1
|
Schary N, Edemir B, Todorov VT. A Possible Link between Cell Plasticity and Renin Expression in the Collecting Duct: A Narrative Review. Int J Mol Sci 2024; 25:9549. [PMID: 39273497 PMCID: PMC11395489 DOI: 10.3390/ijms25179549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid-base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings.
Collapse
Affiliation(s)
- Nicole Schary
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
| | - Bayram Edemir
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Department of Internal Medicine IV, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Vladimir T. Todorov
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Xu C, Chen Y, Ramkumar N, Zou CJ, Sigmund CD, Yang T. Collecting duct renin regulates potassium homeostasis in mice. Acta Physiol (Oxf) 2023; 237:e13899. [PMID: 36264268 PMCID: PMC10754139 DOI: 10.1111/apha.13899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 01/03/2023]
Abstract
AIM The kaliuretic action of the renin-angiotensin-aldosterone system (RAAS) is well established as highlighted by hyperkalemia side effect of RAAS inhibitors but such action is usually ascribed to systemic RAAS. The present study addresses the involvement of intrarenal RAAS in K+ homeostasis with emphasis on locally generated renin within the collecting duct (CD). METHODS Wild-type (Floxed) and CD-specific deletion of renin (CD renin KO) mice were treated for 7 days with a high K+ (HK) diet to investigate the role of CD renin in kaliuresis regulation and further define the underlying mechanism with emphasis on analysis of intrarenal aldosterone biosynthesis. RESULTS In floxed mice, renin levels were elevated in the renal medulla and urine following a 1-week HK diet, indicating activation of the intrarenal renin. CD renin KO mice had blunted HK-induced intrarenal renin response and developed impaired kaliuresis and elevated plasma K+ level (4.45 ± 0.14 vs. 3.89 ± 0.04 mM, p < 0.01). In parallel, HK-induced intrarenal aldosterone and CYP11B2 expression along with expression of renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit alpha-1 (α-BK), α-Na+ -K+ -ATPase, and epithelial sodium channel (β-ENaC and cleaved-γ-ENaC) expression were all significantly blunted in CD renin KO mice in contrast to the unaltered responses of plasma aldosterone and adrenal CYP11B2. CONCLUSION Taken together, these results support a kaliuretic action of CD renin during HK intake.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Yanting Chen
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Nirupama Ramkumar
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| |
Collapse
|
3
|
Lara LS, Gonzalez AA, Hennrikus MT, Prieto MC. Hormone-Dependent Regulation of Renin and Effects on Prorenin Receptor Signaling in the Collecting Duct. Curr Hypertens Rev 2022; 18:91-100. [PMID: 35170417 PMCID: PMC10132771 DOI: 10.2174/1573402118666220216105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 01/27/2023]
Abstract
The production of renin by the principal cells of the collecting duct has widened our understanding of the regulation of intrarenal angiotensin II (Ang II) generation and blood pressure. In the collecting duct, Ang II increases the synthesis and secretion of renin by mechanisms involving the activation of Ang II type 1 receptor (AT1R) via stimulation of the PKCα, Ca2+, and cAMP/PKA/CREB pathways. Additionally, paracrine mediators, including vasopressin (AVP), prostaglandins, bradykinin (BK), and atrial natriuretic peptide (ANP), regulate renin in principal cells. During Ang II-dependent hypertension, despite plasma renin activity suppression, renin and prorenin receptor (RPR) are upregulated in the collecting duct and promote de novo formation of intratubular Ang II. Furthermore, activation of PRR by its natural agonists, prorenin and renin, may contribute to the stimulation of profibrotic factors independent of Ang II. Thus, the interactions of RAS components with paracrine hormones within the collecting duct enable tubular compartmentalization of the RAS to orchestrate complex mechanisms that increase intrarenal Ang II, Na+ reabsorption, and blood pressure.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
4
|
Yang T. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Curr Opin Nephrol Hypertens 2022; 31:351-357. [PMID: 35703290 PMCID: PMC9286065 DOI: 10.1097/mnh.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The (pro)renin receptor (PRR), also termed as ATPase H+ transporting accessory protein 2 (ATP6AP2), was originally cloned as a specific receptor for prorenin and renin [together called (pro)renin]. Given the wide tissue distribution of PRR, PRR was further postulated to act as a regulator of tissue renin. However, assigning a physiological role of PRR within the renin-angiotensin system (RAS) has been challenging largely due to its pleotropic functions in regulation of embryogenesis, autophagy, and H+ transport. The current review will summarize recent advances in understanding the roles of sPPR within the intrarenal RAS as well as those outside this local system. RECENT FINDINGS Site-1 protease (S1P) is a predominant source of sPPR at least in the kidney. So far most of the known physiological functions of PRR including renal handling of electrolytes and fluid and blood pressure are mediated by sPRR. In particular, sPRR serves as a positive regulator of collecting duct renin to activate the intrarenal RAS during water deprivation or angiotensin-II (AngII) infusion. However, PRR/sPRR can act in renin-independent manner under other circumstances. SUMMARY S1P-derived sPRR has emerged as a key regulator of kidney function and blood pressure and its relationship with the intrarenal RAS depends on the physiological context.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Xu C, Yang G, Fu Z, Chen Y, Xie S, Wang F, Yang T. Na +-Retaining Action of COX-2 (Cyclooxygenase-2)/EP 1 Pathway in the Collecting Duct via Activation of Intrarenal Renin-Angiotensin-Aldosterone System and Epithelial Sodium Channel. Hypertension 2022; 79:1190-1202. [PMID: 35296155 DOI: 10.1161/hypertensionaha.121.17245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The collecting duct (CD) is a major site of both biosynthesis and action of prostaglandin E2 as highlighted by the predominant expression of COX-2 (cyclooxygenase-2) and some E-prostanoid (EP) subtypes at this nephron site. The purpose of this study was to determine the relevance and mechanism of CD COX-2/prostaglandin E2/EP1 signaling for the regulation of Na+ hemostasis during Na+ depletion. METHODS Mice with Aqp2Cre-driven deletion of COX-2 (COX-2fl/flAqp2Cre+) or the EP1 subtype (EP1fl/flAqp2Cre+) were generated and the Na+-wasting phenotype of these mice during low-salt (LS) intake was examined. EP subtypes responsible for prostaglandin E2-induced local renin response were analyzed in primary cultured mouse inner medullary CD cells. RESULTS Following 28-day LS intake, COX-2fl/flAqp2Cre+ mice exhibited a higher urinary Na+ excretion and lower cumulative Na+ balance, accompanied with suppressed intrarenal renin, AngII (angiotensin II), and aldosterone, expression of CYP11B2 (cytochrome P450 family 11 subfamily B member 2), and blunted expression of epithelial sodium channel subunits compared to floxed controls (COX-2fl/flAqp2Cre-), whereas no differences were observed for indices of systemic renin-angiotensin-aldosterone system. In cultured CD cells, exposure to prostaglandin E2 stimulated release of soluble (pro)renin receptor, prorenin/renin and aldosterone and the stimulation was more sensitive to antagonism of EP1 as compared other EP subtypes. Subsequently, EP1fl/flAqp2Cre+ mice largely recapitulated Na+-wasting phenotype seen in COX-2fl/flAqp2Cre+ mice. CONCLUSIONS The study for the first time reports that CD COX-2/EP1 pathway might play a key role in maintenance of Na+ homeostasis in the face of Na+ depletion, at least in part, through activation of intrarenal renin-angiotensin-aldosterone-system and epithelial sodium channel.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Guangrui Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Ziwei Fu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| |
Collapse
|
6
|
Paterson MR, Jackson KL, Dona MSI, Farrugia GE, Visniauskas B, Watson AMD, Johnson C, Prieto MC, Evans RG, Charchar F, Pinto AR, Marques FZ, Head GA. Deficiency of MicroRNA-181a Results in Transcriptome-Wide Cell-Specific Changes in the Kidney and Increases Blood Pressure. Hypertension 2021; 78:1322-1334. [PMID: 34538100 PMCID: PMC8573069 DOI: 10.1161/hypertensionaha.121.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Madeleine R. Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia; Monash University, Melbourne, Australia
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kristy L. Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville, Australia
| | - Malathi S. I. Dona
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Bruna Visniauskas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, the USA
| | - Anna M. D. Watson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Chad Johnson
- Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Minolfa C. Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, the USA
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Fadi Charchar
- Health Innovation and Transformation Centre, Federation University, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Alexander R. Pinto
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia; Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Geoffrey A. Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Pharmacology, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Wang F, Chen Y, Zou CJ, Luo R, Yang T. Mutagenesis of the Cleavage Site of Pro Renin Receptor Abrogates Angiotensin II-Induced Hypertension in Mice. Hypertension 2021; 78:115-127. [PMID: 34024121 PMCID: PMC9212214 DOI: 10.1161/hypertensionaha.121.16770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chang-jiang Zou
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17:481-492. [PMID: 33824491 PMCID: PMC8443079 DOI: 10.1038/s41581-021-00414-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA.,
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
9
|
Emathinger JM, Nelson JW, Gurley SB. Advances in use of mouse models to study the renin-angiotensin system. Mol Cell Endocrinol 2021; 529:111255. [PMID: 33789143 PMCID: PMC9119406 DOI: 10.1016/j.mce.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/19/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
The renin-angiotensin system (RAS) is a highly complex hormonal cascade that spans multiple organs and cell types to regulate solute and fluid balance along with cardiovascular function. Much of our current understanding of the functions of the RAS has emerged from a series of key studies in genetically-modified animals. Here, we review key findings from ground-breaking transgenic models, spanning decades of research into the RAS, with a focus on their use in studying blood pressure. We review the physiological importance of this regulatory system as evident through the examination of mouse models for several major RAS components: angiotensinogen, renin, ACE, ACE2, and the type 1 A angiotensin receptor. Both whole-animal and cell-specific knockout models have permitted critical RAS functions to be defined and demonstrate how redundancy and multiplicity within the RAS allow for compensatory adjustments to maintain homeostasis. Moreover, these models present exciting opportunities for continued discovery surrounding the role of the RAS in disease pathogenesis and treatment for cardiovascular disease and beyond.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/deficiency
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensinogen/deficiency
- Angiotensinogen/genetics
- Animals
- Blood Pressure/genetics
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Kidney/cytology
- Kidney/metabolism
- Mice
- Mice, Knockout
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Renin/deficiency
- Renin/genetics
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Jacqueline M Emathinger
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Feng Y, Peng K, Luo R, Wang F, Yang T. Site-1 Protease-Derived Soluble (Pro)Renin Receptor Contributes to Angiotensin II-Induced Hypertension in Mice. Hypertension 2021; 77:405-416. [PMID: 33280408 PMCID: PMC7803453 DOI: 10.1161/hypertensionaha.120.15100] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of PRR ([pro]renin receptor) contributes to enhancement of intrarenal RAS and renal medullary α-ENaC and thus elevated blood pressure during Ang II (angiotensin II) infusion. The goal of the present study was to test whether such action of PRR was mediated by sPRR (soluble PRR), generated by S1P (site-1 protease), a newly identified PRR cleavage protease. F1 B6129SF1/J mice were infused for 6 days with control or Ang II at 300 ng/kg per day alone or in combination with S1P inhibitor PF-429242 (PF), and blood pressure was monitored by radiotelemetry. S1P inhibition significantly attenuated Ang II-induced hypertension accompanied with suppressed urinary and renal medullary renin levels and expression of renal medullary but not renal cortical α-ENaC expression. The effects of S1P inhibition were all reversed by supplement with histidine-tagged sPRR termed as sPRR-His. Ussing chamber technique was performed to determine amiloride-sensitive short-circuit current, an index of ENaC activity in confluent mouse cortical collecting duct cell line cells exposed for 24 hours to Ang II, Ang II + PF, or Ang II + PF + sPRR-His. Ang II-induced ENaC activity was blocked by PF, which was reversed by sPRR-His. Together, these results support that S1P-derived sPRR mediates Ang II-induced hypertension through enhancement of intrarenal renin level and activation of ENaC.
Collapse
Affiliation(s)
- Ye Feng
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Kexin Peng
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Renfei Luo
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Fei Wang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Tianxin Yang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| |
Collapse
|
11
|
Jackson KL, Gueguen C, Lim K, Eikelis N, Stevenson ER, Charchar FJ, Lambert GW, Burke SL, Paterson MR, Marques FZ, Head GA. Neural suppression of miRNA-181a in the kidney elevates renin expression and exacerbates hypertension in Schlager mice. Hypertens Res 2020; 43:1152-1164. [PMID: 32427944 DOI: 10.1038/s41440-020-0453-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 11/09/2022]
Abstract
BPH/2J mice are a genetic model of hypertension with overactivity of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS). BPH/2J display higher renal renin mRNA and low levels of its negative regulator microRNA-181a (miR-181a). We hypothesise that high renal SNS activity may reduce miR-181a expression, which contributes to elevated RAS activity and hypertension in BPH/2J. Our aim was to determine whether in vivo administration of a renal-specific miR-181a mimic or whether renal denervation could increase renal miR-181a abundance to reduce renal renin mRNA, RAS activity and hypertension in BPH/2J mice. Blood pressure (BP) in BPH/2J and normotensive BPN/3J mice was measured via radiotelemetry probes. Mice were administered miR-181a mimic or a negative control (1-25 nmol, i.v., n = 6-10) with BP measured for 48 h after each dose or they underwent renal denervation or sham surgery (n = 7-9). Injection of 5-25 nmol miR-181a mimic reduced BP in BPH/2J mice after 36-48 h (-5.3 ± 1.8, -6.1 ± 1.9 mmHg, respectively, P < 0.016). Treatment resulted in lower renal renin and inflammatory marker (TLR4) mRNA levels in BPH/2J. The mimic abolished the hypotensive effect of blocking the RAS with enalaprilat (P < 0.01). No differences between mimic or vehicle were observed in BPN/3J mice except for a higher level of renal angiotensinogen in the mimic-treated mice. Renal miR-181a levels that were lower in sham BPH/2J mice were greater following renal denervation and were thus similar to those of BPN/3J. Our findings suggest that the reduced renal miR-181a may partially contribute to the elevated BP in BPH/2J mice, through an interaction between the renal sympathetic nerves and miR-181a regulation of the RAS.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Nina Eikelis
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Emily R Stevenson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Fadi J Charchar
- Faculty of Science and Technology, Federation University Australia, Ballarat, VIC, Australia
| | - Gavin W Lambert
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Sandra L Burke
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Madeleine R Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Francine Z Marques
- Faculty of Science and Technology, Federation University Australia, Ballarat, VIC, Australia.,Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Pharmacology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
12
|
Gonzalez AA, Gallardo M, Cespedes C, Vio CP. Potassium Intake Prevents the Induction of the Renin-Angiotensin System and Increases Medullary ACE2 and COX-2 in the Kidneys of Angiotensin II-Dependent Hypertensive Rats. Front Pharmacol 2019; 10:1212. [PMID: 31680980 PMCID: PMC6804396 DOI: 10.3389/fphar.2019.01212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Abstract
In angiotensin II (Ang II)-dependent hypertensive rats there is an increased expression of proximal tubule angiotensinogen (AGT), collecting duct renin and angiotensin converting enzyme (ACE), which contributes to intratubular Ang II formation. Ang II acts on Ang II type 1 receptors promoting sodium retention and vasoconstriction. However concurrently, the ACE2-Ang-(1–7) axis and the expression of kallikrein and medullary prostaglandins counteract the effects of Ang II, promoting natriuresis and vasodilation. Human studies demonstrate that dietary potassium (K+) intake lowers blood pressure. In this report we evaluate the expression of AGT, ACE, medullary prorenin/renin, ACE2, kallikrein and cyclooxygenase-2 (COX-2) in Ang II-infused rats fed with high K+ diet (2%) for 14 days. Dietary K+ enhances diuresis in non-infused and in Ang II-infused rats. The rise in systolic blood pressure in Ang II-infused rats was attenuated by dietary K+. Ang II-infused rats showed increased renal protein levels of AGT, ACE and medullary prorenin and renin. This effect was attenuated in the Ang II + K+ group. Ang II infusion decreased ACE2 compared to the control group; however, K+ diet prevented this effect in the renal medulla. Furthermore, medullary COX-2 was dramatically induced by K+ diet in non-infused and in Ang II infused rats. Dietary K+ greatly increased kallikrein immunostaining in normotensive rats and in Ang II-hypertensive rats. These results indicate that a high K+ diet attenuates Ang II-dependent hypertension by preventing the induction of ACE, AGT and collecting duct renin and by enhancing medullary COX-2 and ACE2 protein expression in the kidney.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matias Gallardo
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carlos Cespedes
- Department of Physiology, Center for Aging and Regeneration CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Carlos P Vio
- Department of Physiology, Center for Aging and Regeneration CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
13
|
Shigemura N, Takai S, Hirose F, Yoshida R, Sanematsu K, Ninomiya Y. Expression of Renin-Angiotensin System Components in the Taste Organ of Mice. Nutrients 2019; 11:nu11092251. [PMID: 31546789 PMCID: PMC6770651 DOI: 10.3390/nu11092251] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/20/2022] Open
Abstract
The systemic renin-angiotensin system (RAS) is an important regulator of body fluid and sodium homeostasis. Angiotensin II (AngII) is a key active product of the RAS. We previously revealed that circulating AngII suppresses amiloride-sensitive salt taste responses and enhances the responses to sweet compounds via the AngII type 1 receptor (AT1) expressed in taste cells. However, the molecular mechanisms underlying the modulation of taste function by AngII remain uncharacterized. Here we examined the expression of three RAS components, namely renin, angiotensinogen, and angiotensin-converting enzyme-1 (ACE1), in mouse taste tissues. We found that all three RAS components were present in the taste buds of fungiform and circumvallate papillae and co-expressed with αENaC (epithelial sodium channel α-subunit, a salt taste receptor) or T1R3 (taste receptor type 1 member 3, a sweet taste receptor component). Water-deprived mice exhibited significantly increased levels of renin expression in taste cells (p < 0.05). These results indicate the existence of a local RAS in the taste organ and suggest that taste function may be regulated by both locally-produced and circulating AngII. Such integrated modulation of peripheral taste sensitivity by AngII may play an important role in sodium/calorie homeostasis.
Collapse
Affiliation(s)
- Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Division of Sensory Physiology, Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Fumie Hirose
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | - Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Division of Sensory Physiology, Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Division of Sensory Physiology, Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan.
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Ramkumar N, Stuart D, Mironova E, Abraham N, Gao Y, Wang S, Lakshmipathi J, Stockand JD, Kohan DE. Collecting duct principal, but not intercalated, cell prorenin receptor regulates renal sodium and water excretion. Am J Physiol Renal Physiol 2018; 315:F607-F617. [PMID: 29790390 PMCID: PMC6172572 DOI: 10.1152/ajprenal.00122.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
The collecting duct is the predominant nephron site of prorenin and prorenin receptor (PRR) expression. We previously demonstrated that the collecting duct PRR regulates epithelial Na+ channel (ENaC) activity and water transport; however, which cell type is involved remains unclear. Herein, we examined the effects of principal cell (PC) or intercalated cell (IC) PRR deletion on renal Na+ and water handling. PC or IC PRR knockout (KO) mice were obtained by crossing floxed PRR mice with mice harboring Cre recombinase under the control of the AQP2 or B1 subunit of the H+ ATPase promoters, respectively. PC KO mice had reduced renal medullary ENaC-α abundance and increased urinary Na+ losses on a low-Na+ diet compared with controls. Conversely, IC KO mice had no apparent differences in Na+ balance or ENaC abundance compared with controls. Acute treatment with prorenin increased ENaC channel number and open probability in acutely isolated cortical collecting ducts from control and IC PRR KO, but not PC PRR KO, mice. Furthermore, compared with controls, PC KO, but not IC KO mice, had increased urine volume, reduced urine osmolality, and reduced abundance of renal medullary AQP2. Taken together, these findings indicate that PC, but not IC, PRR modulates ENaC activity, urinary Na+ excretion, and water transport.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center , San Antonio, Texas
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Yang Gao
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Jayalakshmi Lakshmipathi
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center , San Antonio, Texas
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
- Department of Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
15
|
Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond) 2018; 132:1383-1401. [PMID: 29986878 DOI: 10.1042/cs20180121] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin system (RAS) is widely recognized as one of the most important vasoactive hormonal systems in the physiological regulation of blood pressure and the development of hypertension. This recognition is derived from, and supported by, extensive molecular, cellular, genetic, and pharmacological studies on the circulating (tissue-to-tissue), paracrine (cell-to-cell), and intracrine (intracellular, mitochondrial, nuclear) RAS during last several decades. Now, it is widely accepted that circulating and local RAS may act independently or interactively, to regulate sympathetic activity, systemic and renal hemodynamics, body salt and fluid balance, and blood pressure homeostasis. However, there remains continuous debate with respect to the specific sources of intratubular and intracellular RAS in the kidney and other tissues, the relative contributions of the circulating RAS to intratubular and intracellular RAS, and the roles of intratubular compared with intracellular RAS to the normal control of blood pressure or the development of angiotensin II (ANG II)-dependent hypertension. Based on a lecture given at the recent XI International Symposium on Vasoactive Peptides held in Horizonte, Brazil, this article reviews recent studies using mouse models with global, kidney- or proximal tubule-specific overexpression (knockin) or deletion (knockout) of components of the RAS or its receptors. Although much knowledge has been gained from cell- and tissue-specific transgenic or knockout models, a unifying and integrative approach is now required to better understand how the circulating and local intratubular/intracellular RAS act independently, or with other vasoactive systems, to regulate blood pressure, cardiovascular and kidney function.
Collapse
|
16
|
Gonzalez AA, Lara LS, Prieto MC. Role of Collecting Duct Renin in the Pathogenesis of Hypertension. Curr Hypertens Rep 2018; 19:62. [PMID: 28695400 PMCID: PMC10114930 DOI: 10.1007/s11906-017-0763-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of renin production by the principal cells of the collecting duct has opened new perspectives for the regulation of intrarenal angiotensin II (Ang II). Angiotensinogen (AGT) and angiotensin-converting enzyme (ACE) are present in the tubular fluid coming from the proximal tubule and collecting duct. All the components needed for Ang II formation are present along the nephron, and much is known about the mechanisms regulating renin in juxtaglomerular cells (JG); however, those in the collecting duct remain unclear. Ang II suppresses renin via protein kinase C (PKC) and calcium (Ca2+) in JG cells, but in the principal cells, Ang II increases renin synthesis and release through a pathophysiological mechanism that increases further intratubular Ang II de novo formation to enhance distal Na + reabsorption. Transgenic mice overexpressing renin in the collecting duct demonstrate the role of collecting duct renin in the development of hypertension. The story became even more interesting after the discovery of a specific receptor for renin and prorenin: the prorenin receptor ((P)RR), which enhances renin activity and fully activates prorenin. The interactions between (P)RR and prorenin/renin may further increase intratubular Ang II levels. In addition to Ang II, other mechanisms have been described in the regulation of renin in the collecting duct, including vasopressin (AVP), bradykinin (BK), and prostaglandins. Current active investigations are aimed at elucidating the mechanisms regulating renin in the distal nephron segments and understand its role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minolfa C Prieto
- Department of Physiology, Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
17
|
Hyndman KA, Mironova EV, Giani JF, Dugas C, Collins J, McDonough AA, Stockand JD, Pollock JS. Collecting Duct Nitric Oxide Synthase 1ß Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways. J Am Heart Assoc 2017; 6:e006896. [PMID: 29066445 PMCID: PMC5721879 DOI: 10.1161/jaha.117.006896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1β is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1β pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. METHODS AND RESULTS Male control and collecting duct nitric oxide synthase 1β knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. CONCLUSIONS These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1β signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Elena V Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Courtney Dugas
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Jessika Collins
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| |
Collapse
|
18
|
Wang L, Zhu Q, Lu A, Liu X, Zhang L, Xu C, Liu X, Li H, Yang T. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 2017; 35:1899-1908. [PMID: 28509726 PMCID: PMC11157961 DOI: 10.1097/hjh.0000000000001378] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Butyrate, a short-chain fatty acid, is the end product of the fermentation of complex carbohydrates by the gut microbiota. Recently, sodium butyrate (NaBu) has been found to play a protective role in a number of chronic diseases. However, it is still unclear whether NaBu has a therapeutic potential in hypertension. The present study was aimed to investigate the role of NaBu in angiotensin II (Ang II)-induced hypertension and to further explore the underlying mechanism. METHODS Ang II was infused into uninephrectomized Sprague-Dawley rats with or without intramedullary infusion of NaBu for 14 days. Mean arterial blood pressure was recorded by the telemetry system. Renal tissues, serum samples, and 24-h urine samples were collected to examine renal injury and the regulation of the (pro)renin receptor (PRR) and renin. RESULTS Intramedullary infusion of NaBu in Sprague-Dawley rats lowered the Ang II-induced mean arterial pressure from 129 ± 6 mmHg to 108 ± 4 mmHg (P < 0.01). This corresponded with an improvement in Ang II-induced renal injury, including urinary albumin, glomerulosclerosis, and renal fibrosis, as well as the expression of inflammatory mediators tumor necrosis factor α, interleukin 6. The renal expression of PRR, angiotensinogen, angiotensin I-converting enzyme and the urinary excretion of soluble PRR, renin, and angiotensinogen were all increased by Ang II infusion but decreased by NaBu treatment. In cultured innermedullary collecting duct cells, NaBu treatment attenuated Ang II-induced expression of PRR and renin. CONCLUSION These results demonstrate that NaBu exerts an antihypertensive action, likely by suppressing the PRR-mediated intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qing Zhu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiaofen Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiyang Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Haobo Li
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
- Veterans Affairs Medical Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Gonzalez AA, Salinas-Parra N, Leach D, Navar LG, Prieto MC. PGE 2 upregulates renin through E-prostanoid receptor 1 via PKC/cAMP/CREB pathway in M-1 cells. Am J Physiol Renal Physiol 2017; 313:F1038-F1049. [PMID: 28701311 DOI: 10.1152/ajprenal.00194.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
During the early phase of ANG II-dependent hypertension, tubular PGE2 is increased. Renin synthesis and secretion in the collecting duct (CD) are upregulated by ANG II, contributing to further intratubular ANG II formation. However, what happens first and whether the triggering mechanism is independent of tubular ANG II remain unknown. PGE2 stimulates renin synthesis in juxtaglomerular cells via E-prostanoid (EP) receptors through the cAMP/cAMP-responsive element-binding (CREB) pathway. EP receptors are also expressed in the CD. Here, we tested the hypothesis that renin is upregulated by PGE2 in CD cells. The M-1 CD cell line expressed EP1, EP3, and EP4 but not EP2. Dose-response experiments, in the presence of ANG II type 1 receptor blockade with candesartan, demonstrated that 10-6 M PGE2 maximally increases renin mRNA (approximately 4-fold) and prorenin/renin protein levels (approximately 2-fold). This response was prevented by micromolar doses of SC-19220 (EP1 antagonist), attenuated by the EP4 antagonist, L-161982, and exacerbated by the highly selective EP3 antagonist, L-798106 (~10-fold increase). To evaluate further the signaling pathway involved, we used the PKC inhibitor calphostin C and transfections with PKCα dominant negative. Both strategies blunted the PGE2-induced increases in cAMP levels, CREB phosphorylation, and augmentation of renin. Knockdown of the EP1 receptor and CREB also prevented renin upregulation. These results indicate that PGE2 increases CD renin expression through the EP1 receptor via the PKC/cAMP/CREB pathway. Therefore, we conclude that during the early stages of ANG II-dependent hypertension, there is augmentation of PGE2 that stimulates renin in the CD, resulting in increased tubular ANG II formation and further stimulation of renin.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dan Leach
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
20
|
Yang T, Xu C. Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. J Am Soc Nephrol 2017; 28:1040-1049. [PMID: 28255001 DOI: 10.1681/asn.2016070734] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The renin-angiotensin system (RAS) has a pivotal role in the maintenance of extracellular volume homeostasis and blood pressure through complex mechanisms. Apart from the well known systemic RAS, occurrence of a local RAS has been documented in multiple tissues, including the kidney. A large body of recent evidence from pharmacologic and genetic studies, particularly those using various transgenic approaches to manipulate intrarenal levels of RAS components, has established the important role of intrarenal RAS in hypertension. Recent studies have also begun to unravel the molecular mechanisms that govern intrarenal RAS activity. This local system is under the control of complex regulatory networks consisting of positive regulators of (pro)renin receptor, Wnt/β-catenin signaling, and PGE2/PGE2 receptor EP4 subtype, and negative regulators of Klotho, vitamin D receptor, and liver X receptors. This review highlights recent advances in defining the regulation and function of intrarenal RAS as a unique entity separate from systemic angiotensin II generation.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and .,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| |
Collapse
|
21
|
Maier C, Schadock I, Haber PK, Wysocki J, Ye M, Kanwar Y, Flask CA, Yu X, Hoit BD, Adams GN, Schmaier AH, Bader M, Batlle D. Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II. J Mol Med (Berl) 2017; 95:473-486. [PMID: 28160049 DOI: 10.1007/s00109-017-1513-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022]
Abstract
Prolylcarboxypeptidase (PRCP) is a carboxypeptidase that cleaves angiotensin II (AngII) forming Ang(1-7). The impact of genetic PRCP deficiency on AngII metabolism, blood pressure (BP), kidney histology, and cardiac phenotype was investigated in two lines of PRCP-deficient mice: KST302 derived in C57BL/6 background and GST090 derived in FVB/N background. The GST090 line had increased mean arterial pressure (MAP) (113.7 ± 2.07 vs. WT 105.0 ± 1.23 mmHg; p < 0.01) and left ventricular hypertrophy (LVH) (ratio of diastolic left ventricular posterior wall dimension to left ventricular diameter 0.239 ± 0.0163 vs. WT 0.193 ± 0.0049; p < 0.05). Mice in the KST302 line also had mild hypertension and LVH. Cardiac defects, increased glomerular size, and glomerular mesangial expansion were also observed. After infusion of AngII to mice in the KST302 line, both MAP and LVH increased, but the constitutive differences between the gene trap mice and controls were no longer observed. Plasma and cardiac AngII and Ang(1-7) were not significantly different between PRCP-deficient mice and controls. Thus, PRCP deficiency is associated with elevated blood pressure and cardiac alterations including LVH and cardiac defects independently of systemic or cardiac AngII and Ang(1-7). An ex vivo assay showed that recombinant PRCP, unlike recombinant ACE2, did not degrade AngII to form Ang(1-7) in plasma at pH 7.4. PRCP was localized in α-intercalated cells of the kidney collecting tubule. The low pH prevailing at this site and the acidic pH preference of PRCP suggest a role of this enzyme in regulating AngII degradation in the collecting tubule where this peptide increases sodium reabsorption and therfore BP. However, there are other potential mechanisms for increased BP in this model that need to be considered as well. PRCP converts AngII to Ang(1-7) but only at an acidic pH. Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP. PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low. In collecting tubules, PRCP deficiency could result in impaired AngII degradation. Increased AngII at this nephron site stimulates Na reabsorption and increases BP. KEY MESSAGE Prolylcarboxypeptidase (PRCP) converts AngII to Ang (1-7) but only at an acidic pH. Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP. PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low. In collecting tubules, PRCP deficiency could result in impaired AngII degradation. Increased AngII at this nephron site stimulates Na reabsorption and increases BP.
Collapse
Affiliation(s)
- Christoph Maier
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Schadock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Philipp K Haber
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Minghao Ye
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yashpal Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Brian D Hoit
- Department of Medicine, Division of Cardiology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Gregory N Adams
- Department of Medicine, Division of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Alvin H Schmaier
- Department of Medicine, Division of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Michael Bader
- Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,German Center for Cardiovascular Research (DZHK), Berlin site, Berlin, Germany
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics 2016; 48:826-834. [PMID: 27664183 DOI: 10.1152/physiolgenomics.00089.2016] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 02/08/2023] Open
Abstract
Short chain fatty acid (SCFA) metabolites are byproducts of gut microbial metabolism that are known to affect host physiology via host G protein-coupled receptor (GPCRs). We previously showed that an acute SCFA bolus decreases blood pressure (BP) in anesthetized mice, an effect mediated primarily via Gpr41. In this study, our aims were to identify the cellular localization of Gpr41 and to determine its role in BP regulation. We localized Gpr41 to the vascular endothelium using RT-PCR: Gpr41 is detected in intact vessels (with endothelium) but is absent from denuded vessels (without endothelium). Furthermore, using pressure myography we confirmed that SCFAs dilate resistance vessels in an endothelium-dependent manner. Since we previously found that Gpr41 mediates a hypotensive response to acute SCFA administration, we hypothesized that Gpr41 knockout (KO) mice would be hypertensive. Here, we report that Gpr41 KO mice have isolated systolic hypertension compared with wild-type (WT) mice; diastolic BP was not different between WT and KO. Older Gpr41 KO mice also exhibited elevated pulse wave velocity, consistent with a phenotype of systolic hypertension; however, there was no increase in ex vivo aorta stiffness (measured by mechanical tensile testing). Plasma renin concentrations were also similar in KO and WT mice. The systolic hypertension in Gpr41 KO is not salt sensitive, as it is not significantly altered on either a high- or low-salt diet. In sum, these studies suggest that endothelial Gpr41 lowers baseline BP, likely by decreasing active vascular tone without altering passive characteristics of the blood vessels, and that Gpr41 KO mice have hypertension of a vascular origin.
Collapse
Affiliation(s)
- Niranjana Natarajan
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland; and
| | - Daijiro Hori
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Sheila Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Nicholas A Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
23
|
Ramkumar N, Kohan DE. Role of the Collecting Duct Renin Angiotensin System in Regulation of Blood Pressure and Renal Function. Curr Hypertens Rep 2016; 18:29. [PMID: 26951246 DOI: 10.1007/s11906-016-0638-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent evidence suggests that the renal tubular renin angiotensin system regulates urinary Na(+) and water excretion and blood pressure. Three key components of the tubular renin angiotensin system, namely renin, prorenin receptor, and angiotensin-II type 1 receptor, are localized to the collecting duct. This system may modulate collecting duct Na(+) and water reabsorption via angiotensin-II-dependent and angiotensin-II-independent pathways. Further, the system may be of greatest relevance in hypertensive states and particularly those characterized by high circulating angiotensin-II. In this review, we summarize the current knowledge on the synthesis, regulation, and function of collecting duct-derived renin angiotensin system components and examine recent developments with regard to regulation of blood pressure and renal fluid and Na(+) excretion.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology, University of Utah Health Sciences Center, 30 N 1900 E SOM 4R312, Salt Lake City, UT, 84132, USA
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, 30 N 1900 E SOM 4R312, Salt Lake City, UT, 84132, USA. .,Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Song K, Stuart D, Abraham N, Wang F, Wang S, Yang T, Sigmund CD, Kohan DE, Ramkumar N. Collecting Duct Renin Does Not Mediate DOCA-Salt Hypertension or Renal Injury. PLoS One 2016; 11:e0159872. [PMID: 27467376 PMCID: PMC4965005 DOI: 10.1371/journal.pone.0159872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Collecting duct (CD)-derived renin is involved in the hypertensive response to chronic angiotensin-II (Ang-II) administration. However, whether CD renin is involved in Ang-II independent hypertension is currently unknown. To begin to examine this, 12 week old male and female CD-specific renin knock out (KO) mice and their littermate controls were subjected to uni-nephrectomy followed by 2 weeks of deoxycorticosterone acetate (DOCA) infusion combined with a high salt diet. Radiotelemetric blood pressure (BP) was similar between KO and control mice at baseline; BP increased in both groups to a similar degree throughout the 2 weeks of DOCA-salt treatment. Urinary albumin excretion and plasma blood urea nitrogen were comparable between the two groups after DOCA-salt treatment. Fibrosis as assessed by Masson’s Trichrome stain/Sirius Red stain and collagen-1 mRNA expression was similar between control and KO mice. Compared to baseline, DOCA-salt treatment decreased plasma renin concentration (PRC), urinary renin excretion and medullary renin mRNA expression in both floxed and CD renin KO mice with no detectable differences between the two groups. Further, in primary culture of rat inner medullary CD, aldosterone treatment did not change renin activity or total renin content. Taken together, these data suggest that CD derived renin does not play a role in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Kai Song
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Department of Nephrology, Second Affiliated Hospital of Soochow University, Soochow City, China
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Fei Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Tianxin Yang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Curt D. Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Donald E. Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
25
|
Affiliation(s)
- John E Hall
- From the Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
26
|
Peng K, Lu X, Wang F, Nau A, Chen R, Zhou SF, Yang T. Collecting duct (pro)renin receptor targets ENaC to mediate angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2016; 312:F245-F253. [PMID: 27122543 DOI: 10.1152/ajprenal.00178.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
The (pro)renin receptor (PRR) is abundantly expressed in the collecting duct (CD) and the expression is further induced by angiotensin II (ANG II). The present study was conducted to investigate the role of CD PRR during ANG II-induced hypertension and to further explore the underlying mechanism. Radiotelemetry demonstrated that a 1-wk ANG II infusion gradually and significantly induced hypertensive response in floxed mice and this response was significantly attenuated in mice lacking PRR in the CD (termed CD PRR KO). ANG II infusion in floxed mice increased urinary renin activity and selectively induced renal medullary α-epithelial sodium channel (α-ENaC) mRNA and protein expression, all of which were blunted in the null mice. In cultured mpkCCD cells grown in Transwells, transepithelial Na+ transport as measured by using a volt-ohmmeter was transiently stimulated by acute ANG II treatment, which was abolished by a PRR antagonist, PRO20. In a chronic setting, ANG II treatment induced α-ENaC mRNA expression in mpkCCD cells, which was similarly blocked by PRO20. Chronic intramedullary infusion of an ENaC inhibitor amiloride in rats significantly attenuated ANG II-induced hypertension. Overall, the present study suggests that CD PRR contributes to ANG II-induced hypertension at least partially via activation of renal medullary ENaC.
Collapse
Affiliation(s)
- Kexin Peng
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China.,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Xiaohan Lu
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China.,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China.,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Adam Nau
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China
| | - Ren Chen
- Department of Internal Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; and
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; .,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
27
|
Ramkumar N, Stuart D, Mironova E, Bugay V, Wang S, Abraham N, Ichihara A, Stockand JD, Kohan DE. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport. Am J Physiol Renal Physiol 2016; 311:F186-94. [PMID: 27053687 DOI: 10.1152/ajprenal.00088.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological significance of the renal tubular prorenin receptor (PRR) has been difficult to elucidate due to developmental abnormalities associated with global or renal-specific PRR knockout (KO). We recently developed an inducible renal tubule-wide PRR KO using the Pax8/LC1 transgenes and demonstrated that disruption of renal tubular PRR at 1 mo of age caused no renal histological abnormalities. Here, we examined the role of renal tubular PRR in blood pressure (BP) regulation and Na(+) excretion and investigated the signaling mechanisms by which PRR regulates Na(+) balance. No detectable differences in BP were observed between control and PRR KO mice fed normal- or low-Na(+) diets. However, compared with controls, PRR KO mice had elevated plasma renin concentration and lower cumulative Na(+) balance with normal- and low-Na(+) intake. PRR KO mice had an attenuated hypertensive response and reduced Na(+) retention following angiotensin II (ANG II) infusion. Furthermore, PRR KO mice had significantly lower epithelial Na(+) channel (ENaC-α) expression. Treatment with mouse prorenin increased, while PRR antagonism decreased, ENaC activity in isolated split-open collecting ducts (CD). The prorenin effect was prevented by protein kinase A and Akt inhibition, but unaffected by blockade of AT1, ERK1/2, or p38 MAPK pathways. Taken together, these data indicate that renal tubular PRR, likely via direct prorenin/renin stimulation of PKA/Akt-dependent pathways, stimulates CD ENaC activity. Absence of renal tubular PRR promotes Na(+) wasting and reduces the hypertensive response to ANG II.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah;
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Elena Mironova
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Vladislav Bugay
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Atsuhiro Ichihara
- Department of Medicine II, Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
28
|
Lu X, Wang F, Liu M, Yang KT, Nau A, Kohan DE, Reese V, Richardson RS, Yang T. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: involvement of Nox4-derived hydrogen peroxide. Am J Physiol Renal Physiol 2015; 310:F1243-50. [PMID: 26697985 DOI: 10.1152/ajprenal.00492.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
The collecting duct (CD) has been recognized as an important source of prorenin/renin, and it also expresses (pro)renin receptor (PRR). The goal of this study was to examine the hypothesis that prorenin or renin via PRR regulates epithelial Na(+) channel (ENaC) activity in mpkCCD cells. Transepithelial Na(+) transport was measured by using a conventional epithelial volt-ohmmeter and was expressed as the calculated equivalent current (Ieq). Amiloride-inhibitable Ieq was used as a reflection of ENaC activity. Administration of prorenin in the nanomolar range induced a significant increase in Ieq that was detectable as early as 1 min, peaked at 5 min, and gradually returned to baseline within 15 min. These changes in Ieq were completely prevented by a newly developed PRR decoy inhibitor, PRO20. Prorenin-induced Ieq was inhibitable by amiloride. Compared with prorenin, renin was less effective in stimulating Ieq Prorenin-induced Ieq was attenuated by apocynin but enhanced by tempol, the latter effect being prevented by catalase. In response to prorenin treatment, the levels of total reactive oxygen species and H2O2 were both increased, as detected by spin-trap analysis and reactive oxygen species (ROS)-Glo H2O2 assay, respectively. Both siRNA-mediated Nox4 knockdown and the dual Nox1/4 inhibitor GKT137892 attenuated prorenin-induced Ieq Overall, our results demonstrate that activation of PRR by prorenin stimulates ENaC activity in CD cells via Nox4-derived H2O2.
Collapse
Affiliation(s)
- Xiaohan Lu
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Mi Liu
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kevin T Yang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Adam Nau
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Donald E Kohan
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Van Reese
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Russell S Richardson
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China; and Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
29
|
Marques FZ, Romaine SP, Denniff M, Eales J, Dormer J, Garrelds IM, Wojnar L, Musialik K, Duda-Raszewska B, Kiszka B, Duda M, Morris BJ, Samani NJ, Danser AJ, Bogdanski P, Zukowska-Szczechowska E, Charchar FJ, Tomaszewski M. Signatures of miR-181a on the Renal Transcriptome and Blood Pressure. Mol Med 2015; 21:739-748. [PMID: 26322847 DOI: 10.2119/molmed.2015.00096] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/17/2015] [Indexed: 01/11/2023] Open
Abstract
MicroRNA-181a binds to the 3' untranslated region of messenger RNA (mRNA) for renin, a rate-limiting enzyme of the renin-angiotensin system. Our objective was to determine whether this molecular interaction translates into a clinically meaningful effect on blood pressure and whether circulating miR-181a is a measurable proxy of blood pressure. In 200 human kidneys from the TRANScriptome of renaL humAn TissuE (TRANSLATE) study, renal miR-181a was the sole negative predictor of renin mRNA and a strong correlate of circulating miR-181a. Elevated miR-181a levels correlated positively with systolic and diastolic blood pressure in TRANSLATE, and this association was independent of circulating renin. The association between serum miR-181a and systolic blood pressure was replicated in 199 subjects from the Genetic Regulation of Arterial Pressure of Humans In the Community (GRAPHIC) study. Renal immunohistochemistry and in situ hybridization showed that colocalization of miR-181a and renin was most prominent in collecting ducts where renin is not released into the systemic circulation. Analysis of 69 human kidneys characterized by RNA sequencing revealed that miR-181a was associated with downregulation of four mitochondrial pathways and upregulation of 41 signaling cascades of adaptive immunity and inflammation. We conclude that renal miR-181a has pleiotropic effects on pathways relevant to blood pressure regulation and that circulating levels of miR-181a are both a measurable proxy of renal miR-181a expression and a novel biochemical correlate of blood pressure.
Collapse
Affiliation(s)
- Francine Z Marques
- Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University Australia, Victoria, Australia
| | - Simon Pr Romaine
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - James Eales
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - John Dormer
- University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Ingrid M Garrelds
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Lukasz Wojnar
- Department of Urology and Oncological Urology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Musialik
- Department of Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara Duda-Raszewska
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Bartlomiej Kiszka
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Magdalena Duda
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, New South Wales, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom
| | - Ah Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Pawel Bogdanski
- Department of Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Zukowska-Szczechowska
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Zabrze, Poland
| | - Fadi J Charchar
- Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University Australia, Victoria, Australia
| | - Maciej Tomaszewski
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Sequeira-Lopez MLS, Nagalakshmi VK, Li M, Sigmund CD, Gomez RA. Vascular versus tubular renin: role in kidney development. Am J Physiol Regul Integr Comp Physiol 2015; 309:R650-7. [PMID: 26246508 DOI: 10.1152/ajpregu.00313.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022]
Abstract
Renin, the key regulated enzyme of the renin-angiotensin system regulates blood pressure, fluid-electrolyte homeostasis, and renal morphogenesis. Whole body deletion of the renin gene results in severe morphological and functional derangements, including thickening of renal arterioles, hydronephrosis, and inability to concentrate the urine. Because renin is found in vascular and tubular cells, it has been impossible to discern the relative contribution of tubular versus vascular renin to such a complex phenotype. Therefore, we deleted renin independently in the vascular and tubular compartments by crossing Ren1(c fl/fl) mice to Foxd1-cre and Hoxb7-cre mice, respectively. Deletion of renin in the vasculature resulted in neonatal mortality that could be rescued with daily injections of saline. The kidneys of surviving mice showed the absence of renin, hypertrophic arteries, hydronephrosis, and negligible levels of plasma renin. In contrast, lack of renin in the collecting ducts did not affect kidney morphology, intra-renal renin, or circulating renin in basal conditions or in response to a homeostatic stress, such as sodium depletion. We conclude that renin generated in the renal vasculature is fundamental for the development and integrity of the kidney, whereas renin in the collecting ducts is dispensable for normal kidney development and cannot compensate for the lack of renin in the vascular compartment. Further, the main source of circulating renin is the kidney vasculature.
Collapse
Affiliation(s)
| | - Vidya K Nagalakshmi
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia; and
| | - Minghong Li
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia; and
| | - Curt D Sigmund
- Department of Pharmacology, University of Iowa Hospitals and Clinics Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia; and
| |
Collapse
|
31
|
Gonzalez AA, Prieto MC. Roles of collecting duct renin and (pro)renin receptor in hypertension: mini review. Ther Adv Cardiovasc Dis 2015; 9:191-200. [PMID: 25780059 PMCID: PMC4560657 DOI: 10.1177/1753944715574817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In angiotensin (Ang)-II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by Ang II type 1 (AT1) receptor independent of blood pressure. Although the regulation of JG renin is known, the mechanisms by which renin is regulated in the collecting duct are not completely understood. The presence of renin activity in the collecting duct may provide a pathway for intratubular Ang II formation since angiotensinogen substrate and angiotensin converting enzyme are present in the distal nephron. The recently named new member of the renin-angiotensin system (RAS), the (pro)renin receptor [(P)RR], is able to bind renin and the inactive prorenin, thus enhancing renin activity and fully activating prorenin. We have demonstrated that renin and (P)RR are augmented in renal tissues from rats infused with Ang II and during sodium depletion, suggesting a physiological role in intrarenal RAS activation. Importantly, (P)RR activation also causes activation of intracellular pathways associated with increased cyclooxygenase 2 expression and induction of profibrotic genes. In addition, renin and (P)RR are upregulated by Ang II in collecting duct cells. Although the mechanisms involved in their regulation are still under study, they seem to be dependent on the intrarenal RAS activation. The complexities of the mechanisms of stimulation also depend on cyclooxygenase 2 and sodium depletion. Our data suggest that renin and (P)RR can interact to increase intratubular Ang II formation and the activation of profibrotic genes in renal collecting duct cells. Both pathways may have a critical role in the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Minolfa C Prieto
- Department of Physiology, Rm 4061, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
32
|
Yang T. Crosstalk between (Pro)renin receptor and COX-2 in the renal medulla during angiotensin II-induced hypertension. Curr Opin Pharmacol 2015; 21:89-94. [PMID: 25681793 DOI: 10.1016/j.coph.2014.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 01/13/2023]
Abstract
Angiotensin II (AngII) is an octapeptide hormone that plays a central role in regulation of sodium balance, plasma volume, and blood pressure. Its role in the pathogenesis of hypertension is highlighted by the wide use of inhibitors of the renin-angiotensin system (RAS) as the first-line antihypertensive therapy. However, despite intensive investigation, the mechanism of AngII-induced hypertension is still incompletely understood. Although diverse pathways are likely involved, increasing evidence suggests that the activation of intrarenal RAS may represent a dominant mechanism of AngII-induced hypertension. (Pro)renin receptor (PRR), a potential regulator of intrarenal RAS, is expressed in the intercalated cells of the collecting duct (CD) and induced by AngII, in parallel with increased renin in the principal cells of the CD. Activation of PRR elevated PGE2 release and COX-2 expression in renal inner medullary cells whereas COX-2-derived PGE2via the EP4 receptor mediates the upregulation of PRR during AngII infusion, thus forming a vicious cycle. The mutually stimulatory relationship between PRR and COX-2 in the distal nephron may play an important role in mediating AngII-induced hypertension.
Collapse
Affiliation(s)
- Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States.
| |
Collapse
|
33
|
Morris BJ. Renin, genes, microRNAs, and renal mechanisms involved in hypertension. Hypertension 2015; 65:956-62. [PMID: 25601934 DOI: 10.1161/hypertensionaha.114.04366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Brian J Morris
- From the Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
34
|
Giani JF, Janjulia T, Taylor B, Bernstein EA, Shah K, Shen XZ, McDonough AA, Bernstein KE, Gonzalez-Villalobos RA. Renal generation of angiotensin II and the pathogenesis of hypertension. Curr Hypertens Rep 2014; 16:477. [PMID: 25097114 PMCID: PMC4277187 DOI: 10.1007/s11906-014-0477-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The existence of a complete and functional renin-angiotensin system along the nephron is widely recognized. However, its precise role in blood pressure control and, by extension, hypertension is still uncertain. While most investigators agree that overexpressing RAS components along the nephron results in hypertension, two important issues remain: whether the local RAS works as a separate entity or represents an extension of the systemic RAS and whether locally generated angiotensin II has specific renal effects on blood pressure that are distinct from systemic angiotensin II. This review addresses these issues while emphasizing the unique role of local angiotensin II in the response of the kidney to hypertensive stimuli and the induction of hypertension.
Collapse
Affiliation(s)
- Jorge F. Giani
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tea Janjulia
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian Taylor
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A. Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kandarp Shah
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z. Shen
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alicia A. McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth E. Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Romer A. Gonzalez-Villalobos
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Pfizer, DSRD CoE, 274 Eastern Point Road, MS 8274-1245, Groton, CT 06340, USA,
| |
Collapse
|
35
|
Ramkumar N, Stuart D, Rees S, Hoek AV, Sigmund CD, Kohan DE. Collecting duct-specific knockout of renin attenuates angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2014; 307:F931-8. [PMID: 25122048 DOI: 10.1152/ajprenal.00367.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological and pathophysiological significance of collecting duct (CD)-derived renin, particularly as it relates to blood pressure (BP) regulation, is unknown. To address this question, we generated CD-specific renin knockout (KO) mice and examined BP and renal salt and water excretion. Mice containing loxP-flanked exon 1 of the renin gene were crossed with mice transgenic for aquaporin-2-Cre recombinase to achieve CD-specific renin KO. Compared with controls, CD renin KO mice had 70% lower medullary renin mRNA and 90% lower renin mRNA in microdissected cortical CD. Urinary renin levels were significantly lower in KO mice (45% of control levels) while plasma renin concentration was significantly higher in KO mice (63% higher than controls) during normal-Na intake. While no observable differences were noted in BP between the two groups with varying Na intake, infusion of angiotensin II at 400 ng·kg(-1)·min(-1) resulted in an attenuated hypertensive response in the KO mice (mean arterial pressure 111 ± 4 mmHg in KO vs. 128 ± 3 mmHg in controls). Urinary renin excretion and epithelial Na(+) channel (ENaC) remained significantly lower in the KO mice following ANG II infusion compared with controls. Furthermore, membrane-associated ENaC protein levels were significantly lower in KO mice following ANG II infusion. These findings suggest that CD renin modulates BP in ANG II-infused hypertension and these effects are associated with changes in ENaC expression.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Sara Rees
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Alfred Van Hoek
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| |
Collapse
|
36
|
Giani JF, Janjulia T, Kamat N, Seth DM, Blackwell WLB, Shah KH, Shen XZ, Fuchs S, Delpire E, Toblli JE, Bernstein KE, McDonough AA, Gonzalez-Villalobos RA. Renal angiotensin-converting enzyme is essential for the hypertension induced by nitric oxide synthesis inhibition. J Am Soc Nephrol 2014; 25:2752-63. [PMID: 25012170 DOI: 10.1681/asn.2013091030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The kidney is an important source of angiotensin-converting enzyme (ACE) in many species, including humans. However, the specific effects of local ACE on renal function and, by extension, BP control are not completely understood. We previously showed that mice lacking renal ACE, are resistant to the hypertension induced by angiotensin II infusion. Here, we examined the responses of these mice to the low-systemic angiotensin II hypertensive model of nitric oxide synthesis inhibition with L-NAME. In contrast to wild-type mice, mice without renal ACE did not develop hypertension, had lower renal angiotensin II levels, and enhanced natriuresis in response to L-NAME. During L-NAME treatment, the absence of renal ACE was associated with blunted GFR responses; greater reductions in abundance of proximal tubule Na(+)/H(+) exchanger 3, Na(+)/Pi co-transporter 2, phosphorylated Na(+)/K(+)/Cl(-) cotransporter, and phosphorylated Na(+)/Cl(-) cotransporter; and greater reductions in abundance and processing of the γ isoform of the epithelial Na(+) channel. In summary, the presence of ACE in renal tissue facilitates angiotensin II accumulation, GFR reductions, and changes in the expression levels and post-translational modification of sodium transporters that are obligatory for sodium retention and hypertension in response to nitric oxide synthesis inhibition.
Collapse
Affiliation(s)
- Jorge F Giani
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tea Janjulia
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nikhil Kamat
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dale M Seth
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| | - Wendell-Lamar B Blackwell
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kandarp H Shah
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiao Z Shen
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sebastien Fuchs
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Alemán Hospital, Buenos Aires, Argentina
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Romer A Gonzalez-Villalobos
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California;
| |
Collapse
|
37
|
Wang F, Lu X, Peng K, Du Y, Zhou SF, Zhang A, Yang T. Prostaglandin E-prostanoid4 receptor mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Hypertension 2014; 64:369-77. [PMID: 24866147 DOI: 10.1161/hypertensionaha.114.03654] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiotensin II (Ang II) stimulates (pro)renin receptor (PRR) expression in the renal collecting duct, triggering the local renin response in the distal nephron. Our recent study provided evidence for involvement of cyclooxygenase-2-prostaglandin E2 pathway in Ang II-dependent stimulation of PRR expression in the collecting duct. Here, we tested the role of E-prostanoid (EP) subtypes acting downstream of cyclooxygenase-2 in this phenomenon. In primary rat inner medullary collecting duct cells, Ang II treatment for 12 hours induced a 1.8-fold increase in the full-length PRR protein expression. To assess the contribution of EP receptor, the cell was pretreated with specific EP receptor antagonists: SC-51382 (for EP1), L-798106 (for EP3), L-161982 (for EP4), and ONO-AE3-208 (ONO, a structurally distinct EP4 antagonist). The upregulation of PRR expression by Ang II was consistently abolished by L-161982 and ONO and partially suppressed by SC-51382 but was unaffected by L-798106. The PRR expression was also significantly elevated by the EP4 agonist CAY10598 in the absence of Ang II. Sprague-Dawley rats were subsequently infused for 1 or 2 weeks with vehicle, Ang II alone, or in combination with ONO. Ang II infusion induced parallel increases in renal medullary PRR protein and renal medullary and urinary renin activity and total renin content, all of which were blunted by ONO. Both tail cuff plethysmography and telemetry demonstrated attenuation of Ang II hypertension by ONO. Overall, these results have established a crucial role of the EP4 receptor in mediating the upregulation of renal medullary PRR expression and renin activity during Ang II hypertension.
Collapse
Affiliation(s)
- Fei Wang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Xiaohan Lu
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Kexin Peng
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Yaomin Du
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Shu-Feng Zhou
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Aihua Zhang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.)
| | - Tianxin Yang
- From the Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China (F.W., X.L., K.P., T.Y.); Department of Internal Medicine, University of Utah, Salt Lake City (F.W., X.L., T.Y.); Veterans Affairs Medical Center, Salt Lake City, UT (F.W., X.L., T.Y.); Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China (Y.D.); Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa (S.-F.Z.); and Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China (A.Z.).
| |
Collapse
|
38
|
Saito S, Shimizu H, Yisireyili M, Nishijima F, Enomoto A, Niwa T. Indoxyl sulfate-induced activation of (pro)renin receptor is involved in expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Endocrinology 2014; 155:1899-907. [PMID: 24601883 DOI: 10.1210/en.2013-1937] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of (pro)renin receptor (PRR) is involved in the progression of chronic kidney disease. However, the role of indoxyl sulfate, a uremic toxin, in the activation of PRR is not clear. The present study aimed to clarify the role of indoxyl sulfate in activation of PRR, in relation to renal expression of fibrotic genes. Renal expression of PRR and renin/prorenin was up-regulated in chronic kidney disease rats compared with normal rats, whereas AST-120 suppressed these expression by reducing serum levels of indoxyl sulfate. Furthermore, administration of indoxyl sulfate to normotensive and hypertensive rats increased renal expression of PRR and renin/prorenin. Indoxyl sulfate induced expression of PRR and prorenin in cultured human proximal tubular cells (HK-2 cells). Indoxyl sulfate-induced PRR expression was inhibited by small interfering RNAs of signal transducer and activator of transcription 3 (Stat3) and nuclear factor-κB p65 in proximal tubular cells. N-acetylcysteine, an antioxidant, and diphenyleneiodonium, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase, suppressed indoxyl sulfate-induced PRR expression in proximal tubular cells. N-acetylcysteine prevented indoxyl sulfate-induced phosphorylation of Stat3 in proximal tubular cells. PRR small interfering RNA inhibited indoxyl sulfate-induced expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Taken together, indoxyl sulfate-induced up-regulation of prorenin expression and activation of PRR through production of reactive oxygen species and activation of Stat3 and nuclear factor-κB play an important role in the expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Thus, indoxyl sulfate-induced activation of prorenin/PRR might be involved in renal fibrosis.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Carbon/therapeutic use
- Cell Line
- Chelating Agents/therapeutic use
- Disease Models, Animal
- Fibrosis
- Humans
- Hypertension, Renal/chemically induced
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Indican/adverse effects
- Indican/antagonists & inhibitors
- Indican/blood
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Oxides/therapeutic use
- RNA Interference
- Random Allocation
- Rats
- Rats, Inbred Dahl
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Up-Regulation/drug effects
- Prorenin Receptor
Collapse
Affiliation(s)
- Shinichi Saito
- Departments of Advanced Medicine for Uremia (S.S., H.S., M.Y., T.N.) and Pathology (A.E.), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; and Biomedical Research Laboratories (F.N.), Kureha Co, Tokyo 169-8503, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Bernstein KE, Giani JF, Shen XZ, Gonzalez-Villalobos RA. Renal angiotensin-converting enzyme and blood pressure control. Curr Opin Nephrol Hypertens 2014; 23:106-12. [PMID: 24378774 PMCID: PMC4028050 DOI: 10.1097/01.mnh.0000441047.13912.56] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents novel findings regarding the renal angiotensin-converting enzyme (ACE) and its role in blood pressure (BP) control. RECENT FINDINGS The textbook flow diagram of the renin-angiotensin system (RAS) shows the pulmonary endothelium as the main source of the ACE that converts angiotensin I to angiotensin II. However, ACE is made in large quantities by the kidneys, which raises the important question of what precisely is the function of renal ACE? Recent studies in gene-targeted mice indicates that renal ACE plays a dominant role in regulating the response of the kidney to experimental hypertension. In particular, renal ACE and locally generated angiotensin II affect the activity of several key sodium transporters and the induction of sodium and water retention resulting in the elevation of BP. SUMMARY New experimental data link the renal ACE/angiotensin II pathway and the local regulation of sodium transport as key elements in the development of hypertension.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | |
Collapse
|