1
|
Dong QJ, Xu XY, Fan CX, Xiao JP. Transcriptome and metabolome analyses reveal chlorogenic acid accumulation in pigmented potatoes at different altitudes. Genomics 2024; 116:110883. [PMID: 38857813 DOI: 10.1016/j.ygeno.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.
Collapse
Affiliation(s)
- Qiu-Ju Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Xiao-Yu Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Cai-Xia Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China.
| |
Collapse
|
2
|
Medison MB, Pan R, Peng Y, Medison RG, Shalmani A, Yang X, Zhang W. Identification of HQT gene family and their potential function in CGA synthesis and abiotic stresses tolerance in vegetable sweet potato. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:361-376. [PMID: 37033766 PMCID: PMC10073390 DOI: 10.1007/s12298-023-01299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Hydroxycinnamate-CoA quinate hydroxycinnamoyl transferase (HQT) enzyme affect plant secondary metabolism and are crucial for growth and development. To date, limited research on the genome-wide analysis of HQT family genes and their regulatory roles in chlorogenic acid (CGA) accumulation in leafy vegetable sweet potato is available. Here, a total of 58 HQT family genes in the sweet potato genome (named IbHQT) were identified and analyzed. We studied the chromosomal distribution, phylogenetic relationship, motifs distribution, collinearity, and cis-acting element analysis of HQT family genes. This study used two sweet potato varieties, high CGA content Fushu 7-6-14-7 (HC), and low CGA content Fushu 7-6 (LC). Based on the phylogenetic analysis, clade A was unique among the identified four clades as it contained HQT genes from various species. The chromosomal location and collinearity analysis revealed that tandem gene duplication may promote the IbHQT gene expansion and expression. The expression patterns and profile analysis showed changes in gene expression levels at different developmental stages and under cold, drought, and salt stress conditions. The expression analysis verified by qRT-PCR revealed that IbHQT genes were highly expressed in the HC variety leaves than in the LC variety. Furthermore, cloning and gene function analysis unveiled that IbHQT family genes are involved in the biosynthesis and accumulation of CGA in sweet-potato. This study expands our understanding of the regulatory role of HQT genes in sweet-potato and lays a foundation for further functional characterization and genetic breeding by engineering targeted HQT candidate genes in various sweet-potato varieties and other species. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01299-4.
Collapse
Affiliation(s)
- Milca Banda Medison
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Ying Peng
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Rudoviko Galileya Medison
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - XinSun Yang
- Institute of Food Crops/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
3
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Jallali I, Zaouali Y, Mkadmini K, Smaoui A, Abdelly C, Ksouri R. Phytochemistry and Antioxidant Activities of Rhus tripartitum (Ucria) Grande Leaf and Fruit Phenolics, Essential Oils, and Fatty Acids. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221089110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rhus tripartitum (Ucria) Grande leaves and fruits were investigated for their contents in phenolic compounds, essential oils, and fatty acids. Chemical composition and antioxidant potential of these secondary metabolites were investigated using chromatographic tools and different antioxidant tests. Results displayed high amounts of phenolic compounds in leaves, concomitant with important antioxidant potentialities, probably due to their richness in phenolic acids and flavonoids as identified by reverse phase high performance liquid chromatography (RP-HPLC). Amounts of essential oils were higher in leaves. Oxygenated sesquiterpenes are exclusively synthesized by the fruits, expressing better antioxidant activities.
Collapse
Affiliation(s)
- Inès Jallali
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM), Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), Hammam-lif, Tunisia
| | - Yosr Zaouali
- Laboratoire de Biotechnologies Végétales, Institut National des Sciences Appliquées et des Technologies de Tunis (INSAT), Tunis Cedex, Tunisia
| | - Khaoula Mkadmini
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM), Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), Hammam-lif, Tunisia
| | - Abderrazek Smaoui
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), Hammam-lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), Hammam-lif, Tunisia
| | - Riadh Ksouri
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM), Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), Hammam-lif, Tunisia
| |
Collapse
|
5
|
Yang W, Liu W, Niu K, Ma X, Jia Z, Ma H, Wang Y, Liu M. Transcriptional Regulation of Different Rhizome Parts Reveal the Candidate Genes That Regulate Rhizome Development in Poa pratensis. DNA Cell Biol 2022; 41:151-168. [PMID: 34813368 DOI: 10.1089/dna.2021.0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A strong rhizome can enhance the ability of a plant to resist drought, low temperature, and other stresses, as it can help plants rapidly obtain water and nutrients. Poa pratensis var. anceps Gaud. cv. Qinghai (QH) is a variant of P. pratensis that is widely distributed in natural grasslands above 3000 m above sea level on the Qinghai-Tibet Plateau. It forms turf easily and has strong soil-fixing ability due to its well-developed rhizomes. Understanding the molecular mechanism of rhizome development in this species is essential for cultivating new varieties of rhizome-type pasture for ecological protection. To clarify the transcriptional regulatory changes in different parts of the rhizome, we analyzed three different rhizome parts (rhizome buds, rhizome nodes, and rhizome internodes) of QH and weak-rhizome wild P. pratensis material (SN) using RNA sequencing. A total of 3806 genes were specifically expressed in Q_B, 1104 genes were specifically expressed in Q_N, and 1181 genes were specifically expressed in Q_I. Analysis showed that MYB, B3, NAC, BBR-BPC, AP2 MIKC_MADS, BSE1, and C2H2 may be key transcription factors regulating rhizome development. These genes interacted with multiple functional genes related to carbohydrate, secondary metabolism, and signal transduction, thus ensuring the normal development of the rhizomes. In particular, SUS (sucrose synthase) [EC:2.4.1.13] is specifically expressed in Q_I, which may be an inducing factor for the production of new plants from Q_B and Q_N. Additionally, PYL, PP2C, and SNRK2, which are involved in the abscisic acid signaling pathway, were differentially expressed in Q_N. In addition, genes related to protein modification and degradation, such as CIPKs, MAPKs, E2, and E3 ubiquitin ligases, were also involved in rhizome development. This study laid a foundation for further functional genomics studies on rhizome development in P. pratensis.
Collapse
Affiliation(s)
- Wei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Xiang Ma
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Zhifeng Jia
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Minjie Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| |
Collapse
|
6
|
Liao L, Zhang W, Zhang B, Cai Y, Gao L, Ogutu C, Sun J, Zheng B, Wang L, Li L, Han Y. Evaluation of chlorogenic acid accumulation in cultivated and wild apples. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Tang N, Cao Z, Yang C, Ran D, Wu P, Gao H, He N, Liu G, Chen Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110924. [PMID: 34034872 DOI: 10.1016/j.plantsci.2021.110924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Lonicera macranthoides Hand-Mazz is an important medicinal plant widely distributed in southern China that has long been used in Chinese traditional medicines. Chlorogenic acid (CGA, 3-caffeoylquinic acid) is the major biologically active ingredient in L. macranthoides. Although key CGA biosynthetic genes have been well documented, their transcriptional regulation remains largely unknown. In this study, we observed that a R2R3 MYB transcription factor LmMYB15 showed a significant correlation with CGA content, indicating its potential role in CGA biosynthesis. A yeast two-hybrid assay suggested that LmMYB15 functions as a transcriptional activator. Overexpression of LmMYB15 in tobacco led to increased accumulation of CGA compared to those in wild-type leaves. To elucidate its functional mechanism, genome-wide DAP-seq was employed and identified the conserved binding motifs of LmMYB15, that is [(C/T) (C/T) (C/T) ACCTA(C/A) (C/T) (A/T)], as well as its direct downstream target genes, including 4CL, MYB3, MYB4, KNAT6/7, IAA26, and ETR2. Subsequently, yeast one-hybrid and dual-luciferase reporter assays verified that LmMYB15 could bind and activate the promoters of 4CL, MYB3 and MYB4, thereby facilitating CGA biosynthesis and phenylpropanoid metabolism. Our findings provide a new track for breeding strategies aiming to enhance CGA content in L. macranthoides that can significantly contribute to better mechanical properties.
Collapse
Affiliation(s)
- Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China; Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| | - Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Cheng Yang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Dongsheng Ran
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Na He
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Guohua Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China; Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| |
Collapse
|
8
|
Lin S, Singh RK, Navarre DA. R2R3-MYB transcription factors, StmiR858 and sucrose mediate potato flavonol biosynthesis. HORTICULTURE RESEARCH 2021; 8:25. [PMID: 33518700 PMCID: PMC7847999 DOI: 10.1038/s41438-021-00463-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/06/2023]
Abstract
Flavonols and other phenylpropanoids protect plants from biotic and abiotic stress and are dietarily desirable because of their health-promoting properties. The ability to develop new potatoes (Solanum tuberosum) with optimal types and amounts of phenylpropanoids is limited by lack of knowledge about the regulatory mechanisms. Exogenous sucrose increased flavonols, whereas overexpression of the MYB StAN1 induced sucrolytic gene expression. Heterologous StAN1 protein bound promoter fragments from sucrolytic genes (SUSY1 and INV1). Two additional MYBs and one microRNA were identified that regulated potato flavonols. Overexpression analysis showed MYB12A and C increased amounts of flavonols and other phenylpropanoids. Endogenous flavonol amounts in light-exposed organs were much higher those in the dark. Expression levels of StMYB12A and C were high in flowers but low in tubers. Transient overexpression of miR858 altered potato flavonol metabolism. Endogenous StmiR858 expression was much lower in flowers than leaves and correlated with flavonol amounts in these organs. Collectively, these findings support the hypothesis that sucrose, MYBs, and miRNA control potato phenylpropanoid metabolism in a finely tuned manner that includes a feedback loop between sucrose and StAN1. These findings will aid in the development of potatoes with phenylpropanoid profiles optimized for crop performance and human health.
Collapse
Affiliation(s)
- Sen Lin
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Rajesh K Singh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Duroy A Navarre
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA.
- USDA-Agricultural Research Service, Prosser, WA, USA.
| |
Collapse
|
9
|
Cadena-Zamudio JD, Nicasio-Torres P, Monribot-Villanueva JL, Guerrero-Analco JA, Ibarra-Laclette E. Integrated Analysis of the Transcriptome and Metabolome of Cecropia obtusifolia: A Plant with High Chlorogenic Acid Content Traditionally Used to Treat Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21207572. [PMID: 33066422 PMCID: PMC7588936 DOI: 10.3390/ijms21207572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
This investigation cultured Cecropia obtusifolia cells in suspension to evaluate the effect of nitrate deficiency on the growth and production of chlorogenic acid (CGA), a secondary metabolite with hypoglycemic and hypolipidemic activity that acts directly on type 2 diabetes mellitus. Using cell cultures in suspension, a kinetics time course was established with six time points and four total nitrate concentrations. The metabolites of interest were quantified by high-performance liquid chromatography (HPLC), and the metabolome was analyzed using directed and nondirected approaches. Finally, using RNA-seq methodology, the first transcript collection for C. obtusifolia was generated. HPLC analysis detected CGA at all sampling points, while metabolomic analysis confirmed the identity of CGA and of precursors involved in its biosynthesis. Transcriptome analysis identified differentially expressed genes and enzymes involved in the biosynthetic pathway of CGA. C. obtusifolia probably expresses a key enzyme with bifunctional activity, the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HQT/HCT), which recognizes shikimic acid or quinic acid as a substrate and incorporates either into one of the two routes responsible for CGA biosynthesis.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Pilar Nicasio-Torres
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur (CIBIS), Xochitepec 62790, Morelos, Mexico;
| | - Juan Luis Monribot-Villanueva
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - José Antonio Guerrero-Analco
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
- Correspondence: ; Tel.: +52-(228)-842-1823
| |
Collapse
|
10
|
Matvieieva NA, Morgun BV, Lakhneko OR, Duplij VP, Shakhovsky AM, Ratushnyak YI, Sidorenko M, Mickevicius S, Yevtushenko DP. Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:177-183. [PMID: 32422534 DOI: 10.1016/j.plaphy.2020.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Plants belonging to the genus Artemisia L. have been used for medicinal purposes since ancient times. These aromatic plants produce and accumulate a wide range of potent secondary metabolites, many of which have shown antioxidant, antiparasitic, antimicrobial, anti-inflammatory, and even anticancer activities. Enhanced biosynthesis of these compounds is a prerequisite for comprehensive studies of their therapeutic properties and cost-efficient use. Transformation of plants with Agrobacterium rhizogenes native root locus (rol) genes is a promising approach to increase the biosynthesis of plant secondary metabolites. The aim of the present study was to evaluate the effects of A. rhizogenes-mediated transformation on the flavonoid contents in hairy roots of medicinal herb A. tilesii Ledeb. Transgenic A. tilesii hairy root lines were analyzed for stable integration of the rolB and rolC transgenes into the plant genome, total flavonoid contents, antioxidant activities of extracts, and the spatiotemporal expression of two flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL) and chalcone synthase (CHS). The flavonoid contents of A. tilesii directly correlated with the antiradical activity and reducing power of their respective lines, with the greatest antioxidant activity found in the plants with the highest level of total flavonoids. Furthermore, all hairy root lines demonstrated altered expression of plant native PAL and CHS genes. Most importantly, A. rhizogenes-mediated transformation enhanced the biosynthesis of natural antioxidants in A. tilesii, producing almost twice the amount of flavonoids than controls. These findings provide an opportunity for the identification of the bioactive molecules in A. tilesii extracts and their potential health benefits.
Collapse
Affiliation(s)
- Nadiia A Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Bogdan V Morgun
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Olha R Lakhneko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Volodymyr P Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Anatolij M Shakhovsky
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Yakiv I Ratushnyak
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | | | | | - Dmytro P Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
11
|
Li L, Liu M, Shi K, Yu Z, Zhou Y, Fan R, Shi Q. Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in Eucommia ulmoides. Int J Mol Sci 2019; 20:E4030. [PMID: 31426587 PMCID: PMC6721751 DOI: 10.3390/ijms20164030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/02/2022] Open
Abstract
Eucommia ulmoides Oliver is widely distributed in China. This species has been used mainly in medicine due to the high concentration of chlorogenic acid (CGA), flavonoids, lignans, and other compounds in the leaves and barks. However, the categories of metabolites, dynamic changes in metabolite accumulation and overall molecular mechanisms involved in metabolite biosynthesis during E. ulmoides leaf growth and development remain unknown. Here, a total of 515 analytes, including 127 flavonoids, 46 organic acids, 44 amino acid derivatives, 9 phenolamides, and 16 vitamins, were identified from four E. ulmoides samples using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) (for widely targeted metabolites). The accumulation of most flavonoids peaked in growing leaves, followed by old leaves. UPLC-MS analysis indicated that CGA accumulation increased steadily to a high concentration during leaf growth and development, and rutin showed a high accumulation level in leaf buds and growing leaves. Based on single-molecule long-read sequencing technology, 69,020 transcripts and 2880 novel loci were identified in E. ulmoides. Expression analysis indicated that isoforms in the flavonoid biosynthetic pathway and flavonoid metabolic pathway were highly expressed in growing leaves and old leaves. Co-expression network analysis suggested a potential direct link between the flavonoid and phenylpropanoid biosynthetic pathways via the regulation of transcription factors, including MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic/helix-loop-helix). Our study predicts dynamic metabolic models during leaf growth and development and will support further molecular biological studies of metabolite biosynthesis in E. ulmoides. In addition, our results significantly improve the annotation of the E. ulmoides genome.
Collapse
Affiliation(s)
- Long Li
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Minhao Liu
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Kan Shi
- Northwest Agriculture and Forestry University, College of Enology, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Zhijing Yu
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Ying Zhou
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Ruishen Fan
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- Northwest Agriculture and Forestry University, College of Landscape Architecture and Arts, Taicheng Road No. 3, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Alrifai O, Hao X, Marcone MF, Tsao R. Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6075-6090. [PMID: 31021630 DOI: 10.1021/acs.jafc.9b00819] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light-emitting diode (LED) lights have recently been applied in controlled environment agriculture toward growing vegetables of various assortments, including microgreens. Spectral qualities of LED light on photosynthesis in microgreens are currently being studied for their ease of spectral optimization and high photosynthetic efficiency. This review aims to summarize the most recent discoveries and advances in specific phytochemical biosyntheses modulated by LED and other conventional lighting, to identify research gaps, and to provide future perspectives in this emerging multidisciplinary field of research and development. Specific emphasis was made on the effect of light spectral qualities on the biosynthesis of phenolics, carotenoids, and glucosinolates, as these phytochemicals are known for their antioxidant, anti-inflammatory effects, and many health benefits. Future perspectives on enhancing biosynthesis of these bioactives using the rapidly progressing LED light technology are further discussed.
Collapse
Affiliation(s)
- Oday Alrifai
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Xiuming Hao
- Harrow Research & Development Center , Agriculture and Agri-Food Canada , 2585 County Road 20 , Harrow , Ontario N0R 1G0 , Canada
| | - Massimo F Marcone
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
13
|
Ma RF, Liu QZ, Xiao Y, Zhang L, Li Q, Yin J, Chen WS. The phenylalanine ammonia-lyase gene family in Isatis indigotica Fort.: molecular cloning, characterization, and expression analysis. Chin J Nat Med 2016; 14:801-812. [PMID: 27914524 PMCID: PMC7129711 DOI: 10.1016/s1875-5364(16)30097-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/28/2022]
Abstract
Phenolic compounds, metabolites of the phenylpropanoid pathway, play an important role in the growth and environmental adaptation of many plants. Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenylpropanoid pathway. The present study was designed to investigate whether there is a multi-gene family in I. Indigotic and, if so, to characterize their properties. We conducted a comprehensive survey on the transcription profiling database by using tBLASTn analysis. Several bioinformatics methods were employed to perform the prediction of composition and physicochemical characters. The expression levels of IiPAL genes in various tissues of I. indigotica with stress treatment were examined by quantitative real-time PCR. Protoplast transient transformation was used to observe the locations of IiPALs. IiPALs were functionally characterized by expression with pET-32a vector in Escherichia colis strain BL21 (DE3). Integration of transcripts and metabolite accumulations was used to reveal the relation between IiPALs and target compounds. An new gene (IiPAL2) was identified and both IiPALs had the conserved enzymatic active site Ala-Ser-Gly and were classified as members of dicotyledon. IiPAL1 and IiPAL2 were expressed in roots, stems, leaves, and flowers, with the highest expression levels of IiPAL1 and IiPAL2 being observed in stems and roots, respectively. The two genes responded to the exogenous elicitor in different manners. Subcellular localization experiment showed that both IiPALs were localized in the cytosol. The recombinant proteins were shown to catalyze the conversion of L-Phe to trans-cinnamic acid. Correlation analysis indicated that IiPAL1 was more close to the biosynthesis of secondary metabolites than IiPAL2. In conclusion, the present study provides a basis for the elucidation of the role of IiPALs genes in the biosynthesis of phenolic compounds, which will help further metabolic engineering to improve the accumulation of bioactive components in I. indigotica.
Collapse
Affiliation(s)
- Rui-Fang Ma
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian-Zi Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Ying Xiao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qing Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
14
|
Shibasaki-Kitakawa N, Iizuka Y, Takahashi A, Yonemoto T. A kinetic model for flavonoid production in tea cell culture. Bioprocess Biosyst Eng 2016; 40:211-219. [PMID: 27699481 DOI: 10.1007/s00449-016-1688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
As one of the strategies for efficient production of a metabolite from cell cultures, a kinetic model is very useful tool to predict productivity under various culture conditions. In this study, we propose a kinetic model for flavonoid production in tea cell culture based on the cell life cycle and expression of PAL, the gene encoding phenylalanine ammonia-lyase (PAL)-the key enzyme in flavonoid biosynthesis. The flavonoid production rate was considered to be related to the amount of active PAL. Synthesis of PAL was modelled based on a general gene expression/translation mechanism, including the transcription of DNA encoding PAL into mRNA and the translation of PAL mRNA into the PAL protein. The transcription of DNA was assumed to be promoted at high light intensity and suppressed by a feedback regulatory mechanism at high flavonoid concentrations. In the model, mRNA and PAL were considered to self-decompose and to be lost by cell rupture. The model constants were estimated by fitting the experimental results obtained from tea cell cultures under various light intensities. The model accurately described the kinetic behaviors of dry and fresh cell concentrations, glucose concentration, cell viability, PAL specific activity, and flavonoid content under a wide range of light intensities. The model simulated flavonoid productivity per medium under various culture conditions. Therefore, this model will be useful to predict optimum culture conditions for maximum flavonoid productivity in cultured tea cells.
Collapse
Affiliation(s)
| | - Yasuhiro Iizuka
- Department of Chemical Engineering, Tohoku University, Sendai, Japan
| | - Atsushi Takahashi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | |
Collapse
|
15
|
Dilshad E, Ismail H, Haq IU, Cusido RM, Palazon J, Ramirez-Estrada K, Mirza B. Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch. BMC PLANT BIOLOGY 2016; 16:125. [PMID: 27251864 PMCID: PMC4890517 DOI: 10.1186/s12870-016-0811-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The secondary metabolites of the Artemisia genus are well known for their important therapeutic properties. This genus is one of the valuable sources of flavonoids and other polyphenols, but due to the low contents of these important metabolites, there is a need to either enhance their concentration in the original plant or seek alternative sources for them. The aim of the current study was to detect and enhance the yield of antioxidant compounds of Artemisia carvifolia Buch. HPLC analysis was performed to detect the antioxidants. With the aim of increasing flavonoid content, Rol gene transgenics of A. carvifolia were established. Two genes of the flavonoid biosynthetic pathway, phenylalanine ammonia-lyase and chalcone synthase, were studied by real time qPCR. Antioxidant potential was determined by performing different antioxidant assays. RESULTS HPLC analysis of wild-type A. carvifolia revealed the presence of flavonoids such as caffeic acid (30 μg/g DW), quercetin (10 μg/g DW), isoquercetin (400 μg/g DW) and rutin (300 μg/g DW). Compared to the untransformed plants, flavonoid levels increased 1.9-6-fold and 1.6-4-fold in rol B and rol C transgenics, respectively. RT qPCR analysis showed a variable expression of the flavonoid biosynthetic genes, including those encoding phenylalanine ammonia-lyase and chalcone synthase, which were found to be relatively more expressed in transformed than wild-type plants, thus correlating with the metabolite concentration. Methanolic extracts of transgenics showed higher antioxidant capacity, reducing power, and protection against free radical-induced DNA damage. Among the transgenic plants, those harboring rol B were slightly more active than the rol C-transformants. CONCLUSION As well as demonstrating the effectiveness of rol genes in inducing plant secondary metabolism, this study provides insight into the molecular dynamics of the flavonoid accumulation pattern, which correlated with the expression of biosynthetic genes.
Collapse
Affiliation(s)
- Erum Dilshad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan-Ul- Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rosa Maria Cusido
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Karla Ramirez-Estrada
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
16
|
Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant. Appl Biochem Biotechnol 2016; 179:1456-68. [PMID: 27085357 DOI: 10.1007/s12010-016-2077-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022]
|
17
|
Oracz J, Zyzelewicz D, Nebesny E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review. Crit Rev Food Sci Nutr 2016; 55:1176-92. [PMID: 24915346 DOI: 10.1080/10408398.2012.686934] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polyphenols form the largest group of compounds among natural antioxidants, which largely affect the overall antioxidant and anti-free radical activity of cocoa beans. The qualitative and quantitative composition of individual fractions of polyphenolic compounds, even within one species, is very diverse and depends on many factors, mainly on the area of cocoa trees cultivation, bean maturity, climatic conditions during growth, and the harvest season and storage time after harvest. Thermal processing of cocoa beans and cocoa derivative products at relatively high temperatures may in addition to favorable physicochemical, microbiological, and organoleptic changes result in a decrease of polyphenols concentration. Technological processing of cocoa beans negatively affects the content of polyphenolic compounds.
Collapse
Affiliation(s)
- Joanna Oracz
- a Faculty of Biotechnology and Food Sciences , Lodz University of Technology , Lodz , Poland
| | | | | |
Collapse
|
18
|
Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, Navarre DA. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT-silenced lines. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:551-64. [PMID: 25421386 DOI: 10.1111/pbi.12280] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 05/22/2023]
Abstract
Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT. Transient expression of the potato MYB transcription factor StAN1 (anthocyanin 1) in tobacco increased CGA. RNAi suppression of HQT resulted in over a 90% reduction in CGA and resulted in early flowering. The reduction in total phenolics and antioxidant capacity was less than the reduction in CGA, suggesting flux was rerouted into other phenylpropanoids. Network analysis showed distinct patterns in different organs, with anthocyanins and phenolic acids showing negative correlations in leaves and flowers and positive in tubers. Some flavonols increased in flowers, but not in leaves or tubers. Anthocyanins increased in flowers and showed a trend to increase in leaves, but not tubers. HQT suppression increased biosynthesis of caffeoyl polyamines, some of which are not previously reported in potato. Decreased PAL expression and enzyme activity was observed in HQT suppressed lines, suggesting the existence of a regulatory loop between CGA and PAL. Electrophysiology detected no effect of CGA suppression on potato psyllid feeding. Collectively, this research showed that CGA in potatoes is synthesized through HQT and HQT suppression altered phenotype and redirected phenylpropanoid flux.
Collapse
Affiliation(s)
- Raja S Payyavula
- Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Lännenpää M. Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. PLANT CELL REPORTS 2014; 33:1377-88. [PMID: 24792422 DOI: 10.1007/s00299-014-1623-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/23/2014] [Accepted: 04/16/2014] [Indexed: 05/09/2023]
Abstract
Overexpression of Arabidopsis AtMYB12 transcription factor greatly increases the total phenolic and flavonol content in transgenic kale leaves. Flavonoids are a diverse group of plant secondary metabolites exhibiting a number of health-promoting effects. There has been a growing interest to develop biotechnological methods for the enhanced production of flavonoids in crop plants. AtMYB12 is an Arabidopsis transcription factor which specifically activates flavonol synthesis and its overexpression has led to increased flavonol accumulation in several transgenic plants. In the present study, AtMYB12 was overexpressed in a commercial cultivar of kale and the transgenic plants were tested both in in vitro and in semi-field conditions in cages under natural light. Using this method, a severalfold increase in both total phenolics content and flavonol accumulation was achieved. This study provides a reliable and efficient transformation protocol for kale and suggests the potential of this flavonol-enriched vegetable for the production of kaempferol.
Collapse
Affiliation(s)
- Mika Lännenpää
- BioCarelia Research Laboratory, Juurikantie 45, 82580, Juurikka, Finland,
| |
Collapse
|
20
|
Thwe AA, Kim YB, Li X, Seo JM, Kim SJ, Suzuki T, Chung SO, Park SU. Effects of light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4839-45. [PMID: 24793050 DOI: 10.1021/jf501335q] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Buckwheat sprouts are a popular food item in many countries. The effects of light-emitting diodes (LEDs) on sprout growth and development, changes in mRNA transcription, and accumulation of phenylpropanoid compounds were studied in tartary buckwheat 'Hokkai T8' sprouts. The highest transcript levels were observed after 2 days of LED exposure for all genes, especially FtPAL and FtF3'H, which showed higher expression in sprouts grown under blue and white light than in those grown under red light. Catechin content in sprouts grown under red light increased dramatically throughout the 10 day time course. Maximum rutin content (43.37 mg/g dry weight (DW)) was observed in sprouts at 4 days after exposure (DAE) to blue light. Similarly, the highest cyanidin 3-O-rutinoside content (0.85 mg/g DW) was detected at 10 DAE to blue light. On the basis of these results, blue LED light is recommended as a light source for enhancing the content of phenolic compounds in tartary buckwheat sprouts.
Collapse
Affiliation(s)
- Aye Aye Thwe
- Department of Crop Science, Chungnam National University , Daejeon 305-754, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Carvalho SM, Vasconcelos MW. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Gupta N, Sharma SK, Rana JC, Chauhan RS. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2117-2123. [PMID: 21872967 DOI: 10.1016/j.jplph.2011.06.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/25/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Buckwheat is one of the field crops with the highest concentration of rutin, an important flavonoid of medicinal value. Two species of buckwheat, Fagopyrum esculentum and Fagopyrum tataricum, are the major sources of rutin. Seeds of latter contain 40-50× higher rutin compared to the former. The physiological and molecular bases of rutin content variation between Fagopyrum species are not known. The current study investigated the differences in rutin content in seeds and in other tissues and growth stages of two Fagopyrum species, and also correlated those differences with the expression of flavonoid pathway genes. The analysis of rutin content dynamics at different growth stages, S1-S9 (from seed germination to mature seed formation) of Fagopyrum species revealed that rutin content was higher during seedling stages of F. tataricum (3.5 to 4.6-fold) compared to F. esculentum and then increased exponentially from stages S3 to S6 (different leaf maturing stages and inflorescence) of F. esculentum, whereas it fluctuated in F. tataricum. The rutin content was highest in the inflorescence stage (S6) of both species, with a relatively higher biosynthesis and accumulation during post-flowering stages of F. tataricum compared to F. esculentum. The expression of flavonoid pathway genes, through qRT-PCR, in different growth stages vis-à-vis rutin content variation showed differential expression for four genes, PAL, CHS, CHI and FLS with the amounts of transcripts relatively higher in F. tataricum compared to F. esculentum, thereby, correlating these genes with the biosynthesis and accumulation of rutin. The expression of PAL was highest, 7.69 and 8.96-fold in Stages 2 (seedling stage) and 9 (fully developed seeds) of F. tataricum compared to F. esculentum, respectively. The expression of the CHS gene correlated with the rutin content because it was highest in the flowers (S6) and fully developed seeds (S9) of both Fagopyrum species, with relatively higher transcript amounts (2.13 and 3.19-fold, respectively) in F. tataricum (IC-329457) compared to F. esculentum (IC-540858). This study provides useful information on molecular and physiological dynamics of rutin biosynthesis and accumulation in Fagopyrum species and the correlation of expression of flavonoid biosynthesis genes with the rutin content can be useful in planning for genetic improvement.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, HP, India
| | | | | | | |
Collapse
|
23
|
Yousefzadi M, Sharifi M, Behmanesh M, Moyano E, Bonfill M, Cusido RM, Palazon J. Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Eng Life Sci 2010. [DOI: 10.1002/elsc.201000027] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
24
|
Ceccarelli N, Curadi M, Picciarelli P, Martelloni L, Sbrana C, Giovannetti M. Globe artichoke as a functional food. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2010. [DOI: 10.1007/s12349-010-0021-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|