1
|
Yang C, Zhang Y, Li J, Liu X, Qiu J, Zhang J, Liu X, Zhang Y, Zhao Y. Short leukocyte telomere length and high plasma phospholipid fatty acids increase the risk of type 2 diabetes. Endocr Connect 2024; 13:e240033. [PMID: 39045889 PMCID: PMC11378135 DOI: 10.1530/ec-24-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
In the last 40 years, there has been a notable rise in the occurrence of diabetes within China, leading to the country now having the highest number of individuals affected by this condition globally. This prospective observational study examined the effect of different baseline relative leukocyte telomere length (RTL) and the combined effect of baseline RTL and plasma phospholipid fatty acid (PPFA) on the risk of developing diabetes. Adults from Ningxia Province who underwent baseline and follow-up surveys were included in the study. The correlation between the baseline RTL and PPFA was investigated using a multiple linear regression model. The combined effects of baseline RTL and PPFA levels on the risk of developing type 2 diabetes mellitus (T2DM) were investigated using a Cox regression model with time as the covariate. A total of 1461 study subjects were included in this study. According to the diagnostic criteria of the Chinese Diabetes Society, 141 subjects developed T2DM during the follow-up period. The baseline age was negatively correlated with RTL. After adjustment for age, C16:0, C18:1 n-9, C20:4 n-6, C20:3 n-3, and monounsaturated fatty acid (MUFA) concentrations were negatively correlated with RTL. Multiple linear regression analysis showed that C16:0 and MUFA concentrations influenced RTL. Subjects with shorter RTL at baseline had a higher risk of developing diabetes than those with longer RTL. Subjects with shorter RTL and higher C16:0 and MUFA concentrations at baseline had a higher risk of developing T2DM than those with longer RTL and lower C16:0 and MUFA concentrations. Our findings indicated that PPFA affects changes in RTL. In addition, RTL and PPFA are associated with the occurrence of T2DM.
Collapse
Affiliation(s)
- Chan Yang
- School of Nursing, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yadi Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaowei Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangwei Qiu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiaxing Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiuying Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuhong Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Zhao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Gao C. Investigating the association between blood metabolites and telomere length: A mendelian randomization study. PLoS One 2024; 19:e0298172. [PMID: 38457472 PMCID: PMC10923442 DOI: 10.1371/journal.pone.0298172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Telomere length refers to the protective cap at the end of chromosomes, and it plays a crucial role in many diseases. The objective of this study is to explore the relationship between blood metabolites and telomere length, aiming to identify novel biological factors that influence telomere length. METHODS In this study, we extracted genome-wide association study (GWAS) data for blood metabolites from a sample of 7824 Europeans. Additionally, GWAS data for telomere length were obtained from the Open GWAS database (GWAS ID: ieu-b-4879). The primary analysis of this study utilized the random inverse variance weighted (IVW) method. Complementary analyses were also conducted using the MR-Egger and weighted median approaches. Sensitivity analyses were performed to assess the robustness of the findings. These included the Cochran Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis. To investigate the possibility of reverse causation, reverse MR analysis was conducted. Additionally, multivariable MR was utilized to evaluate the direct effect of metabolites on telomere length. RESULTS The results suggested a potential association between 15-methylpalmitate, taurocholate, levulinate, and X-12712 and telomere length. MVMR analysis further showed that 15-methylpalmitate, taurocholate, and levulinate can directly influence telomere length, regardless of other metabolites. CONCLUSIONS This study suggests that 15-methylpalmitate, taurocholate, and levulinate are likely factors correlated with telomere length. These findings will contribute to the development of strategies for protecting telomeres, preventing related diseases, and establishing a new biological foundation for achieving healthy aging.
Collapse
Affiliation(s)
- Chen Gao
- Head and Neck Surgeons, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| |
Collapse
|
3
|
Mostafa H, Gutierrez-Tordera L, Mateu-Fabregat J, Papandreou C, Bulló M. Dietary fat, telomere length and cognitive function: unravelling the complex relations. Curr Opin Lipidol 2024; 35:33-40. [PMID: 38018863 DOI: 10.1097/mol.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
PURPOSE OF REVIEW The review aims to explore the recent evidence on the associations between different dietary fat intake and cognitive function, and to understand the role of telomere length in this relationship. RECENT FINDINGS Clinical and preclinical studies included in this review suggest that dietary fat intake is associated with cognitive function and telomere length. High intake of saturated fats and trans fats, commonly found in ultra-processed foods, appears to have negative effects on cognitive function and telomere length, while other dietary fats, such as omega-3 polyunsaturated fatty acids and monounsaturated fatty acids are associated with improved cognitive performance and reduced telomere attrition. Controversial results related to omega-6 polyunsaturated fatty acids intake and its impact on cognitive function were found. Dietary fats may affect telomere length and cognition through oxidative stress, inflammation, and insulin resistance. SUMMARY The current review illustrated the relationship between dietary fat and cognitive function by focusing on the role of telomere length as a potential intermediator. More future studies are required, however, in order to develop targeted interventions aimed at preserving cognitive well-being throughout life.
Collapse
Affiliation(s)
- Hamza Mostafa
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
4
|
Ojeda-Rodriguez A, Alcala-Diaz JF, Rangel-Zuñiga OA, Arenas-de Larriva AP, Gutierrez-Mariscal FM, Torres-Peña JD, Mora-Ortiz M, Romero-Cabrera JL, Luque RM, Ordovas JM, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Lopez-Miranda J. Telomere Maintenance Is Associated with Type 2 Diabetes Remission in Response to a Long-Term Dietary Intervention without Non-Weight Loss in Patients with Coronary Heart Disease: From the CORDIOPREV Randomized Controlled Trial. Antioxidants (Basel) 2024; 13:125. [PMID: 38275650 PMCID: PMC10813241 DOI: 10.3390/antiox13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
In order to evaluate whether telomere maintenance is associated with type 2 diabetes remission, newly diagnosed type 2 diabetes patients without glucose-lowering treatment (183 out of 1002) from the CORDIOPREV study (NCT00924937) were randomized to consume a Mediterranean or low-fat diet. Patients were classified as Responders, those who reverted from type 2 diabetes during the 5 years of dietary intervention (n = 69), and Non-Responders, who did not achieve diabetes remission by the end of the follow-up period (n = 104). We found no differences in diabetes remission between the two diets, and we determined telomere length (TL) by measuring qPCR, telomerase activity using the TRAP assay, and direct redox balance based on the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSH) via colorimetric assay. Responders exhibited higher baseline TL in comparison with Non-Responders (p = 0.040), and a higher TL at baseline significantly predicted a higher probability of type 2 diabetes remission (OR 2.13; 95% CI, 1.03 to 4.41). After the dietary intervention, Non-Responders showed significant telomere shortening (-0.19, 95% CI -0.32 to 0.57; p = 0.005). Telomere shortening was significantly pronounced in type 2 diabetes patients with a worse profile of insulin resistance and/or beta-cell functionality: high hepatic insulin resistance fasting, a high disposition index (-0.35; 95% CI, -0.54 to -0.16; p < 0.001), and a low disposition index (-0.25; 95% CI, -0.47 to -0.01; p = 0.037). In addition, changes in TL were correlated to the GSH/GSSG ratio. Responders also showed increased telomerase activity compared with baseline (p = 0.048), from 0.16 (95% CI, 0.08 to 0.23) to 0.28 (95% CI, 0.15 to 0.40), with a more marked increase after the dietary intervention compared with Non-Responders (+0.07; 95% CI, -0.06-0.20; p = 0.049). To conclude, telomere maintenance may play a key role in the molecular mechanisms underlying type 2 diabetes remission in newly diagnosed patients. However, further larger-scale prospective studies are necessary to corroborate our findings.
Collapse
Affiliation(s)
- Ana Ojeda-Rodriguez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Alcala-Diaz
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oriol Alberto Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio P. Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco M. Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina Mora-Ortiz
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan L. Romero-Cabrera
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raul M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, J.M. US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
- Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-Food), 28049 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain; (A.O.-R.); (J.F.A.-D.); (O.A.R.-Z.); (A.P.A.-d.L.); (F.M.G.-M.); (J.D.T.-P.); (M.M.-O.); (J.L.R.-C.); (P.P.-M.); (J.D.-L.); (E.M.Y.-S.)
- Department of Medical and Surgical Science, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004 Cordoba, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Ciudad-Mulero M, Domínguez L, Morales P, Fernández-Ruiz V, Cámara M. A Review of Foods of Plant Origin as Sources of Vitamins with Proven Activity in Oxidative Stress Prevention according to EFSA Scientific Evidence. Molecules 2023; 28:7269. [PMID: 37959689 PMCID: PMC10650406 DOI: 10.3390/molecules28217269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their nutritional benefits, vitamins could decrease the risk of chronic diseases due to their potent antioxidant capacity. The present work is aimed at reviewing the state of the art regarding (1) the vitamins involved in oxidative stress prevention in accordance with the requirements established by the European Food Safety Authority (EFSA) and (2) the foods of plant origin that are sources of those vitamins and have potential benefits against oxidative stress in humans. According to the European regulations based on EFSA scientific evidence, riboflavin, vitamin C, and vitamin E are those vitamins subjected to the approved health claim "contribute to the protection of cells from oxidative stress". Scientific studies conducted in humans with some natural food sources of riboflavin (almonds, wheat germ, mushrooms, oat bran), vitamin C (guava, kale, black currant, Brussels sprouts, broccoli, orange), and vitamin E (hazelnuts, almonds, peanuts, pistachio nuts, extra virgin olive oil, dates, rye) have been performed and published in the literature. However, no food of plant origin has obtained a favorable EFSA opinion to substantiate the approval of health claims related to its potential properties related to oxidative stress prevention. Further studies (concretely, well-controlled human intervention studies) must be carried out in accordance with EFSA requirements to provide the highest level of scientific evidence that could demonstrate the potential relationship between foods of plant origin and antioxidant capacity. This review could be useful for the scientific community to study the application of health claims referring to the antioxidant capacity potentially exerted by foods of plant origin.
Collapse
Affiliation(s)
| | | | | | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pza Ramón y Cajal, s/n, E-28040 Madrid, Spain; (M.C.-M.); (L.D.); (P.M.); (M.C.)
| | | |
Collapse
|
6
|
Novau-Ferré N, Rojas M, Gutierrez-Tordera L, Arcelin P, Folch J, Papandreou C, Bulló M. Lipoprotein Particle Profiles Associated with Telomere Length and Telomerase Complex Components. Nutrients 2023; 15:nu15112624. [PMID: 37299586 DOI: 10.3390/nu15112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Telomere length (TL) is a well-known marker of age-related diseases. Oxidative stress and inflammation increase the rate of telomere shortening, triggering cellular senescence. Although lipoproteins could have anti-inflammatory and proinflammatory functional properties, the relationship between lipoprotein particles with TL and telomerase activity-related genes has not been investigated much. In this study, we assessed the associations of lipoprotein subfractions with telomere length, TERT, and WRAP53 expression in a total of 54 pre-diabetic subjects from the EPIRDEM study. We regressed TL, TERT, and WRAP53 on 12 lipoprotein subclasses, employing a Gaussian linear regression method with Lasso penalty to determine a lipoprotein profile associated with telomere-related parameters. The covariates included age, sex, body mass index (BMI), dyslipidemia, statin consumption, and physical activity leisure time. We identified a lipoprotein profile composed of four lipoprotein subfractions associated with TL (Pearson r = 0.347, p-value = 0.010), two lipoprotein subfractions associated with TERT expression (Pearson r = 0.316, p-value = 0.020), and five lipoprotein subfractions associated with WRAP53 expression (Pearson r = 0.379, p-value =0.005). After adjusting for known confounding factors, most lipoprotein profiles maintained the association with TL, TERT, and WRAP53. Overall, medium and small-sized HDL particles were associated with shorter telomeres and lower expression of TERT and WRAP53. Large HDL particles were associated with longer telomere and lower expression of WRAP53, but not with TERT. Our results suggest that the lipoprotein profiles are associated with telomere length, TERT, and WRAP53 expression and should be considered when assessing the risk of chronic diseases.
Collapse
Affiliation(s)
- Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Melina Rojas
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Pierre Arcelin
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Atención Básica de Salud (ABS) Reus V. Centro de Atención Primaria Marià Fortuny, SAGESSA, 43204 Reus, Spain
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), 72300 Siteia, Greece
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Atención Básica de Salud (ABS) Reus V. Centro de Atención Primaria Marià Fortuny, SAGESSA, 43204 Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
7
|
Ford ML, Cooley JM, Sripada V, Xu Z, Erickson JS, Bennett KP, Crawford DR. Eat4Genes: a bioinformatic rational gene targeting app and prototype model for improving human health. Front Nutr 2023; 10:1196520. [PMID: 37305078 PMCID: PMC10250663 DOI: 10.3389/fnut.2023.1196520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction and aims Dietary Rational Gene Targeting (DRGT) is a therapeutic dietary strategy that uses healthy dietary agents to modulate the expression of disease-causing genes back toward the normal. Here we use the DRGT approach to (1) identify human studies assessing gene expression after ingestion of healthy dietary agents with an emphasis on whole foods, and (2) use this data to construct an online dietary guide app prototype toward eventually aiding patients, healthcare providers, community and researchers in treating and preventing numerous health conditions. Methods We used the keywords "human", "gene expression" and separately, 51 different dietary agents with reported health benefits to search GEO, PubMed, Google Scholar, Clinical trials, Cochrane library, and EMBL-EBI databases for related studies. Studies meeting qualifying criteria were assessed for gene modulations. The R-Shiny platform was utilized to construct an interactive app called "Eat4Genes". Results Fifty-one human ingestion studies (37 whole food related) and 96 key risk genes were identified. Human gene expression studies were found for 18 of 41 searched whole foods or extracts. App construction included the option to select either specific conditions/diseases or genes followed by food guide suggestions, key target genes, data sources and links, dietary suggestion rankings, bar chart or bubble chart visualization, optional full report, and nutrient categories. We also present user scenarios from physician and researcher perspectives. Conclusion In conclusion, an interactive dietary guide app prototype has been constructed as a first step towards eventually translating our DRGT strategy into an innovative, low-cost, healthy, and readily translatable public resource to improve health.
Collapse
Affiliation(s)
- Morgan L. Ford
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica M. Cooley
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Veda Sripada
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Zhengwen Xu
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John S. Erickson
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Kristin P. Bennett
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
8
|
Derbyshire E, Higgs J, Feeney MJ, Carughi A. Believe It or ' Nut': Why It Is Time to Set the Record Straight on Nut Protein Quality: Pistachio ( Pistacia vera L.) Focus. Nutrients 2023; 15:2158. [PMID: 37432263 DOI: 10.3390/nu15092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
There are growing public health movements to transition towards diets that are plant-based. However, confusion exists with concerns that plant-based proteins (including nuts) may be inferior with respect to protein quality. The present publication evaluates the evolution of protein quality concepts and explains the protein science related to pistachios. Pistachio nuts are a plant-based complete protein providing all nine EAAs in addition to an array of nutrients and phytochemicals. They have a PDCAAS of 73 and 81%, (raw and roasted pistachios, respectively), higher than that of many other tree nuts. From an environmental perspective transitioning towards plant-based diets (including nuts) could have potential to reduce total/green water footprints. Dietary guidelines are evolving yet nuts such as pistachios do not always have a clear place within these. Now appears to be a pertinent time to look at protein quality from the perspective of whole daily diets and dietary patterns, factoring in both health and environmental outcomes. Given updated modes of thinking, nuts such as pistachios have an important role to play in terms of providing ready-to-eat, good-quality, plant-based protein within daily diets.
Collapse
Affiliation(s)
| | | | - Mary Jo Feeney
- California Agricultural Boards, Los Altos Hills, CA 94024, USA
| | | |
Collapse
|
9
|
Yu HJ, Ho M, Chau PH, Geng L, Fong DYT. Salivary telomere length and the risks of prediabetes and diabetes among middle-aged and older adults: findings from the Health and Retirement Study. Acta Diabetol 2023; 60:273-283. [PMID: 36371747 DOI: 10.1007/s00592-022-02004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/03/2022] [Indexed: 11/14/2022]
Abstract
AIM To assess the association of telomere length (TL) with prediabetes/diabetes and to explore the potential factors affecting TL among individuals with prediabetes/diabetes by weight status. METHODS This study included 3,379 eligible adults (aged 45-85 years, males: 42%) from the US Health and Retirement Study in 2008. TL was assayed using quantitative PCR of saliva (T/S ratio). Linear and nonlinear associations between TL and prediabetes/diabetes were assessed using the logistic regression and restricted cubic spline model, respectively, adjusting for TL-plate numbers, age, sex, race, body mass index, lifestyles, diabetes medications, and cardiometabolic parameters (blood pressure, C-reactive protein, and total cholesterol). Multiple linear regression was used for testing any factors associated with TL. RESULTS Among 3,379 participants, 868 (25.7%) had prediabetes with a mean TL of 1.34 ± 0.37 (T/S ratio) and 858 (25.4%) had diabetes with a mean TL of 1.36 ± 0.43 (T/S ratio). Neither linear nor nonlinear association of TL with prediabetes/diabetes was significant by weight status. Age was negatively associated with TL in both normal-weight (β = - 0.002, p = 0.025) and overweight/obese (β = - 0.002, p = 0.006) prediabetes, but non-significant in normal-weight and overweight/obese diabetes. BMI and cardiometabolic parameters were not associated with TL in prediabetes/diabetes by weight status. CONCLUSIONS Salivary TL was not associated with prediabetes/diabetes among the US middle-aged and older adults. Further longitudinal studies are required to establish the link between TL and diabetes development and to identify potential factors affecting TL shortening, particularly in normal-weight diabetic patients.
Collapse
Affiliation(s)
- Hong-Jie Yu
- School of Nursing, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Mandy Ho
- School of Nursing, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Pui Hing Chau
- School of Nursing, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Daniel Yee Tak Fong
- School of Nursing, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Rayo VU, Thayer I, Galloway SD, Hong MY, Hooshmand S, Liu C, North E, Okamoto L, O'Neal T, Philpott J, Witard OC, Kern M. Influence of pistachios on force production, subjective ratings of pain, and oxidative stress following exercise-induced muscle damage in moderately trained athletes: A randomized, crossover trial. Metabol Open 2022; 16:100215. [PMID: 36325128 PMCID: PMC9619370 DOI: 10.1016/j.metop.2022.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Although previous studies have focused on the role of pistachios on metabolic health, the ergogenic effects of the nut must be elucidated. This study evaluated the impact of ingesting raw, shelled, unsalted pistachios on subjective pain ratings, force production, vertical jump, and biochemical indices of recovery from eccentrically biased exercise. Using a crossover design, 27 moderately trained, male athletes completed 3 trials in a randomized counterbalanced fashion. Control received water only, low dose (1.5 oz/d; PL) and high dose (3.0 oz/d; PH) consumed pistachios for 2 weeks with a 3-4-week washout between trials. PH had lower pain ratings in most muscles after 72 h of recovery (p < 0.05). PH prevented a decrease in force production at 120°/s of knee flexion (p > 0.05); whereas force was diminished in the other trials. Creatine kinase, myoglobin, and C-reactive protein increased over time following exercise (p < 0.05); however, there were no advantages following pistachio consumption. No significant changes in vertical jump or superoxide dismutase were elicited during any trial. This study demonstrates that 3.0 oz/d of pistachios can reduce delayed onset of muscle soreness and maintain muscle strength, potentially promoting exercise tolerance and training adaptations. ClinicalTrialsgov Identifier NCT03698032.
Collapse
Affiliation(s)
- Vernon Uganiza Rayo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States,Corresponding author. 5500 Campanile Drive, San Diego, CA, 92182, United States.
| | - Imogene Thayer
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | | | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Elise North
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Lauren Okamoto
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Timothy O'Neal
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | | | | | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| |
Collapse
|
11
|
Valera-Gran D, Prieto-Botella D, Hurtado-Pomares M, Baladia E, Petermann-Rocha F, Sánchez-Pérez A, Navarrete-Muñoz EM. The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review. Nutrients 2022; 14:nu14193885. [PMID: 36235538 PMCID: PMC9570627 DOI: 10.3390/nu14193885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors such as diet can affect telomere length (TL) dynamics. However, the role that children’s and adolescents’ diets play in maintaining TL is not well understood. Thus, we conducted a systematic review to examine the association between the intake of nutrients, foods, food groups, and/or dietary patterns and TL in childhood and adolescence. Following the PRISMA guidelines, we searched MEDLINE via PubMed, Embase, and Cochrane databases and additional registers and methods. The five selected studies were cross-sectional and conducted in children and adolescents aged 2 to 18 years. The main results suggest that a higher consumption of fish, nuts and seeds, fruits and vegetables, green leafy and cruciferous vegetables, olives, legumes, polyunsaturated fatty acids, and an antioxidant-rich diet might positively affect TL. On the contrary, a higher intake of dairy products, simple sugar, sugar-sweetened beverages, cereals, especially white bread, and a diet high in glycaemic load were factors associated with TL shortening. To our knowledge, this is the first systematic review examining the impact of dietary intake factors on TL in childhood and adolescence. Although limited, these results are consistent with previous studies in different adult populations. Further research is needed to ascertain potential nutritional determinants of TL in childhood and adolescence.
Collapse
Affiliation(s)
- Desirée Valera-Gran
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Correspondence: (D.V.-G.); (A.S.-P.); Tel.: +34-965-233-705 (D.V.-G.)
| | - Daniel Prieto-Botella
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
| | - Miriam Hurtado-Pomares
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
| | - Eduard Baladia
- Centro de Análisis de la Evidencia Científica, Academia Española de Nutrición y Dietética, 08007 Barcelona, Spain
| | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370109, Chile
| | - Alicia Sánchez-Pérez
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), 03010 Alicante, Spain
- Correspondence: (D.V.-G.); (A.S.-P.); Tel.: +34-965-233-705 (D.V.-G.)
| | - Eva-María Navarrete-Muñoz
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), 03010 Alicante, Spain
| |
Collapse
|
12
|
Mateos R, Salvador MD, Fregapane G, Goya L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022; 14:3207. [PMID: 35956383 PMCID: PMC9370095 DOI: 10.3390/nu14153207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The pistachio is regarded as a relevant source of biologically active components that, compared to other nuts, possess a healthier nutritional profile with low-fat content composed mainly of monounsaturated fatty acids, a high source of vegetable protein and dietary fibre, remarkable content of minerals, especially potassium, and an excellent source of vitamins, such as vitamins C and E. A rich composition in terms of phytochemicals, such as tocopherols, carotenoids, and, importantly, phenolic compounds, makes pistachio a powerful food to explore its involvement in the prevention of prevalent pathologies. Although pistachio has been less explored than other nuts (walnut, almonds, hazelnut, etc.), many studies provide evidence of its beneficial effects on CVD risk factors beyond the lipid-lowering effect. The present review gathers recent data regarding the most beneficial effects of pistachio on lipid and glucose homeostasis, endothelial function, oxidative stress, and inflammation that essentially convey a protective/preventive effect on the onset of pathological conditions, such as obesity, type 2 diabetes, CVD, and cancer. Likewise, the influence of pistachio consumption on gut microbiota is reviewed with promising results. However, population nut consumption does not meet current intake recommendations due to the extended belief that they are fattening products, their high cost, or teething problems, among the most critical barriers, which would be solved with more research and information.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María Desamparados Salvador
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Camilo José Cela n° 10, 13071 Ciudad Real, Spain
| | - Giuseppe Fregapane
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Camilo José Cela n° 10, 13071 Ciudad Real, Spain
| | - Luis Goya
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| |
Collapse
|
13
|
Yuan W, Zheng B, Li T, Liu RH. Quantification of Phytochemicals, Cellular Antioxidant Activities and Antiproliferative Activities of Raw and Roasted American Pistachios (Pistacia vera L.). Nutrients 2022; 14:nu14153002. [PMID: 35893856 PMCID: PMC9329773 DOI: 10.3390/nu14153002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
The consumption of pistachios has been linked to many potential health benefits. Phytochemicals in pistachios, including phenolics, vitamin E and carotenoids, have been considered to make contributions to the health benefits. The objectives of this study were (1) to explore the phytochemical profiles (total phenolics and total flavonoids, including both free and bound forms), selected phytochemicals, vitamin E and carotenoids of raw and roasted pistachios; (2) to determine total antioxidant activity and cellular antioxidant activity (CAA); and (3) to explore antiproliferative activities of pistachio extracts against human breast, liver and colon cancer cells in vitro. Both raw and roasted pistachios contained high total phenolics, at 479.9 ± 10.2 (raw) and 447.9 ± 9.4 (roasted) mg GAE/100 g, respectively, and high flavonoids, at 178.4 ± 10.6 (raw) and 144.1 ± 7.4 (roasted) mg GAE/100 g, respectively. The contributions of the free form to the total phenolics in pistachios were 82% (raw) and 84% (roasted), respectively, and the contributions of the free form to the total flavonoids in pistachios were 65% (raw) and 70% (roasted), respectively. Gentisic acid and catechin were the major phenolics in raw and roasted pistachios, respectively. Both raw and roasted pistachios had similar total antioxidant activity evaluated by Oxygen-Radical-Scavenging Capacity (ORAC) assay, at 7387.9 ± 467 (raw) and 7375.3 ± 602 (roasted) μmol TE/100 g, respectively. Both raw and roasted pistachio extracts exhibited cellular antioxidant activity inhibiting peroxyradical radical-induced oxidation, with CAA values of 77.39 ± 4.25 (wash) and 253.71 ± 19.18 (no wash) μmol QE/100 g of raw pistachios and 115.62 ± 3.02 (wash) and 216.76 ± 6.6 (no wash) μmol QE/100 g of roasted pistachios. Roasted pistachios contained more vitamin E when compared with raw pistachios, while raw pistachios contained more carotenoids than the roasted pistachios. Additionally, the free form of roasted pistachios extracts exhibited superior antiproliferation activity against HepG2, Caco-2 and MDA-MB-231 cancer cells in a dose-dependent manner, with EC50 34.73 ± 1.64, 36.66 ± 3.3 and 7.41 ± 0.82 mg per mL, respectively. These results provided new knowledge about the phytochemical profiles, antioxidant activity, cellular antioxidant activity and antiproliferative activity of raw and roasted pistachios.
Collapse
Affiliation(s)
- Wang Yuan
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China; (W.Y.); (B.Z.)
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China; (W.Y.); (B.Z.)
- Guangdong ERA Food & Life Health Research Institute, Guangzhou 510670, China
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-6235
| |
Collapse
|
14
|
Bhatt SP, Misra A, Pandey RM, Upadhyay AD. Shortening of leucocyte telomere length is independently correlated with high body mass index and subcutaneous obesity (predominantly truncal), in Asian Indian women with abnormal fasting glycemia. BMJ Open Diabetes Res Care 2022; 10:10/4/e002706. [PMID: 35835478 PMCID: PMC9289012 DOI: 10.1136/bmjdrc-2021-002706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Leucocyte telomere length (LTL) is linked to accelerate aging and premature mortality. In this research, we aimed to explore the relations between biochemical and anthropometry markers and LTL in Asian Indian women with abnormal fasting glycemia (impaired fasting glucose). RESEARCH DESIGN AND METHODS In this study, 797 pre-diabetic women (obese, 492; non-obese, 305) were recruited. Demographic and clinical profiles, anthropometry, and fasting blood glucose were evaluated. LTL was quantified by a quantitative PCR. LTL was expressed as the relative telomere length or telomere repeat:single copy gene (T:S) ratio. The subjects were separated into quartiles according to the LTL. RESULTS The average LTL was significantly decreased with increasing age. The average LTL was significantly shorter in obese women with abnormal fasting glycemia (p<0.05). R-squared (R2) statistic for multivariable linear model after adjusted for age, family income, education and hypertension showed that LTL was inversely correlated with body mass index (BMI), waist and hip circumference, waist-hip and waist-to-height ratio, truncal skinfolds (subscapular, and subscapular/triceps ratio, central and total skinfolds), fat mass (kg) and % body fat. The relationship between obesity measures and LTL (using the LTL quartile 1 as reference) identified central skinfolds (R2=0.92, p<0.0001), Σ4SF (R2=0.90, p<0.0001), BMI (R2=0.93, p<0.0001) and % body fat (R2=0.91, p<0.0001) as independent predictors of LTL. CONCLUSIONS Besides age, obesity and subcutaneous adiposity (predominantly truncal) are major contributors to telomere shortening in Asian Indian women with abnormal fasting glycemia (impaired fasting glucose).
Collapse
Affiliation(s)
- Surya Prakash Bhatt
- Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, Delhi, India
- Metabolic Research Unit, Diabetes Foundation (India), Safdarjung Development Area (SDA), New Delhi, Delhi, India
- Metabolic Research Unit, National Diabetes Obesity and Cholesterol Foundation (N-DOC), SDA, New Delhi, Delhi, India
| | - Anoop Misra
- Metabolic Research Unit, Diabetes Foundation (India), Safdarjung Development Area (SDA), New Delhi, Delhi, India
- Metabolic Research Unit, National Diabetes Obesity and Cholesterol Foundation (N-DOC), SDA, New Delhi, Delhi, India
- Diabetes and Metabolic Unit, Fortis C-DOC Center of Excellence for Diabetes, Metabolic Diseases, and Endocrinology, New Delhi, Delhi, India
| | - Ravindra Mohan Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
15
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Khalili L, A-Elgadir TME, Mallick AK, El Enshasy HA, Sayyed RZ. Nuts as a Part of Dietary Strategy to Improve Metabolic Biomarkers: A Narrative Review. Front Nutr 2022; 9:881843. [PMID: 35425791 PMCID: PMC9001892 DOI: 10.3389/fnut.2022.881843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Nuts are in the spotlight because of their association with improved health outcomes. We aimed to summarize the findings of previous studies to evaluate the impact of nuts consumption on glycaemic and lipid profile, inflammation, and oxidative stress. Methods Electronic searches for observational and intervention studies were undertaken in PubMed, Embase, Web of Science, and Science Direct until 2022 for searching the studies aiming the application of different types of nuts and the beneficial effects of nuts in improving glycemia, dyslipidemia, inflammation, and oxidative stress. Results Results from 56 interventional, 9 narrative and 3 systematic reviews, and 12 meta-analysis studies, aiming at the evaluating beneficial effects of different types of nuts on metabolic markers, showed that nut consumption could improve metabolic markers, including glycaemic factors, lipid profile, and inflammatory and oxidative stress parameters in both healthy and individuals with metabolic disorders in a type-, dose- and duration-dependent manner. According to their unique nutrient components, nuts can be known as a part of a healthy diet, resulting in improved metabolic biomarkers. Conclusion Considering the efficacy of nuts in improving metabolic markers, incorporation of, incorporating nuts the effectiveness of nuts in improving metabolic markers, incorporating nuts in the diet may prevent the incidence or aggravation of chronic metabolic diseases. Considering the health benefits of the nuts' components, including essential micronutrients, if consumed in the appropriate dose and duration to provide the necessary amount of effective micronutrients to improve health, we will see an improvement in metabolic factors. At the same time, more research is required to determine the optimal type, dose, and duration of nut intervention with regards to metabolic control and reducing the risk of developing metabolic disorders.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ayaz Khurram Mallick
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hesham Ali El Enshasy
- Insitute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
- City of Scientific Research and Technology Applications (SRTA), Alexandria, Egypt
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science, and Commerce College, Shahada, India
| |
Collapse
|
17
|
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2021; 49:15. [PMID: 34878154 PMCID: PMC8711586 DOI: 10.3892/ijmm.2021.5070] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke is the leading cause of disabilities and cognitive deficits, accounting for 5.2% of all mortalities worldwide. Transient or permanent occlusion of cerebral vessels leads to ischemic strokes, which constitutes the majority of strokes. Ischemic strokes induce brain infarcts, along with cerebral tissue death and focal neuronal damage. The infarct size and neurological severity after ischemic stroke episodes depends on the time period since occurrence, the severity of ischemia, systemic blood pressure, vein systems and location of infarcts, amongst others. Ischemic stroke is a complex disease, and neuronal injuries after ischemic strokes have been the focus of current studies. The present review will provide a basic pathological background of ischemic stroke and cerebral infarcts. Moreover, the major mechanisms underlying ischemic stroke and neuronal injuries are summarized. This review will also briefly summarize some representative clinical trials and up-to-date treatments that have been applied to stroke and brain infarcts.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiaojing Zhang
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Xinye Chen
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Yun Wei
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| |
Collapse
|
18
|
Fernández de la Puente M, Hernández-Alonso P, Canudas S, Marti A, Fitó M, Razquin C, Salas-Salvadó J. Modulation of Telomere Length by Mediterranean Diet, Caloric Restriction, and Exercise: Results from PREDIMED-Plus Study. Antioxidants (Basel) 2021; 10:antiox10101596. [PMID: 34679731 PMCID: PMC8533372 DOI: 10.3390/antiox10101596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/28/2023] Open
Abstract
Telomere length (TL) has been associated with aging and is determined by lifestyle. However, the mechanisms by which a dietary pattern such as the Mediterranean diet (MedDiet) affects TL homeostasis are still unknown. Our aim was to analyse the effect of an energy-restricted MedDiet with physical activity promotion (intervention group) versus an unrestricted-caloric MedDiet with no weight-loss advice (control group) on TL and 8-hydroxydeoxyguanosine (8-OHdG) plasma levels. In total, 80 non-diabetic participants with metabolic syndrome were randomly selected from the PREDIMED (PREvención con DIeta MEDiterránea)-Plus-Reus study. TL was measured by a hybridisation method and 8-OHdG levels by ELISA at baseline and after one year of intervention. Linear mixed models (LMM)—raw and after adjusting for potential confounders—were used to examine the associations between TL or 8-OHdG plasma levels by intervention group and/or time. A total of 69 subjects with available DNA samples were included in the analyses. A significant β-coefficient was found for time towards increasing values through the year of follow-up for TL (unadjusted β of 0.740 (95% CI: 0.529 to 0.951), and multivariable model β of 0.700 (95% CI: 0.477 to 0.922)). No significant βs were found, neither for the intervention group nor for the interaction between the intervention group and time. Regarding 8-OHdG plasma levels, no significant βs were found for the intervention group, time, and its interaction. Our results suggest that MedDiet could have an important role in preventing telomere shortening, but calorie restriction and exercise promotion did not provide an additional advantage concerning telomere length after one year of MedDiet intervention.
Collapse
Affiliation(s)
- María Fernández de la Puente
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain; (M.F.d.l.P.); (P.H.-A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, 43204 Reus, Spain
| | - Pablo Hernández-Alonso
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain; (M.F.d.l.P.); (P.H.-A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, 43204 Reus, Spain
- Institute of Biomedical Research of Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain; (A.M.); (M.F.); (C.R.)
| | - Silvia Canudas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain; (M.F.d.l.P.); (P.H.-A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, 43204 Reus, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain; (A.M.); (M.F.); (C.R.)
- Correspondence: (S.C.); (J.S.-S.)
| | - Amelia Marti
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain; (A.M.); (M.F.); (C.R.)
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Montserrat Fitó
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain; (A.M.); (M.F.); (C.R.)
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Cristina Razquin
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain; (A.M.); (M.F.); (C.R.)
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain; (M.F.d.l.P.); (P.H.-A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, 43204 Reus, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain; (A.M.); (M.F.); (C.R.)
- Correspondence: (S.C.); (J.S.-S.)
| |
Collapse
|
19
|
Güneşliol BE, Karaca E, Ağagündüz D, Acar ZA. Association of physical activity and nutrition with telomere length, a marker of cellular aging: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:674-692. [PMID: 34553645 DOI: 10.1080/10408398.2021.1952402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aging of the population has great social and economic effects because it is characterized by a gradual loss in physiological integrity, resulting in functional decline, thereby loss of ability to move independently. Telomeres, the hallmarks of biological aging, play a protective role in both cell death and aging. Critically short telomeres give rise to a metabolically active cell that is unable to repair damage or divide, thereby leading to aging. Lifestyle factors such as physical activity (PA) and nutrition could be associated with telomere length (TL). Indeed, regular PA and healthy nutrition as integral parts of our lifestyle can slow down telomere shortening, thereby delaying aging. In this context, the present comprehensive review summarizes the data from recent literature on the association of PA and nutrition with TL.
Collapse
Affiliation(s)
| | - Esen Karaca
- Department of Nutrition and Dietetics, Izmir Demokrasi University, Izmir, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | | |
Collapse
|
20
|
Minimal changes in telomere length after a 12-week dietary intervention with almonds in mid-age to older, overweight and obese Australians: results of a randomised clinical trial. Br J Nutr 2021; 127:872-884. [PMID: 33971995 DOI: 10.1017/s0007114521001549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diet is a modifiable risk factor for chronic disease and a potential modulator of telomere length (TL). The study aim was to investigate associations between diet quality and TL in Australian adults after a 12-week dietary intervention with an almond-enriched diet (AED). Participants (overweight/obese, 50-80 years) were randomised to an AED (n 62) or isoenergetic nut-free diet (NFD, n 62) for 12 weeks. Diet quality was assessed using a Dietary Guideline Index (DGI), applied to weighed food records, that consists of ten components reflecting adequacy, variety and quality of core food components and discretionary choices within the diet. TL was measured by quantitative PCR in samples of lymphocytes, neutrophils, and whole blood. There were no significant associations between DGI scores and TL at baseline. Diet quality improved with AED and decreased with NFD after 12 weeks (change from baseline AED + 9·8 %, NFD - 14·3 %; P < 0·001). TL increased in neutrophils (+9·6 bp, P = 0·009) and decreased in whole blood, to a trivial extent (-12·1 bp, P = 0·001), and was unchanged in lymphocytes. Changes did not differ between intervention groups. There were no significant relationships between changes in diet quality scores and changes in lymphocyte, neutrophil or whole blood TL. The inclusion of almonds in the diet improved diet quality scores but had no impact on TL mid-age to older Australian adults. Future studies should investigate the impact of more substantial dietary changes over longer periods of time.
Collapse
|
21
|
Liu Y, Wang J, Huang Z, Liang J, Xia Q, Xia Q, Liu X. Environmental pollutants exposure: A potential contributor for aging and age-related diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103575. [PMID: 33385577 DOI: 10.1016/j.etap.2020.103575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Telomeres are "protective messengers" at the ends of eukaryotic chromosomes that protect them from degradation, end to end fusion and recombination. Admittedly, telomeres progressively shorten with age that can also be significantly accelerated by pathological conditions, which are often considered as potential contributors for cellular senescence. It is commonly believed that constant accumulation of senescent cells may lead to dysfunctional tissues and organs, thereby accelerating aging process and subsequent occurrence of age-related diseases. In particular, epidemiological data has indicated a significant association between environmental pollutants exposure and a high incidence of age-related diseases. Moreover, there is growing evidence that environmental toxicity has a detrimental impact on telomere length. Overall, a consensus is emerging that environmental pollutants exposure could lead to accelerated telomere erosion and further induce premature senescence, which may be responsible for the acceleration of aging and the high morbidity and mortality rates of age-related diseases.
Collapse
Affiliation(s)
- Yaru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jiequan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Zhaogang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Qingrong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China.
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
22
|
Guarneiri LL, Cooper JA. Intake of Nuts or Nut Products Does Not Lead to Weight Gain, Independent of Dietary Substitution Instructions: A Systematic Review and Meta-Analysis of Randomized Trials. Adv Nutr 2021; 12:384-401. [PMID: 32945861 PMCID: PMC8009751 DOI: 10.1093/advances/nmaa113] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Several clinical interventions report that consuming nuts will not cause weight gain. However, it is unclear if the type of instructions provided for how to incorporate nuts into the diet impacts weight outcomes. We performed a systematic review and meta-analysis of published nut-feeding trials with and without dietary substitution instructions to determine if there are changes in body weight (BW) or composition. PubMed and Web of Science were searched through 31 December 2019 for clinical trials involving the daily consumption of nuts or nut-based snacks/meals by adults (≥18 y) for >3 wk that reported BW, BMI, waist circumference (WC), or total body fat percentage (BF%). Each study was categorized by whether or not it contained dietary substitution instructions. Within these 2 categories, an aggregated mean effect size and 95% CI was produced using a fixed-effects model. Quality of studies was assessed through the Cochrane risk-of-bias tool. Fifty-five studies were included in the meta-analysis. In studies without dietary substitution instructions, there was no change in BW [standardized mean difference (SMD): 0.01 kg; 95% CI: -0.07, 0.08; I2 = 0%] or BF% (SMD: -0.05%; 95% CI: -0.19, 0.09; I2 = 0%). In studies with dietary substitution instructions, there was no change in BW (SMD: -0.01 kg; 95% CI: -0.11, 0.09; I2 = 0%); however, there was a significant decrease in BF% (SMD: -0.32%; 95% CI: -0.61%, -0.03%; I2 = 35.4%; P < 0.05). There was no change in BMI or WC for either category of studies. Nut-enriched diet interventions did not result in changes in BW, BMI, or WC in studies either with or without substitution instructions. Slight decreases in BF% may occur if substitution instructions are used, but more research is needed. Limitations included varying methodologies between included studies and the frequency of unreported outcome variables in excluded studies.
Collapse
Affiliation(s)
- Liana L Guarneiri
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Jamie A Cooper
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
Nuts and Older Adults' Health: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041848. [PMID: 33672861 PMCID: PMC7918786 DOI: 10.3390/ijerph18041848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Although the beneficial effects of nuts on cardiometabolic diseases have been well established, little is known about the effects of nuts on age-related diseases. Given that age-related diseases share many biological pathways with cardiometabolic diseases, it is plausible that diets rich in nuts might be beneficial in ameliorating age-related conditions. The objective of this review was to summarise the findings from studies that have examined the associations or effects of nut consumption, either alone or as part of the dietary pattern, on three major age-related factors—telomere length, sarcopenia, and cognitive function—in older adults. Overall, the currently available evidence suggests that nut consumption, particularly when consumed as part of a healthy diet or over a prolonged period, is associated with positive outcomes such as longer telomere length, reduced risk of sarcopenia, and better cognition in older adults. Future studies that are interventional, long-term, and adequately powered are required to draw definitive conclusions on the effects of nut consumption on age-related diseases, in order to inform dietary recommendations to incorporate nuts into the habitual diet of older adults.
Collapse
|
24
|
Yau JW, Thor SM, Ramadas A. Nutritional Strategies in Prediabetes: A Scoping Review of Recent Evidence. Nutrients 2020; 12:E2990. [PMID: 33003593 PMCID: PMC7650618 DOI: 10.3390/nu12102990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Nutritional therapy has been conventionally recommended for people with prediabetes as a method to delay or halt progression to type 2 diabetes. However, recommended nutritional strategies evolve over time. Hence, we performed a scoping review on recently reported nutritional interventions for individuals with prediabetes. Ovid MEDLINE, PubMed, Embase, Scopus, CINAHL and PsycINFO databases were searched to identify relevant research articles published within the past 10 years. Ninety-five articles involving a total of 11,211 participants were included in this review. Nutritional strategies were broadly classified into four groups: low calorie diet, low glycemic index diet, specific foods, and a combination of diet and exercise. The most frequently assessed outcomes were plasma glucose, serum insulin, serum lipid profile, body mass index and body weight. More than 50% of reported interventions resulted in significant improvements in these parameters. Nutritional interventions have demonstrated feasibility and practicality as an effective option for prediabetes management. However, the intervention variability demonstrates the challenges of a 'one-size-fits-all' approach. Investigations in genetically diverse populations and objective assessment of progression rate to diabetes are necessary to better comprehend the impact of these nutritional strategies in prediabetes.
Collapse
Affiliation(s)
| | | | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (J.W.Y.); (S.M.T.)
| |
Collapse
|
25
|
Todendi PF, Martínez JA, Reuter CP, Matos WL, Franke SIR, Razquin C, Milagro FI, Kahl VFS, Fiegenbaum M, Valim ARDM. Biochemical profile, eating habits, and telomere length among Brazilian children and adolescents. Nutrition 2019; 71:110645. [PMID: 31896063 DOI: 10.1016/j.nut.2019.110645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Lifestyle, obesity, and eating habits are emerging as determinants for the instability of telomeres. The increase in childhood and adolescent obesity and the association of biochemical profiles and dietary components with telomere length (TL) makes it an important issue in nutritional research. The aim of the present study was to investigate TL and its association with ethnic background, adiposity, clinical and biochemical parameters, and dietary patterns among Brazilian children and adolescents. METHODS A cross-sectional study encompassing 981 children and adolescents between 7 and 17 y of age was performed. Dietary intake habits, anthropometry, and clinical data were collected. TL analysis was performed by quantitative polymerase chain reaction. RESULTS Children presented significantly longer TL than adolescents (P = 0.046). Participants who self-declared as black, mulatto, or brown (P < 0.001) also showed longer TL than those who were white. Regarding biochemical parameters, individuals with altered glucose levels had shorter TL than normoglycemic participants in the total sample (P = 0.014). Such difference remained statistically significant in adolescents (P = 0.019). Participants who reported eating fruits and vegetables regularly had longer TL than those who did not (P < 0.001). CONCLUSION The results suggested that both biochemical parameters and the intake of antioxidant-rich food, such as fruits and vegetables, are associated with the stability of telomere biology among young Brazilians.
Collapse
Affiliation(s)
- Pâmela Ferreira Todendi
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, Brazil
| | - J Alfredo Martínez
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Madrid, Spain
| | - Cézane Priscila Reuter
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - William Latosinski Matos
- Undergraduate student, Pharmacy Program, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | | | - Cristina Razquin
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Madrid, Spain
| | - Fermín Ignacio Milagro
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Madrid, Spain
| | | | - Marilu Fiegenbaum
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, Brazil
| | | |
Collapse
|