1
|
Otorkpa OJ, Yusuf AM, Aborode AT. Climate and conflict-induced child nutrition crisis in Sub-Saharan Africa. Confl Health 2024; 18:59. [PMID: 39367467 PMCID: PMC11453013 DOI: 10.1186/s13031-024-00621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
This commentary explores the intersection between climate, conflict, and child nutrition, highlighting the severe child nutrition crisis in Sub-Saharan Africa exacerbated by climate change and ongoing conflicts. Shifting climate patterns disrupt agricultural productivity and food security, while persistent conflicts displace populations and destroy infrastructure, significantly increasing food insecurity and malnutrition among children. Recent UNICEF data indicates that 1 in 4 children globally live in severe food poverty, with those affected up to 50% more likely to suffer from life-threatening malnutrition. Over half a billion children reside in areas prone to climate-related extreme weather events, challenging food production, distribution, and access. Extreme weather events have led to crop failures, food shortages, and price spikes, disproportionately affecting vulnerable populations. Changes in temperature and precipitation patterns also alter the nutritional content of crops, worsening nutritional challenges. Conflicts in SSA have led to a food crisis of unprecedented scale, with over 80% of the 137 million Africans facing acute food insecurity located in conflict-affected countries. The conflict between Russia and Ukraine has further disrupted global food and fertilizer supply chains, exacerbating food shortages and inflation in many African countries. Addressing this crisis requires a multifaceted approach integrating evidence-based, cost-effective strategies. This commentary advocates for the adoption of the 3 C approach-climate-smart school feeding programs, cultivation of edible insects, and community-based food hubs-as solutions to enhance child nutrition and build climate resilience.
Collapse
Affiliation(s)
- Oche Joseph Otorkpa
- Department of Public Health, Faculty of Health Sciences, National Open University of Nigeria, Lokoja, Nigeria.
| | | | | |
Collapse
|
2
|
Gulyas BZ, Mogeni B, Jackson P, Walton J, Caton SJ. Biofortification as a food-based strategy to improve nutrition in high-income countries: a scoping review. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39269149 DOI: 10.1080/10408398.2024.2402998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Biofortification (increasing the micronutrient content of food before harvest) has been successfully used to nutritionally improve staple foods in low- and middle-income countries. This approach could also help address micronutrient shortfalls in at-risk populations in high-income countries (HICs), however, the potential of biofortification interventions in this context is not well understood. The aim of this scoping review is to assess the nature and extent of available research evidence on biofortified foods in relation to human consumption in HICs. Literature searches were conducted in MEDLINE, WoS, ProQuest, CINAHL, AGRIS and Epistemonikos. Forty-six peer-reviewed articles were included. Most research was conducted in the USA (n = 15) and Italy (n = 11), on cereal crops (n = 14) and vegetables (n = 11), and on selenium (n = 12) and provitamin A (n = 11). Seven research domains were identified in the literature: bioavailability (n = 17); nutrient stability (n = 11); opinions and attitudes (n = 9); functionality (n = 9); sensory properties (n = 2); safety (n = 1); and modeling (n = 1). Evidence from HICs in each domain is limited. There is a need for more research particularly in areas sensitive to the cultural and socio-economic context.
Collapse
Affiliation(s)
- Boglarka Z Gulyas
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Brenda Mogeni
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Peter Jackson
- Institute for Sustainable Food, University of Sheffield, Sheffield, UK
| | - Jenny Walton
- Commercialization and Scaling, HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| | - Samantha J Caton
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Yuan H, Chen Y, Lin J, Zhang Y, Zhu C. Analysis of the spatial differentiation and driving force of arable land abandonment and non-grain in the hilly mountainous areas of Gannan. Heliyon 2024; 10:e33481. [PMID: 39040306 PMCID: PMC11261040 DOI: 10.1016/j.heliyon.2024.e33481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Food security has a bearing on national development and people's livelihoods and is an important guarantee of social stability for national development. The problems of arable land abandonment and non-grain are becoming more and more serious, and national food security is difficult to guarantee, which will seriously hinder the forward development of China's society and economy. Taking Ruijin City of Jiangxi Province as an example, this study calculated the abandonment level and non-grain level of arable land in Ruijin City respectively from two aspects, and explored the spatial differentiation law of farmland abandonment and non-grain level in the hilly and mountainous areas of southern Jiangxi Province by using spatial autocorrelation and cold and hot spot analysis methods, and the causes of arable land abandonment and non-grain spatial differentiation in the hilly mountainous areas of Gannan were revealed by the methods of Geodetector factor detection and interaction detection. Conclusions of the study: (1) Ruijin City, the abandoned area was 1216.73 hm2, the abandonment rate of each village ranged from 0.01 % to 50.62 %, and the comprehensive abandonment rate was 4.90 %; the area of non-grain was 2937.27 hm2, and the rate of non-grain of each village ranged from 0.01 % to 100.00 %, and the comprehensive non-grain rate was 11.83 %. The area of non-grain was 2937.27 hm2, and the rate of non-grain in each village ranged from 0.01 % to 100.00 %, and the comprehensive rate of non-grain was 11.83 %. (2) The phenomenon of abandonment of arable land and non-grain in Gannan hilly and mountainous areas has a certain clustering and driving effect in space. Globally, the phenomena of arable land abandonment and non-grain in Ruijin City are positively correlated, with the global Moran's I of arable land abandonment rate being 0.05, and the global Moran's I of arable land non-grain being 0.73. (3) Whether or not arable land in the hilly mountainous areas of Gannan is abandoned is affected by the combination of socioeconomics, natural resources, farming conditions, and economic location, with elevation, the degree of arable land contiguity, and population density being the dominant factors. The interaction of elevation, degree of concentration and contiguity, field regularity, and per capita arable land area increased the spatial variability of arable land abandonment in the hilly mountainous areas of Gannan. Whether the phenomenon of non-grain occurs or not is affected by socio-economic conditions, farming conditions and economic location, of which the proportion of paddy fields, land transfer price, arable land area, and urban-rural gradient are the dominant factors. The proportion of paddy land, the price of land transfer, the area of arable land, and the urban-rural gradient interact with each other, and the tendency of arable land to be planted with non-grain crops is more serious.
Collapse
Affiliation(s)
- Hao Yuan
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yonglin Chen
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Jianping Lin
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yunping Zhang
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Chenhui Zhu
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
4
|
Cheung YL, Zheng B, Rehman Y, Zheng ZYJ, Rangan A. Iron Content of Wheat and Rice in Australia: A Scoping Review. Foods 2024; 13:547. [PMID: 38397524 PMCID: PMC10888283 DOI: 10.3390/foods13040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
With a shift towards plant-based diets for human and planetary health, monitoring the mineral content of staple crops is important to ensure population nutrient requirements can be met. This review aimed to explore changes in the iron content of unprocessed wheat and rice in Australia over time. A comprehensive systematic search of four electronic databases and the gray literature was conducted. A total of 25 papers published between 1930 and 2023 that measured the iron content of unprocessed wheat and rice were included. Triticum aestivum was the most common wheat type studied, including 26 cultivars; iron content ranged from 40 to 50 µg/g in the 1930s and 1970s and was more variable after this time due to the introduction of modern cultivars, with most values between 25 and 45 µg/g. The iron content of rice (Oryza sativa) was more consistent at 10-15 µg/g between the 1980s and 2020s. Variations over the years may be attributed to environmental, biological, and methodological factors but these were not well documented across all studies, limiting the interpretation of findings. As the number of individuals following plant-based diets continues to rise, the ongoing monitoring of the mineral content in commonly consumed plant-based foods is warranted.
Collapse
Affiliation(s)
- Yee Lui Cheung
- Discipline of Nutrition and Dietetics, School of Nursing, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (Y.L.C.); (B.Z.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Belinda Zheng
- Discipline of Nutrition and Dietetics, School of Nursing, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (Y.L.C.); (B.Z.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yumna Rehman
- Discipline of Nutrition and Dietetics, School of Nursing, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (Y.L.C.); (B.Z.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zi Yin Joanne Zheng
- Discipline of Nutrition and Dietetics, School of Nursing, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (Y.L.C.); (B.Z.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anna Rangan
- Discipline of Nutrition and Dietetics, School of Nursing, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (Y.L.C.); (B.Z.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Yan P, Du Q, Chen H, Guo Z, Wang Z, Tang J, Li WX. Biofortification of iron content by regulating a NAC transcription factor in maize. Science 2023; 382:1159-1165. [PMID: 38060668 DOI: 10.1126/science.adf3256] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Iron (Fe) deficiency remains widespread among people in developing countries. To help solve this problem, breeders have been attempting to develop maize cultivars with high yields and high Fe concentrations in the kernels. We conducted a genome-wide association study and identified a gene, ZmNAC78 (NAM/ATAF/CUC DOMAIN TRANSCRIPTION FACTOR 78), that regulates Fe concentrations in maize kernels. We cultivated maize varieties with both high yield and high Fe concentrations in their kernels by using a molecular marker developed from a 42-base pair insertion or deletion (indel) in the promoter of ZmNAC78. ZmNAC78 expression is enriched in the basal endosperm transfer layer of kernels, and the ZmNAC78 protein directly regulates messenger RNA abundance of Fe transporters. Our results thus provide an approach to develop maize varieties with Fe-enriched kernels.
Collapse
Affiliation(s)
- Pengshuai Yan
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingguo Du
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zifeng Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- Shennong Laboratory, Zhengzhou 450002, China
| | - Wen-Xue Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Lee YY, Roslan NS, Tee V, Koo TH, Ibrahim YS. Climate Change and the Esophagus: Speculations on Changing Disease Patterns as the World Warms. Curr Gastroenterol Rep 2023; 25:280-288. [PMID: 37656421 DOI: 10.1007/s11894-023-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW Esophageal disorders, including gastroesophageal reflux disease (GERD), eosinophilic esophagitis (EoE), and esophageal cancer, may be affected by climate change. Our review describes the impact of climate change on risk factors associated with esophageal diseases and speculates how these climate-related factors impacted esophageal disorders and their management. RECENT FINDINGS Climate change is responsible for extreme weather conditions (shifts in rainfall, floods, droughts, and forest fires) and global warming. These consequences affect basic human needs of water and food, causing changes in population dynamics and pose significant threats to digestive health, including common esophageal disorders like GERD, EoE, and esophageal cancers. The changing patterns of esophageal diseases with climate change are likely mediated through risk factors, including nutrition, pollutants, microplastics, and the microbiota-gut-brain axis. The healthcare process itself, including GI endoscopy practices commonly employed in diagnosing and therapeutics of esophageal diseases, may, in turn, contribute to climate change through plastic wastage and greenhouse gas emissions, thus creating the climate change lifecycle. Breaking the cycle would involve changes at the individual level, community level, and national policy level. Prevention is key, with individuals identifying and remediating risk factors and reducing carbon footprints. The ABC (Advocacy, Broadcast, and Collaborate) activities would help enhance awareness at the community level. Higher-level programs such as the Bracing Resilience Against Climate Effects (BRACE) would lead to broader and larger-scale adoption of public health adaptation strategies at the national level. The impact of climate change on esophageal disorders is likely real, mediated by several risk factors, and creates a climate change lifecycle that may only break if changes are made at individual, community, and national levels.
Collapse
Affiliation(s)
- Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.
- GI Function and Motility Unit, Hospital Universiti Sains Malaysia, 16150, Kota Bharu, Malaysia.
| | - Nur Sakinah Roslan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Vincent Tee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Thai Hau Koo
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yusof Shuaib Ibrahim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Microplastic Research Interest Group, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
7
|
Zhu Y, He C, Gasparrini A, Vicedo-Cabrera AM, Liu C, Bachwenkizi J, Zhou L, Cheng Y, Kan L, Chen R, Kan H. Global warming may significantly increase childhood anemia burden in sub-Saharan Africa. ONE EARTH (CAMBRIDGE, MASS.) 2023; 6:1388-1399. [PMID: 37904727 PMCID: PMC7615260 DOI: 10.1016/j.oneear.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Childhood anemia constitutes a global public health problem, especially in low- and middle-income countries (LMICs). However, it remains unknown whether global warming has an impact on childhood anemia. Here, we examined the association between annual temperatures and childhood anemia prevalence in sub-Saharan Africa and then projected childhood anemia burden attributable to climate change. Each 1°C increment in annual temperature was associated with increased odds of childhood anemia (odd ratio = 1.138, 95% confidence interval: 1.134-1.142). Compared with the baseline period (1985-2014), the attributable childhood anemia cases would increase by 7,597 per 100,000 person-years under a high-emission scenario in the 2090s, which would be almost 2-fold and over 3-fold more than those projected in moderate- and low-emission scenarios. Our results reveal the vulnerabilities and inequalities of children for the excess burden of anemia due to climate warming and highlight the importance of climate mitigation and adaptation strategies in LMICs.
Collapse
Affiliation(s)
- Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
- Helmholtz Zentrum Mu€nchen - German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, Germany
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Jovine Bachwenkizi
- Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yuexin Cheng
- Department of Hematology, The First People’s Hospital of Yancheng, Yancheng Affiliated Hospital of Xuzhou Medical University, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
- Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| |
Collapse
|
8
|
Lyu HN, Fu C, Chai X, Gong Z, Zhang J, Wang J, Wang J, Dai L, Xu C. Systematic thermal analysis of the Arabidopsis proteome: Thermal tolerance, organization, and evolution. Cell Syst 2023; 14:883-894.e4. [PMID: 37734376 DOI: 10.1016/j.cels.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Understanding the thermal stability of the plant proteome in the context of the native cellular environment would aid the design of crops with high thermal tolerance, but only limited such data are available. Here, we applied quantitative mass spectrometry to profile the thermal stability of the Arabidopsis proteome and identify thermo-sensitive and thermo-resilient protein networks in Arabidopsis, providing a basis for understanding heat-induced damage. We also show that the similarities of the protein-melting curves can be used as a proxy to evaluate system-wide protein-protein interactions in non-engineered plants and enable the identification of transient interactions exhibited by metabolons in the context of the cellular environment. Finally, we report a systematic comparison of the thermal stability of paralogs in Arabidopsis to aid the investigation and understanding of gene duplication and protein evolution. Taken together, our results could have broad implications for the fields of plant thermal tolerance, plant protein assemblies, and evolution.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunjin Fu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China; School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lingyun Dai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
9
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
10
|
Morand-Laffargue L, Delbecq S, Creton B, Sabatier D, Papin M, Dhuique-Mayer C, Borel P. Bioaccumulated provitamin A in black soldier fly larvae is bioavailable and capable of improving vitamin A status of gerbils. Food Res Int 2023; 171:113064. [PMID: 37330824 DOI: 10.1016/j.foodres.2023.113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
The aim was to study whether provitamin A (proVA), which can bioaccumulate in black soldier fly larvae (BSFL), is bioavailable and can restore VA status in mammals. A model for studying the metabolism of this vitamin, the gerbil, was either fed a standard diet (C+ group), a diet without VA (C-), a diet in which VA was provided by β-carotene (β-C) from sweet potatoes (SP), or a diet in which VA was provided by β-C from BSFL that had been fed sweet potatoes (BSFL). The animals were killed at the end of the supplementation period and β-C, retinol and retinyl esters were measured in plasma and liver. As expected β-C was not detected in plasma and liver of the C+ and C- groups. β-C concentrations were lower (p < 0.05) in plasma and liver of the BSFL group as compared to the SP group. Liver retinol and retinyl ester concentrations were lower in the C- group than in all the other groups (p < 0.05). These concentrations were not significantly different in the C+ and SP groups while they were lower in the BSFL group (p < 0.05 for retinyl oleate and retinyl linoleate). In total, the liver stock of retinol equivalent was almost twice lower in the BSFL group than in the SP group. Thus, β-C present in the BSFL matrix is bioavailable and capable of improving VA status, but this matrix decreases its effectiveness by a factor of around two compared to the sweet potato matrix.
Collapse
Affiliation(s)
| | | | | | | | - Marie Papin
- C2VN, INRAE, Aix-Marseille Univ, INSERM, Marseille, France
| | - Claudie Dhuique-Mayer
- QualiSud, Univ Montpellier, Cirad, Institut Agro, Univ Avignon, Univ La Réunion, Montpellier, France; Cirad, UMR QualiSud, F-34398 Montpellier, France
| | - Patrick Borel
- C2VN, INRAE, Aix-Marseille Univ, INSERM, Marseille, France.
| |
Collapse
|
11
|
Melash AA, Bogale AA, Bytyqi B, Nyandi MS, Ábrahám ÉB. Nutrient management: as a panacea to improve the caryopsis quality and yield potential of durum wheat ( Triticum turgidum L.) under the changing climatic conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1232675. [PMID: 37701803 PMCID: PMC10493400 DOI: 10.3389/fpls.2023.1232675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
The increasing human population and the changing climate, which have given rise to frequent drought spells, pose a serious threat to global food security, while identification of high-yielding drought-tolerant genotypes coupled with nutrient management remains a proficient approach to cope with these challenges. An increase in seasonal temperature, recurring drought stress, and elevated atmospheric CO2 are alarmingly affecting durum wheat production, productivity, grain quality, and the human systems it supports. An increase in atmospheric carbon dioxide can improve wheat grain yield in a certain amount, but the right amount of nutrients, water, and other required conditions should be met to realize this benefit. Nutrients including nitrogen, silicon, and sulfur supply could alleviate the adverse effects of abiotic stress by enhancing antioxidant defense and improving nitrogen assimilation, although the effects on plant tolerance to drought stress varied with nitrogen ionic forms. The application of sewage sludge to durum wheat also positively impacts its drought stress tolerance by triggering high accumulation of osmoregulators, improving water retention capacity in the soil, and promoting root growth. These beneficial effect of nutrients contribute to durum wheat ability to withstand and recover from abiotic stress conditions, ultimately enhance its productivity and resilience. While these nutrients can provide benefits when applied in appropriate amounts, their excessive use can lead to adverse environmental consequences. Advanced technologies such as precision nutrient management, unmanned aerial vehicle-based spraying, and anaerobic digestion play significant roles in reducing the negative effects associated with nutrients like sewage sludge, zinc, nanoparticles and silicon fertilizers. Hence, nutrient management practices offer significant potential to enhance the caryopsis quality and yield potential of durum wheat. Through implementing tailored nutrient management strategies, farmers, breeders, and agronomists can contribute to sustainable durum wheat production, ensuring food security and maintaining the economic viability of the crop under the changing climatic conditions.
Collapse
Affiliation(s)
- Anteneh Agezew Melash
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
- Department of Horticulture, College of Agriculture and Environmental Science, Debark University, Debark, Ethiopia
| | - Amare Assefa Bogale
- Institute of Crop Production, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bekir Bytyqi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Muhoja Sylivester Nyandi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Éva Babett Ábrahám
- Faculty of Agricultural, Food Sciences and Environmental Management, Institute of Crop Sciences, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Belzer A, Parker ER. Climate Change, Skin Health, and Dermatologic Disease: A Guide for the Dermatologist. Am J Clin Dermatol 2023:10.1007/s40257-023-00770-y. [PMID: 37336870 DOI: 10.1007/s40257-023-00770-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 06/21/2023]
Abstract
Climate change has a pervasive impact on health and is of clinical relevance to every organ system. Climate change-related factors impact the skin's capacity to maintain homeostasis, leading to a variety of cutaneous diseases. Stratospheric ozone depletion has led to increased risk of melanoma and keratinocyte carcinomas due to ultraviolet radiation exposure. Atopic dermatitis, psoriasis, pemphigus, acne vulgaris, melasma, and photoaging are all associated with rising levels of air pollution. Elevated temperatures due to global warming induce disruption of the skin microbiome, thereby impacting atopic dermatitis, acne vulgaris, and psoriasis, and high temperatures are associated with exacerbation of skin disease and increased risk of heat stroke. Extreme weather events due to climate change, including floods and wildfires, are of relevance to the dermatologist as these events are implicated in cutaneous injuries, skin infections, and acute worsening of inflammatory skin disorders. The health consequences as well as the economic and social burden of climate change fall most heavily on vulnerable and marginalized populations due to structural disparities. As dermatologists, understanding the interaction of climate change and skin health is essential to appropriately manage dermatologic disease and advocate for our patients.
Collapse
Affiliation(s)
- Annika Belzer
- Yale University School of Medicine, New Haven, CT, USA
| | - Eva Rawlings Parker
- Department of Dermatology, Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, 719 Thompson Lane, Suite 26-300, Nashville, TN, 37204, USA.
| |
Collapse
|
13
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
Yang YM, Naseer M, Zhu Y, Wang BZ, Wang S, Ma Y, Zhang XL, Zhao XZ, Wang WY, Zhu SG, Tao HY, Xiong YC. Priming effects of nZVI on carbon sequestration and iron uptake are positively mediated by AM fungus in semiarid agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163632. [PMID: 37080320 DOI: 10.1016/j.scitotenv.2023.163632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
We investigated the priming effect of nanoscale zero-valent iron (nZVI) on carbon sink and iron uptake, and the possible mediation by AMF (arbuscular mycorrhizal fungi, Funneliformis mosseae) in semiarid agricultural soils. Maize seed dressings comprised of three nZVI concentrations of 0, 1, 2 g·kg-1 and was tested with and without AMF inoculation under high and low soil moistures, respectively. The ICP-OES observations indicated that both low dose of nZVI (1 g·kg-1) and high dose of nZVI (2 g·kg-1) significantly increased the iron concentrations in roots (L: 54.5-109.8 %; H: 119.1-245.4 %) and shoots (L: 40.8-78.9 %; H: 81.1-99.4 %). Importantly, the absorption and translocation rate of iron were substantially improved by AMF inoculation under the low-dose nZVI. Yet, the excess nanoparticles as a stress were efficiently relieved by rhizosphere hyphae, and the iron concentration in leaves and stems can maintain as high as about 300 mg·kg-1 while the iron translocation efficiency was reduced. Moreover, next-generation sequencing confirmed that appropriate amount of nZVI clearly improved the rhizosphere colonization of Funneliformis mosseae (p < 0.001) and the development of soil fungal community. Soil observations further showed that the hyphae development and GRSP (glomalin-related soil protein) secretion were significantly promoted (p < 0.05), with the increased R0.25 (< 0.25 mm) by 35.97-41.16 %. As a return, AMF and host plant turned to input more organic matter into soils for microbial growth and Fe uptake, and such interactions became more pronounced under drought stress. In contrast, high dose of nZVI (2 g·kg-1) tended to agglomerate on the surface of hyphae and spores, causing severe deformation and inactivation of AMF symbionts. Therefore, the priming effects of nZVI on carbon sequestration and Fe uptake in agricultural soils were positively mediated by AMF via the feedback loop of the plant-soil-microbe system for enhanced adaptation to global climate change.
Collapse
Affiliation(s)
- Yu-Miao Yang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Minha Naseer
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China
| | - Bao-Zhong Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Song Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yue Ma
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Lin Zhang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xu-Zhe Zhao
- College of Life Science, China West Normal University, Nanchong 637009, China
| | - Wen-Ying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810001, China
| | - Shuang-Guo Zhu
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hong-Yan Tao
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
16
|
Raiten DJ, Bremer AA. Exploring the intersection of climate/environmental change, food systems, nutrition, and health: global challenge, opportunity, or both? Am J Clin Nutr 2023; 117:224-226. [PMID: 36811569 PMCID: PMC10196608 DOI: 10.1016/j.ajcnut.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Andrew A Bremer
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
17
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
18
|
Santos CS, Habyarimana E, Vasconcelos MW. Editorial: The impact of climate change on nutrient composition of staple foods and the role of diversification in increasing food system resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1087712. [PMID: 36755693 PMCID: PMC9900100 DOI: 10.3389/fpls.2023.1087712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ephrem Habyarimana
- Sorghum Breeding, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
19
|
Novel immunochromatographic estimation of lamb content in meat products using IgG as biomarker. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Kong D, Khan SA, Wu H, Liu Y, Ling HQ. Biofortification of iron and zinc in rice and wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1157-1167. [PMID: 35396901 DOI: 10.1111/jipb.13262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Iron and zinc are critical micronutrients for human health. Approximately two billion people suffer from iron and zinc deficiencies worldwide, most of whom rely on rice (Oryza sativa) and wheat (Triticum aestivum) as staple foods. Therefore, biofortifying rice and wheat with iron and zinc is an important and economical approach to ameliorate these nutritional deficiencies. In this review, we provide a brief introduction to iron and zinc uptake, translocation, storage, and signaling pathways in rice and wheat. We then discuss current progress in efforts to biofortify rice and wheat with iron and zinc. Finally, we provide future perspectives for the biofortification of rice and wheat with iron and zinc.
Collapse
Affiliation(s)
- Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Sabaz Ali Khan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|