1
|
Haase R, Puthenpurackal A, Maco B, Guérin A, Soldati-Favre D. γ-tubulin complex controls the nucleation of tubulin-based structures in Apicomplexa. Mol Biol Cell 2024; 35:ar121. [PMID: 39046777 PMCID: PMC11449391 DOI: 10.1091/mbc.e24-03-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Apicomplexan parasites rely on tubulin structures throughout their cell and life cycles, particularly in the polymerization of spindle microtubules to separate the replicated nucleus into daughter cells. Additionally, tubulin structures, including conoid and subpellicular microtubules, provide the necessary rigidity and structure for dissemination and host cell invasion. However, it is unclear whether these tubulin structures are nucleated via a highly conserved γ-tubulin complex or through a specific process unique to apicomplexans. This study demonstrates that Toxoplasma γ-tubulin is responsible for nucleating spindle microtubules, akin to higher eukaryotes, facilitating nucleus division in newly formed parasites. Interestingly, γ-tubulin colocalizes with nascent conoid and subpellicular microtubules during division, potentially nucleating these structures as well. Loss of γ-tubulin results in significant morphological defects due to impaired nucleus scission and the loss of conoid and subpellicular microtubule nucleation, crucial for parasite shape and rigidity. Additionally, the nucleation process of tubulin structures involves a concerted action of γ-tubulin and Gamma Tubulin Complex proteins (GCPs), recapitulating the localization and phenotype of γ-tubulin. This study also introduces new molecular markers for cytoskeletal structures and applies iterative expansion microscopy to reveal microtubule-based architecture in Cryptosporidium parvum sporozoites, further demonstrating the conserved localization and probable function of γ-tubulin in Cryptosporidium.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Annet Puthenpurackal
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Amandine Guérin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| |
Collapse
|
2
|
Adelman JW, Sukowaty AT, Partridge KJ, Gawrys JE, Terhune SS, Ebert AD. Stabilizing microtubules aids neurite structure and disrupts syncytia formation in human cytomegalovirus-infected human forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608340. [PMID: 39229072 PMCID: PMC11370344 DOI: 10.1101/2024.08.16.608340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Human cytomegalovirus (HCMV) is a prolific human herpesvirus that infects most individuals by adulthood. While typically asymptomatic in adults, congenital infection can induce serious neurological symptoms including hearing loss, visual deficits, cognitive impairment, and microcephaly in 10-15% of cases. HCMV has been shown to infect most neural cells with our group recently demonstrating this capacity in stem cell-derived forebrain neurons. Infection of neurons induces deleterious effects on calcium dynamics and electrophysiological function paired with gross restructuring of neuronal morphology. Here, we utilize an iPSC-derived model of the human forebrain to demonstrate how HCMV infection induces syncytia, drives neurite retraction, and remodels microtubule networks to promote viral production and release. We establish that HCMV downregulates microtubule associated proteins at 14 days postinfection while simultaneously sparing other cytoskeletal elements, and this includes HCMV-driven alterations to microtubule stability. Further, we pharmacologically modulate microtubule dynamics using paclitaxel (stabilize) and colchicine (destabilize) to examine the effects on neurite structure, syncytial morphology, assembly compartment formation, and viral release. With paclitaxel, we found improvement of neurite outgrowth with a corresponding disruption to HCMV-induced syncytia formation and Golgi network disruptions but with limited impact on viral titers. Together, these data suggest that HCMV infection-induced disruption of microtubules in human cortical neurons can be partially mitigated with microtubule stabilization, suggesting a potential avenue for future neuroprotective therapeutic exploration.
Collapse
Affiliation(s)
- Jacob W Adelman
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew T Sukowaty
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kaitlyn J Partridge
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jessica E. Gawrys
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Cantwell H, Nguyen H, Kettenbach A, Heald R. Spindle morphology changes between meiosis and mitosis driven by CK2 regulation of the Ran pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605073. [PMID: 39211121 PMCID: PMC11361180 DOI: 10.1101/2024.07.25.605073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The transition from meiotic divisions in the oocyte to embryonic mitoses is a critical step in animal development. Despite negligible changes to cell size and shape, following fertilization the small, barrel-shaped meiotic spindle is replaced by a large zygotic spindle that nucleates abundant astral microtubules at spindle poles. To probe underlying mechanisms, we applied a drug screening approach using Ciona eggs and found that inhibition of Casein Kinase 2 (CK2) caused a shift from meiotic to mitotic-like spindle morphology with nucleation of robust astral microtubules, an effect reproduced in cytoplasmic extracts prepared from Xenopus eggs. In both species, CK2 activity decreased at fertilization. Phosphoproteomic differences between Xenopus meiotic and mitotic extracts that also accompanied CK2 inhibition pointed to RanGTP-regulated factors as potential targets. Interfering with RanGTP-driven microtubule formation suppressed astral microtubule growth caused by CK2 inhibition. These data support a model in which CK2 activity attenuation at fertilization leads to activation of RanGTP-regulated microtubule effectors that induce mitotic spindle morphology.
Collapse
|
4
|
Aher A, Urnavicius L, Xue A, Neselu K, Kapoor TM. Structure of the γ-tubulin ring complex-capped microtubule. Nat Struct Mol Biol 2024; 31:1124-1133. [PMID: 38609661 PMCID: PMC11257807 DOI: 10.1038/s41594-024-01264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Microtubules are composed of α-tubulin and β-tubulin dimers positioned head-to-tail to form protofilaments that associate laterally in varying numbers. It is not known how cellular microtubules assemble with the canonical 13-protofilament architecture, resulting in micrometer-scale α/β-tubulin tracks for intracellular transport that align with, rather than spiral along, the long axis of the filament. We report that the human ~2.3 MDa γ-tubulin ring complex (γ-TuRC), an essential regulator of microtubule formation that contains 14 γ-tubulins, selectively nucleates 13-protofilament microtubules. Cryogenic electron microscopy reconstructions of γ-TuRC-capped microtubule minus ends reveal the extensive intra-domain and inter-domain motions of γ-TuRC subunits that accommodate luminal bridge components and establish lateral and longitudinal interactions between γ-tubulins and α-tubulins. Our structures suggest that γ-TuRC, an inefficient nucleation template owing to its splayed conformation, can transform into a compacted cap at the microtubule minus end and set the lattice architecture of cellular microtubules.
Collapse
Affiliation(s)
- Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Linas Urnavicius
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Allen Xue
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Kasahun Neselu
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Padilla LFA, Murray JM, Hu K. The initiation and early development of the tubulin-containing cytoskeleton in the human parasite Toxoplasma gondii. Mol Biol Cell 2024; 35:ar37. [PMID: 38170577 PMCID: PMC10916856 DOI: 10.1091/mbc.e23-11-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The tubulin-containing cytoskeleton of the human parasite Toxoplasma gondii includes several distinct structures: the conoid, formed of 14 ribbon-like tubulin polymers, and the array of 22 cortical microtubules (MTs) rooted in the apical polar ring. Here we analyze the structure of developing daughter parasites using both 3D-SIM and expansion microscopy. Cortical MTs and the conoid start to develop almost simultaneously, but from distinct precursors near the centrioles. Cortical MTs are initiated in a fixed sequence, starting around the periphery of a short arc that extends to become a complete circle. The conoid also develops from an open arc into a full circle, with a fixed spatial relationship to the centrioles. The patterning of the MT array starts from a "blueprint" with ∼five-fold symmetry, switching to 22-fold rotational symmetry in the final product, revealing a major structural rearrangement during daughter growth. The number of MT is essentially invariant in the wild-type array, but is perturbed by the loss of some structural components of the apical polar ring. This study provides insights into the development of tubulin-containing structures that diverge from conventional models, insights that are critical for understanding the evolutionary paths leading to construction and divergence of cytoskeletal frameworks.
Collapse
Affiliation(s)
- Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University
| |
Collapse
|
6
|
Zhang B, Ayra-Pardo C, Liu X, Song M, Li D, Kan Y. siRNA-Mediated BmAurora B Depletion Impedes the Formation of Holocentric Square Spindles in Silkworm Metaphase BmN4 Cells. INSECTS 2024; 15:72. [PMID: 38276821 PMCID: PMC10817069 DOI: 10.3390/insects15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Silkworm ovary-derived BmN4 cells rely on chromatin-induced spindle assembly to form microtubule-based square mitotic spindles that ensure accurate segregation of holocentric chromosomes during cell division. The chromosome passenger protein Aurora B regulates chromosomal condensation and segregation, spindle assembly checkpoint activation, and cytokinesis; however, its role in holocentric organisms needs further clarification. This study examined the architecture and dynamics of spindle microtubules during prophase and metaphase in BmN4 cells and those with siRNA-mediated BmAurora B knockdown using immunofluorescence labeling. Anti-α-tubulin and anti-γ-tubulin antibodies revealed faint γ-tubulin signals colocalized with α-tubulin in early prophase during nuclear membrane rupture, which intensified as prophase progressed. At this stage, bright regions of α-tubulin around and on the nuclear membrane surrounding the chromatin suggested the start of microtubules assembling in the microtubule-organizing centers (MTOCs). In metaphase, fewer but larger γ-tubulin foci were detected on both sides of the chromosomes. This resulted in a distinctive multipolar square spindle with holocentric chromosomes aligned at the metaphase plate. siRNA-mediated BmAurora B knockdown significantly reduced the γ-tubulin foci during prophase, impacting microtubule nucleation and spindle structure in metaphase. Spatiotemporal BmAurora B expression analysis provided new insights into the regulation of this mitotic kinase in silkworm larval gonads during gametogenesis. Our results suggest that BmAurora B is crucial for the formation of multipolar square spindles in holocentric insects, possibly through the activation of γ-tubulin ring complexes in multiple centrosome-like MTOCs.
Collapse
Affiliation(s)
- Bing Zhang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Camilo Ayra-Pardo
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, Avda. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - Xiaoning Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Meiting Song
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
- School of Life Science and Technology, Henan Institute of Science and Technology, 90 East of Hualan Avenue, Xinxiang 453003, China
| |
Collapse
|
7
|
Arias Padilla LF, Murray JM, Hu K. The initiation and early development of the tubulin-containing cytoskeleton in the human parasite Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565597. [PMID: 38106158 PMCID: PMC10723254 DOI: 10.1101/2023.11.03.565597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The tubulin-containing cytoskeleton of the human parasite Toxoplasma gondii includes several distinct structures: the conoid, formed of 14 ribbon-like tubulin polymers, and the array of 22 cortical microtubules (MTs) rooted in the apical polar ring. Here we analyze the structure of developing daughter parasites using both 3D-SIM and expansion microscopy. Cortical MTs and the conoid start to develop almost simultaneously, but from distinct precursors near the centrioles. Cortical MTs are initiated in a fixed sequence, starting around the periphery of a short arc that extends to become a complete circle. The conoid also develops from an open arc into a full circle, with a fixed spatial relationship to the centrioles. The patterning of the MT array starts from a "blueprint" with ∼ 5-fold symmetry, switching to 22-fold rotational symmetry in the final product, revealing a major structural rearrangement during daughter growth. The number of MT is essentially invariant in the wild-type array, but is perturbed by the loss of some structural components of the apical polar ring. This study provides insights into the development of tubulin-containing structures that diverge from conventional models, insights that are critical for understanding the evolutionary paths leading to construction and divergence of cytoskeletal frameworks.
Collapse
|
8
|
Yu L, Kong N, Lin Y, Qiu P, Xu Q, Zhang Y, Zhen X, Yan G, Sun H, Mei J, Cao G. NUSAP1 regulates mouse oocyte meiotic maturation. J Cell Biochem 2023; 124:1931-1947. [PMID: 37992207 DOI: 10.1002/jcb.30498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.
Collapse
Affiliation(s)
- Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yuling Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Panpan Qiu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Qian Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jie Mei
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
9
|
Aher A, Urnavicius L, Xue A, Neselu K, Kapoor TM. Structure of the γ-tubulin ring complex-capped microtubule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567916. [PMID: 38045257 PMCID: PMC10690160 DOI: 10.1101/2023.11.20.567916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Microtubules are composed of α/β-tubulin dimers positioned head-to-tail to form protofilaments that associate laterally in varying numbers. It is not known how cellular microtubules assemble with the canonical 13-protofilament architecture, resulting in micrometer-scale α/β-tubulin tracks for intracellular transport that align with, rather than spiral along, the filament's long-axis. We report that the human ∼2.3MDa γ-tubulin ring complex (γ-TuRC), an essential regulator of microtubule formation that contains 14 γ-tubulins, selectively nucleates 13-protofilament microtubules. Cryo-EM reconstructions of γ-TuRC-capped microtubule minus-ends reveal the extensive intra- and inter-domain motions of γ-TuRC subunits that accommodate its actin-containing luminal bridge and establish lateral and longitudinal interactions between γ- and α-tubulins. Our structures reveal how free γ-TuRC, an inefficient nucleation template due to its splayed conformation, transforms into a stable cap that blocks addition or loss of α/β-tubulins from minus-ends and sets the lattice architecture of cellular microtubules. One Sentence Summary Structural insights into how the γ-tubulin ring complex nucleates and caps a 13-protofilament microtubule.
Collapse
|
10
|
Wang H, Zuo S, Zheng J, Peng Z, Yao X, Wang J, Weber HC, Qin X, Xiang Y, Liu C, Ji M, Liu H, Pan L, Qu X. Knockout of the BRAP homolog in mice leads to abnormal tracheal cilia. FEBS Lett 2023; 597:2626-2642. [PMID: 37715941 DOI: 10.1002/1873-3468.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 09/18/2023]
Abstract
Both bombesin receptor-activated protein (BRAP) and its mouse homolog have been found to be expressed in bronchial epithelia but with unclear functions. Using electron microscopy combined with histological assays, we found that BRAP homolog deficiency in mice led to abnormal tracheal cilia. Rab-3A-interacting protein (Rabin8), a protein that might play a role in cilia development, was screened by yeast two-hybrid and further verified to have interaction with human BRAP by co-immunoprecipitation and pulldown assays. The expression levels of Rabin8, together with acetylated α-tubulin, a marker of cilia, were either downregulated by knockdown of BRAP or upregulated by overexpression of BRAP in cultured immortalized human bronchial epithelial cells. These results reveal a role for BRAP in airway cilia formation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Suhui Zuo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jiaoyun Zheng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Peng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xueping Yao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Horst Christian Weber
- Section of Gastroenterology, and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, MA, USA
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ming Ji
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lang Pan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
11
|
Zhu Z, Becam I, Tovey CA, Elfarkouchi A, Yen EC, Bernard F, Guichet A, Conduit PT. Multifaceted modes of γ-tubulin complex recruitment and microtubule nucleation at mitotic centrosomes. J Cell Biol 2023; 222:e202212043. [PMID: 37698931 PMCID: PMC10497398 DOI: 10.1083/jcb.202212043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Microtubule nucleation is mediated by γ-tubulin ring complexes (γ-TuRCs). In most eukaryotes, a GCP4/5/4/6 "core" complex promotes γ-tubulin small complex (γ-TuSC) association to generate cytosolic γ-TuRCs. Unlike γ-TuSCs, however, this core complex is non-essential in various species and absent from budding yeasts. In Drosophila, Spindle defective-2 (Spd-2) and Centrosomin (Cnn) redundantly recruit γ-tubulin complexes to mitotic centrosomes. Here, we show that Spd-2 recruits γ-TuRCs formed via the GCP4/5/4/6 core, but Cnn can recruit γ-TuSCs directly via its well-conserved CM1 domain, similar to its homologs in budding yeast. When centrosomes fail to recruit γ-tubulin complexes, they still nucleate microtubules via the TOG domain protein Mini-spindles (Msps), but these microtubules have different dynamic properties. Our data, therefore, help explain the dispensability of the GCP4/5/4/6 core and highlight the robustness of centrosomes as microtubule organizing centers. They also suggest that the dynamic properties of microtubules are influenced by how they are nucleated.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Isabelle Becam
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Corinne A. Tovey
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Abir Elfarkouchi
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Eugenie C. Yen
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fred Bernard
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Paul T. Conduit
- Department of Zoology, University of Cambridge, Cambridge, UK
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
12
|
Kraus J, Alfaro-Aco R, Gouveia B, Petry S. Microtubule nucleation for spindle assembly: one molecule at a time. Trends Biochem Sci 2023; 48:761-775. [PMID: 37482516 PMCID: PMC10789498 DOI: 10.1016/j.tibs.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023]
Abstract
The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Gastonguay MS, Keele GR, Churchill GA. The trouble with triples: Examining the impact of measurement error in mediation analysis. Genetics 2023; 224:iyad045. [PMID: 36932658 PMCID: PMC10158839 DOI: 10.1093/genetics/iyad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/03/2023] [Accepted: 02/11/2023] [Indexed: 03/19/2023] Open
Abstract
Mediation analysis is used in genetic mapping studies to identify candidate gene mediators of quantitative trait loci (QTL). We consider genetic mediation analysis of triplets-sets of three variables consisting of a target trait, the genotype at a QTL for the target trait, and a candidate mediator that is the abundance of a transcript or protein whose coding gene co-locates with the QTL. We show that, in the presence of measurement error, mediation analysis can infer partial mediation even in the absence of a causal relationship between the candidate mediator and the target. We describe a measurement error model and a corresponding latent variable model with estimable parameters that are combinations of the causal effects and measurement errors across all three variables. The relative magnitudes of the latent variable correlations determine whether or not mediation analysis will tend to infer the correct causal relationship in large samples. We examine case studies that illustrate the common failure modes of genetic mediation analysis and demonstrate how to evaluate the effects of measurement error. While genetic mediation analysis is a powerful tool for identifying candidate genes, we recommend caution when interpreting mediation analysis findings.
Collapse
|
14
|
Kraus J, Travis SM, King MR, Petry S. Augmin is a Ran-regulated spindle assembly factor. J Biol Chem 2023; 299:104736. [PMID: 37086784 DOI: 10.1016/j.jbc.2023.104736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αβ and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. InXenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is non-essential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and TIRF microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-β through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT binding site. Moreover, we show Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sophie M Travis
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Matthew R King
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sabine Petry
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA.
| |
Collapse
|
15
|
Thomas-Wilson A, Schacht JP, Chitayat D, Blaser S, Santos FJR, Glaser K, Caffo A, Wentzensen IM, Henderson LB, Zhang F, Zhu Y, Di Corleto E, da Silva Costa F, Vink R, Alkhunaizi E, Russell L, Buckley MF, Roscioli T, Pereira EM, Ganapathi M. Biallelic variants in TUBGCP6 result in microcephaly and chorioretinopathy 1: Report of four cases and a literature review. Am J Med Genet A 2023. [PMID: 37031378 DOI: 10.1002/ajmg.a.63203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/10/2023]
Abstract
Autosomal recessive microcephaly and chorioretinopathy-1 (MCCRP1) is a rare Mendelian disorder resulting from biallelic loss of function variants in Tubulin-Gamma Complex Associated Protein 6 (TUBGCP6, MIM#610053). Clinical features of this disorder include microcephaly, cognitive impairment, dysmorphic features, and variable ophthalmological anomalies including chorioretinopathy. Microcephaly can be recognized prenatally and visual impairment becomes evident during the first year of life. The clinical presentation resembles the findings in some acquired conditions such as congenital toxoplasmosis and cytomegalovirus infections; thus, it is important to recognize and diagnose this syndrome in view of its impact on patient health management and familial reproductive plans. To date, only seven molecularly confirmed patients from five unrelated families have been reported. We report an additional four unrelated patients with TUBGCP6 variants including one prenatal diagnosis and review the clinical phenotypes and genotypes of all the known cases. This report expands the molecular and phenotypic spectrum of TUBGCP6 and includes additional prenatal findings associated with MCCRP1.
Collapse
Affiliation(s)
- Amanda Thomas-Wilson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - John P Schacht
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, New York, USA
| | - David Chitayat
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Division of Pediatric Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Kimberly Glaser
- Department of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Alesky Caffo
- Department of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | | | | | - Futao Zhang
- New South Wales Health Pathology, Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ying Zhu
- New South Wales Health Pathology, Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ellen Di Corleto
- Maternal Fetal Medicine Unit, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - Fabricio da Silva Costa
- Maternal Fetal Medicine Unit, Gold Coast University Hospital, Gold Coast, Queensland, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Rebecca Vink
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Ebba Alkhunaizi
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Laura Russell
- Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael F Buckley
- New South Wales Health Pathology, Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Tony Roscioli
- New South Wales Health Pathology, Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, New South Wales, Australia
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Elaine Maria Pereira
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, New York, USA
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW, Grünewald K. Variable microtubule architecture in the malaria parasite. Nat Commun 2023; 14:1216. [PMID: 36869034 PMCID: PMC9984467 DOI: 10.1038/s41467-023-36627-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen.
Collapse
Affiliation(s)
- Josie L Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Siggel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Franziska Hentzschel
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Annika M Binder
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute for Virology (LIV), Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- University of Hamburg, Hamburg, Germany.
| |
Collapse
|
17
|
Oakley BR. The ring saga: looking back at the discovery of γ-tubulin and γ-tubulin ring complexes. Mol Biol Cell 2022; 34:rt1. [PMID: 36520030 PMCID: PMC9816641 DOI: 10.1091/mbc.e22-07-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For many years, two central, unanswered questions in cytoskeleton research were how microtubule assembly is nucleated and microtubule polarity established. The discoveries of γ-tubulin and γ-tubulin ring complexes were key advances that allowed these questions to be substantially answered. The discovery of γ-tubulin was the product of a genetic screen in Aspergillus nidulans for genes important for microtubule function. γ-Tubulin is a member of the tubulin superfamily of proteins, closely related to α- and β-tubulin but distinct from both. It is ubiquitous in eukaryotes, and in many organisms there are small families of γ-tubulin genes. γ-Tubulin and associated proteins form ring-like complexes that localize to microtubule-organizing centers (MTOCs) and play an important role in the nucleation of microtubule assembly from MTOCs and the establishment of microtubule polarity.
Collapse
Affiliation(s)
- Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,*Address correspondence to: Berl R. Oakley ()
| |
Collapse
|
18
|
Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol 2022; 10:880761. [PMID: 36158181 PMCID: PMC9503634 DOI: 10.3389/fcell.2022.880761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
Collapse
Affiliation(s)
| | | | - Pavel Dráber
- *Correspondence: Vadym Sulimenko, ; Pavel Dráber,
| |
Collapse
|
19
|
Bera A, Gupta ML. Microtubules in Microorganisms: How Tubulin Isotypes Contribute to Diverse Cytoskeletal Functions. Front Cell Dev Biol 2022; 10:913809. [PMID: 35865635 PMCID: PMC9294176 DOI: 10.3389/fcell.2022.913809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The cellular functions of the microtubule (MT) cytoskeleton range from relatively simple to amazingly complex. Assembled from tubulin, a heterodimeric protein with α- and β-tubulin subunits, microtubules are long, hollow cylindrical filaments with inherent polarity. They are intrinsically dynamic polymers that utilize GTP binding by tubulin, and subsequent hydrolysis, to drive spontaneous assembly and disassembly. Early studies indicated that cellular MTs are composed of multiple variants, or isotypes, of α- and β-tubulins, and that these multi-isotype polymers are further diversified by a range of posttranslational modifications (PTMs) to tubulin. These findings support the multi-tubulin hypothesis whereby individual, or combinations of tubulin isotypes possess unique properties needed to support diverse MT structures and/or cellular processes. Beginning 40 years ago researchers have sought to address this hypothesis, and the role of tubulin isotypes, by exploiting experimentally accessible, genetically tractable and functionally conserved model systems. Among these systems, important insights have been gained from eukaryotic microbial models. In this review, we illustrate how using microorganisms yielded among the earliest evidence that tubulin isotypes harbor distinct properties, as well as recent insights as to how they facilitate specific cellular processes. Ongoing and future research in microorganisms will likely continue to reveal basic mechanisms for how tubulin isotypes facilitate MT functions, along with valuable perspectives on how they mediate the range of conserved and diverse processes observed across eukaryotic microbes.
Collapse
|
20
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
21
|
Abstract
The microtubule cytoskeleton is assembled from the α- and β-tubulin subunits of the canonical tubulin heterodimer, which polymerizes into microtubules, and a small number of other family members, such as γ-tubulin, with specialized functions. Overall, microtubule function involves the collective action of multiple α- and β-tubulin isotypes. However, despite 40 years of awareness that most eukaryotes harbor multiple tubulin isotypes, their role in the microtubule cytoskeleton has remained relatively unclear. Various model organisms offer specific advantages for gaining insight into the role of tubulin isotypes. Whereas simple unicellular organisms such as yeast provide experimental tractability that can facilitate deeper access to mechanistic details, more complex organisms, such as the fruit fly, nematode and mouse, can be used to discern potential specialized functions of tissue- and structure-specific isotypes. Here, we review the role of α- and β-tubulin isotypes in microtubule function and in associated tubulinopathies with an emphasis on the advances gained using model organisms. Overall, we argue that studying tubulin isotypes in a range of organisms can reveal the fundamental mechanisms by which they mediate microtubule function. It will also provide valuable perspectives on how these mechanisms underlie the functional and biological diversity of the cytoskeleton.
Collapse
Affiliation(s)
- Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Crouse WL, Keele GR, Gastonguay MS, Churchill GA, Valdar W. A Bayesian model selection approach to mediation analysis. PLoS Genet 2022; 18:e1010184. [PMID: 35533209 PMCID: PMC9129027 DOI: 10.1371/journal.pgen.1010184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/24/2022] [Accepted: 04/04/2022] [Indexed: 01/09/2023] Open
Abstract
Genetic studies often seek to establish a causal chain of events originating from genetic variation through to molecular and clinical phenotypes. When multiple phenotypes share a common genetic association, one phenotype may act as an intermediate for the genetic effects on the other. Alternatively, the phenotypes may be causally unrelated but share genetic loci. Mediation analysis represents a class of causal inference approaches used to determine which of these scenarios is most plausible. We have developed a general approach to mediation analysis based on Bayesian model selection and have implemented it in an R package, bmediatR. Bayesian model selection provides a flexible framework that can be tailored to different analyses. Our approach can incorporate prior information about the likelihood of models and the strength of causal effects. It can also accommodate multiple genetic variants or multi-state haplotypes. Our approach reports posterior probabilities that can be useful in interpreting uncertainty among competing models. We compared bmediatR with other popular methods, including the Sobel test, Mendelian randomization, and Bayesian network analysis using simulated data. We found that bmediatR performed as well or better than these alternatives in most scenarios. We applied bmediatR to proteome data from Diversity Outbred (DO) mice, a multi-parent population, and demonstrate the power of mediation with multi-state haplotypes. We also applied bmediatR to data from human cell lines to identify transcripts that are mediated through or are expressed independently from local chromatin accessibility. We demonstrate that Bayesian model selection provides a powerful and versatile approach to identify causal relationships in genetic studies using model organism or human data.
Collapse
Affiliation(s)
- Wesley L. Crouse
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
23
|
Nanoarchitecture of the ventral disc of Giardia intestinalis as revealed by high-resolution scanning electron microscopy and helium ion microscopy. Histochem Cell Biol 2022; 157:251-265. [DOI: 10.1007/s00418-021-02060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
|
24
|
Rozario AM, Duwé S, Elliott C, Hargreaves RB, Moseley GW, Dedecker P, Whelan DR, Bell TDM. Nanoscale characterization of drug-induced microtubule filament dysfunction using super-resolution microscopy. BMC Biol 2021; 19:260. [PMID: 34895240 PMCID: PMC8665533 DOI: 10.1186/s12915-021-01164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The integrity of microtubule filament networks is essential for the roles in diverse cellular functions, and disruption of its structure or dynamics has been explored as a therapeutic approach to tackle diseases such as cancer. Microtubule-interacting drugs, sometimes referred to as antimitotics, are used in cancer therapy to target and disrupt microtubules. However, due to associated side effects on healthy cells, there is a need to develop safer drug regimens that still retain clinical efficacy. Currently, many questions remain open regarding the extent of effects on cellular physiology of microtubule-interacting drugs at clinically relevant and low doses. Here, we use super-resolution microscopies (single-molecule localization and optical fluctuation based) to reveal the initial microtubule dysfunctions caused by nanomolar concentrations of colcemid. RESULTS We identify previously undetected microtubule (MT) damage caused by clinically relevant doses of colcemid. Short exposure to 30-80 nM colcemid results in aberrant microtubule curvature, with a trend of increased curvature associated to increased doses, and curvatures greater than 2 rad/μm, a value associated with MT breakage. Microtubule fragmentation was detected upon treatment with ≥ 100 nM colcemid. Remarkably, lower doses (< 20 nM after 5 h) led to subtle but significant microtubule architecture remodelling characterized by increased curvature and suppression of microtubule dynamics. CONCLUSIONS Our results support the emerging hypothesis that microtubule-interacting drugs induce non-mitotic effects in cells, and establish a multi-modal imaging assay for detecting and measuring nanoscale microtubule dysfunction. The sub-diffraction visualization of these less severe precursor perturbations compared to the established antimitotic effects of microtubule-interacting drugs offers potential for improved understanding and design of anticancer agents.
Collapse
Affiliation(s)
- Ashley M Rozario
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Sam Duwé
- Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Cade Elliott
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | | | - Gregory W Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, 3800, Australia
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, 3552, Australia.
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
25
|
Jaunky DB, Larocque K, Husser MC, Liu JT, Forgione P, Piekny A. Characterization of a recently synthesized microtubule-targeting compound that disrupts mitotic spindle poles in human cells. Sci Rep 2021; 11:23665. [PMID: 34880347 PMCID: PMC8655040 DOI: 10.1038/s41598-021-03076-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
We reveal the effects of a new microtubule-destabilizing compound in human cells. C75 has a core thienoisoquinoline scaffold with several functional groups amenable to modification. Previously we found that sub micromolar concentrations of C75 caused cytotoxicity. We also found that C75 inhibited microtubule polymerization and competed with colchicine for tubulin-binding in vitro. However, here we found that the two compounds synergized suggesting differences in their mechanism of action. Indeed, live imaging revealed that C75 causes different spindle phenotypes compared to colchicine. Spindles remained bipolar and collapsed after colchicine treatment, while C75 caused bipolar spindles to become multipolar. Importantly, microtubules rapidly disappeared after C75-treatment, but then grew back unevenly and from multiple poles. The C75 spindle phenotype is reminiscent of phenotypes caused by depletion of ch-TOG, a microtubule polymerase, suggesting that C75 blocks microtubule polymerization in metaphase cells. C75 also caused an increase in the number of spindle poles in paclitaxel-treated cells, and combining low amounts of C75 and paclitaxel caused greater regression of multicellular tumour spheroids compared to each compound on their own. These findings warrant further exploration of C75’s anti-cancer potential.
Collapse
Affiliation(s)
| | - Kevin Larocque
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Mathieu C Husser
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Jiang Tian Liu
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Dráber P, Dráberová E. Dysregulation of Microtubule Nucleating Proteins in Cancer Cells. Cancers (Basel) 2021; 13:cancers13225638. [PMID: 34830792 PMCID: PMC8616210 DOI: 10.3390/cancers13225638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The dysfunction of microtubule nucleation in cancer cells changes the overall cytoskeleton organization and cellular physiology. This review focuses on the dysregulation of the γ-tubulin ring complex (γ-TuRC) proteins that are essential for microtubule nucleation. Recent research on the high-resolution structure of γ-TuRC has brought new insight into the microtubule nucleation mechanism. We discuss the effect of γ-TuRC protein overexpression on cancer cell behavior and new drugs directed to γ-tubulin that may offer a viable alternative to microtubule-targeting agents currently used in cancer chemotherapy. Abstract In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
Collapse
|
27
|
Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules. Nat Commun 2021; 12:5796. [PMID: 34608154 PMCID: PMC8490363 DOI: 10.1038/s41467-021-26058-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
The axonemal central pair (CP) are non-centrosomal microtubules critical for planar ciliary beat. How they form, however, is poorly understood. Here, we show that mammalian CP formation requires Wdr47, Camsaps, and microtubule-severing activity of Katanin. Katanin severs peripheral microtubules to produce central microtubule seeds in nascent cilia. Camsaps stabilize minus ends of the seeds to facilitate microtubule outgrowth, whereas Wdr47 concentrates Camsaps into the axonemal central lumen to properly position central microtubules. Wdr47 deficiency in mouse multicilia results in complete loss of CP, rotatory beat, and primary ciliary dyskinesia. Overexpression of Camsaps or their microtubule-binding regions induces central microtubules in Wdr47-/- ependymal cells but at the expense of low efficiency, abnormal numbers, and wrong location. Katanin levels and activity also impact the central microtubule number. We propose that Wdr47, Camsaps, and Katanin function together for the generation of non-centrosomal microtubule arrays in polarized subcellular compartments.
Collapse
|
28
|
Rayevsky A, Sharifi M, Samofalova D, Demchuk O, Karpov P, Blume Y. In silico mechanistic model of microtubule assembly inhibition by selective chromone derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Barh D, Tiwari S, Gabriel Rodrigues Gomes L, Weener ME, Alzahrani KJ, Alsharif KF, Aljabali AAA, Tambuwala MM, Lundstrom K, Hassan SS, Serrano-Aroca Á, Takayama K, Ghosh P, Redwan EM, Silva Andrade B, Soares SDC, Azevedo V, Uversky VN. Potential Molecular Mechanisms of Rare Anti-Tumor Immune Response by SARS-CoV-2 in Isolated Cases of Lymphomas. Viruses 2021; 13:1927. [PMID: 34696358 PMCID: PMC8539762 DOI: 10.3390/v13101927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and follicular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor immune response of SARS-CoV-2 and based on a computational approach show that: (i) SARS-CoV-2 Spike-RBD may bind to the extracellular domains of CD15, CD27, CD45, and CD152 receptors of cHL or FL and may directly inhibit cell proliferation. (ii) Alternately, upon internalization after binding to these CD molecules, the SARS-CoV-2 membrane (M) protein and ORF3a may bind to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding site. (iii) The M protein may also interact with TUBG1, blocking its binding to GCP3. (iv) Both the M and ORF3a proteins may render the GCP2-GCP3 lateral binding where the M protein possibly interacts with GCP2 at its GCP3 binding site and the ORF3a protein to GCP3 at its GCP2 interacting residues. (v) Interactions of the M and ORF3a proteins with these gamma-tubulin ring complex components potentially block the initial process of microtubule nucleation, leading to cell-cycle arrest and apoptosis. (vi) The Spike-RBD may also interact with and block PD-1 signaling similar to pembrolizumab and nivolumab- like monoclonal antibodies and may induce B-cell apoptosis and remission. (vii) Finally, the TRADD interacting "PVQLSY" motif of Epstein-Barr virus LMP-1, that is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 Mpro, NSP7, NSP10, and spike (S) proteins, and may inhibit the LMP-1 mediated cell proliferation. Taken together, our results suggest a possible therapeutic potential of SARS-CoV-2 in lymphoproliferative disorders.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.T.); (L.G.R.G.); (V.A.)
| | - Sandeep Tiwari
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.T.); (L.G.R.G.); (V.A.)
| | - Lucas Gabriel Rodrigues Gomes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.T.); (L.G.R.G.); (V.A.)
| | - Marianna E. Weener
- Clinical Research Center, Oftalmic, CRO, 119334 Bardina Str. 22/4, 119991 Moscow, Russia;
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (K.J.A.); (K.F.A.)
| | - Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (K.J.A.); (K.F.A.)
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | | | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulazizi University, Jeddah 21589, Saudi Arabia;
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié 45206-190, Brazil;
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba 38025-180, Brazil;
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.T.); (L.G.R.G.); (V.A.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, 141700 Dolgoprudny, Russia
| |
Collapse
|
30
|
Lagunas-Rangel FA, Yee J, Bermúdez-Cruz RM. An update on cell division of Giardia duodenalis trophozoites. Microbiol Res 2021; 250:126807. [PMID: 34130067 DOI: 10.1016/j.micres.2021.126807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Giardia duodenalis is a flagellated protozoan that is responsible for many cases of diarrheal disease worldwide and is characterized by its great divergence from the model organisms commonly used in studies of basic cellular processes. The life cycle of Giardia involves an infectious cyst form and a proliferative and mobile trophozoite form. Each Giardia trophozoite has two nuclei and a complex microtubule cytoskeleton that consists of eight flagellar axonemes, basal bodies, the adhesive disc, the funis and the median body. Since the success of Giardia infecting other organisms depends on its ability to divide and proliferate efficiently, Giardia must coordinate its cell division to ensure the duplication and partitioning of both nuclei and the multiple cytoskeletal structures. The purpose of this review is to summarize current knowledge about cell division and its regulation in this protist.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico; Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Janet Yee
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
31
|
Feng C, Cleary JM, Kothe GO, Stone MC, Weiner AT, Hertzler JI, Hancock WO, Rolls MM. Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules. J Cell Sci 2021; 134:jcs258437. [PMID: 34096607 PMCID: PMC8214762 DOI: 10.1242/jcs.258437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Axons and dendrites are distinguished by microtubule polarity. In Drosophila, dendrites are dominated by minus-end-out microtubules, whereas axons contain plus-end-out microtubules. Local nucleation in dendrites generates microtubules in both orientations. To understand why dendritic nucleation does not disrupt polarity, we used live imaging to analyze the fate of microtubules generated at branch points. We found that they had different rates of success exiting the branch based on orientation: correctly oriented minus-end-out microtubules succeeded in leaving about twice as often as incorrectly oriented microtubules. Increased success relied on other microtubules in a parallel orientation. From a candidate screen, we identified Trim9 and kinesin-5 (Klp61F) as machinery that promoted growth of new microtubules. In S2 cells, Eb1 recruited Trim9 to microtubules. Klp61F promoted microtubule growth in vitro and in vivo, and could recruit Trim9 in S2 cells. In summary, the data argue that Trim9 and kinesin-5 act together at microtubule plus ends to help polymerizing microtubules parallel to pre-existing ones resist catastrophe.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph M. Cleary
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory O. Kothe
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle C. Stone
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexis T. Weiner
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - James I. Hertzler
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - William O. Hancock
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M. Rolls
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
32
|
Ricolo D, Castro-Ribera J, Araújo SJ. Cytoskeletal players in single-cell branching morphogenesis. Dev Biol 2021; 477:22-34. [PMID: 34004181 DOI: 10.1016/j.ydbio.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Branching networks are a very common feature of multicellular animals and underlie the formation and function of numerous organs including the nervous system, the respiratory system, the vasculature and many internal glands. These networks range from subcellular structures such as dendritic trees to large multicellular tissues such as the lungs. The production of branched structures by single cells, so called subcellular branching, which has been better described in neurons and in cells of the respiratory and vascular systems, involves complex cytoskeletal remodelling events. In Drosophila, tracheal system terminal cells (TCs) and nervous system dendritic arborisation (da) neurons are good model systems for these subcellular branching processes. During development, the generation of subcellular branches by single-cells is characterized by extensive remodelling of the microtubule (MT) network and actin cytoskeleton, followed by vesicular transport and membrane dynamics. In this review, we describe the current knowledge on cytoskeletal regulation of subcellular branching, based on the terminal cells of the Drosophila tracheal system, but drawing parallels with dendritic branching and vertebrate vascular subcellular branching.
Collapse
Affiliation(s)
- Delia Ricolo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain
| | - Judith Castro-Ribera
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain
| | - Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
33
|
Chumová J, Kourová H, Trögelová L, Daniel G, Binarová P. γ-Tubulin Complexes and Fibrillar Arrays: Two Conserved High Molecular Forms with Many Cellular Functions. Cells 2021; 10:cells10040776. [PMID: 33915825 PMCID: PMC8066788 DOI: 10.3390/cells10040776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Higher plants represent a large group of eukaryotes where centrosomes are absent. The functions of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs) in metazoans and fungi in microtubule nucleation are well established and the majority of components found in the complexes are present in plants. However, plant microtubules are also nucleated in a γ-tubulin-dependent but γ-TuRC-independent manner. There is growing evidence that γ-tubulin is a microtubule nucleator without being complexed in γ-TuRC. Fibrillar arrays of γ-tubulin were demonstrated in plant and animal cells and the ability of γ-tubulin to assemble into linear oligomers/polymers was confirmed in vitro for both native and recombinant γ-tubulin. The functions of γ-tubulin as a template for microtubule nucleation or in promoting spontaneous nucleation is outlined. Higher plants represent an excellent model for studies on the role of γ-tubulin in nucleation due to their acentrosomal nature and high abundancy and conservation of γ-tubulin including its intrinsic ability to assemble filaments. The defining scaffolding or sequestration functions of plant γ-tubulin in microtubule organization or in nuclear processes will help our understanding of its cellular roles in eukaryotes.
Collapse
Affiliation(s)
- Jana Chumová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
| | - Hana Kourová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
| | - Lucie Trögelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden;
| | - Pavla Binarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
- Correspondence: ; Tel.: +420-241-062-130
| |
Collapse
|
34
|
Magescas J, Eskinazi S, Tran MV, Feldman JL. Centriole-less pericentriolar material serves as a microtubule organizing center at the base of C. elegans sensory cilia. Curr Biol 2021; 31:2410-2417.e6. [PMID: 33798428 DOI: 10.1016/j.cub.2021.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2021] [Accepted: 03/05/2021] [Indexed: 01/20/2023]
Abstract
During mitosis in animal cells, the centrosome acts as a microtubule organizing center (MTOC) to assemble the mitotic spindle. MTOC function at the centrosome is driven by proteins within the pericentriolar material (PCM), however the molecular complexity of the PCM makes it difficult to differentiate the proteins required for MTOC activity from other centrosomal functions. We used the natural spatial separation of PCM proteins during mitotic exit to identify a minimal module of proteins required for centrosomal MTOC function in C. elegans. Using tissue-specific degradation, we show that SPD-5, the functional homolog of CDK5RAP2, is essential for embryonic mitosis, while SPD-2/CEP192 and PCMD-1, which are essential in the one-cell embryo, are dispensable. Surprisingly, although the centriole is known to be degraded in the ciliated sensory neurons in C. elegans,1-3 we find evidence for "centriole-less PCM" at the base of cilia and use this structure as a minimal testbed to dissect centrosomal MTOC function. Super-resolution imaging revealed that this PCM inserts inside the lumen of the ciliary axoneme and directly nucleates the assembly of dendritic microtubules toward the cell body. Tissue-specific degradation in ciliated sensory neurons revealed a role for SPD-5 and the conserved microtubule nucleator γ-TuRC, but not SPD-2 or PCMD-1, in MTOC function at centriole-less PCM. This MTOC function was in the absence of regulation by mitotic kinases, highlighting the intrinsic ability of these proteins to drive microtubule growth and organization and further supporting a model that SPD-5 is the primary driver of MTOC function at the PCM.
Collapse
Affiliation(s)
- Jérémy Magescas
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA.
| | - Sani Eskinazi
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA
| | - Michael V Tran
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, 94305, CA, USA.
| |
Collapse
|
35
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
36
|
Jaiswal S, Kasera H, Jain S, Khandelwal S, Singh P. Centrosome: A Microtubule Nucleating Cellular Machinery. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00213-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:241-250. [PMID: 33274838 DOI: 10.1111/jipb.13046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 05/24/2023]
Abstract
The plant cytoskeleton undergoes dynamic remodeling in response to diverse developmental and environmental cues. Remodeling of the cytoskeleton coordinates growth in plant cells, including trafficking and exocytosis of membrane and wall components during cell expansion, and regulation of hypocotyl elongation in response to light. Cytoskeletal remodeling also has key functions in disease resistance and abiotic stress responses. Many stimuli result in altered activity of cytoskeleton-associated proteins, microtubule-associated proteins (MAPs) and actin-binding proteins (ABPs). MAPs and ABPs are the main players determining the spatiotemporally dynamic nature of the cytoskeleton, functioning in a sensory hub that decodes signals to modulate plant cytoskeletal behavior. Moreover, MAP and ABP activities and levels are precisely regulated during development and environmental responses, but our understanding of this process remains limited. In this review, we summarize the evidence linking multiple signaling pathways, MAP and ABP activities and levels, and cytoskeletal rearrangements in plant cells. We highlight advances in elucidating the multiple mechanisms that regulate MAP and ABP activities and levels, including calcium and calmodulin signaling, ROP GTPase activity, phospholipid signaling, and post-translational modifications.
Collapse
Affiliation(s)
- Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
38
|
Liu P, Würtz M, Zupa E, Pfeffer S, Schiebel E. Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins. Curr Opin Cell Biol 2020; 68:124-131. [PMID: 33190097 DOI: 10.1016/j.ceb.2020.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Microtubules are essential cytoskeletal elements assembled from αβ-tubulin dimers. In high eukaryotes, microtubule nucleation, the de novo assembly of a microtubule from its minus end, is initiated by the γ-tubulin ring complex (γ-TuRC). Despite many years of research, the structural and mechanistic principles of the microtubule nucleation machinery remained poorly understood. Only recently, cryoelectron microscopy studies uncovered the molecular organization and potential activation mechanisms of γ-TuRC. In vitro assays further deciphered the spatial and temporal cooperation between γ-TuRC and additional factors, for example, the augmin complex, the phase separation protein TPX2, and the microtubule polymerase XMAP215. These breakthroughs deepen our understanding of microtubule nucleation mechanisms and will link the assembly of individual microtubules to the organization of cellular microtubule networks.
Collapse
Affiliation(s)
- Peng Liu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany.
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| |
Collapse
|
39
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
40
|
Cheng Z, Lu X, Feng B. A review of research progress of antitumor drugs based on tubulin targets. Transl Cancer Res 2020; 9:4020-4027. [PMID: 35117769 PMCID: PMC8797889 DOI: 10.21037/tcr-20-682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Microtubules exist in all eukaryotic cells and are one of the critical components that make up the cytoskeleton. Microtubules play a crucial role in supporting cell morphology, cell division, and material transport. Tubulin modulators can promote microtubule polymerization or cause microtubule depolymerization. The modulators interfere with the mitosis of cells and inhibit cell proliferation. Tubulin mainly has three binding domains, namely, paclitaxel, vinca and colchicine binding domains, which are the best targets for the development of anticancer drugs. Currently, drugs for tumor therapy have been developed for these three domains. However, due to its narrow therapeutic window, poor selectivity, and susceptibility to drug resistance, it has severely limited clinical applications. The method of combined medication, the change of administration method, the modification of compound structure, and the research and development of new targets have all changed the side effects of tubulin drugs to a certain extent. In this review, we briefly introduce a basic overview of tubulin and the main mechanism of anti-tumor. Secondly, we focus on the application of drugs which developed based on the three domains of tubulin to various cancers in various fields. Finally, we further provide the development progress of tubulin inhibitors currently in clinical trials.
Collapse
Affiliation(s)
- Ziqi Cheng
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Xuan Lu
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Baomin Feng
- College of Life Science and Technology, Dalian University, Dalian, China
| |
Collapse
|
41
|
Barreca M, Stathis A, Barraja P, Bertoni F. An overview on anti-tubulin agents for the treatment of lymphoma patients. Pharmacol Ther 2020; 211:107552. [PMID: 32305312 DOI: 10.1016/j.pharmthera.2020.107552] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 01/19/2023]
Abstract
Anti-tubulin agents constitute a large class of compounds with broad activity both in solid tumors and hematologic malignancies, due to the interference with microtubule dynamics. Since microtubules play crucial roles in the regulation of the mitotic spindles, the interference with their function usually leads to a block in cell division with arrest at the metaphase/anaphase junction of mitosis, followed to apoptosis. This explains the reason why tubulin-binding agents (TBAs) proved to be extremely active in patients with cancer. Several anti-tubulin agents are indicated in the treatment of patients with lymphomas both alone and in combination chemotherapy regimens. The article reviews the literature on classic and more recent anti-tubulin agents, providing an insight into their mechanisms of action and their use in the treatment of lymphoma.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland,; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland,.
| |
Collapse
|
42
|
Zheng Y, Buchwalter RA, Zheng C, Wight EM, Chen JV, Megraw TL. A perinuclear microtubule-organizing centre controls nuclear positioning and basement membrane secretion. Nat Cell Biol 2020; 22:297-309. [PMID: 32066907 PMCID: PMC7161059 DOI: 10.1038/s41556-020-0470-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Non-centrosomal microtubule-organizing centres (ncMTOCs) have a variety of roles presumed to serve the diverse functions of the range of cell types in which they are found. ncMTOCs are diverse in their composition, subcellular localization, and function. Here we report a perinuclear MTOC in Drosophila fat body cells that is anchored by Msp300/Nesprin at the cytoplasmic surface of the nucleus. Msp300 recruits the MT minus-end protein Patronin/CAMSAP, which functions redundantly with Ninein to further recruit the MT polymerase Msps/XMAP215 to assemble non-centrosomal MTs and does so independently of the widespread MT nucleation factor γ-tubulin. Functionally, the fat body ncMTOC and the radial MT arrays it organizes is essential for nuclear positioning and for secretion of basement membrane components via retrograde dynein-dependent endosomal trafficking that restricts plasma membrane growth. Together, this study identifies a perinuclear ncMTOC with unique architecture and MT regulation properties that serves vital functions.
Collapse
Affiliation(s)
- Yiming Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Chunfeng Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Elise M Wight
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Jieyan V Chen
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
43
|
Gao X, Schmid M, Zhang Y, Fukuda S, Takeshita N, Fischer R. The spindle pole body of Aspergillus nidulans is asymmetrical and contains changing numbers of γ-tubulin complexes. J Cell Sci 2019; 132:jcs.234799. [PMID: 31740532 DOI: 10.1242/jcs.234799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOCs) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) are found in many cell types. Their composition and structure are only poorly understood. Here, we analyzed nuclear MTOCs (spindle-pole bodies, SPBs) and septal MTOCs in Aspergillus nidulans They both contain γ-tubulin along with members of the family of γ-tubulin complex proteins (GCPs). Our data suggest that SPBs consist of γ-tubulin small complexes (γ-TuSCs) at the outer plaque, and larger γ-tubulin ring complexes (γ-TuRC) at the inner plaque. We show that the MztA protein, an ortholog of the human MOZART protein (also known as MZT1), interacted with the inner plaque receptor PcpA (the homolog of fission yeast Pcp1) at SPBs, while no interaction nor colocalization was detected between MztA and the outer plaque receptor ApsB (fission yeast Mto1). Septal MTOCs consist of γ-TuRCs including MztA but are anchored through AspB and Spa18 (fission yeast Mto2). MztA is not essential for viability, although abnormal spindles were observed frequently in cells lacking MztA. Quantitative PALM imaging revealed unexpected dynamics of the protein composition of SPBs, with changing numbers of γ-tubulin complexes over time during interphase and constant numbers during mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Marjorie Schmid
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Ying Zhang
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sayumi Fukuda
- Tsukuba University, Faculty of Life and Environmental Sciences, Tsukuba 305-8572, Japan
| | - Norio Takeshita
- Tsukuba University, Faculty of Life and Environmental Sciences, Tsukuba 305-8572, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
44
|
The γ-tubulin complex protein GCP6 is crucial for spindle morphogenesis but not essential for microtubule reorganization in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:27115-27123. [PMID: 31818952 DOI: 10.1073/pnas.1912240116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
γ-Tubulin typically forms a ring-shaped complex with 5 related γ-tubulin complex proteins (GCP2 to GCP6), and this γ-tubulin ring complex (γTuRC) serves as a template for microtubule (MT) nucleation in plants and animals. While the γTuRC takes part in MT nucleation in most eukaryotes, in fungi such events take place robustly with just the γ-tubulin small complex (γTuSC) assembled by γ-tubulin plus GCP2 and GCP3. To explore whether the γTuRC is the sole functional γ-tubulin complex in plants, we generated 2 mutants of the GCP6 gene encoding the largest subunit of the γTuRC in Arabidopsis thaliana Both mutants showed similar phenotypes of dwarfed vegetative growth and reduced fertility. The gcp6 mutant assembled the γTuSC, while the wild-type cells had GCP6 join other GCPs to produce the γTuRC. Although the gcp6 cells had greatly diminished γ-tubulin localization on spindle MTs, the protein was still detected there. The gcp6 cells formed spindles that lacked MT convergence and discernable poles; however, they managed to cope with the challenge of MT disorganization and were able to complete mitosis and cytokinesis. Our results reveal that the γTuRC is not the only functional form of the γ-tubulin complex for MT nucleation in plant cells, and that γ-tubulin-dependent, but γTuRC-independent, mechanisms meet the basal need of MT nucleation. Moreover, we show that the γTuRC function is more critical for the assembly of spindle MT array than for the phragmoplast. Thus, our findings provide insight into acentrosomal MT nucleation and organization.
Collapse
|
45
|
Abstract
Highly conserved α- and β-tubulin heterodimers assemble into dynamic microtubules and perform multiple important cellular functions such as structural support, pathway for transport and force generation in cell division. Tubulin exists in different forms of isotypes expressed by specific genes with spatially- and temporally-regulated expression levels. Some tubulin isotypes are differentially expressed in normal and neoplastic cells, providing a basis for cancer chemotherapy drug development. Moreover, specific tubulin isotypes are overexpressed and localized in the nuclei of cancer cells and/or show bioenergetic functions through the regulation of the permeability of mitochondrial ion channels. It has also become clear that tubulin isotypes are involved in multiple cellular functions without being incorporated into microtubule structures. Understanding the mutations of tubulin isotypes specifically expressed in tumors and their post-translational modifications might help to identify precise molecular targets for the design of novel anti-microtubular drugs. Knowledge of tubulin mutations present in tubulinopathies brings into focus cellular functions of tubulin in brain pathologies such as Alzheimer’s disease. Uncovering signaling pathways which affect tubulin functions during antigen-mediated activation of mast cells presents a major challenge in developing new strategies for the treatment of inflammatory and allergic diseases. γ-tubulin, a conserved member of the eukaryotic tubulin superfamily specialized for microtubule nucleation is a target of cell cycle and stress signaling. Besides its microtubule nucleation role, γ-tubulin functions in nuclear and cell cycle related processes. This special issue “Tubulin: Structure, Functions and Roles in Disease” contains eight articles, five of which are original research papers and three are review papers that cover diverse areas of tubulin biology and functions under normal and pathological conditions.
Collapse
|
46
|
Zhurinsky J, Salas-Pino S, Iglesias-Romero AB, Torres-Mendez A, Knapp B, Flor-Parra I, Wang J, Bao K, Jia S, Chang F, Daga RR. Effects of the microtubule nucleator Mto1 on chromosomal movement, DNA repair, and sister chromatid cohesion in fission yeast. Mol Biol Cell 2019; 30:2695-2708. [PMID: 31483748 PMCID: PMC6761766 DOI: 10.1091/mbc.e19-05-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/11/2022] Open
Abstract
Although the function of microtubules (MTs) in chromosomal segregation during mitosis is well characterized, much less is known about the role of MTs in chromosomal functions during interphase. In the fission yeast Schizosaccharomyces pombe, dynamic cytoplasmic MT bundles move chromosomes in an oscillatory manner during interphase via linkages through the nuclear envelope (NE) at the spindle pole body (SPB) and other sites. Mto1 is a cytoplasmic factor that mediates the nucleation and attachment of cytoplasmic MTs to the nucleus. Here, we test the function of these cytoplasmic MTs and Mto1 on DNA repair and recombination during interphase. We find that mto1Δ cells exhibit defects in DNA repair and homologous recombination (HR) and abnormal DNA repair factory dynamics. In these cells, sister chromatids are not properly paired, and binding of Rad21 cohesin subunit along chromosomal arms is reduced. Our findings suggest a model in which cytoplasmic MTs and Mto1 facilitate efficient DNA repair and HR by promoting dynamic chromosomal organization and cohesion in the nucleus.
Collapse
Affiliation(s)
- Jacob Zhurinsky
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Ana B. Iglesias-Romero
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonio Torres-Mendez
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Benjamin Knapp
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Ignacio Flor-Parra
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jiyong Wang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Kehan Bao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Songtao Jia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Fred Chang
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Rafael R. Daga
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
47
|
Magescas J, Zonka JC, Feldman JL. A two-step mechanism for the inactivation of microtubule organizing center function at the centrosome. eLife 2019; 8:47867. [PMID: 31246171 PMCID: PMC6684319 DOI: 10.7554/elife.47867] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023] Open
Abstract
The centrosome acts as a microtubule organizing center (MTOC), orchestrating microtubules into the mitotic spindle through its pericentriolar material (PCM). This activity is biphasic, cycling through assembly and disassembly during the cell cycle. Although hyperactive centrosomal MTOC activity is a hallmark of some cancers, little is known about how the centrosome is inactivated as an MTOC. Analysis of endogenous PCM proteins in C. elegans revealed that the PCM is composed of partially overlapping territories organized into an inner and outer sphere that are removed from the centrosome at different rates and using different behaviors. We found that phosphatases oppose the addition of PCM by mitotic kinases, ultimately catalyzing the dissolution of inner sphere PCM proteins at the end of mitosis. The nature of the PCM appears to change such that the remaining aging PCM outer sphere is mechanically ruptured by cortical pulling forces, ultimately inactivating MTOC function at the centrosome. New cells are created when existing cells divide, a process that is critical for life. A structure called the spindle is an important part of cell division, helping to orient the division and separate parts of the old cell into the newly generated ones. The spindle is built using filamentous protein structures called microtubules which are arranged by microtubule organizing centers (or MTOCs for short). In animals, an MTOC forms at each end of the spindle around two structures called centrosomes. A network of proteins called the pericentriolar material (PCM) form around centrosomes, converting them into MTOCs. The PCM grows around centrosomes as a cell prepares to divide and is removed again afterward. Enzymes called kinases are important in controlling cell division and PCM assembly; they are opposed by other enzymes known as phosphatases. The processes involved in organization and removal of the PCM are not well understood. The microscopic worm Caenorhabditis elegans provides an opportunity to study details of cell division in a living animal. Magescas et al. used fluorescent labels to view proteins from the PCM under a microscope. The images showed two partially overlapping spherical parts to the PCM – inner and outer. Further examination revealed that the inner PCM is maintained by a careful balance of kinase and phosphatase activity. When kinases shut down at the end of cell division, the phosphatases break down the inner PCM. By contrast, the outer PCM is physically torn apart by forces acting through the attached microtubules. Future work will seek to examine which proteins are specifically affected by phosphatases to identify the key regulators of PCM persistence in the cell and to reveal the proteins needed for MTOC activity at the centrosome. Since poor MTOC regulation can play a part in the growth and spread of cancer, this could lead to targets for new treatments.
Collapse
Affiliation(s)
- Jérémy Magescas
- Department of Biology, Stanford University, Stanford, United States
| | - Jenny C Zonka
- Department of Biology, Stanford University, Stanford, United States
| | | |
Collapse
|
48
|
Lee YRJ, Liu B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. THE NEW PHYTOLOGIST 2019; 222:1705-1718. [PMID: 30681146 DOI: 10.1111/nph.15705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/07/2019] [Indexed: 05/15/2023]
Abstract
Contents Summary I. Introduction II. MT arrays in plant cells III. γ-Tubulin and MT nucleation IV. MT nucleation sites or flexible MTOCs in plant cells V. MT-dependent MT nucleation VI. Generating new MTs for spindle assembly VII. Generation of MTs for phragmoplast expansion during cytokinesis VIII. MT generation for the cortical MT array IX. MT nucleation: looking forward Acknowledgements References SUMMARY: Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel their MT network in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of new MTs is a critical step for MT remodeling. Although many key factors contributing to MT nucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexible MTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions. MT-dependent MT nucleation is particularly noticeable in plant cells because it accounts for the primary source of MT generation for assembling spindle, phragmoplast, and cortical arrays when the γ-tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant-specific MTOCs and how plant cells activate or inactivate MT nucleation activities in spatiotemporally regulated manners.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
49
|
Sreeja JS, Nellikka RK, John R, Sivakumar KC, Sreekumar E, Sengupta S. Binding of alpha-fodrin to gamma-tubulin accounts for its role in the inhibition of microtubule nucleation. FEBS Lett 2019; 593:1154-1165. [PMID: 31062342 DOI: 10.1002/1873-3468.13425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 11/10/2022]
Abstract
Non-erythroid spectrin or fodrin is present as part of the γ-tubulin ring complex (γ-TuRC) in brain tissue and brain derived cells. Here, we show that fodrin, which is otherwise known for providing structural support to the cell membrane, interacts directly with γ-tubulin within the γ-TuRC through a GRIP2-like motif. Turbidometric analysis of microtubule polymerization with nucleation-potent γ-TuRC isolated from HEK-293 cells that lack fodrin and the γ-TuRC from goat brain that contains fodrin shows inefficiency of the latter to promote nucleation. The involvement of fodrin was confirmed by the reduction in the microtubule polymerization efficiency of HEK-293 derived γ-TuRCs upon addition of purified brain fodrin. Thus, the interaction of fodrin with gamma-tubulin is responsible for its inhibitory effect on γ-tubulin mediated microtubule nucleation.
Collapse
Affiliation(s)
- Jamuna S Sreeja
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Rince John
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Easwaran Sreekumar
- Viral Disease Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Suparna Sengupta
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
50
|
Regulation of Microtubule Nucleation in Mouse Bone Marrow-Derived Mast Cells by Protein Tyrosine Phosphatase SHP-1. Cells 2019; 8:cells8040345. [PMID: 30979083 PMCID: PMC6523986 DOI: 10.3390/cells8040345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The antigen-mediated activation of mast cells initiates signaling events leading to their degranulation, to the release of inflammatory mediators, and to the synthesis of cytokines and chemokines. Although rapid and transient microtubule reorganization during activation has been described, the molecular mechanisms that control their rearrangement are largely unknown. Microtubule nucleation is mediated by γ-tubulin complexes. In this study, we report on the regulation of microtubule nucleation in bone marrow-derived mast cells (BMMCs) by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1; Ptpn6). Reciprocal immunoprecipitation experiments and pull-down assays revealed that SHP-1 is present in complexes containing γ-tubulin complex proteins and protein tyrosine kinase Syk. Microtubule regrowth experiments in cells with deleted SHP-1 showed a stimulation of microtubule nucleation, and phenotypic rescue experiments confirmed that SHP-1 represents a negative regulator of microtubule nucleation in BMMCs. Moreover, the inhibition of the SHP-1 activity by inhibitors TPI-1 and NSC87877 also augmented microtubule nucleation. The regulation was due to changes in γ-tubulin accumulation. Further experiments with antigen-activated cells showed that the deletion of SHP-1 stimulated the generation of microtubule protrusions, the activity of Syk kinase, and degranulation. Our data suggest a novel mechanism for the suppression of microtubule formation in the later stages of mast cell activation.
Collapse
|