1
|
Zhang YW, Wu SX, Wang GW, Wan RD, Yang QE. Single-cell analysis identifies critical regulators of spermatogonial development and differentiation in cattle-yak bulls. J Dairy Sci 2024; 107:7317-7336. [PMID: 38642661 DOI: 10.3168/jds.2023-24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Wen Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining, Qinghai 810016, China
| | - Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
2
|
Qian G, Adeyanju O, Cai D, Tucker TA, Idell S, Chen SY, Guo X. DOCK2 Promotes Atherosclerosis by Mediating the Endothelial Cell Inflammatory Response. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:599-611. [PMID: 37838011 PMCID: PMC10988758 DOI: 10.1016/j.ajpath.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The pathology of atherosclerosis, a leading cause of mortality in patients with cardiovascular disease, involves inflammatory phenotypic changes in vascular endothelial cells. This study explored the role of the dedicator of cytokinesis (DOCK)-2 protein in atherosclerosis. Mice with deficiencies in low-density lipoprotein receptor and Dock2 (Ldlr-/-Dock2-/-) and controls (Ldlr-/-) were fed a high-fat diet (HFD) to induce atherosclerosis. In controls, Dock2 was increased in atherosclerotic lesions, with increased intercellular adhesion molecule (Icam)-1 and vascular cell adhesion molecule (Vcam)-1, after HFD for 4 weeks. Ldlr-/-Dock2-/- mice exhibited significantly decreased oil red O staining in both aortic roots and aortas compared to that in controls after HFD for 12 weeks. In control mice and in humans, Dock2 was highly expressed in the ECs of atherosclerotic lesions. Dock2 deficiency was associated with attenuation of Icam-1, Vcam-1, and monocyte chemoattractant protein (Mcp)-1 in the aortic roots of mice fed HFD. Findings in human vascular ECs in vitro suggested that DOCK2 was required in TNF-α-mediated expression of ICAM-1/VCAM-1/MCP-1. DOCK2 knockdown was associated with attenuated NF-κB phosphorylation with TNF-α, partially accounting for DOCK2-mediated vascular inflammation. With DOCK2 knockdown in human vascular ECs, TNF-α-mediated VCAM-1 promoter activity was inhibited. The findings from this study suggest the novel concept that DOCK2 promotes the pathogenesis of atherosclerosis by modulating inflammation in vascular ECs.
Collapse
Affiliation(s)
- Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Oluwaseun Adeyanju
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Dunpeng Cai
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, Missouri
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shi-You Chen
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, Missouri; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri; Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia.
| | - Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia.
| |
Collapse
|
3
|
Tang Y, Liu Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. OLFM2 promotes epithelial-mesenchymal transition, migration, and invasion in colorectal cancer through the TGF-β/Smad signaling pathway. BMC Cancer 2024; 24:204. [PMID: 38350902 PMCID: PMC10865519 DOI: 10.1186/s12885-024-11925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an aggressive tumor of the gastrointestinal tract, which is a major public health concern worldwide. Despite numerous studies, the precise mechanism of metastasis behind its progression remains elusive. As a member of the containing olfactomedin domains protein family, olfactomedin 2 (OLFM2) may play a role in tumor metastasis. It is highly expressed in colorectal cancer, and its role in the metastasis of CRC is still unclear. As such, this study seeks to explore the function of OLFM2 on CRC metastasis and its potential mechanisms. METHODS Real-time fluorescence quantitative PCR and western blotting were used to study the expression of OLFM2 in human CRC and adjacent normal tissues. Knockdown and overexpression OLFM2 cell lines were constructed using siRNA and overexpression plasmids to explore the role of OLFM2 in the migration and invasion of CRC through transwell, and wound healing experiments. Finally, the expression of epithelial-mesenchymal transition (EMT) -related proteins and TGF-β/Smad signaling pathway-related proteins was investigated using western blotting. RESULTS In this study, we observed an elevation of OLFM2 expression levels in CRC tissues. To investigate the function of OLFM2, we overexpressed and knocked down OLFM2. We discovered that OLFM2 knockdown inhibited migration and invasion of colon cancer cells. Furthermore, E-cadherin expression increased while N-cadherin and Vimentin expression were opposite. It is no surprise that overexpressing OLFM2 had the opposite effects. We also identified that OLFM2 knockdown resulted in reduced TGF-βR1 and downstream molecules p-Smad2 and p-Smad3, which are related to the TGF-β / Smad pathway. In contrast, overexpressing OLFM2 significantly boosted their expression levels. CONCLUSION The protein OLFM2 has been identified as a crucial determinant in the progression of CRC. Its mechanism of action involves the facilitation of EMT through the TGF-β/Smad signaling pathway. Given its pivotal role in CRC, OLFM2 has emerged as a promising diagnostic and therapeutic target for the disease. These results indicate the potential of OLFM2 as a valuable biomarker for CRC diagnosis and treatment and highlight the need for further research exploring its clinical significance.
Collapse
Affiliation(s)
- Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Ziyang Yanjiang People's Hospital, Ziyang, China
| | - Yi Liu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
4
|
Liu K, Li W, Xiao Y, Lei M, Zhang M, Min J. Molecular mechanism of specific DNA sequence recognition by NRF1. Nucleic Acids Res 2024; 52:953-966. [PMID: 38055835 PMCID: PMC10810270 DOI: 10.1093/nar/gkad1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Nuclear respiratory factor 1 (NRF1) regulates the expression of genes that are vital for mitochondrial biogenesis, respiration, and various other cellular processes. While NRF1 has been reported to bind specifically to GC-rich promoters as a homodimer, the precise molecular mechanism governing its recognition of target gene promoters has remained elusive. To unravel the recognition mechanism, we have determined the crystal structure of the NRF1 homodimer bound to an ATGCGCATGCGCAT dsDNA. In this complex, NRF1 utilizes a flexible linker to connect its dimerization domain (DD) and DNA binding domain (DBD). This configuration allows one NRF1 monomer to adopt a U-turn conformation, facilitating the homodimer to specifically bind to the two TGCGC motifs in the GCGCATGCGC consensus sequence from opposite directions. Strikingly, while the NRF1 DBD alone could also bind to the half-site (TGCGC) DNA of the consensus sequence, the cooperativity between DD and DBD is essential for the binding of the intact GCGCATGCGC sequence and the transcriptional activity of NRF1. Taken together, our results elucidate the molecular mechanism by which NRF1 recognizes specific DNA sequences in the promoters to regulate gene expression.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weifang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
5
|
Shi N, Zhang J, Chen SY. DOCK2 Promotes Asthma Development by Eliciting Airway Epithelial-Mesenchymal Transition. Am J Respir Cell Mol Biol 2023; 69:310-320. [PMID: 36883952 PMCID: PMC10503310 DOI: 10.1165/rcmb.2022-0273oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to airway remodeling, a predominant feature of asthma. DOCK2 (dedicator of cytokinesis 2) is an innate immune signaling molecule involved in vascular remodeling. However, it is unknown if DOCK2 plays a role in airway remodeling during asthma development. In this study, we found that DOCK2 is highly induced in both normal human bronchial epithelial cells treated with house dust mite (HDM) extract and human asthmatic airway epithelium. DOCK2 is also upregulated by TGF-β1 (transforming growth factor β1) during EMT of human bronchial epithelial cells. Importantly, knockdown of DOCK2 inhibits, and overexpression of DOCK2 promotes, TGF-β1-induced EMT. Consistently, DOCK2 deficiency suppresses the EMT of airway epithelium, attenuates the subepithelial fibrosis, and improves pulmonary function in HDM-induced asthmatic lungs. These data suggest that DOCK2 plays an important role in EMT and asthma development. Mechanistically, DOCK2 interacts with transcription factor FoxM1 (forkhead box M1), which enhances FoxM1 binding to mesenchymal marker gene promoters and further promotes mesenchymal marker gene transcription and expression, leading to EMT. Taken together, our study identifies DOCK2 as a novel regulator for airway EMT in an HDM-induced asthma model, thus providing a potential therapeutic target for treatment of asthma.
Collapse
Affiliation(s)
- Ning Shi
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Jing Zhang
- Department of Neurological Intensive Care Unit, Taihe Hospital, Shiyan, China; and
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| |
Collapse
|
6
|
Ham SM, Song MJ, Yoon HS, Lee DH, Chung JH, Lee ST. SPARC Is Highly Expressed in Young Skin and Promotes Extracellular Matrix Integrity in Fibroblasts via the TGF-β Signaling Pathway. Int J Mol Sci 2023; 24:12179. [PMID: 37569556 PMCID: PMC10419001 DOI: 10.3390/ijms241512179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The matricellular secreted protein acidic and rich in cysteine (SPARC; also known as osteonectin), is involved in the regulation of extracellular matrix (ECM) synthesis, cell-ECM interactions, and bone mineralization. We found decreased SPARC expression in aged skin. Incubating foreskin fibroblasts with recombinant human SPARC led to increased type I collagen production and decreased matrix metalloproteinase-1 (MMP-1) secretion at the protein and mRNA levels. In a three-dimensional culture of foreskin fibroblasts mimicking the dermis, SPARC significantly increased the synthesis of type I collagen and decreased its degradation. In addition, SPARC also induced receptor-regulated SMAD (R-SMAD) phosphorylation. An inhibitor of transforming growth factor-beta (TGF-β) receptor type 1 reversed the SPARC-induced increase in type I collagen and decrease in MMP-1, and decreased SPARC-induced R-SMAD phosphorylation. Transcriptome analysis revealed that SPARC modulated expression of genes involved in ECM synthesis and regulation in fibroblasts. RT-qPCR confirmed that a subset of differentially expressed genes is induced by SPARC. These results indicated that SPARC enhanced ECM integrity by activating the TGF-β signaling pathway in fibroblasts. We inferred that the decline in SPARC expression in aged skin contributes to process of skin aging by negatively affecting ECM integrity in fibroblasts.
Collapse
Affiliation(s)
- Seung Min Ham
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Sun Yoon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Department of Dermatology, Seoul National University Boramae Hospital, Seoul 07061, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| |
Collapse
|
7
|
Guo X, Cai D, Dong K, Li C, Xu Z, Chen SY. DOCK2 Deficiency Attenuates Abdominal Aortic Aneurysm Formation-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:e210-e217. [PMID: 37021575 PMCID: PMC10212530 DOI: 10.1161/atvbaha.122.318400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially lethal disease that lacks pharmacological treatment. Degradation of extracellular matrix proteins, especially elastin laminae, is the hallmark for AAA development. DOCK2 (dedicator of cytokinesis 2) has shown proinflammatory effects in several inflammatory diseases and acts as a novel mediator for vascular remodeling. However, the role of DOCK2 in AAA formation remains unknown. METHODS Ang II (angiotensin II) infusion of ApoE-/- (apolipoprotein E deficient) mouse and topical elastase-induced AAA combined with DOCK2-/- (DOCK2 knockout) mouse models were used to study DOCK2 function in AAA formation/dissection. The relevance of DOCK2 to human AAA was examined using human aneurysm specimens. Elastin fragmentation in AAA lesion was observed by elastin staining. Elastin-degrading enzyme MMP (matrix metalloproteinase) activity was measured by in situ zymography. RESULTS DOCK2 was robustly upregulated in AAA lesion of Ang II-infused ApoE-/- mice, elastase-treated mice, as well as human AAA lesions. DOCK2-/- significantly attenuated the Ang II-induced AAA formation/dissection or rupture in mice along with reduction of MCP-1 (monocyte chemoattractant protein-1) and MMP expression and activity. Accordingly, the elastin fragmentation observed in ApoE-/- mouse aorta infused with Ang II and elastase-treated aorta was significantly attenuated by DOCK2 deficiency. Moreover, DOCK2-/- decreased the prevalence and severity of aneurysm formation, as well as the elastin degradation observed in the topical elastase model. CONCLUSIONS Our results indicate that DOCK2 is a novel regulator for AAA formation. DOCK2 regulates AAA development by promoting MCP-1 and MMP2 expression to incite vascular inflammation and elastin degradation.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Dunpeng Cai
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Kun Dong
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Chenxiao Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Zaiyan Xu
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Shi-You Chen
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology & Physiology, School of Medicine, The University of Missouri, Columbia, MO, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Barruet E, Striedinger K, Marangoni P, Pomerantz JH. Loss of transcriptional heterogeneity in aged human muscle stem cells. PLoS One 2023; 18:e0285018. [PMID: 37192223 PMCID: PMC10187936 DOI: 10.1371/journal.pone.0285018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Age-related loss of muscle mass and function negatively impacts healthspan and lifespan. Satellite cells function as muscle stem cells in muscle maintenance and regeneration by self-renewal, activation, proliferation and differentiation. These processes are perturbed in aging at the stem cell population level, contributing to muscle loss. However, how representation of subpopulations within the human satellite cell pool change during aging remains poorly understood. We previously reported a comprehensive baseline of human satellite cell (Hu-MuSCs) transcriptional activity in muscle homeostasis describing functional heterogenous human satellite cell subpopulations such as CAV1+ Hu-MUSCs. Here, we sequenced additional satellite cells from new healthy donors and performed extended transcriptomic analyses with regard to aging. We found an age-related loss of global transcriptomic heterogeneity and identified new markers (CAV1, CXCL14, GPX3) along with previously described ones (FN1, ITGB1, SPRY1) that are altered during aging in human satellite cells. These findings describe new transcriptomic changes that occur during aging in human satellite cells and provide a foundation for understanding functional impact.
Collapse
Affiliation(s)
- Emilie Barruet
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, United States of America
| | - Katharine Striedinger
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, United States of America
| | - Jason H. Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
9
|
Assessment and Distribution of Runs of Homozygosity in Horse Breeds Representing Different Utility Types. Animals (Basel) 2022; 12:ani12233293. [PMID: 36496815 PMCID: PMC9736150 DOI: 10.3390/ani12233293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The present study reports runs of homozygosity (ROH) distribution in the genomes of six horse breeds (571 horses in total) representing three horse types (primitive, light, and draft horses) based on the 65k Equine BeadChip assay. Of major interest was the length, quantity, and frequency of ROH characteristics, as well as differences between horse breeds and types. Noticeable differences in the number, length and distribution of ROH between breeds were observed, as well as in genomic inbreeding coefficients. We also identified regions of the genome characterized by high ROH coverage, known as ROH islands, which may be signals of recent selection events. Eight to fourteen ROH islands were identified per breed, which spanned multiple genes. Many were involved in important horse breed characteristics, including WFIKNN2, CACNA1G, STXBP4, NOG, FAM184B, QDPR, LCORL, and the zinc finger protein family. Regions of the genome with zero ROH occurrences were also of major interest in specific populations. Depending on the breed, we detected between 2 to 57 no-ROH regions and identified 27 genes in these regions that were common for five breeds. These genes were involved in, e.g., muscle contractility (CACNA1A) and muscle development (miR-23, miR-24, miR-27). To sum up, the obtained results can be furthered analyzed in the topic of identification of markers unique for specific horse breed characteristics.
Collapse
|
10
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
11
|
Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A. Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. eLife 2022; 11:e73992. [PMID: 35049502 PMCID: PMC8803312 DOI: 10.7554/elife.73992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here, we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Diana S José-Edwards
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jamie E Kugler
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Karina Braslavskaya
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jermyn Addy
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | | | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| |
Collapse
|
12
|
Jiang Y, Zhang X, Zhang X, Zhao K, Zhang J, Yang C, Chen Y. Comprehensive Analysis of the Transcriptome-Wide m6A Methylome in Pterygium by MeRIP Sequencing. Front Cell Dev Biol 2021; 9:670528. [PMID: 34249924 PMCID: PMC8267473 DOI: 10.3389/fcell.2021.670528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Aim Pterygium is a common ocular surface disease, which is affected by a variety of factors. Invasion of the cornea can cause severe vision loss. N6-methyladenosine (m6A) is a common post-transcriptional modification of eukaryotic mRNA, which can regulate mRNA splicing, stability, nuclear transport, and translation. To our best knowledge, there is no current research on the mechanism of m6A in pterygium. Methods We obtained 24 pterygium tissues and 24 conjunctival tissues from each of 24 pterygium patients recruited from Shanghai Yangpu Hospital, and the level of m6A modification was detected using an m6A RNA Methylation Quantification Kit. Expression and location of METTL3, a key m6A methyltransferase, were identified by immunostaining. Then we used m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq), and bioinformatics analyses to compare the differential expression of m6A methylation in pterygium and normal conjunctival tissue. Results We identified 2,949 dysregulated m6A peaks in pterygium tissue, of which 2,145 were significantly upregulated and 804 were significantly downregulated. The altered m6A peak of genes were found to play a key role in the Hippo signaling pathway and endocytosis. Joint analyses of MeRIP-seq and RNA-seq data identified 72 hypermethylated m6A peaks and 15 hypomethylated m6A peaks in mRNA. After analyzing the differentially methylated m6A peaks and synchronously differentially expressed genes, we searched the Gene Expression Omnibus database and identified five genes related to the development of pterygium (DSP, MXRA5, ARHGAP35, TMEM43, and OLFML2A). Conclusion Our research shows that m6A modification plays an important role in the development of pterygium and can be used as a potential new target for the treatment of pterygium in the future.
Collapse
Affiliation(s)
- Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Multiple functions of reversine on the biological characteristics of sheep fibroblasts. Sci Rep 2021; 11:12365. [PMID: 34117304 PMCID: PMC8196188 DOI: 10.1038/s41598-021-91468-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/26/2021] [Indexed: 11/08/2022] Open
Abstract
Previous reports have demonstrated that Reversine can reverse differentiation of lineage-committed cells to mesenchymal stem cells and suppress tumors growth. However, the molecular mechanisms of antitumor activity and promoting cellular dedifferentiation for reversine have not yet been clearly elucidated. In the present study, it was demonstrated that reversine of 5 μM could induce multinucleated cells through cytokinesis failure rather than just arrested in G2 or M phase. Moreover, reversine reversed the differentiation of sheep fibroblasts into MSC-like style, and notably increased the expression of pluripotent marker genes Oct4 and MSCs-related surface antigens. The fibroblasts treated with reversine could transdifferentiate into all three germ layers cells in vitro. Most importantly, the induced β-like cells and hepatocytes had similar metabolic functions with normal cells in vivo. In addition, reversine promoted fibroblasts autophagy, ROS accumulation, mitochondrial dysfunction and cell apoptosis via the mitochondria mediated intrinsic pathway. The results of high-throughput RNA sequencing showed that most differentially expressed genes (DEGs) involved in Mismatch repair, Nucleotide excision repair and Base excision repair were significantly up-regulated in reversine treated fibroblasts, which means that high concentration of reversine will cause DNA damage and activate the DNA repair mechanism. In summary, reversine can increase the plasticity of sheep fibroblasts and suppress cell growth via the mitochondria mediated intrinsic pathway.
Collapse
|
14
|
Saksis R, Silamikelis I, Laksa P, Megnis K, Peculis R, Mandrika I, Rogoza O, Petrovska R, Balcere I, Konrade I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Pirags V, Klovins J, Rovite V. Medication for Acromegaly Reduces Expression of MUC16, MACC1 and GRHL2 in Pituitary Neuroendocrine Tumour Tissue. Front Oncol 2021; 10:593760. [PMID: 33680922 PMCID: PMC7928352 DOI: 10.3389/fonc.2020.593760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Acromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein–protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein–protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.
Collapse
Affiliation(s)
- Rihards Saksis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Pola Laksa
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Olesja Rogoza
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Inga Balcere
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Ilze Konrade
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Liva Steina
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Austra Breiksa
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | | | - Valdis Pirags
- Pauls Stradins Clinical University Hospital, Riga, Latvia.,University of Latvia Faculty of Medicine, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
15
|
Bosi E, Marselli L, De Luca C, Suleiman M, Tesi M, Ibberson M, Eizirik DL, Cnop M, Marchetti P. Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genom Bioinform 2020; 2:lqaa097. [PMID: 33575641 PMCID: PMC7679065 DOI: 10.1093/nargab/lqaa097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet β-cell failure is key to the onset and progression of type 2 diabetes (T2D). The advent of single-cell RNA sequencing (scRNA-seq) has opened the possibility to determine transcriptional signatures specifically relevant for T2D at the β-cell level. Yet, applications of this technique have been underwhelming, as three independent studies failed to show shared differentially expressed genes in T2D β-cells. We performed an integrative analysis of the available datasets from these studies to overcome confounding sources of variability and better highlight common T2D β-cell transcriptomic signatures. After removing low-quality transcriptomes, we retained 3046 single cells expressing 27 931 genes. Cells were integrated to attenuate dataset-specific biases, and clustered into cell type groups. In T2D β-cells (n = 801), we found 210 upregulated and 16 downregulated genes, identifying key pathways for T2D pathogenesis, including defective insulin secretion, SREBP signaling and oxidative stress. We also compared these results with previous data of human T2D β-cells from laser capture microdissection and diabetic rat islets, revealing shared β-cell genes. Overall, the present study encourages the pursuit of single β-cell RNA-seq analysis, preventing presently identified sources of variability, to identify transcriptomic changes associated with human T2D and underscores specific traits of dysfunctional β-cells across different models and techniques.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier Sorge, CH-1015 Lausanne, Switzerland
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| |
Collapse
|
16
|
Ouyang XL, Chen BY, Xie YF, Wu YD, Guo SJ, Dong XY, Wang GH. Whole transcriptome analysis on blue light-induced eye damage. Int J Ophthalmol 2020; 13:1210-1222. [PMID: 32821674 DOI: 10.18240/ijo.2020.08.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To analyze abnormal gene expressions of mice eyes exposed to blue light using RNA-seq and analyze the related signaling pathways. METHODS Kunming mice were divided into an experimental group that was exposed to blue light and a control group that was exposed to natural light. After 14d, the mice were euthanized and their eyeballs were collected. Whole transcriptome analysis was attempted to analyze the gene expression of the eyeballs using RNA-seq to reconstruct genetic networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to reveal the related signaling pathways. RESULTS The 737 differentially expressed genes were identified, including 430 up and 307 down regulated genes, by calculating the gene FPKM in each sample and conducting differential gene analysis. GO and KEGG pathway enrichment analysis showed that blue light damage may associated with the visual perception, sensory perception of light stimulus, phototransduction, and JAK-STAT signaling pathways. Differential lncRNA, circRNA and miRNA analysis showed that blue light exposure affected pathways for retinal cone cell development and phototransduction, among others. CONCLUSION Exposure to blue light can cause a certain degree of abnormal gene expression and modulate signaling pathways in the eye.
Collapse
Affiliation(s)
- Xin-Li Ouyang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Bo-Yu Chen
- Shijiazhuang Aier Eye Hospital, Bethune International Peace Hospital of PLA, Shijiazhuang 050082, Hebei Province, China
| | - Yong-Fang Xie
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Yi-De Wu
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Shao-Jia Guo
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Xiao-Yun Dong
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Guo-Hui Wang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
17
|
Perez Kerkvliet C, Dwyer AR, Diep CH, Oakley RH, Liddle C, Cidlowski JA, Lange CA. Glucocorticoid receptors are required effectors of TGFβ1-induced p38 MAPK signaling to advanced cancer phenotypes in triple-negative breast cancer. Breast Cancer Res 2020; 22:39. [PMID: 32357907 PMCID: PMC7193415 DOI: 10.1186/s13058-020-01277-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Altered signaling pathways typify breast cancer and serve as direct inputs to steroid hormone receptor sensors. We previously reported that phospho-Ser134-GR (pS134-GR) species are elevated in triple-negative breast cancer (TNBC) and cooperate with hypoxia-inducible factors, providing a novel avenue for activation of GR in response to local or cellular stress. METHODS We probed GR regulation by factors (cytokines, growth factors) that are rich within the tumor microenvironment (TME). TNBC cells harboring endogenous wild-type (wt) or S134A-GR species were created by CRISPR/Cas knock-in and subjected to transwell migration, invasion, soft-agar colony formation, and tumorsphere assays. RNA-seq was employed to identify pS134-GR target genes that are regulated both basally (intrinsic) or by TGFβ1 in the absence of exogenously added GR ligands. Regulation of selected basal and TGFβ1-induced pS134-GR target genes was validated by qRT-PCR and chromatin immunoprecipitation assays. Bioinformatics tools were used to probe public data sets for expression of pS134-GR 24-gene signatures. RESULTS In the absence of GR ligands, GR is transcriptionally activated via p38-dependent phosphorylation of Ser134 as a mechanism of homeostatic stress-sensing and regulated upon exposure of TNBC cells to TME-derived agents. The ligand-independent pS134-GR transcriptome encompasses TGFβ1 and MAPK signaling gene sets associated with TNBC cell survival and migration/invasion. Accordingly, pS134-GR was essential for TNBC cell anchorage-independent growth in soft-agar, migration, invasion, and tumorsphere formation, an in vitro readout of cancer stemness properties. Both pS134-GR and expression of the MAPK-scaffolding molecule 14-3-3ζ were essential for a functionally intact p38 MAPK signaling pathway downstream of MAP3K5/ASK1, indicative of a feedforward signaling loop wherein self-perpetuated GR phosphorylation enables cancer cell autonomy. A 24-gene pS134-GR-dependent signature induced by TGFβ1 predicts shortened overall survival in breast cancer patients. CONCLUSIONS Phospho-S134-GR is a critical downstream effector of p38 MAPK signaling and TNBC migration/invasion, survival, and stemness properties. Our studies define a ligand-independent role for GR as a homeostatic "sensor" of intrinsic stimuli as well as extrinsic factors rich within the TME (TGFβ1) that enable potent activation of the p38 MAPK stress-sensing pathway and nominate pS134-GR as a therapeutic target in aggressive TNBC.
Collapse
Affiliation(s)
- Carlos Perez Kerkvliet
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Amy R. Dwyer
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Caroline H. Diep
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| | - Robert H. Oakley
- Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Darlington, NSW 2006 Australia
| | - John A. Cidlowski
- Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Carol A. Lange
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota Masonic Cancer Center, Delivery Code 2812 Cancer and Cardiovascular Research Building; Suite 3-126 2231 6th St SE, Minneapolis, MN 55455 USA
| |
Collapse
|
18
|
Brennen WN, Isaacs JT. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 2019; 15:703-715. [PMID: 30214054 DOI: 10.1038/s41585-018-0087-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The prostate is the only organ in a man that continues to grow with age. John McNeal proposed, 40 years ago, that this BPH is characterized by an age-related reinitiation of benign neoplastic growth selectively in developmentally abortive distal ducts within the prostate transition-periurethral zone (TPZ), owing to a reawakening of inductive stroma selectively within these zones. An innovative variant of this hypothesis is that, owing to its location, the TPZ is continuously exposed to urinary components and/or autoantigens, which produces an inflammatory TPZ microenvironment that promotes recruitment of bone marrow-derived mesenchymal stem cells (MSCs) and generates a paracrine-inductive stroma that reinitiates benign neoplastic nodular growth. In support of this hypothesis, MSCs infiltrate human BPH tissue and have the ability to stimulate epithelial stem cell growth. These results provide a framework for defining both the aetiology of BPH in ageing men and insights into new therapeutic approaches.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA.
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Li H, Gui H, Yuan G, Zheng X, Gao C, Yuan H. Increased plasma olfactomedin 2 after interventional therapy is a predictor for restenosis in lower extremity arteriosclerosis obliterans patients. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:269-274. [PMID: 29553861 DOI: 10.1080/00365513.2018.1452287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Animal studies have indicated that olfactomedin 2 (OLFM2) is involved in the process of vascular remolding. The aim of the present study was to investigate circulating OLFM2 levels in lower extremity arteriosclerosis obliterans (LEASO) patients and the association of OLFM2 with postoperative restenosis in patients. A total of 203 LEASO patients were enrolled in the present study. Plasma OLFM2 was measured before and 6 h after interventional therapy. After 6 months, patients were divided into a restenosis group and a non-restenosis group. Inter-group and intra-group differences in plasma OLFM2 were compared. The correlation between plasma OLFM2 and the severity of restenosis was analyzed by Spearman's correlation analysis. An receiver operating characteristic (ROC) curve was used to evaluate the predictive efficacy of plasma OLFM2 on restenosis. Logistic regression was used to determine the risk factors for restenosis. Postoperative OLFM2 in the restenosis group was significantly higher compared with the non-restenosis group (34.07 ± 5.76 ng/mL vs. 19.53 ± 2.99 ng/mL). No significant difference in preoperative plasma OLFM2 levels was identified between the two groups (10.92 ± 2.49 ng/mL vs. 11.54 ± 3.18 ng/mL). Postoperative OLFM2 levels were positively correlated with the severity of restenosis (r = 0.728, p < .001). The area under the ROC curve was 0.902 (95% confidence interval (CI): 0.874-0.965), with a cutoff value of 26.91 ng/mL (95% CI: 26.16-28.32). Plasma OLFM2 was an independent risk factor for restenosis. Our results suggest that plasma OLFM2 is a potential biomarker for restenosis and may be a novel target for the treatment of restenosis.
Collapse
Affiliation(s)
- Hongbo Li
- a Department of Vascular Surgery , People's Hospital of Shouguang , Weifang , Shandong , China.,b Department of Vascular Surgery , Shandong Provincial Hospital , Jinan , Shandong , China
| | - Hua Gui
- c Department of Surgery , People's Hospital of Shouguang , Weifang , Shandong , China
| | - Guohong Yuan
- c Department of Surgery , People's Hospital of Shouguang , Weifang , Shandong , China
| | - Xiaomei Zheng
- a Department of Vascular Surgery , People's Hospital of Shouguang , Weifang , Shandong , China
| | - Changkuan Gao
- d Department of Clinical Laboratory , Qilu Hospital , Jinan , Shandong , China
| | - Hai Yuan
- b Department of Vascular Surgery , Shandong Provincial Hospital , Jinan , Shandong , China
| |
Collapse
|
20
|
Patruno M, Gomiero C, Sacchetto R, Topel O, Negro A, Martinello T. Tat-MyoD fused proteins, together with C2c12 conditioned medium, are able to induce equine adult mesenchimal stem cells towards the myogenic fate. Vet Res Commun 2017; 41:211-217. [PMID: 28589421 DOI: 10.1007/s11259-017-9692-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
The Tat protein is able to translocate through the plasma membrane and when it is fused with other peptides may acts as a protein transduction system. This ability appears particularly interesting to induce tissue-specific differentiation when the Tat protein is associated to transcription factors. In the present work, the potential of the complex Tat-MyoD in inducing equine peripheral blood mesenchymal stem cells (PB-MSCs) towards the myogenic fate, was evaluated. Results showed that the internalization process of Tat-MyoD happens only in serum free conditions and that the nuclear localization of the fused complex is observed after 15 hours of incubation. However, the supplement of Tat-MyoD only was not sufficient to induce myogenesis and, therefore, in order to achieve the myogenic differentiation of PB-MSCs, conditioned medium from C2C12 cells was added without direct contact. Real Time PCR and immunofluorescence methods evaluated the establishment of a myogenic program. Our results suggest that TAT- transduction of Tat-MyoD, when supported by conditioned medium, represents a useful methodology to induce myogenic differentiation.
Collapse
Affiliation(s)
- Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Ohad Topel
- VTH - Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,VTH - Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.
| |
Collapse
|
21
|
Shi N, Li CX, Cui XB, Tomarev SI, Chen SY. Olfactomedin 2 Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling Through Mediating Runt-Related Transcription Factor 2 Binding to Serum Response Factor. Arterioscler Thromb Vasc Biol 2017; 37:446-454. [PMID: 28062493 DOI: 10.1161/atvbaha.116.308606] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this study is to investigate the role and underlying mechanism of Olfactomedin 2 (Olfm2) in smooth muscle cell (SMC) phenotypic modulation and vascular remodeling. APPROACH AND RESULTS Platelet-derived growth factor-BB induces Olfm2 expression in primary SMCs while modulating SMC phenotype as shown by the downregulation of SMC marker proteins. Knockdown of Olfm2 blocks platelet-derived growth factor-BB-induced SMC phenotypic modulation, proliferation, and migration. Conversely, Olfm2 overexpression inhibits SMC marker expression. Mechanistically, Olfm2 promotes the interaction of serum response factor with the runt-related transcription factor 2 that is induced by platelet-derived growth factor-BB, leading to a decreased interaction between serum response factor and myocardin, causing a repression of SMC marker gene transcription and consequently SMC phenotypic modulation. Animal studies show that Olfm2 is upregulated in balloon-injured rat carotid arteries. Knockdown of Olfm2 effectively inhibits balloon injury-induced neointima formation. Importantly, knockout of Olfm2 in mice profoundly suppresses wire injury-induced neointimal hyperplasia while restoring SMC contractile protein expression, suggesting that Olfm2 plays a critical role in SMC phenotypic modulation in vivo. CONCLUSIONS Olfm2 is a novel factor mediating SMC phenotypic modulation. Thus, Olfm2 may be a potential target for treating injury-induced proliferative vascular diseases.
Collapse
Affiliation(s)
- Ning Shi
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Chen-Xiao Li
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Xiao-Bing Cui
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Stanislav I Tomarev
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (N.S., C.-X.L., X.-B.C., S.-Y.C.); and Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD (S.I.T.).
| |
Collapse
|
22
|
Holt R, Ugur Iseri SA, Wyatt AW, Bax DA, Gold Diaz D, Santos C, Broadgate S, Dunn R, Bruty J, Wallis Y, McMullan D, Ogilvie C, Gerrelli D, Zhang Y, Ragge N. Identification and functional characterisation of genetic variants in OLFM2 in children with developmental eye disorders. Hum Genet 2016; 136:119-127. [PMID: 27844144 DOI: 10.1007/s00439-016-1745-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022]
Abstract
Anophthalmia, microphthalmia, and coloboma are a genetically heterogeneous spectrum of developmental eye disorders and affect around 30 per 100,000 live births. OLFM2 encodes a secreted glycoprotein belonging to the noelin family of olfactomedin domain-containing proteins that modulate the timing of neuronal differentiation during development. OLFM2 SNPs have been associated with open angle glaucoma in a case-control study, and knockdown of Olfm2 in zebrafish results in reduced eye size. From a cohort of 258 individuals with developmental eye anomalies, we identified two with heterozygous variants in OLFM2: an individual with bilateral microphthalmia carrying a de novo 19p13.2 microdeletion involving OLFM2 and a second individual with unilateral microphthalmia and contralateral coloboma who had a novel single base change in the 5' untranslated region. Dual luciferase assays demonstrated that the latter variant causes a significant decrease in expression of OLFM2. Furthermore, RNA in situ hybridisation experiments using human developmental tissue revealed expression in relevant structures, including the lens vesicle and optic cup. Our study indicates that OLFM2 is likely to be important in mammalian eye development and disease and should be considered as a gene for human ocular anomalies.
Collapse
Affiliation(s)
- R Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - S A Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - A W Wyatt
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - D A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - D Gold Diaz
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - C Santos
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - S Broadgate
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - R Dunn
- Department of Genetics, Viapath, Guy's Hospital, London, UK
| | - J Bruty
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Y Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - D McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - C Ogilvie
- Department of Cytogenetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - D Gerrelli
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Y Zhang
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK. .,Clinical Genetics Unit, West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, B15 2TG, UK.
| |
Collapse
|
23
|
Qu Y, Zhou B, Yang W, Han B, Yu-Rice Y, Gao B, Johnson J, Svendsen CN, Freeman MR, Giuliano AE, Sareen D, Cui X. Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs. Sci Rep 2016; 6:32007. [PMID: 27550649 PMCID: PMC4994084 DOI: 10.1038/srep32007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the γ-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGFβ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGFβ-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development, studying disease pathogenesis, and development of regenerative medicine approaches.
Collapse
Affiliation(s)
- Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Bo Zhou
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Wei Yang
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Yi Yu-Rice
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Jeffery Johnson
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Clive N Svendsen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michael R Freeman
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.,iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Los Angeles, CA, 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| |
Collapse
|
24
|
Li X, Guo Y, Yao Y, Hua J, Ma Y, Liu C, Guan W. Reversine Increases the Plasticity of Long-Term Cryopreserved Fibroblasts to Multipotent Progenitor Cells through Activation of Oct4. Int J Biol Sci 2016; 12:53-62. [PMID: 26722217 PMCID: PMC4679398 DOI: 10.7150/ijbs.12199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022] Open
Abstract
Reversine, a purine analog, had been evidenced that it could induce dedifferentiation of differentiated cells into multipotent progenitor cells. Here, we showed that reversine could increase the plasticity of long-term cryopreserved bovine fibroblasts, and reversine-treated cells achieved the ability to differentiate into all three germ layers cells, such as osteoblasts and adipocytes from mesoblast, neurocyte from ectoderm, hepatocytes and smooth muscle cells from endoderm. Moreover, treatment of reversine caused the grow arrest of fibroblasts at G2/M and distinct cell swelling resulting in the formation of polyploid cells. In parallel, reversine treatment induced a multipotency of fibroblasts might be attributed to the activation of histone modifications, especially the degression of DNA methylation. However, molecular and cellular experiments suggested that reversine treatment enhanced selectively the expression of pluripotent marker gene Oct4 and mesenchymal marker genes CD29, CD44 and CD73, but Sox2 and Nanog were not detected. Taken together, these results clearly demonstrate the ability of reversine to dedifferentiation of long-term cryopreserved somatic cells through activation of pluripotent gene Oct4.
Collapse
Affiliation(s)
- Xiangchen Li
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Guo
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ; 2. Department of Bioscience, Department of laboratory medicine, Bengbu Medical College, Bengbu 233000, China
| | - Yaxin Yao
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinlian Hua
- 3. Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A & F University, Yangling, 712100, China
| | - Yuehui Ma
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changqing Liu
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ; 2. Department of Bioscience, Department of laboratory medicine, Bengbu Medical College, Bengbu 233000, China
| | - Weijun Guan
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
25
|
McCusker CD, Athippozhy A, Diaz-Castillo C, Fowlkes C, Gardiner DM, Voss SR. Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:45. [PMID: 26597593 PMCID: PMC4657325 DOI: 10.1186/s12861-015-0095-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Background The endogenous ability to dedifferentiate, re-pattern, and re-differentiate adult cells to repair or replace damaged or missing structures is exclusive to only a few tetrapod species. The Mexican axolotl is one example of these species, having the capacity to regenerate multiple adult structures including their limbs by generating a group of progenitor cells, known as the blastema, which acquire pattern and differentiate into the missing tissues. The formation of a limb regenerate is dependent on cells in the connective tissues that retain memory of their original position in the limb, and use this information to generate the pattern of the missing structure. Observations from recent and historic studies suggest that blastema cells vary in their potential to pattern distal structures during the regeneration process; some cells are plastic and can be reprogrammed to obtain new positional information while others are stable. Our previous studies showed that positional information has temporal and spatial components of variation; early bud (EB) and apical late bud (LB) blastema cells are plastic while basal-LB cells are stable. To identify the potential cellular and molecular basis of this variation, we compared these three cell populations using histological and transcriptional approaches. Results Histologically, the basal-LB sample showed greater tissue organization than the EB and apical-LB samples. We also observed that cell proliferation was more abundant in EB and apical-LB tissue when compared to basal-LB and mature stump tissue. Lastly, we found that genes associated with cellular differentiation were expressed more highly in the basal-LB samples. Conclusions Our results characterize histological and transcriptional differences between EB and apical-LB tissue compared to basal-LB tissue. Combined with our results from a previous study, we hypothesize that the stability of positional information is associated with tissue organization, cell proliferation, and pathways of cellular differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0095-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Antony Athippozhy
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| | - Carlos Diaz-Castillo
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - Charless Fowlkes
- Donald Bren School of Information and Computer Science, University of California, Irvine, CA, 92602, USA.
| | - David M Gardiner
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - S Randal Voss
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
26
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
27
|
Guo X, Shi N, Cui XB, Wang JN, Fukui Y, Chen SY. Dedicator of cytokinesis 2, a novel regulator for smooth muscle phenotypic modulation and vascular remodeling. Circ Res 2015; 116:e71-80. [PMID: 25788409 DOI: 10.1161/circresaha.116.305863] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/18/2015] [Indexed: 12/20/2022]
Abstract
RATIONALE Vascular smooth muscle cell (SMC) phenotypic modulation and vascular remodeling contribute to the development of several vascular disorders such as restenosis after angioplasty, transplant vasculopathy, and atherosclerosis. The mechanisms underlying these processes, however, remain largely unknown. OBJECTIVE The objective of this study is to determine the role of dedicator of cytokinesis 2 (DOCK2) in SMC phenotypic modulation and vascular remodeling. METHODS AND RESULTS Platelet-derived growth factor-BB induced DOCK2 expression while modulating SMC phenotype. DOCK2 deficiency diminishes platelet-derived growth factor-BB or serum-induced downregulation of SMC markers. Conversely, DOCK2 overexpression inhibits SMC marker expression in primary cultured SMC. Mechanistically, DOCK2 inhibits myocardin expression, blocks serum response factor nuclear location, attenuates myocardin binding to serum response factor, and thus attenuates myocardin-induced smooth muscle marker promoter activity. Moreover, DOCK2 and Kruppel-like factor 4 cooperatively inhibit myocardin-serum response factor interaction. In a rat carotid artery balloon-injury model, DOCK2 is induced in media layer SMC initially and neointima SMC subsequently after vascular injury. Knockdown of DOCK2 dramatically inhibits the neointima formation by 60%. Most importantly, knockout of DOCK2 in mice markedly blocks ligation-induced intimal hyperplasia while restoring SMC contractile protein expression. CONCLUSIONS Our studies identified DOCK2 as a novel regulator for SMC phenotypic modulation and vascular lesion formation after vascular injury. Therefore, targeting DOCK2 may be a potential therapeutic strategy for the prevention of vascular remodeling in proliferative vascular diseases.
Collapse
Affiliation(s)
- Xia Guo
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (X.G., N.S., X.-B.C., S.-Y.C.); Department of Cardiology, Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.); and Department of Immunobiology and Neuroscience, Kyushu University, Fukuoka, Japan (Y.F.)
| | - Ning Shi
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (X.G., N.S., X.-B.C., S.-Y.C.); Department of Cardiology, Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.); and Department of Immunobiology and Neuroscience, Kyushu University, Fukuoka, Japan (Y.F.)
| | - Xiao-Bing Cui
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (X.G., N.S., X.-B.C., S.-Y.C.); Department of Cardiology, Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.); and Department of Immunobiology and Neuroscience, Kyushu University, Fukuoka, Japan (Y.F.)
| | - Jia-Ning Wang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (X.G., N.S., X.-B.C., S.-Y.C.); Department of Cardiology, Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.); and Department of Immunobiology and Neuroscience, Kyushu University, Fukuoka, Japan (Y.F.)
| | - Yoshinori Fukui
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (X.G., N.S., X.-B.C., S.-Y.C.); Department of Cardiology, Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.); and Department of Immunobiology and Neuroscience, Kyushu University, Fukuoka, Japan (Y.F.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens (X.G., N.S., X.-B.C., S.-Y.C.); Department of Cardiology, Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.); and Department of Immunobiology and Neuroscience, Kyushu University, Fukuoka, Japan (Y.F.).
| |
Collapse
|
28
|
Shi N, Chen SY. From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res 2015; 29:261-3. [PMID: 26243513 PMCID: PMC4547375 DOI: 10.7555/jbr.29.20150027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/08/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ning Shi
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|