite 3'UTR motif bound by RNA-binding proteins known to complex with CNOT7, TOB1, and CNOT1. Collectively, our data support a model of CNOT7, TOB1, CNOT1, and RNA-binding proteins collectively exerting post-transcriptional control on a metastasis suppressive transcriptional program to drive tumor cell metastasis.
Collapse
Affiliation(s)
- Farhoud Faraji
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- School of Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Ying Hu
- Center for Biomedical Informatics and Information Technology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maxwell P. Lee
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kent W. Hunter
- Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|