1
|
Wu C, Zhang J, Chen M, Liu J, Tang Y. Characterization of a Nicotiana tabacum phytochelatin synthase 1 and its response to cadmium stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1418762. [PMID: 39280946 PMCID: PMC11393743 DOI: 10.3389/fpls.2024.1418762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Phytochelatin synthase (PCS) is a critical enzyme involved in heavy metal detoxification in organisms. In this study, we aim to comprehensively investigate the molecular and functional characteristics of the PCS1 gene from Nicotiana tabacum by examining its enzymatic activity, tissue-specific expression pattern, Cd-induced expression, as well as the impact on Cd tolerance and accumulation. The results demonstrated that the amino acid sequence of NtPCS1 shared a high similarity in its N-terminal region with PCS from other species. The enzymatic activity of NtPCS1 was found to be enhanced in the order Ag2+ > Cd2+ > Cu2+ > Pb2+ > Hg2+ > Fe2+ > Zn2+. In addition, RT-PCR data indicated that NtPCS1 gene is constitutively expressed, with the highest expression observed in flowers, and that its transcript levels are up-regulated by CdCl2. When tobacco overexpressing NtPCS1 (PCS1 lines) were grown under CdCl2 stress, they produced more phytochelatins (PCs) than WT plants, but this did not result in increased Cd accumulation. However, in a root growth assay, the PCS1 lines exhibited hypersensitivity to Cd. The overexpression of NtPCS1 itself does not appear to be the primary cause of this heightened sensitivity to Cd, as the Arabidopsis thaliana Atpcs1 mutant overexpressing NtPCS1 actually exhibited enhanced tolerance to Cd. Furthermore, the addition of exogenous glutathione (GSH) progressively reduced the Cd hypersensitivity of the PCS1 lines, with the hypersensitivity even being completely eliminated. Surprisingly, the application of exogenous GSH led to a remarkably enhanced Cd accumulation in the PCS1 lines. This study enriches our understanding of the molecular function of the NtPCS1 gene and suggests a promising avenue for Cd tolerance through the heterologous expression of PCS genes in different species.
Collapse
Affiliation(s)
- Chanjuan Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jie Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Mei Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jikai Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
2
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
3
|
Deng S, Zhang X, Zhu Y, Zhuo R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 2024; 72:108337. [PMID: 38460740 DOI: 10.1016/j.biotechadv.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.
Collapse
Affiliation(s)
- Shaoxiong Deng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
4
|
Gui Y, Teo J, Tian D, Yin Z. Genetic engineering low-arsenic and low-cadmium rice grain. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2143-2155. [PMID: 38085003 DOI: 10.1093/jxb/erad495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 03/28/2024]
Abstract
Rice is prone to take up the toxic elements arsenic (As) and cadmium (Cd) from paddy soil through the transporters for other essential elements. Disruption of these essential transporters usually adversely affects the normal growth of rice and the homeostasis of essential elements. Here we report on developing low-As and low-Cd rice grain through the co-overexpression of OsPCS1, OsABCC1, and OsHMA3 genes under the control of the rice OsActin1 promoter. Co-overexpression of OsPCS1 and OsABCC1 synergistically decreased As concentration in the grain. Overexpression of OsPCS1 also decreased Cd concentration in the grain by restricting the xylem-to-phloem Cd transport in node I, but paradoxically caused Cd hypersensitivity as the overproduced phytochelatins in OsPCS1-overexpressing plants suppressed OsHMA3-dependent Cd sequestration in vacuoles and promoted Cd transport from root to shoot. Co-overexpression of OsHAM3 and OsPCS1 overcame this suppression and complemented the Cd hypersensitivity. Compared with non-transgenic rice control, co-overexpression of OsABCC1, OsPCS1, and OsHMA3 in rice decreased As and Cd concentrations in grain by 92.1% and 98%, respectively, without causing any defect in plant growth and reproduction or of mineral nutrients in grain. Our research provides an effective approach and useful genetic materials for developing low-As and low-Cd rice grain.
Collapse
Affiliation(s)
- Yuejing Gui
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Joanne Teo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Dongsheng Tian
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Zhongchao Yin
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
- Department of Biological Sciences, 14 Science Drive, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
5
|
Zhao X, Guo S, Xu C, Li S, Chen Y, Cheng J, Wang Q, Jiang S, Hu A, Li J. Aluminum decreases cadmium accumulation by down-regulating the expression of cadmium-related genes in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108144. [PMID: 39491269 DOI: 10.1016/j.plaphy.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Aluminum (Al) and cadmium (Cd) often coexist in the acidic soils of southern China, but their interactive effects remain unclear. In this study, this was examined in Al-resistant (Atlas 66) and Al-sensitive (Scout 66) wheat cultivars. The results showed that Al significantly alleviated the root growth of Al-tolerant Atlas 66 under Cd stress but had no effect on the root growth of Al-sensitive Scout 66 or the shoot growth of both cultivars. However, Al substantially decreased Cd accumulation in the roots and shoots of Atlas 66 and Scout 66. This could be attributed to the decreased uptake of Cd by the roots rather than the changes in Cd distribution in various organs or the Cd binding and adsorption of the cell wall. Using non-invasive micro-test technology, we further confirmed that Al and Cd co-exposure significantly inhibited the net Cd2+ influx into the roots of Atlas 66 and Scout 66 compared to Cd-only stress. Furthermore, the higher Cd2+ influx into roots should be responsible for the high Cd accumulation in the roots and shoots of Atlas66 than in those of Scout66 under Al and Cd co-exposure, which may be due to the higher Al accumulation in the roots of Al-sensitive Scout 66 that resulted in the larger decrease of negative charges on root surfaces. Finally, the effects of Al on the expression of Cd-related genes responsible for Cd uptake and translocation in wheat roots were investigated. The results have suggested that Al significantly downregulated the expression of TaNramp5 in Atlas 66 and the expression of TaNramp5, TaIRT1 and TaHMA2 in Scout66.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Shiyang Guo
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Chen Xu
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Suyao Li
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Yunjin Chen
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Jianying Cheng
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Qian Wang
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Shumiao Jiang
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Anyong Hu
- School of Geographical Science, Nantong University, Nantong, 226019, China.
| | - Jinbiao Li
- School of Geographical Science, Nantong University, Nantong, 226019, China.
| |
Collapse
|
6
|
Sun C, Gao L, Xu L, Zheng Q, Sun S, Liu X, Zhang Z, Tian Z, Dai T, Sun J. Melatonin alleviates chromium toxicity by altering chromium subcellular distribution and enhancing antioxidant metabolism in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50743-50758. [PMID: 36797388 DOI: 10.1007/s11356-023-25903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
The endogenous stimulating molecule melatonin (N-acetyl-5-methoxytryptamine, MT) has an important function in mitigating the impact of multiple abiotic stressors. However, the ameliorating effect of MT on chromium (Cr) stress and its mechanisms remains unclear. Therefore, the present study aimed to clarify the mitigating effect of exogenous MT (0 μM and 100 μM) on wheat seedlings under Cr (0 μM and 50 μM) stress stemming from the growth and physiological characteristics, phytochelatin (PC) biosynthesis, Cr subcellular distribution, and antioxidant system of the plants in these treatments. The results showed that endogenous MT application significantly promoted plant growth and improved root morphology of wheat seedlings under Cr stress due to decreased Cr and reactive oxygen species (ROS) accumulation in both roots and leaves. Accumulation and transport of Cr from roots to leaves were reduced by MT, because enhanced vacuolar sequestration via upregulated PC accumulation, took place, derived from the fact that MT upregulated the expression of key genes for PC synthesis (TaPCS and Taγ-ECS). Furthermore, MT pre-treatment alleviated Cr-induced oxidative damage by diminishing lipid peroxidation and cell apoptosis, profiting from the enhanced scavenging ability of ROS as a result of the MT-induced increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the related encoding gene expression levels of TaSOD2, TaCAT, TaAPX, and TaGR. In conclusion, endogenous MT application improved the growth traits, antioxidant system, and decreased Cr accumulation especially at the leaf level in wheat seedlings under Cr stress mainly through enhancing antioxidant enzyme activities and altering Cr subcellular distribution via strengthening PC biosynthesis. The mechanisms of MT-induced plant tolerance to Cr stress could help develop new strategies for secure crop production in Cr-polluted soils.
Collapse
Affiliation(s)
- Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Lijun Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Libin Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shuzhen Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xiaoxue Liu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zigang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jianyun Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
7
|
Physio-Biochemical and Transcriptomic Features of Arbuscular Mycorrhizal Fungi Relieving Cadmium Stress in Wheat. Antioxidants (Basel) 2022; 11:antiox11122390. [PMID: 36552597 PMCID: PMC9774571 DOI: 10.3390/antiox11122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can improve plant cadmium (Cd) tolerance, but the tolerance mechanism in wheat is not fully understood. This study aimed to examine the physiological properties and transcriptome changes in wheat inoculated with or without Glomus mosseae (GM) under Cd stress (0, 5, and 10 mg·kg-1 CdCl2) to understand its role in wheat Cd tolerance. The results showed that the Cd content in shoots decreased while the Cd accumulation in roots increased under AMF symbiosis compared to the non-inoculation group and that AMF significantly promoted the growth of wheat seedlings and reduced Cd-induced oxidative damage. This alleviative effect of AMF on wheat under Cd stress was mainly attributed to the fact that AMF accelerated the ascorbate-glutathione (AsA-GSH) cycle, promoted the production of GSH and metallothionein (MTs), improved the degradation of methylglyoxal (MG), and induced GRSP (glomalin-related soil protein) secretion. Furthermore, a comparative analysis of the transcriptomes of the symbiotic group and the non-symbiotic group revealed multiple differentially expressed genes (DEGs) in the 'metal ion transport', 'glutathione metabolism', 'cysteine and methionine metabolism', and 'plant hormone signal transduction' terms. The expression changes of these DEGs were basically consistent with the changes in physio-biochemical characteristics. Overall, AMF alleviated Cd stress in wheat mainly by promoting immobilization and sequestration of Cd, reducing ROS production and accelerating their scavenging, in which the rapid metabolism of GSH may play an important role.
Collapse
|
8
|
Díaz S, Aguilera Á, de Figueras CG, de Francisco P, Olsson S, Puente-Sánchez F, González-Pastor JE. Heterologous Expression of the Phytochelatin Synthase CaPCS2 from Chlamydomonas acidophila and Its Effect on Different Stress Factors in Escherichia coli. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137692. [PMID: 35805349 PMCID: PMC9265389 DOI: 10.3390/ijerph19137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Phytochelatins (PCs) are cysteine-rich small peptides, enzymatically synthesized from reduced glutathione (GSH) by cytosolic enzyme phytochelatin synthase (PCS). The open reading frame (ORF) of the phytochelatin synthase CaPCS2 gene from the microalgae Chlamydomonas acidophila was heterologously expressed in Escherichia coli strain DH5α, to analyze its role in protection against various abiotic agents that cause cellular stress. The transformed E. coli strain showed increased tolerance to exposure to different heavy metals (HMs) and arsenic (As), as well as to acidic pH and exposure to UVB, salt, or perchlorate. In addition to metal detoxification activity, new functions have also been reported for PCS and PCs. According to the results obtained in this work, the heterologous expression of CaPCS2 in E. coli provides protection against oxidative stress produced by metals and exposure to different ROS-inducing agents. However, the function of this PCS is not related to HM bioaccumulation.
Collapse
Affiliation(s)
- Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C. José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Correspondence:
| | - Ángeles Aguilera
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Carolina G. de Figueras
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Patricia de Francisco
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, Forest Research Centre (INIA, CSIC), Carretera de La Coruña, km 7.5, 28040 Madrid, Spain;
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 756 51 Uppsala, Sweden;
| | - José Eduardo González-Pastor
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| |
Collapse
|
9
|
Hu J, Chen G, Xu K, Wang J. Cadmium in Cereal Crops: Uptake and Transport Mechanisms and Minimizing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5961-5974. [PMID: 35576456 DOI: 10.1021/acs.jafc.1c07896] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) contamination in soils and accumulation in cereal grains have posed food security risks and serious health concerns worldwide. Understanding the Cd transport process and its management for minimizing Cd accumulation in cereals may help to improve crop growth and grain quality. In this review, we summarize Cd uptake, translocation, and accumulation mechanisms in cereal crops and discuss efficient measures to reduce Cd uptake as well as potential remediation strategies, including the applications of plant growth regulators, microbes, nanoparticles, and cropping systems and developing low-Cd grain cultivars by CRISPR/Cas9. In addition, miRNAs modulate Cd translocation, and accumulation in crops through the regulation of their target genes was revealed. Combined use of multiple remediation methods may successfully decrease Cd concentrations in cereals. The findings in this review provide some insights into innovative and applicable approaches for reducing Cd accumulation in cereal grains and sustainable management of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, and Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| |
Collapse
|
10
|
Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells 2022; 11:cells11030569. [PMID: 35159378 PMCID: PMC8834125 DOI: 10.3390/cells11030569] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops, feeding half of the world’s population. However, rice production is affected by cadmium (Cd) toxicity. Due to an increase in Cd-contaminated soil and rice grains, and the serious harm to human health from Cd, research on Cd uptake, transport and resistance in rice has been widely conducted, and many important advances have been made. Rice plants absorb Cd mainly from soil through roots, which is mediated by Cd absorption-related transporters, including OsNramp5, OsNramp1, OsCd1, OsZIP3, OsHIR1, OsIRT1 and OsIRT2. Cd uptake is affected by soil’s environmental factors, such as the concentrations of Cd and some other ions in soil, soil properties, and other factors can affect the bioavailability of Cd in soil. Then, Cd is transported within rice plants mediated by OsZIP6, OsZIP7, OsLCD, OsHMA2, CAL1, OsCCX2, OsLCT1 and OsMTP1, from roots to shoots and from shoots to grains. To resist Cd toxicity, rice has evolved many resistance strategies, including the deposition of Cd in cell walls, vacuolar Cd sequestration, Cd chelation, antioxidation and Cd efflux. In addition, some unresolved scientific questions surrounding Cd uptake, transport and resistance in rice are proposed for further study.
Collapse
|
11
|
Zhu T, Liu X, Zhang M, Chen M. Mechanism of cadmium tolerance in Salicornia europaea at optimum levels of NaCl. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:41-51. [PMID: 34748692 DOI: 10.1111/plb.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Many saline-alkali soils around the world are polluted by the heavy metal Cd, restricting the development of agriculture and ecology in those regions. The halophyte Salicornia europaea L. is capable of growing healthily in Cd-contaminated saline-alkali soil, suggesting that the species is tolerant to stress caused by both salt and heavy metals. In this study, the mechanism of Cd tolerance in this species was explored under 200 mM NaCl. Flame spectrophotometric assays for ions content and spectrophotometric for organic soluble substances, antioxidant enzyme activity, phytochelatins (PCs) content and phytochelatin synthase (PCS) activity, the photosynthetic parameters by portable photosynthesis measurement system, genes expression by qRT-PCR analysis were carried out. Cd treatment significantly decreased the dry weight, photosynthetic rate, K+ , Zn2+ , and Fe2+/3+ content, while significantly increasing Na+ and Cd+ , soluble organic matter, and reactive oxygen species (ROS) levels. Compared with Cd treatment at 0 mM NaCl, Cd treatment at 200 mM NaCl significantly increased dry weight and photosynthetic rate while significantly decreasing ROS content through increased antioxidant enzyme activity. When exposed to Cd stress, treatment with 200 mM NaCl significantly increased PCs content and PCS activity and up-regulated the expression of the phytochelatin synthase genes CDA1 and PCS1 were, thereby increasing resistance to Cd. NaCl treatment increases the tolerance of S. europaea to the heavy metal Cd by growing rapidly, reducing the quantity of Cd2+ from entering the plant shoots, increasing the levels of PCs that chelate Cd2+ , thereby reducing its toxicity.
Collapse
Affiliation(s)
- T Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| | - X Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| | - M Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| | - M Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| |
Collapse
|
12
|
Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2021; 12:43. [PMID: 35053191 PMCID: PMC8774178 DOI: 10.3390/biom12010043] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Heavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism. Particularly, inhibition of photosynthesis has been reported under HM toxicity because HMs trigger the degradation of chlorophyll molecules by enhancing the chlorophyllase activity and by replacing the central Mg ion in the porphyrin ring which affects overall plant growth and yield. Consequently, plants utilize various strategies to mitigate the negative impact of HM toxicity by limiting the uptake of these HMs and their sequestration into the vacuoles with the help of various molecules including proteins such as phytochelatins, metallothionein, compatible solutes, and secondary metabolites. In this comprehensive review, we provided insights towards a wider aspect of HM toxicity, ranging from their negative impact on plant growth to the mechanisms employed by the plants to alleviate the HM toxicity and presented the molecular mechanism of HMs toxicity and sequestration in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Science, Plant Protection Institute, Szent István University, 2100 Godollo, Hungary;
| | - Bushra Ejaz
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - M. Iqbal R. Khan
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University, Seoul 10326, Korea;
| | - Pramod W. Ramteke
- Department of Life Sciences, Mandsaur University, Mandsaur 458001, India;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
13
|
Yuvaraj A, Thangaraj R, Karmegam N, Ravindran B, Chang SW, Awasthi MK, Kannan S. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. CHEMOSPHERE 2021; 278:130458. [PMID: 34126688 DOI: 10.1016/j.chemosphere.2021.130458] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The industrial revolution and indiscriminate usage of a wide spectrum of agrochemicals account for the dumping of heavy metals in the environment. In-situ/ex-situ physical, chemical, and bioremediation strategies with pros and cons have been adopted for recovering metal contaminated soils and water. Therefore, there is an urgent requirement for a cost-effective and environment-friendly technique to combat metal pollution. Biochar combined with earthworms and vermifiltration is a suitable emerging technique for the remediation of metal-polluted soils and water. The chemical substances (e.g., sodium hydroxide, zinc chloride, potassium hydroxide, and phosphoric acid) have been used to activate biochar, which also faces several shortcomings. Studies reveal that extracellular enzymes have been used to activate biochar which is produced by earthworms and microbes that can alter the surface of the biochar. The present review focuses on the global scenario of metal pollution and its remediation through biochar activation using earthworms. The earthworms and biochar can produce "vermibiochar" which is capable of reducing the metal ions from contaminated water and soils. The vermifiltration can be a suitable technology for metal removal from wastewater/effluent. Thus, the biochar has a trick of producing entirely new options at a time when vermifiltration and other technologies are least expected. Further attention to the biochar-assisted vermifiltration of different sources of wastewater is required to be explored for the large-scale utilization of the process.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
14
|
Zha YQ, Zhang KK, Pan F, Liu X, Han SM, Guan P. Cloning of PCS gene (TpPCS1) from Tagetes patula L. and expression analysis under cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:508-516. [PMID: 33131169 DOI: 10.1111/plb.13207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Phytochelatins (PCs) constitute an important mechanism for plants to resist heavy metal stress. Widely found in higher plants, they are small heavy metal binding peptides, synthesized through catalysis of phytochelatin synthase (PCS). We speculate that there may be PCS genes in Peacock grass (Tagetes patula L., Asteraceae), which is an important reason for its rich cadmium. In order to obtain the full-length cDNA sequence of the PCS gene from T. patula L. used rapid amplification of cDNA ends (RACE). Meanwhile, Relative expression of TpPCS1 under different concentrations of cadmium (Cd) stress was analysed using quantitative real-time polymerase chain reaction (qRT-PCR). Results found ORF of TpPCS1 genes with a length of 1970 bp, a gene coding area length of 1764 bp, coding for 587 amino acids. Expression of TpPCS1 under Cd stress was tissue specific. TpPCS1 in the root showed higher expression, while expression in the leaf and seed was relatively low. This research demonstrates that expression of TpPCS1 enhanced the enrichment of cadmium in T. patula L. roots and could be used to construct a plant hyperexpression carrier that would provide new avenues for plant restoration technology.
Collapse
Affiliation(s)
- Y Q Zha
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - K K Zhang
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - F Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - X Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - S M Han
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - P Guan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Rai KK, Pandey N, Meena RP, Rai SP. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111750. [PMID: 33396075 DOI: 10.1016/j.ecoenv.2020.111750] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/15/2023]
Abstract
Contamination of agricultural land and water by heavy metals due to rapid industrialization and urbanization including various natural processes have become one of the major constraints to crop growth and productivity. Several studies have reported that to counteract heavy metal stress, plants should be able to maneuver various physiological, biochemical and molecular processes to improve their growth and development under heavy metal stress. With the advent of modern biotechnological tools and techniques it is now possible to tailor legume and other plants overexpressing stress-induced genes, transcription factors, proteins, and metabolites that are directly involved in heavy metal stress tolerance. This review provides an in-depth overview of various biotechnological approaches and/or strategies that can be used for enhancing detoxification of the heavy metals by stimulating phytoremediation processes. Synthetic biology tools involved in the engineering of legume and other crop plants against heavy metal stress tolerance are also discussed herewith some pioneering examples where synthetic biology tools that have been used to modify plants for specific traits. Also, CRISPR based genetic engineering of plants, including their role in modulating the expression of several genes/ transcription factors in the improvement of abiotic stress tolerance and phytoremediation ability using knockdown and knockout strategies has also been critically discussed.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Neha Pandey
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Botany, CMP PG College, University of Allahabad, Prayagraj, India
| | - Ram Prasad Meena
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Computer Science, IIT, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
16
|
Hu P, Zheng Q, Luo Q, Teng W, Li H, Li B, Li Z. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC PLANT BIOLOGY 2021; 21:27. [PMID: 33413113 PMCID: PMC7792188 DOI: 10.1186/s12870-020-02799-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/16/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Soil salinization is a major threat to wheat production. It is essential to understand the genetic basis of salt tolerance for breeding and selecting new salt-tolerant cultivars that have the potential to increase wheat yield. RESULT In this study, a panel of 191 wheat accessions was subjected to genome wide association study (GWAS) to identify SNP markers linked with adult-stage characters. The population was genotyped by Wheat660K SNP array and eight phenotype traits were investigated under low and high salinity environments for three consecutive years. A total of 389 SNPs representing 11 QTLs were significantly associated with plant height, spike number, spike length, grain number, thousand kernels weight, yield and biological mass under different salt treatments, with the phenotypic explanation rate (R2) ranging from 9.14 to 50.45%. Of these, repetitive and pleiotropic loci on chromosomes 4A, 5A, 5B and 7A were significantly linked to yield and yield related traits such as thousand kernels weight, spike number, spike length, grain number and so on under low salinity conditions. Spike length-related loci were mainly located on chromosomes 1B, 3B, 5B and 7A under different salt treatments. Two loci on chromosome 4D and 5A were related with plant height in low and high salinity environment, respectively. Three salt-tolerant related loci were confirmed to be important in two bi-parental populations. Distribution of favorable haplotypes indicated that superior haplotypes of pleiotropic loci on group-5 chromosomes were strongly selected and had potential for increasing wheat salt tolerance. A total of 14 KASP markers were developed for nine loci associating with yield and related traits to improve the selection efficiency of wheat salt-tolerance breeding. CONCLUSION Utilizing a Wheat660K SNPs chip, QTLs for yield and its related traits were detected under salt treatment in a natural wheat population. Important salt-tolerant related loci were validated in RIL and DH populations. This study provided reliable molecular markers that could be crucial for marker-assisted selection in wheat salt tolerance breeding programs.
Collapse
Affiliation(s)
- Pan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Zhu S, Shi W, Jie Y. Overexpression of BnPCS1, a Novel Phytochelatin Synthase Gene From Ramie ( Boehmeria nivea), Enhanced Cd Tolerance, Accumulation, and Translocation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:639189. [PMID: 34211483 PMCID: PMC8239399 DOI: 10.3389/fpls.2021.639189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/21/2021] [Indexed: 05/10/2023]
Abstract
Phytochelatins (PCs) play important roles in the detoxification of and tolerance to heavy metals in plants. The synthesis of PCs is catalyzed by phytochelatin synthase (PCS), which is activated by heavy metal ions. In this study, we isolated a PCS gene, BnPCS1, from the bast fiber crop ramie (Boehmeria nivea) using the RACE (rapid amplification of cDNA ends) method. The full-length BnPCS1 cDNA is 1,949 bp in length with a 1,518 bp open reading frame (ORF) that encodes a 505 amino acid protein. The deduced BnPCS1 protein has a conserved N-terminus containing the catalytic triad Cys58, His164, Asp182, and a flexible C-terminal region containing a C371C372QETC376VKC379 motif. The BnPCS1 promoter region contains several cis-acting elements involved in phytohormone or abiotic stress responses. Subcellular localization analysis indicates that the BnPCS1-GFP protein localizes to the nucleus and the cytoplasm. Real-time PCR assays show that the expression of BnPCS1 is significantly induced by cadmium (Cd) and the plant hormone abscisic acid (ABA). Overexpression lines of BnPCS1 exhibited better root growth and fresh weight, lower level of MDA and H2O2, and higher Cd accumulation and translocation factor compared to the WT under Cd stress. Taken together, these results could provide new gene resources for phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Shoujing Zhu
- College of Life Sciences, Resources and Environment, Yichun University, Yichun, China
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun, China
- *Correspondence: Shoujing Zhu,
| | - Wenjuan Shi
- College of Life Sciences, Resources and Environment, Yichun University, Yichun, China
| | - Yucheng Jie
- Institute of Ramie, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Glutathione Restores Hg-Induced Morpho-Physiological Retardations by Inducing Phytochelatin and Oxidative Defense in Alfalfa. BIOLOGY 2020; 9:biology9110364. [PMID: 33126453 PMCID: PMC7693861 DOI: 10.3390/biology9110364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023]
Abstract
Simple Summary An ecofriendly approach to mitigate mercury (Hg) toxicity in alfalfa, one of the important forage crops, is highly desirable for environmental sustainability. In this study, the exogenous glutathione (GSH) substantially improved the morphological hindrance and photosynthesis inefficiency in Hg-exposed alfalfa plants. In addition, the Fe and S status of Cd-toxic alfalfa was restored due to GSH supplementation. Interestingly, GSH applied to Hg-exposed plants showed elevated Hg concentration in roots resulted in a substantial deposition of Hg in the root cell wall due to the upregulation of MsPCS1 and MsGSH1 genes in roots. It implies that GSH induces PC accumulation in roots enabling excess Hg bound to the cell wall, thereby limiting the transport of Hg to the aerial part of alfalfa. In silico analysis further suggests a conserved motif linked to the phytochelatin synthase domain (CL0125). In addition, GSH induced the GSH concentration and GR activity in protecting alfalfa plants from Hg-induced oxidative damage. These findings can be useful to formulate GSH-based fertilizer or to develop Hg-tolerant alfalfa plants. Abstract Mercury (Hg) is toxic to plants, but the effect of glutathione in Hg alleviation was never studied in alfalfa, an important forage crop. In this study, Hg toxicity showed morphological retardation, chlorophyll reduction, and PSII inefficiency, which was restored due to GSH supplementation in alfalfa plants treated with Hg. Results showed a significant increase of Hg, but Fe and S concentrations substantially decreased in root and shoot accompanied by the downregulation of Fe (MsIRT1) and S (MsSultr1;2 and MsSultr1;3) transporters in roots of Hg-toxic alfalfa. However, GSH caused a significant decrease of Hg in the shoot, while the root Hg level substantially increased, accompanied by the restoration of Fe and S status, relative to Hg-stressed alfalfa. The subcellular analysis showed a substantial deposition of Hg in the root cell wall accompanied by the increased GSH and PC and the upregulation of MsPCS1 and MsGSH1 genes in roots. It suggests the involvement of GSH in triggering PC accumulation, causing excess Hg bound to the cell wall of the root, thereby reducing Hg translocation in alfalfa. Bioinformatics analysis showed that the MsPCS1 protein demonstrated one common conserved motif linked to the phytochelatin synthase domain (CL0125) with MtPCS1 and AtMCS1 homologs. These in silico analysis further confirmed the detoxification role of MsPCS1 induced by GSH in Hg-toxic alfalfa. Additionally, GSH induces GSH and GR activity to counteract oxidative injuries provoked by Hg-induced H2O2 and lipid peroxidation. These findings may provide valuable knowledge to popularize GSH-derived fertilizer or to develop Hg-free alfalfa or other forage plants.
Collapse
|
19
|
Li M, Barbaro E, Bellini E, Saba A, Sanità di Toppi L, Varotto C. Ancestral function of the phytochelatin synthase C-terminal domain in inhibition of heavy metal-mediated enzyme overactivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6655-6669. [PMID: 32936292 PMCID: PMC7586750 DOI: 10.1093/jxb/eraa386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/17/2020] [Indexed: 05/03/2023]
Abstract
Phytochelatin synthases (PCSs) play essential roles in detoxification of a broad range of heavy metals in plants and other organisms. Until now, however, no PCS gene from liverworts, the earliest branch of land plants and possibly the first one to acquire a PCS with a C-terminal domain, has been characterized. In this study, we isolated and functionally characterized the first PCS gene from a liverwort, Marchantia polymorpha (MpPCS). MpPCS is constitutively expressed in all organs examined, with stronger expression in thallus midrib. The gene expression is repressed by Cd2+ and Zn2+. The ability of MpPCS to increase heavy metal resistance in yeast and to complement cad1-3 (the null mutant of the Arabidopsis ortholog AtPCS1) proves its function as the only PCS from M. polymorpha. Site-directed mutagenesis of the most conserved cysteines of the C-terminus of the enzyme further uncovered that two twin-cysteine motifs repress, to different extents, enzyme activation by heavy metal exposure. These results highlight an ancestral function of the PCS elusive C-terminus as a regulatory domain inhibiting enzyme overactivation by essential and non-essential heavy metals. The latter finding may be relevant for obtaining crops with decreased root to shoot mobility of cadmium, thus preventing its accumulation in the food chain.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Enrico Barbaro
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Erika Bellini
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Alessandro Saba
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, Pisa, Italy
| | | | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Correspondence: ,
| |
Collapse
|
20
|
Zhang H, Zhang X, Liu J, Niu Y, Chen Y, Hao Y, Zhao J, Sun L, Wang H, Xiao J, Wang X. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein ( HIPP) Gene Family from Triticeae Species. Int J Mol Sci 2020; 21:E6191. [PMID: 32867204 PMCID: PMC7504674 DOI: 10.3390/ijms21176191] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy-metal-associated (HMA) isoprenylated plant proteins (HIPPs) only exist in vascular plants. They play important roles in responses to biotic/abiotic stresses, heavy-metal homeostasis, and detoxification. However, research on the distribution, diversification, and function of HIPPs in Triticeae species is limited. In this study, a total of 278 HIPPs were identified from a database from five Triticeae species, and 13 were cloned from Haynaldia villosa. These genes were classified into five groups by phylogenetic analysis. Most HIPPs had one HMA domain, while 51 from Clade I had two, and all HIPPs had good collinear relationships between species or subgenomes. In silico expression profiling revealed that 44 of the 114 wheat HIPPs were dominantly expressed in roots, 43 were upregulated under biotic stresses, and 29 were upregulated upon drought or heat treatment. Subcellular localization analysis of the cloned HIPPs from H. villosa showed that they were expressed on the plasma membrane. HIPP1-V was upregulated in H. villosa after Cd treatment, and transgenic wheat plants overexpressing HIPP1-V showed enhanced Cd tolerance, as shown by the recovery of seed-germination and root-growth inhibition by supplementary Cd. This research provides a genome-wide overview of the Triticeae HIPP genes and proved that HIPP1-V positively regulates Cd tolerance in common wheat.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Liu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Ying Niu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yongli Hao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| |
Collapse
|
21
|
Fatiukha A, Klymiuk V, Peleg Z, Saranga Y, Cakmak I, Krugman T, Korol AB, Fahima T. Variation in phosphorus and sulfur content shapes the genetic architecture and phenotypic associations within the wheat grain ionome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:555-572. [PMID: 31571297 DOI: 10.1111/tpj.14554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 05/04/2023]
Abstract
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Zvi Peleg
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yehoshua Saranga
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Ismail Cakmak
- Faculty of Engineering & Natural Sciences, Sabanci University, Tuzla İstanbul, 34956, Turkey
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| |
Collapse
|
22
|
Park HC, Hwang JE, Jiang Y, Kim YJ, Kim SH, Nguyen XC, Kim CY, Chung WS. Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:854-861. [PMID: 30929297 PMCID: PMC6766863 DOI: 10.1111/plb.12991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals and a non-essential element to all organisms, including plants; however, the genes involved in Cd resistance in plants remain poorly characterised. To identify Cd resistance genes in rice, we screened a rice cDNA expression library treated with CdCl2 using a yeast (Saccharomyces cerevisiae) mutant ycf1 strain (DTY167) and isolated two rice phytochelatin synthases (OsPCS5 and OsPCS15). The genes were strongly induced by Cd treatment and conferred increased resistance to Cd when expressed in the ycf1 mutant strain. In addition, the Cd concentration was twofold higher in yeast expressing OsPCS5 and OsPCS15 than in vector-transformed yeast, and OsPCS5 and OsPCS15 localised in the cytoplasm. Arabidopsis thaliana plants overexpressing OsPCS5/-15 paradoxically exhibited increased sensitivity to Cd, suggesting that overexpression of OsPCS5/-15 resulted in toxicity due to excess phytochelatin production in A. thaliana. These data indicate that OsPCS5 and OsPCS15 are involved in Cd tolerance, which may be related to the relative abundances of phytochelatins synthesised by these phytochelatin synthases.
Collapse
Affiliation(s)
- H. C. Park
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - J. E. Hwang
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - Y. Jiang
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Y. J. Kim
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - S. H. Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - X. C. Nguyen
- Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - C. Y. Kim
- Biological Resource CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupRepublic of Korea
| | - W. S. Chung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
23
|
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. ENVIRONMENT INTERNATIONAL 2019; 125:365-385. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Citation(s) in RCA: 708] [Impact Index Per Article: 141.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Food security is a high-priority issue for sustainable global development both quantitatively and qualitatively. In recent decades, adverse effects of unexpected contaminants on crop quality have threatened both food security and human health. Heavy metals and metalloids (e.g., Hg, As, Pb, Cd, and Cr) can disturb human metabolomics, contributing to morbidity and even mortality. Therefore, this review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks. It also explores the possible geographical pathways of heavy metals in such subsystems. In-depth discussion is further offered on physiological/molecular translocation mechanisms involved in the uptake of metallic contaminants inside food crops. Finally, management strategies are proposed to regain sustainability in soil-food subsystems.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Filiz E, Saracoglu IA, Ozyigit II, Yalcin B. Comparative analyses of phytochelatin synthase (PCS) genes in higher plants. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1559096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Duzce, Turkey
| | | | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Istanbul, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Bahattin Yalcin
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Istanbul, Turkey
| |
Collapse
|
25
|
Abstract
Farmland cadmium (Cd) contamination has adverse impacts on both wheat grain yield and people’s well-being through food consumption. Safe farming using low-Cd cultivars has been proposed as a promising approach to address the farmland Cd pollution problem. To date, several dozen low-Cd wheat cultivars have been screened worldwide based on a Cd inhibition test, representing candidates for wheat Cd minimization. Unfortunately, the breeding of low-Cd wheat cultivars with desired traits or enhanced Cd exclusion has not been extensively explored. Moreover, the wheat Cd inhibition test for variety screening and conventional breeding is expensive and time-consuming. As an alternative, low-Cd wheat cultivars that were developed with molecular genetics and breeding approaches can be promising, typically by the association of marker-assisted selection (MAS) with conventional breeding practices. In this review, we provide a synthetics view of the background and knowledge basis for the breeding of low-Cd wheat cultivars.
Collapse
|
26
|
Fan W, Guo Q, Liu C, Liu X, Zhang M, Long D, Xiang Z, Zhao A. Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. Gene 2018; 645:95-104. [PMID: 29277319 DOI: 10.1016/j.gene.2017.12.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022]
Abstract
Phytochelatin synthase (PCS) is an enzyme involved in the synthesis of phytochelatins, cysteine-rich peptides which play a key role in heavy metal (HM) detoxification of plants. Mulberry (Morus L.), one of the most ecologically and economically important tree genera, has the potential to remediate HM-contaminated soils. However, genes involved in HM detoxification in Morus, such as the PCS genes, have not been identified and characterized. In this study, we identified two Morus notabilis PCS genes based on a genome-wide analysis of the Morus genome database. Full-length MnPCS1 and MnPCS2 cDNAs were 1509 and 1491bp long, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that, under 200μM Zn2+ or either 30 or 100μM Cd2+ stress, the relative expression of each of the two MaPCSs (from Morus alba) was induced in root, stem and leaf tissues within 24h of exposure to the metals, with Cd2+ inducing expression more strongly than did Zn2+. Based on the analysis of total root length and fresh weight of seedlings, overexpression of MnPCS1 and MnPCS2 in Arabidopsis and tobacco enhanced Zn2+/Cd2+ tolerance in most transgenic individuals. The results of transgenic Arabidopsis lines overexpressing MnPCS1and MnPCS2 suggest that MnPCS1 play a more important role in Cd detoxification than MnPCS2. Zn2+/Cd2+ concentrations in both shoots and roots of the transgenic Arabidopsis seedlings were higher than in wild type (WT) seedlings at two Zn2+/Cd2+ concentrations. In addition, there was a positive correlation between Zn accumulation and the expression level of MnPCS1 or MnPCS2. Our results indicated that the Morus PCS1 and PCS2 genes play important roles in HM stress tolerance and accumulation, providing a useful genetic resource for enhancing tolerance to HMs and for increasing the HM phytoremediation potential of these plants.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Qing Guo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - ChangYing Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Xueqin Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
27
|
Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z. Overexpression of a Functional Vicia sativa PCS1 Homolog Increases Cadmium Tolerance and Phytochelatins Synthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:107. [PMID: 29467781 PMCID: PMC5808204 DOI: 10.3389/fpls.2018.00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/19/2018] [Indexed: 05/05/2023]
Abstract
Phytochelatins (PCs) catalyzed by phytochelatin synthases (PCS) are important for the detoxification of metals in plants and other living organisms. In this study, we isolated a PCS gene (VsPCS1) from Vicia sativa and investigated its role in regulating cadmium (Cd) tolerance. Expression of VsPCS1 was induced in roots of V. sativa under Cd stress. Analysis of subcellular localization showed that VsPCS1 was localized in the cytoplasm of mesophyll protoplasts of V. sativa. Overexpression of VsPCS1 (35S::VsPCS1, in wild-type background) in Arabidopsis thaliana could complement the defects of Cd tolerance of AtPCS1-deficent mutant (atpcs1). Compared with atpcs1 mutants, 35S::VsPCS1/atpcs1 (in AtPCS1-deficent mutant background) transgenic plants significantly lowered Cd-fluorescence intensity in mesophyll cytoplasm, accompanied with enhanced Cd-fluorescence intensity in the vacuoles, demonstrating that the increased Cd tolerance may be attributed to the increased PC-based sequestration of Cd into the vacuole. Furthermore, overexpressing VsPCS1 could enhance the Cd tolerance in 35S::VsPCS1, but have no effect on Cd accumulation and distribution, showing the same level of Cd-fluorescence intensity between 35S::VsPCS1 and wild-type (WT) plants. Further analysis indicated this increased tolerance in 35S::VsPCS1 was possibly due to the increased PCs-chelated Cd in cytosol. Taken together, a functional PCS1 homolog from V. sativa was identified, which hold a strong catalyzed property for the synthesis of high-order PCs that retained Cd in the cytosol rather the vacuole. These findings enrich the original model of Cd detoxification mediated by PCS in higher plants.
Collapse
Affiliation(s)
- Xingxing Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Haiyun Rui
- College of Pharmacy and Chemistry and Chemical Engineering, Taizhou University, Taizhou, China
| | - Fenqin Zhang
- College of Agriculture and Biotechnology, Hexi University, Zhangye, China
| | - Zhubing Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yan Xia,
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Singh RK, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. PROTOPLASMA 2016; 253:691-707. [PMID: 26660352 DOI: 10.1007/s00709-015-0905-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/27/2015] [Indexed: 05/05/2023]
Abstract
Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India.
| |
Collapse
|
29
|
Yu S, Bian Y, Zhou R, Mou R, Chen M, Cao Z. Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials. J Sep Sci 2015; 38:4146-52. [PMID: 26541262 DOI: 10.1002/jssc.201500557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
Abstract
A sensitive and robust high-performance liquid chromatography coupled with electrospray tandem mass spectrometry method for the identification and quantification of glutathione and phytochelatins from rice was developed. Homogenized samples were extracted with water containing 100 mM dithiothreitol, and solid-phase extraction using polymer anion exchange resin was employed for sample purification. Chromatography was performed on a polymeric column with acetonitrile and water containing 0.1% formic acid as the mobile phase at the flow rate of 300 μL/min. The limit of quantitation was 6-100 nM. This assay showed excellent linearity for both glutathione and phytochelatins over physiological normal ranges, with correlation coefficients (r) > 0.9976. Recoveries for four biothiols were within the range of 76-118%, within relative standard deviations less than 15%. The intraday precision (n = 7) was 2.1-13.3%, and the interday precision over 15 days was 4.3-15.2%. The optimized method was applied to analyze tissue samples from rice grown using nutrient solutions with three different cadmium concentrations (0, 50, and 100 μM). With increasing cadmium concentrations, the content of phytochelatin 2 and phytochelatin 3 in rice roots increased, in contrast to most phytochelatins, and the content of glutathione in rice stems and roots decreased significantly.
Collapse
Affiliation(s)
- Shasha Yu
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Yingfang Bian
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Rong Zhou
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Renxiang Mou
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Mingxue Chen
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Zhaoyun Cao
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
30
|
Wang F, Wang M, Liu Z, Shi Y, Han T, Ye Y, Gong N, Sun J, Zhu C. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:261-9. [PMID: 26318143 DOI: 10.1016/j.plaphy.2015.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 05/01/2023]
Abstract
Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars.
Collapse
Affiliation(s)
- Feijuan Wang
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China.
| | - Min Wang
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Zhouping Liu
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Yan Shi
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Tiqian Han
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Yaoyao Ye
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Ning Gong
- Yiwu Product and Commodity Quality Supervision and Inspection Institute, China
| | - Junwei Sun
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China.
| |
Collapse
|
31
|
Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I. Jacks of metal/metalloid chelation trade in plants-an overview. FRONTIERS IN PLANT SCIENCE 2015; 6:192. [PMID: 25883598 PMCID: PMC4382971 DOI: 10.3389/fpls.2015.00192] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/10/2015] [Indexed: 05/18/2023]
Abstract
Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as "metal/s") mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.
Collapse
Affiliation(s)
- Naser A. Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Palaniswamy Thangavel
- Department of Environmental Science, School of Life Sciences, Periyar UniversitySalem, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous)Kolkata, India
| | - Sarvajeet S. Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
| | - Miguel A. Merlos Rodrigo
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Vojtěch Adam
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa UniversityMiki-cho, Japan
| | - Rene Kizek
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Armando C. Duarte
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Iqbal Ahmad
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
- Centre for Environmental and Marine Studies and Department of Biology, University of AveiroAveiro, Portugal
| |
Collapse
|
32
|
Zhao C, Xu J, Li Q, Li S, Wang P, Xiang F. Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue. PLoS One 2014; 9:e103771. [PMID: 25133575 PMCID: PMC4136729 DOI: 10.1371/journal.pone.0103771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/02/2014] [Indexed: 11/25/2022] Open
Abstract
The production of phytochelatins (PCs) provides an important means for plants to achieve tolerance to cadmium (Cd) toxicity. A reed gene encoding PC synthase (PaPCS) was isolated and its function tested through its heterologous expression in a strain of yeast sensitive to Cd. Subsequently, the Cd sensitive and high biomass accumulating species tall fescue was transformed either with PaPCS or PaGCS (a glutamyl cysteine synthetase gene of reed) on their own (single transformants), or with both genes together in the same transgene cassette (double transformant). The single and double transformants showed greater Cd tolerance and accumulated more Cd and PC than wild type plants, and their Cd leaf/root ratio content was higher. The ranking in terms of Cd and PC content for the various transgenic lines was double transformants>PaGCS single transformants>PaPCS single transformants>wild type. Thus PaGCS appears to exert a greater influence than PaPCS over PC synthesis and Cd tolerance/accumulation. The double transformant has interesting potential for phytoremediation.
Collapse
Affiliation(s)
- Cuizhu Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, China
| | - Jin Xu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Qiang Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Shuo Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
33
|
Ovečka M, Takáč T. Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 2013; 32:73-86. [PMID: 24333465 DOI: 10.1016/j.biotechadv.2013.11.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 01/22/2023]
Abstract
The maintenance of ion homeostasis in plant cells is a fundamental physiological requirement for sustainable plant growth, development and production. Plants exposed to high concentrations of heavy metals must respond in order to avoid the deleterious effects of heavy metal toxicity at the structural, physiological and molecular levels. Plant strategies for coping with heavy metal toxicity are genotype-specific and, at least to some extent, modulated by environmental conditions. There is considerable interest in the mechanisms underpinning plant metal tolerance, a complex process that enables plants to survive metal ion stress and adapt to maintain growth and development without exhibiting symptoms of toxicity. This review briefly summarizes some recent cell biological, molecular and proteomic findings concerning the responses of plant roots to heavy metal ions in the rhizosphere, metal ion-induced reactions at the cell wall-plasma membrane interface, and various aspects of heavy metal ion uptake and transport in plants via membrane transporters. The molecular and genetic approaches that are discussed are analyzed in the context of their potential practical applications in biotechnological approaches for engineering increased heavy metal tolerance in crops and other useful plants.
Collapse
Affiliation(s)
- M Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - T Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
34
|
Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P, Trivedi PK. Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. PROTOPLASMA 2013; 250:1263-72. [PMID: 23702817 DOI: 10.1007/s00709-013-0508-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/02/2013] [Indexed: 05/08/2023]
Abstract
Phytochelatin synthase (PCS) gene encoding key enzyme for heavy metal detoxification and accumulation has been characterised from different sources and used to develop a technology for bioremediation. Past efforts provided limited success and contradictory results. Therefore, functional characterisation of PCS gene from new sources into different target systems is considered as an important task in the area of bioremediation. Earlier, we isolated and functionally characterised PCS gene from an aquatic macrophyte Ceratophyllum demersum L., a metal accumulator aquatic plant. Expression of this gene, CdPCS1, in tobacco enhanced PC synthesis and metal accumulation of transgenic tobacco plants. In the present study, we have expressed CdPCS1 in more diverse systems, Escherichia coli and Arabidopsis, and studied growth and metal accumulation of transgenic organisms. The expression of CdPCS1 in E. coli offered tolerance against cadmium as well as higher accumulation accompanied with PCS1 activity. The expression of CdPCS1 in Arabidopsis showed a significant enhanced accumulation of heavy metal(loid)s in aerial parts without significant difference in growth parameters in comparison to wild-type Arabidopsis plants. Our study suggests that CdPCS1 can be utilised for enhancing bioremediation potential of different organisms using biotechnological approaches.
Collapse
Affiliation(s)
- Devesh Shukla
- National Botanical Research Institute (NBRI), Council of Scientific and Industrial Research (CSIR), Rana Pratap Marg, Lucknow, 226001, India
| | | | | | | | | | | | | |
Collapse
|
35
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|