1
|
Upadhyay A, Bakkalci D, Micalet A, Butler M, Bergin M, Moeendarbary E, Loizidou M, Cheema U. Dense Collagen I as a Biomimetic Material to Track Matrix Remodelling in Renal Carcinomas. ACS OMEGA 2024; 9:41419-41432. [PMID: 39398183 PMCID: PMC11465592 DOI: 10.1021/acsomega.4c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Aims: Renal tissue is a dynamic biophysical microenvironment, regulating healthy function and influencing tumor development. Matrix remodelling is an iterative process and aberrant tissue repair is prominent in kidney fibrosis and cancer. Biomimetic 3D models recapitulating the collagen composition and mechanical fidelity of native renal tissue were developed to investigate cell-matrix interactions in renal carcinomas. Methods: Collagen I and laminin hydrogels were engineered with renal cancer cells (ACHN and 786-O), which underwent plastic compression to generate dense matrices. Mechanical properties were determined using shear rheology and qPCR determined the gene expression of matrix markers. Results: The shear modulus and phase angle of acellular dense collagen I gels (474 Pa and 10.7) are similar to human kidney samples (1410 Pa and 10.5). After 21 days, 786-O cells softened the dense matrix (∼155 Pa), with collagen IV downregulation and upregulation of matrix metalloproteinases (MMP7 and MMP8). ACHN cells were found to be less invasive and stiffened the matrix to ∼1.25 kPa, with gene upregulation of collagen IV and the cross-linking enzyme LOX. Conclusions: Renal cancer cells remodel their biophysical environment, altering the material properties of tissue stroma in 3D models. These models can generate physiologically relevant stiffness to investigate the different matrix remodelling mechanisms utilized by cancer cells.
Collapse
Affiliation(s)
- Anuja Upadhyay
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Deniz Bakkalci
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Auxtine Micalet
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Matt Butler
- UCB
Pharma, 216 Bath Road, SL1 3WE Slough, United Kingdom
| | | | - Emad Moeendarbary
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Marilena Loizidou
- Division
of Surgery and Interventional Science, University
College London, Royal
Free Campus, Rowland Hill Street, NW3
2PF London, United
Kingdom
| | - Umber Cheema
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| |
Collapse
|
2
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
3
|
Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, Qu L, Luo P, Lin A, Wang L. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (Beijing) 2024; 5:e676. [PMID: 39092291 PMCID: PMC11292401 DOI: 10.1002/mco2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo-yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jinxin Li
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ziwei He
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ying Liu
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Kun Qiao
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yu Fang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Le Qu
- Department of UrologyJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
AlBarakat MM, Ahmed YB, Alshwayyat S, Ellaithy A, Y. Al-Shammari Y, Soliman Y, Rezq H, Abdelazeem B, Kunadi A. The efficacy and safety of cabozantinib in patients with metastatic or advanced renal cell carcinoma: a systematic review and meta-analysis. Proc AMIA Symp 2024; 37:822-830. [PMID: 39165809 PMCID: PMC11332639 DOI: 10.1080/08998280.2024.2363616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 08/22/2024] Open
Abstract
Background Cabozantinib, a new first-line treatment for advanced renal cell carcinoma (aRCC), targets essential tyrosine kinases and outperforms the established comparator (sunitinib) in various efficacy outcomes. This systematic review and meta-analysis aimed to assess the efficacy and safety of cabozantinib compared to other aRCC treatments. Methods Following PRISMA and Cochrane guidelines, our protocol was registered in PROSPERO. A systematic search, without date limits, was conducted on PubMed, Cochrane, Web of Science, and EMBASE until October 8, 2023. Data extraction encompassed study details, baseline information, and outcomes. Hazard ratios (HR) and risk ratios (RR) with 95% confidence intervals were employed for each outcome, and a random-effects model was applied to account for expected heterogeneity. Results Three studies, encompassing 967 patients, were included in our analysis. In terms of efficacy, the pooled rate for overall survival significantly favored cabozantinib. However, in subgroup analyses, cabozantinib was only statistically superior to everolimus. For progression-free survival and tumor objective response rate, cabozantinib outperformed both everolimus and sunitinib. In adverse events, compared to sunitinib, cabozantinib exhibited inferiority in nearly all evaluated aspects, except for nausea and stomatitis, which showed no difference between the two groups. Conversely, it demonstrated a comparable risk profile with everolimus across various side effects. Conclusion Cabozantinib shows significant efficacy in extending overall survival, progression-free survival, and tumor objective response rate despite a potentially higher risk of adverse events compared to sunitinib. These findings support cabozantinib as a first-line therapy for aRCC, either as an initial treatment or after prior VEGFR-targeted therapies.
Collapse
Affiliation(s)
- Majd M. AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Yaman B. Ahmed
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sakhr Alshwayyat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Asmaa Ellaithy
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | | - Hazem Rezq
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, West Virginia, USA
| | - Arvind Kunadi
- Internal Medicine and Nephrology Departments, McLaren Health Care, Flint, Michigan, USA
- Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Chen S, Li G, Pan R, Zhou K, Wen W, Tao J, Wang F, Han RPS, Pan H, Tu Y. Novel Near-Infrared Fluorescent Probe for Hepatocyte Growth Factor in Vivo Imaging in Surgical Navigation of Colorectal Cancer. Anal Chem 2024; 96:9016-9025. [PMID: 38780636 DOI: 10.1021/acs.analchem.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Despite recent advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable primarily due to high recurrence and liver metastasis rates. Fluorescence molecular imaging technologies, combined with specific probes, have gained prominence in facilitating real-time tumor resection guided by fluorescence. Hepatocyte growth factor (HGF) is overexpressed in CRC, but the advancement of HGF fluorescent probes has been impeded by the absence of effective HGF-targeting small-molecular ligands. Herein, we present the targeted capabilities of the novel V-1-GGGK-MPA probe labeled with a near-infrared fluorescent dye, which targets HGF in CRC. The V-1-GGGK peptide exhibits high specificity and selectivity for HGF-positive in vitro tumor cells and in vivo tumors. Biodistribution analysis of V-1-GGGK-MPA revealed tumor-specific accumulation with low background uptake, yielding signal-to-noise ratio (SNR) values of tumor-to-colorectal >6 in multiple subcutaneous CRC models 12 h postinjection. Quantitative analysis confirmed the probe's high uptake in SW480 and HT29 orthotopic and liver metastatic models, with SNR values of tumor-to-colorectal and -liver being 5.6 ± 0.4, 4.6 ± 0.5, and 2.1 ± 0.3, 2.0 ± 0.5, respectively, enabling precise tumor visualization for surgical navigation. Pathological analysis demonstrated the excellent tumor boundaries discrimination capacity of the V-1-GGGK-MPA probe at the molecular level. With its rapid tumor targeting, sustained tumor retention, and precise tumor boundary delineation, V-1-GGGK-MPA merges as a promising HGF imaging agent, enriching the toolbox of intraoperative navigational fluorescent probes for CRC.
Collapse
Affiliation(s)
- Shuying Chen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Rongbin Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weijie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ji Tao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Fang Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huaping Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
6
|
Bruchbacher A, Franke J, Alimohammadi A, Laukhtina E, Fajkovic H, Schmidinger M. Real-World Results of Cabozantinib Given as Alternative Schedule in Metastatic Renal Cell Carcinoma. Clin Genitourin Cancer 2024; 22:98-108. [PMID: 37926597 DOI: 10.1016/j.clgc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The multikinase-inhibitor Cabozantinib is a widely used treatment strategy in metastatic renal cell carcinoma (mRCC), either in combination with the programmed cell death protein-1 (PD-1) inhibitor nivolumab or as monotherapy. Cabozantinib is given continuously at a dose of 60 mg once daily when used as a single agent and at 40 mg when combined with nivolumab. Treatment-related adverse events (TRAE's) were shown to occur frequently. OBJECTIVE We aimed to assess the safety and efficacy of cabozantinib in patients with mRCC. Patients were treated in various lines. Furthermore, we analyzed the impact of an alternative treatment schedule in patients not able to maintain continuous dosing. PATIENTS This is a single center retrospective study from the Medical University of Vienna. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Overall response rates (ORR), progression free survival (PFS) and overall survival (OS) were evaluated for the entire cohort, by treatment line and by treatment schedule. RESULTS Between January 2014 until April 2021, 71 patients received cabozantinib. Sixty-seven patients were eligible for full evaluation. By IMDC criteria, 32.4%, 59.2%, and 8.5% were classified as favorable, intermediate and poor risk respectively. Cabozantinib was offered as a 2nd-line or 3rd-line treatment in 38.0% and 32.4% of patients, respectively. An alternative treatment schedule was offered in 39.1% of patients. Objective responses were found in 43.3% (CR 6%) of patients and the median PFS was 10.8 months (95% CI: 5.5-16.2). When compared to continuous dosing, an alternative treatment schedule was associated with longer PFS (12.2 months (95% CI: 0-25.5) vs. 6.1 months (95% CI: 0.37-11.8) (P = .014, HR 0.46 (95% CI: 0.24-0.86), respectively) and a lower frequency and severity of TRAE's. CONCLUSIONS Safety and efficacy of cabozantinib in real world is comparable to what has been observed in the pivotal trials, irrespective of the treatment line. An alternative schedule may further improve efficacy and safety.
Collapse
Affiliation(s)
| | - Johannes Franke
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Arman Alimohammadi
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ekaterina Laukhtina
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Harun Fajkovic
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Manuela Schmidinger
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Wu Y, Chen S, Yang X, Sato K, Lal P, Wang Y, Shinkle AT, Wendl MC, Primeau TM, Zhao Y, Gould A, Sun H, Mudd JL, Hoog J, Mashl RJ, Wyczalkowski MA, Mo CK, Liu R, Herndon JM, Davies SR, Liu D, Ding X, Evrard YA, Welm BE, Lum D, Koh MY, Welm AL, Chuang JH, Moscow JA, Meric-Bernstam F, Govindan R, Li S, Hsieh J, Fields RC, Lim KH, Ma CX, Zhang H, Ding L, Chen F. Combining the Tyrosine Kinase Inhibitor Cabozantinib and the mTORC1/2 Inhibitor Sapanisertib Blocks ERK Pathway Activity and Suppresses Tumor Growth in Renal Cell Carcinoma. Cancer Res 2023; 83:4161-4178. [PMID: 38098449 PMCID: PMC10722140 DOI: 10.1158/0008-5472.can-23-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 12/18/2023]
Abstract
Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Xiaolu Yang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Andrew T. Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael C. Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Tina M. Primeau
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Alanna Gould
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Jacqueline L. Mudd
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - R. Jay Mashl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew A. Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - John M. Herndon
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Sherri R. Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Di Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Xi Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yvonne A. Evrard
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Bryan E. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Mei Yee Koh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jeffrey A. Moscow
- Investigational Drug Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Ramaswamy Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - James Hsieh
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ryan C. Fields
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kian-Huat Lim
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia X. Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
8
|
Domański P, Jarosińska J, Kruczyk B, Piętak M, Mydlak A, Demkow T, Kuncman Ł, Darewicz M, Sikora-Kupis B, Dumnicka P, Kucharz J. Activity of cabozantinib in further line treatment of metastatic clear cell renal cell carcinoma. Real-world experience in a single-center retrospective study. Contemp Oncol (Pozn) 2023; 27:190-197. [PMID: 38239858 PMCID: PMC10793615 DOI: 10.5114/wo.2023.133545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Cabozantinib is an oral inhibitor of MET, AXL, and vascular endothelial growth factor receptors. It has an immunomodulatory effect and may influence the tumor's microenvironment and make mutated cells more sensitive to immune-mediated killing. These properties have made cabozantinib an effective drug for first-line or subsequent-line treatment after progression of metastatic renal cell carcinoma (mRCC), even after immunotherapy. Material and methods Seventy-one patients with mRCC were treated with second or further lines of cabozantinib at the Department of Genitourinary Oncology, Maria Sklodowska-Curie National Research Institute of Oncology. This study retrospectively evaluated the effectiveness of cabozantinib in subsequent lines of treatment. Progression-free survival (PFS) and overall survival (OS) were the primary endpoints. The best overall response (BOR) to cabozantinib was the secondary endpoint. For this purpose, Cox's proportional hazard model was used. Results The median PFS was 11 months (5; 23) and the median OS was 16 months (10; 42) and differed significantly in the second and further lines of treatment. Progression in the second and further lines was observed in 28 (93%) and 27 (66%) patients, respectively (p = 0.006). Partial response as the BOR was observed in one patient (3%) in the second line and 13 patients (32%) in the further lines (p = 0.012). Conclusions Cabozantinib has antitumor effects in the second and further lines of treatment. In this study we observed high efficiency of cabozantinib in further lines of treatment.
Collapse
Affiliation(s)
- Piotr Domański
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Experimental Immunotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jadwiga Jarosińska
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Kruczyk
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Piętak
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Mydlak
- Department of Experimental Immunotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Demkow
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Łódź, Poland
- Department of External Beam Radiotherapy, Nicolaus Copernicus Multidisciplinary Center for Oncology and Traumatology, Łódź, Poland
| | - Marta Darewicz
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Bożena Sikora-Kupis
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Dumnicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Kucharz
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
9
|
Rawat L, Balan M, Sasamoto Y, Sabarwal A, Pal S. A novel combination therapy with Cabozantinib and Honokiol effectively inhibits c-Met-Nrf2-induced renal tumor growth through increased oxidative stress. Redox Biol 2023; 68:102945. [PMID: 37898101 PMCID: PMC10628632 DOI: 10.1016/j.redox.2023.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Receptor tyrosine kinase (RTK), c-Met, is overexpressed and hyper active in renal cell carcinoma (RCC). Most of the therapeutic agents mediate cancer cell death through increased oxidative stress. Induction of c-Met in renal cancer cells promotes the activation of redox-sensitive transcription factor Nrf2 and cytoprotective heme oxygenase-1 (HO-1), which can mediate therapeutic resistance against oxidative stress. c-Met/RTK inhibitor, Cabozantinib, has been approved for the treatment of advanced RCC. However, acquired drug resistance is a major hurdle in the clinical use of cabozantinib. Honokiol, a naturally occurring phenolic compound, has a great potential to downregulate c-Met-induced pathways. In this study, we found that a novel combination treatment with cabozantinib + Honokiol inhibits the growth of renal cancer cells in a synergistic manner through increased production of reactive oxygen species (ROS); and it significantly facilitates apoptosis-and autophagy-mediated cancer cell death. Activation of c-Met can induce Rubicon (a negative regulator of autophagy) and p62 (an autophagy adaptor protein), which can stabilize Nrf2. By utilizing OncoDB online database, we found a positive correlation among c-Met, Rubicon, p62 and Nrf2 in renal cancer. Interestingly, the combination treatment significantly downregulated Rubicon, p62 and Nrf2 in RCC cells. In a tumor xenograft model, this combination treatment markedly inhibited renal tumor growth in vivo; and it is associated with decreased expression of Rubicon, p62, HO-1 and vessel density in the tumor tissues. Together, cabozantinib + Honokiol combination can significantly inhibit c-Met-induced and Nrf2-mediated anti-oxidant pathway in renal cancer cells to promote increased oxidative stress and tumor cell death.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yuzuru Sasamoto
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
An B, Nie W, Hu J, Fan Y, Nie H, Wang M, Zhao Y, Yao H, Ren Y, Zhang C, Wei M, Li W, Liu J, Yang C, Zhang Y, Li X, Tian G. A novel c-Met/TRK inhibitor 1D228 efficiently inhibits tumor growth by targeting angiogenesis and tumor cell proliferation. Cell Death Dis 2023; 14:728. [PMID: 37945598 PMCID: PMC10636171 DOI: 10.1038/s41419-023-06246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Multiple tumors are synergistically promoted by c-Met and TRK, and blocking their cross-signalling pathway may give better effects. In this study, we developed a tyrosine kinase inhibitor 1D228, which exhibited excellent anti-tumor activity by targeting c-Met and TRK. Models in vitro, 1D228 showed a significant better inhibition on cancer cell proliferation and migration than the positive drug Tepotinib. Models in vivo, 1D228 showed robust anti-tumor effect on gastric and liver tumor growth with 94.8% and 93.4% of the TGI, respectively, comparing 67.61% and 63.9% of Tepotinib. Importantly, compared with the combination of Larotrectinib and Tepotinib, 1D228 monotherapy in MKN45 xenograft tumor models showed stronger antitumor activity and lower toxicity. Mechanistic studies showed that 1D228 can largely inhibit the phosphorylation of TRKB and c-Met. Interestingly, both kinases, TRKs and c-Met, have been found to be co-expressed at high levels in patients with gastric cancer through IHC. Furthermore, bioinformatics analysis has revealed that both genes are abnormally co-expressed in multiple types of cancer. Cell cycle analysis found that 1D228 induced G0/G1 arrest by inhibiting cyclin D1. Additionally, vascular endothelial cells also showed a pronounced response to 1D228 due to its expression of TRKB and c-Met. 1D228 suppressed the migration and tube formation of endothelial cells, which are the key functions of tumor angiogenesis. Taken together, compound 1D228 may be a promising candidate for the next generation of c-Met and TRK inhibitors for cancer treatment, and offers a novel potential treatment strategy for cancer patients with abnormal expressions of c-Met or NTRK, or simultaneous of them.
Collapse
Affiliation(s)
- Baijiao An
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Wenyan Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Jinhui Hu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yangyang Fan
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Haoran Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Mengxuan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Yaxuan Zhao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Han Yao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yuanyuan Ren
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Chuanchuan Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Mengna Wei
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Jiadai Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Chunhua Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Yin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China.
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, 264003, PR China.
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Geng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China.
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
11
|
Ishihara H, Nemoto Y, Tachibana H, Fukuda H, Yoshida K, Kobayashi H, Iizuka J, Hashimoto Y, Kondo T, Takagi T. Real-world efficacy and safety of cabozantinib following immune checkpoint inhibitor failure in Japanese patients with advanced renal cell carcinoma. Jpn J Clin Oncol 2023; 53:977-983. [PMID: 37519060 DOI: 10.1093/jjco/hyad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Real-world data of cabozantinib after failure of immune checkpoint inhibitors for advanced renal cell carcinoma in Japanese population are limited. Additionally, prognostic factors of cabozantinib in this setting are still unknown. METHODS We retrospectively evaluated data of 56 patients treated with cabozantinib subsequent to failed immune checkpoint inhibitors at four institutions. Regarding the efficacy profile, progression-free survival, overall survival and objective response rate were assessed. In terms of the safety profile, rate of adverse events, dose reduction and treatment interruption were assessed. Furthermore, risk factors of progression-free survival were analyzed. RESULTS Twenty-nine patients (52%) were treated with cabozantinib as second-line therapy. Most frequent prior immune checkpoint inhibitor treatment was nivolumab plus ipilimumab combination therapy as first-line therapy (n = 30, 54%). Median progression-free survival and overall survival were 9.76 and 25.5 months, respectively, and objective response rate was 34%. All patients experienced at least one adverse event, and grade ≥ 3 adverse events were observed in 31 patients (55%). Forty-four (79%) and 31 (55%) patients needed dose reduction and treatment interruption, respectively. Multivariate analysis showed that reduced initial dose (i.e. <60 mg) (hazard ratio: 2.50, P = 0.0355) and presence of lymph node metastasis (hazard ratio: 2.50, P = 0.0172) were independent factors of shorter progression-free survival. CONCLUSION Cabozantinib in Japanese patients with advanced renal cell carcinoma who failed immune checkpoint inhibitors was efficacious and had a manageable safety profile. These results appear to be similar to those of previous clinical trials.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yuki Nemoto
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
- Department of Urology, Tokyo Women's Medical University, Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | | | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiko Yoshida
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hirohito Kobayashi
- Department of Urology, Tokyo Women's Medical University, Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yasunobu Hashimoto
- Department of Urology, Saiseikai Kawaguchi General Hospital, Kawaguchi, Saitama, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University, Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
12
|
Alchahin AM, Tsea I, Baryawno N. Recent Advances in Single-Cell RNA-Sequencing of Primary and Metastatic Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:4734. [PMID: 37835428 PMCID: PMC10571653 DOI: 10.3390/cancers15194734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past two decades, significant progress has been made in the treatment of clear cell renal cell carcinoma (ccRCC), with a shift towards adopting new treatment approaches ranging from monotherapy to triple-combination therapy. This progress has been spearheaded by fundamental technological advancements that have allowed a deeper understanding of the various biological components of this cancer. In particular, the rapid commercialization of transcriptomics technologies, such as single-cell RNA-sequencing (scRNA-seq) methodologies, has played a crucial role in accelerating this understanding. Through precise measurements facilitated by these technologies, the research community has successfully identified and characterized diverse tumor, immune, and stromal cell populations, uncovering their interactions and pathways involved in disease progression. In localized ccRCC, patients have shown impressive response rates to treatment. However, despite the emerging findings and new knowledge provided in the field, there are still patients that do not respond to treatment, especially in advanced disease stages. One of the key challenges lies in the limited study of ccRCC metastases compared to localized cases. This knowledge gap may contribute to the relatively low survival rates and response rates observed in patients with metastatic ccRCC. To bridge this gap, we here delve into recent research utilizing scRNA-seq technologies in both primary and metastatic ccRCC. The goal of this review is to shed light on the current state of knowledge in the field, present existing treatment options, and emphasize the crucial steps needed to improve survival rates, particularly in cases of metastatic ccRCC.
Collapse
Affiliation(s)
| | | | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 10000-19999 Stockholm, Sweden; (A.M.A.); (I.T.)
| |
Collapse
|
13
|
Huang W, Peng Y, Zhang Y, Qiu Y, Liu Y, Wang A, Kang L. Multimodality imaging of Xp11.2 translocation/TFE3 gene fusion associated with renal cell carcinoma: a case report. Front Med (Lausanne) 2023; 10:1266630. [PMID: 37795411 PMCID: PMC10546202 DOI: 10.3389/fmed.2023.1266630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Background Xp11.2 translocation/TFE3 gene fusion associated with renal cell carcinoma (Xp11.2 RCC) exhibits unique biological characteristics and is associated with an increased incidence of tumor thrombosis, lymph node metastasis, and advanced disease stages. Multimodality imaging, including US, contrast-enhanced CT, multi-parametric MRI, and 18F-FDG PET/CT plays a crucial role in the preoperative diagnosis and differentiation of renal tumors. Case report A 15-year-old female presented with lumbar pain worsened, and developed persistent painless hematuria. The CT attenuation values of the scan without contrast, corticomedullary phase, nephrographic phase, and delayed phases were 35 HU, 83 HU, 82 HU, and 75 HU, respectively. The solid component of the mass displayed heterogeneous marked enhancement. Furthermore, MRU indicated that the lesion involved the cortical medulla and infringed on the renal sinus fat. The lesion appeared isosignal in T1WI, slightly low signal in T2WI, and slightly high signal in DWI. The degree of enhancement in the three phases of enhancement scan was lower than that in the renal parenchyma, and hemorrhage and necrosis were observed within the internal part of the lesion. To further clarify the staging, the patient underwent 18F-FDG PET/CT. PET/CT images showed multiple irregular occupancies in the right kidney with unclear borders, showing a heterogeneous increase in 18F-FDG uptake, with SUVmax values ranging from 2.3 to 5.2 in the routine imaging phase (60 min post-injection), compared to SUVmax values ranging from 2.8 to 6.9 in the delayed imaging phase (160 min post-injection). Additionally, multiple enlarged and fused lymph nodes were observed in the medial part of the right kidney and the retroperitoneum, exhibiting a heterogeneous increase in 18F-FDG uptake, with SUVmax values ranging from 4.1 to 8.7 in the routine imaging phase, compared to SUVmax values ranging from 4.4 to 9.1 in the delayed imaging phase. The postoperative pathology, immunohistochemistry, and molecular analysis of histiocytes were consistent with a diagnosis of Xp11.2 RCC. One month after surgery, enhanced-CT examination of the patient revealed lung metastasis, peritoneal metastasis, and multiple lymph node metastases throughout the body, with an overall survival of 16 months. Conclusion Xp11.2 RCC exhibits unique biological characteristics and is associated with an increased incidence of tumor thrombosis, lymph node metastasis, and advanced disease stages. Long-term follow-up is essential to monitor the likelihood of recurrence and metastasis. 18F-FDG PET/CT examination can comprehensively visualize the lesion's location and extent, providing a basis for clinical tumor staging and aiding in treatment monitoring and follow-up. To address the limitations of FDG, the utilization of specific tracers designed for RCC or tracers that are not excreted via the urinary system would be ideal. Further advancements in molecular imaging technologies and the development of novel tracers hold great promise in advancing the diagnosis and management of RCC, ultimately contributing to better patient outcomes and overall disease management.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yushuo Peng
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yi Liu
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Aixiang Wang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Suárez C, Larkin JMG, Patel P, Valderrama BP, Rodriguez-Vida A, Glen H, Thistlethwaite F, Ralph C, Srinivasan G, Mendez-Vidal MJ, Hartmaier R, Markovets A, Prendergast A, Szabados B, Mousa K, Powles T. Phase II Study Investigating the Safety and Efficacy of Savolitinib and Durvalumab in Metastatic Papillary Renal Cancer (CALYPSO). J Clin Oncol 2023; 41:2493-2502. [PMID: 36809050 DOI: 10.1200/jco.22.01414] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
PURPOSE Metastatic papillary renal cancer (PRC) has poor outcomes, and new treatments are required. There is a strong rationale for investigating mesenchymal epithelial transition receptor (MET) and programmed cell death ligand-1 (PD-L1) inhibition in this disease. In this study, the combination of savolitinib (MET inhibitor) and durvalumab (PD-L1 inhibitor) is investigated. METHODS This single-arm phase II trial explored durvalumab (1,500 mg once every four weeks) and savolitinib (600 mg once daily; ClinicalTrials.gov identifier: NCT02819596). Treatment-naïve or previously treated patients with metastatic PRC were included. A confirmed response rate (cRR) of > 50% was the primary end point. Progression-free survival, tolerability, and overall survival were secondary end points. Biomarkers were explored from archived tissue (MET-driven status). RESULTS Forty-one patients treated with advanced PRC were enrolled into this study and received at least one dose of study treatment. The majority of patients had Heng intermediate risk score (n = 26 [63%]). The cRR was 29% (n = 12; 95% CI, 16 to 46), and the trial therefore missed the primary end point. The cRR increased to 53% (95% CI, 28 to 77) in MET-driven patients (n/N = 9/27) and was 33% (95% CI, 17 to 54) in PD-L1-positive tumors (n/N = 9/27). The median progression-free survival was 4.9 months (95% CI, 2.5 to 10.0) in the treated population and 12.0 months (95% CI, 2.9 to 19.4) in MET-driven patients. The median overall survival was 14.1 months (95% CI, 7.3 to 30.7) in the treated population and 27.4 months (95% CI, 9.3 to not reached [NR]) in MET-driven patients. Grade 3 and above treatment related adverse events occurred in 17 (41%) patients. There was 1 grade 5 treatment-related adverse event (cerebral infarction). CONCLUSION The combination of savolitinib and durvalumab was tolerable and associated with high cRRs in the exploratory MET-driven subset.
Collapse
Affiliation(s)
- Cristina Suárez
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Poulam Patel
- Nottingham University Hospital NHS Trust, Nottingham, United Kingdom
| | | | | | - Hilary Glen
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Fiona Thistlethwaite
- The Christie NHS Foundation Trust and University of Manchester, Manchester, United Kingdom
| | - Christy Ralph
- St. James's Institute of Oncology, University of Leeds, Leeds, United Kingdom
| | | | | | - Ryan Hartmaier
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD
| | | | - Aaron Prendergast
- Barts ECMC, Barts Cancer Institute, Queen Mary University London, London, United Kingdom
| | - Bernadett Szabados
- Barts ECMC, Barts Cancer Institute, Queen Mary University London, London, United Kingdom
| | - Kelly Mousa
- Barts ECMC, Barts Cancer Institute, Queen Mary University London, London, United Kingdom
| | - Thomas Powles
- Barts ECMC, Barts Cancer Institute, Queen Mary University London, London, United Kingdom
| |
Collapse
|
15
|
Shayeb AM, McManus HD, Urman D, Jani C, Zhang T, Dizman N, Meza L, Sivakumar A, Gan CL, Barata P, Bilen MA, Gao X, Heng D, Pal S, Narra R, Kilari D, Kaymakcalan MD, McGregor B, Choueiri TK, McKay RR. Cabozantinib Safety With Different Anticoagulants in Patients With Renal Cell Carcinoma. Clin Genitourin Cancer 2023; 21:55-62. [PMID: 36411184 DOI: 10.1016/j.clgc.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In patients with renal cell carcinoma (RCC) on cabozantinib, venous thromboembolism (VTE) management remains challenging due to limited safety data regarding direct oral anticoagulants (DOACs) use in conjunction with cabozantinib. We investigated the safety of cabozantinib with different anticoagulants in patients with RCC. METHODS In this retrospective multicenter study (9 sites), patients with advanced RCC were allocated into 4 groups: (1) cabozantinib without anticoagulation, cabozantinib with concomitant use of (2) DOACs, (3) low molecular weight heparin (LMWH), or (4) warfarin. The primary safety endpoint was the proportion of major bleeding events (defined per International Society on Thrombosis and Hemostasis criteria). The primary efficacy endpoint was the proportion of new/recurrent VTE while anticoagulated. RESULTS Between 2016 and 2020, 298 patients with RCC received cabozantinib (no anticoagulant = 178, LMWH = 41, DOAC = 64, and warfarin = 15). Most patients had clear cell histology (78.5%) and IMDC intermediate/poor disease (78.2%). Cabozantinib was first, second, or ≥ third line in 21.8%, 31.9%, 43.3% of patients, respectively. Overall, there was no difference in major bleeding events between the no anticoagulant, LMWH, and DOAC groups (P = .088). Rate of new/recurrent VTE was similar among anticoagulant groups. Patients with a VTE had a statistically significantly worse survival than without a VTE (HR 1.48 [CI 95% 1.05-2.08, P = .02]). CONCLUSION This real-world cohort provides first data on bleeding and thrombosis complications in patients with RCC treated with cabozantinib with or without concurrent anticoagulation. DOACs appear safe for VTE treatment for patients with RCC on cabozantinib, but optimized anticoagulation management, including individualized risk-benefit discussion, remains important in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Chinmay Jani
- Mount Auburn Hospital - Harvard Medical School, Cambridge, MA
| | | | | | | | | | - Chun L Gan
- Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Pedro Barata
- University Hospitals Seidman Cancer Center, Cleveland, OH
| | | | - Xin Gao
- Massachusetts General Hospital, Boston, MA
| | - Daniel Heng
- Tom Baker Cancer Center, Calgary, Alberta, Canada
| | | | - Ravi Narra
- Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | | | - Rana R McKay
- University of California San Diego, La Jolla, CA.
| |
Collapse
|
16
|
Su P, Zhang M, Kang X. Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol 2023; 13:1071030. [PMID: 36959792 PMCID: PMC10028134 DOI: 10.3389/fonc.2023.1071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
At present, studies have found that c-Met is mainly involved in epithelial-mesenchymal transition (EMT) of tumor tissues in urologic neoplasms. Hepatocyte growth factor (HGF) combined with c-Met promotes the mitosis of tumor cells, and then induces motility, angiogenesis, migration, invasion and drug resistance. Therefore, c-Met targeting therapy may have great potential in urologic neoplasms. Many strategies targeting c-Met have been widely used in the study of urologic neoplasms. Although the use of targeting c-Met therapy has a strong biological basis for the treatment of urologic neoplasms, the results of current clinical trials have not yielded significant results. To promote the application of c-Met targeting drugs in the clinical treatment of urologic neoplasms, it is very important to study the detailed mechanism of c-Met in urologic neoplasms and innovate c-Met targeted drugs. This paper firstly discussed the value of c-Met targeted therapy in urologic neoplasms, then summarized the related research progress, and finally explored the potential targets related to the HGF/c-Met signaling pathway. It may provide a new concept for the treatment of middle and late urologic neoplasms.
Collapse
|
17
|
Sekino Y, Teishima J, Liang G, Hinata N. Molecular mechanisms of resistance to tyrosine kinase inhibitor in clear cell renal cell carcinoma. Int J Urol 2022; 29:1419-1428. [PMID: 36122306 PMCID: PMC10087189 DOI: 10.1111/iju.15042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Loss of von Hippel-Lindau tumor suppressor gene is frequently observed in ccRCC and increases the expression of hypoxia-inducible factors and their targets, including epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor. Tyrosine kinase inhibitors (TKIs) offer a survival benefit in metastatic renal cell carcinoma (mRCC). Recently, immune checkpoint inhibitors have been introduced in mRCC. Combination therapy with TKIs and immune checkpoint inhibitors significantly improved patient outcomes. Therefore, TKIs still play an essential role in mRCC treatment. However, the clinical utility of TKIs is compromised when primary and acquired resistance are encountered. The mechanism of resistance to TKI is not fully elucidated. Here, we comprehensively reviewed the molecular mechanisms of resistance to TKIs and a potential strategy to overcome this resistance. We outlined the involvement of angiogenesis, non-angiogenesis, epithelial-mesenchymal transition, activating bypass pathways, lysosomal sequestration, non-coding RNAs, epigenetic modifications and tumor microenvironment factors in the resistance to TKIs. Deep insight into the molecular mechanisms of resistance to TKIs will help to better understand the biology of RCC and can ultimately help in the development of more effective therapies.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Song L, Zhang L, Zhou Y, Shao X, Xu Y, Pei D, Wang Q. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Dis 2022; 8:219. [PMID: 35449154 PMCID: PMC9023482 DOI: 10.1038/s41420-022-01023-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Abstract
ORP5, a lipid transporter, has been reported to increase the metastasis of several cancers. However, the potential mechanisms of ORP5 in renal cell carcinoma (RCC) remain unclear. In this study, we demonstrated that ORP5 was commonly overexpressed in tumor cells and tissues of RCC, and associated with tumor progression. Overexpression of ORP5 could promote RCC cells migration and invasion. In addition, the results suggested that the expression of ORP5 was favorably associated with c-Met expression, and ORP5 promoted RCC cells metastasis by upregulating c-Met in vitro and in vivo. Mechanistically, ORP5 facilitated the ubiquitination and degradation of c-Cbl (the E3 ligase of c-Met), and thus inhibited c-Met lysosomal degradation, which resulted in the stabilization of c-Met. In general, these findings revealed the role of ORP5 in contributing to tumorigenesis via upregulating c-Met in RCC.
Collapse
Affiliation(s)
- Li Song
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Lin Zhang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yun Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China
| | - Xiaotong Shao
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yuting Xu
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
19
|
c-Met and EPHA7 Receptor Tyrosine Kinases Are Related to Prognosis in Clear Cell Renal Cell Carcinoma: Focusing on the Association with Myoferlin Expression. Cancers (Basel) 2022; 14:cancers14041095. [PMID: 35205843 PMCID: PMC8870418 DOI: 10.3390/cancers14041095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are important targets for clear cell renal cell carcinoma (ccRCC) treatment. Myoferlin is a strong regulator of RTKs. To identify myoferlin-associated RTKs and their prognostic implications in ccRCC, we investigated the expression of RTKs and myoferlin using proteome-based evaluation and immunohistochemical staining in tissue microarray. Multivariate Cox analysis adjusted for TNM stage and WHO grade was performed (n = 410 and 506). Proteomic analysis suggested c-Met and EPHA7 as novel candidates for myoferlin-associated RTKs. We immunohistochemically validated the positive association between c-Met and myoferlin expression. High c-Met expression was independently associated with overall (hazard ratio (HR) = 1.153-2.919) and cancer-specific survival (HR = 1.150-3.389). The prognostic effect of high c-Met expression was also determined in an independent cohort (overall survival, HR = 1.503-3.771). Although expression of EPHA7 and myoferlin was not correlated, EPHA7 expression was independently associated with progression-free (HR = 1.237-4.319) and cancer-specific survival (HR = 1.214-4.558). In addition, network-based prioritization showed co-functional enrichment of c-Met and myoferlin, suggesting a novel regulatory function of myoferlin in c-Met signaling. This study indicates that c-Met and EPHA7 might be useful prognostic biomarkers, and the presumed myoferlin/c-Met pathway could be a novel therapeutic target in ccRCC.
Collapse
|
20
|
Adashek JJ, Breunig JJ, Posadas E, Bhowmick NA, Ellis L, Freedland SJ, Kim H, Figlin R, Gong J. First-line Immune Checkpoint Inhibitor Combinations in Metastatic Renal Cell Carcinoma: Where Are We Going, Where Have We Been? Drugs 2022; 82:439-453. [PMID: 35175588 DOI: 10.1007/s40265-022-01683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 01/03/2023]
Abstract
The combination of targeted therapy and immunotherapy in the treatment of metastatic renal cell carcinoma (mRCC) has significantly improved outcomes for many patients. There are multiple FDA-approved regimens for the frontline setting based on numerous randomized Phase III trials. Despite these efforts, there remains a conundrum of identifying a biomarker-driven approach for these patients and it is unclear how to predict which patients are most likely to respond to these agents. This is due, in part, to an incomplete understanding of how these drug combinations work. The use of tyrosine kinase inhibitors that have multiple 'off-target' effects may lend themselves to the benefits observed when given in combination with immunotherapy. Further, targeting multiple clones within a patient's heterogenic tumor that are responsive to targeted therapy and others that are responsive to immunotherapy may also explain some level of improved response rates to the combination approaches compared to monotherapies. This review highlights the 5 FDA-approved regimens for mRCC in the frontline setting and offers insights into potential mechanisms for improved outcomes seen in these combination approaches.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joshua J Breunig
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Edwin Posadas
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Neil A Bhowmick
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Leigh Ellis
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Stephen J Freedland
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA.,Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Section of Urology, Durham VA Medical Center, Durham, NC, USA
| | - Hyung Kim
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA.,Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Jun Gong
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA.
| |
Collapse
|
21
|
Erlmeier F, Bruecher B, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos FC, Walter B, Otto W, Burger M, Schrader AJ, Hartmann A, Mondorf Y, Ivanyi P, Mikuteit M, Steffens S. cMET - a prognostic marker in papillary renal cell carcinoma? Hum Pathol 2022; 121:1-10. [PMID: 34998840 DOI: 10.1016/j.humpath.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The tyrosine-protein kinase c-Met plays a decisive role in numerous cellular processes, as a proto-oncogene that supports aggressive tumor behavior. It is still unknown whether c-Met could be relevant for prognosis of papillary RCC (pRCC). PATIENTS AND METHODS Specimen collection were a collaboration of the PANZAR consortium. Patients' medical history and tumor specimens were collected from n=197 and n=110 patients with type 1 and 2 pRCC, respectively. Expression of cMET was determined by immunohistochemistry (IHC). RESULTS In total, cMET staining was evaluable in of 97/197 type 1 and 63/110 type 2 of pRCC cases. Five-years overall survival reviled no significant difference in dependence of cMET positivity (cMET- vs. cMET+: pRCC type 1: 84.8 % vs. 80.3 %, respectively (p=0.303, log-rank); type 2: 71.4 % vs. 64.4 % respectively (p= 0.239, log-rank)). Interestingly, the subgroup analyses showed a significant difference for cMET expression in T stage and metastases of the pRCC type 2 (p=0.014, p=0.022, chi-square). The cMET positive type 2 collective developed more metastases compared to the cMET negative cohort (pRCC Typ 2 M+: cMET-: 2 (4.3%) vs. cMET+: 12 (19%)). CONCLUSION CMET expression did not qualify as a prognostic marker in pRCC for overall survival.
Collapse
Affiliation(s)
- Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
.
| | - Benedict Bruecher
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421
Homburg, Germany
| | - Christian Wülfing
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, 35037 Marburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421
Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich
Alexander University (FAU), 91058 Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, 44625 Herne, Germany
| | | | - Frederik C Roos
- Department of Urology, University Hospital Frankfurt, 60590 Frankfurt/Main, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich
Alexander University (FAU), 91058 Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, 93053 Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, 93053 Regensburg, Germany
| | - Andres Jan Schrader
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Yvonne Mondorf
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Marie Mikuteit
- Hannover Medical School: Medizinische Hochschule Hannover, Hannover, Germany
| | - Sandra Steffens
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | | |
Collapse
|
22
|
Morbidelli L, Donnini S. Introduction. ANTIANGIOGENIC DRUGS AS CHEMOSENSITIZERS IN CANCER THERAPY 2022:1-28. [DOI: 10.1016/b978-0-323-90190-1.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Yu J, Zhang L, Peng J, Ward R, Hao P, Wang J, Zhang N, Yang Y, Guo X, Xiang C, An S, Xu TR. Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochem Pharmacol 2022; 195:114864. [PMID: 34861243 DOI: 10.1016/j.bcp.2021.114864] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023]
Abstract
Dictamnine (Dic), a naturally occurring small-molecule furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz., is reported to display anticancer properties. However, little is known about the direct target proteins and anticancer mechanisms of Dic. In the current study, Dic was found to suppress the growth of lung cancer cells in vitro and in vivo, and to attenuate the activation of PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK) signaling pathways by inhibiting the phosphorylation and activation of receptor tyrosine kinase c-Met. Moreover, the binding of Dic to c-Met was confirmed by using cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assay. Among all cancer cell lines tested, Dic inhibited the proliferation of c-Met-dependent EBC-1 cells with the greatest potency (IC50 = 2.811 μM). Notably, Dic was shown to synergistically improve the chemo-sensitivity of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant lung cancer cells to gefitinib and osimertinib. These results suggest that Dic is a c-Met inhibitor that can serve as a potential therapeutic agent in the treatment of lung cancer, especially against EGFR TKI-resistant and c-Met-dependent lung cancer.
Collapse
Affiliation(s)
- Jiaojiao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lijing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun Peng
- Department of Thoracic Surgery, the First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiwei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Na Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
24
|
Molecular Mechanisms of Resistance to Immunotherapy and Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13235981. [PMID: 34885091 PMCID: PMC8656474 DOI: 10.3390/cancers13235981] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.
Collapse
|
25
|
Zhao S, Wu W, Jiang H, Ma L, Pan C, Jin C, Mo J, Wang L, Wang K. Selective Inhibitor of the c-Met Receptor Tyrosine Kinase in Advanced Hepatocellular Carcinoma: No Beneficial Effect With the Use of Tivantinib? Front Immunol 2021; 12:731527. [PMID: 34804015 PMCID: PMC8600564 DOI: 10.3389/fimmu.2021.731527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) remains a formidable health challenge worldwide, with a 5-year survival rate of 2.4% in patients with distant metastases. The hepatocyte growth factor/cellular-mesenchymal-epithelial transition (HGF/c-Met) signaling pathway represents an encouraging therapeutic target for progressive HCC. Tivantinib, a non-adenosine triphosphate-competitive c-Met inhibitor, showed an attractive therapeutic effect on advanced HCC patients with high MET-expression in phase 2 study but failed to meet its primary endpoint of prolonging the overall survival (OS) in two phase 3 HCC clinical trials. Seven clinical trials have been registered in the "ClinicalTrials.gov" for investigating the safety and efficacy of tivantinib in treating advanced or unresectable HCC. Eight relevant studies have been published with results. The sample size ranged from 20 to 340 patients. The methods of tivantinib administration and dosage were orally 120/240/360 mg twice daily. MET overexpression was recorded at 34.6% to 100%. Two large sample phase 3 studies (the METIV-HCC study of Australia and European population and the JET-HCC study of the Japanese population) revealed that tivantinib failed to show survival benefits in advanced HCC. Common adverse events with tivantinib treatment include neutropenia, ascites, rash, and anemia, etc. Several factors may contribute to the inconsistency between the phase 2 and phase 3 studies of tivantinib, including the sample size, drug dosing, study design, and the rate of MET-High. In the future, high selective MET inhibitors combined with a biomarker-driven patient selection may provide a potentially viable therapeutic strategy for patients with advanced HCC.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lei Ma
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chengyi Pan
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
26
|
68Ga-EMP-100 PET/CT-a novel ligand for visualizing c-MET expression in metastatic renal cell carcinoma-first in-human biodistribution and imaging results. Eur J Nucl Med Mol Imaging 2021; 49:1711-1720. [PMID: 34708249 PMCID: PMC8940803 DOI: 10.1007/s00259-021-05596-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 01/29/2023]
Abstract
Background 68Ga-EMP-100 is a novel positron emission tomography (PET) ligand that directly targets tumoral c-MET expression. Upregulation of the receptor tyrosin kinase c-MET in renal cell carcinoma (RCC) is correlated with overall survival in metastatic disease (mRCC). Clinicopathological staging of c-MET expression could improve patient management prior to systemic therapy with for instance inhibitors targeting c-MET such as cabozantinib. We present the first in-human data of 68Ga-EMP-100 in mRCC patients evaluating uptake characteristics in metastases and primary RCC. Methods Twelve patients with mRCC prior to anticipated cabozantinib therapy underwent 68Ga-EMP-100 PET/CT imaging. We compared the biodistribution in normal organs and tumor uptake of mRCC lesions by standard uptake value (SUVmean) and SUVmax measurements. Additionally, metastatic sites on PET were compared to contrast-enhanced computed tomography (CT) and the respective, quantitative PET parameters were assessed and then compared inter- and intra-individually. Results Overall, 87 tumor lesions were analyzed. Of these, 68/87 (79.3%) were visually rated c-MET-positive comprising a median SUVmax of 4.35 and SUVmean of 2.52. Comparing different tumor sites, the highest uptake intensity was found in tumor burden at the primary site (SUVmax 9.05 (4.86–29.16)), followed by bone metastases (SUVmax 5.56 (0.97–15.85)), and lymph node metastases (SUVmax 3.90 (2.13–6.28)) and visceral metastases (SUVmax 3.82 (0.11–16.18)). The occurrence of visually PET-negative lesions (20.7%) was distributed heterogeneously on an intra- and inter-individual level; the largest proportion of PET-negative metastatic lesions were lung and liver metastases. The highest physiological 68Ga-EMP-100 accumulation besides the urinary bladder content was seen in the kidneys, followed by moderate uptake in the liver and the spleen, whereas significantly lower uptake intensity was observed in the pancreas and the intestines. Conclusion Targeting c-MET expression, 68Ga-EMP-100 shows distinctly elevated uptake in mRCC patients with partially high inter- and intra-individual differences comprising both c-MET-positive and c-MET-negative lesions. Our first clinical results warrant further systemic studies investigating the clinical use of 68Ga-EMP-100 as a biomarker in mRCC patients.
Collapse
|
27
|
Aurilio G, Santoni M, Massari F, Cimadamore A, Rizzo A, Mollica V, Verri E, Battelli N, Montironi R. Metabolomic Profiling in Renal Cell Carcinoma Patients: News and Views. Cancers (Basel) 2021; 13:5229. [PMID: 34680377 PMCID: PMC8534108 DOI: 10.3390/cancers13205229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We address novelty regarding metabolomic profiling in renal cell carcinoma (RCC) patients, in an attempt to postulate potential treatment strategies. METHODS A large-scale literature search in existing scientific websites focusing on the keywords "renal cell carcinoma", "clear cell histology", "papillary histology", "metabolomic profiling", and "therapeutics" was performed. Results: The PI3K/Akt signaling pathway is key in clear cell RCC metabolism and accordingly several drugs are presently available for routine use in clinical practice. Along this line, new treatment combinations against PI3K/Akt family members are currently under clinical investigation. On the other hand, new developed targets such as c-Met tyrosine kinase domain, glutathione (GSH) metabolism, and histone deacetylases enzymes (HDAC), as well as therapeutic strategies targeting them are currently being tested in clinical trials and here discussed. CONCLUSIONS In RCC patients, the PI3K/Akt signaling is still the most effective targetable pathway. Targeting other metabolic pathways such as c-Met, GSH, and HDAC appears to be a promising approach and deserve further insights.
Collapse
Affiliation(s)
- Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head & Neck Cancer, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy; (M.S.); (N.B.)
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (F.M.); (A.R.); (V.M.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (F.M.); (A.R.); (V.M.)
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (F.M.); (A.R.); (V.M.)
| | - Elena Verri
- Medical Oncology Division of Urogenital and Head & Neck Cancer, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Nicola Battelli
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy; (M.S.); (N.B.)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| |
Collapse
|
28
|
Powles T, Choueiri TK, Motzer RJ, Jonasch E, Pal S, Tannir NM, Signoretti S, Kaldate R, Scheffold C, Wang E, Aftab DT, Escudier B, George DJ. Outcomes based on plasma biomarkers in METEOR, a randomized phase 3 trial of cabozantinib vs everolimus in advanced renal cell carcinoma. BMC Cancer 2021; 21:904. [PMID: 34364385 PMCID: PMC8349489 DOI: 10.1186/s12885-021-08630-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In the phase 3 METEOR trial, cabozantinib improved progression-free survival (PFS) and overall survival (OS) versus everolimus in patients with advanced RCC after prior antiangiogenic therapy. METHODS In this exploratory analysis, plasma biomarkers from baseline and week 4 from 621 of 658 randomized patients were analyzed for CA9, HGF, MET, GAS6, AXL, VEGF, VEGFR2, and IL-8. PFS and OS were analyzed by baseline biomarker levels as both dichotomized and continuous variables using univariate and multivariable methods. For on-treatment changes, PFS and OS were analyzed using fold change in biomarker levels at week 4. Biomarkers were considered prognostic if p < 0.05 and predictive if pinteraction < 0.05 for the interaction between treatment and biomarker. RESULTS Hazard ratios for PFS and OS favored cabozantinib versus everolimus for both low and high baseline levels of all biomarkers (hazard ratios ≤0.78). In univariate analyses, low baseline HGF, AXL, and VEGF were prognostic for improvements in both PFS and OS with cabozantinib, and low HGF was prognostic for improvements in both PFS and OS with everolimus. Low AXL was predictive of relative improvement in PFS for cabozantinib versus everolimus. Results were generally consistent when baseline biomarkers were expressed as continuous variables, although none were predictive of benefit with treatment. In multivariable analysis, low baseline HGF was independently prognostic for improved PFS for both cabozantinib and everolimus; low HGF, GAS6, and VEGF were independently prognostic for improved OS with cabozantinib. No biomarkers were independently prognostic for OS with everolimus. On-treatment increases in some biomarkers appeared prognostic for PFS or OS with cabozantinib in univariate analyses; however, none were independently prognostic in multivariable analysis. CONCLUSIONS PFS and OS were improved with cabozantinib versus everolimus at high and low baseline levels of all biomarkers. Low baseline HGF was consistently identified as a prognostic biomarker for improved PFS or OS with cabozantinib or everolimus, supporting further prospective evaluation of the prognostic significance of HGF in advanced RCC. TRIAL REGISTRATION ClinicalTrials.gov NCT01865747 (registered on 05/31/2013).
Collapse
Affiliation(s)
- Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| | | | | | - Eric Jonasch
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumanta Pal
- City of Hope National Medical Center, Duarte, CA, USA
| | - Nizar M Tannir
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 2021; 40:4625-4651. [PMID: 34145400 DOI: 10.1038/s41388-021-01863-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This review provides a comprehensive landscape of HGF/c-MET (hepatocyte growth factor (HGF) /mesenchymal-epithelial transition factor (c-MET)) signaling pathway in cancers. First, we generalize the compelling influence of HGF/c-MET pathway on multiple cellular processes. Then, we present the genomic characterization of HGF/c-MET pathway in carcinogenesis. Furthermore, we extensively illustrate the malignant biological behaviors of HGF/c-MET pathway in cancers, in which hyperactive HGF/c-MET signaling is considered as a hallmark. In addition, we investigate the current clinical trials of HGF/c-MET-targeted therapy in cancers. We find that although HGF/c-MET-targeted therapy has led to breakthroughs in certain cancers, monotherapy of targeting HGF/c-MET has failed to demonstrate significant clinical efficacy in most cancers. With the advantage of the combinations of HGF/c-MET-targeted therapy, the exploration of more options of combinational targeted therapy in cancers may be the major challenge in the future.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Zhihua Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiawei Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
30
|
Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:186. [PMID: 34099013 PMCID: PMC8183071 DOI: 10.1186/s13046-021-01961-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
| | - Mark Myers
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | | | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia.
- Federation University Australia, Ballarat, Victoria, 3350, Australia.
- The Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, 3052, Australia.
| |
Collapse
|
31
|
Li J, Tan G, Cai Y, Liu R, Xiong X, Gu B, He W, Liu B, Ren Q, Wu J, Chi B, Zhang H, Zhao Y, Xu Y, Zou Z, Kang F, Xu K. A novel Apigenin derivative suppresses renal cell carcinoma via directly inhibiting wild-type and mutant MET. Biochem Pharmacol 2021; 190:114620. [PMID: 34043966 DOI: 10.1016/j.bcp.2021.114620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
MET, the receptor of hepatocyte growth factor (HGF), is a driving factor in renal cell carcinoma (RCC) and also a proven drug target for cancer treatment. To improve the activity and to investigate the mechanisms of action of Apigenin (APG), novel derivatives of APG with improved properties were synthesized and their activities against Caki-1 human renal cancer cell line were evaluated. It was found that compound 15e exhibited excellent potency against the growth of multiple RCC cell lines including Caki-1, Caki-2 and ACHN and is superior to APG and Crizotinib. Subsequent investigations demonstrated that compound 15e can inhibit Caki-1 cell proliferation, migration and invasion. Mechanistically, 15e directly targeted the MET kinase domain, decreased its auto-phosphorylation at Y1234/Y1235 and inhibited its kinase activity and downstream signaling. Importantly, 15e had inhibitory activity against mutant MET V1238I and Y1248H which were resistant to approved MET inhibitors Cabozantinib, Crizotinib or Capmatinib. In vivo tumor graft study confirmed that 15e repressed RCC growth through inhibition of MET activation. These results indicate that compound 15e has the potential to be developed as a treatment for RCC, and especially against drug-resistant MET mutations.
Collapse
Affiliation(s)
- Jing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Guishan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yabo Cai
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Ruihuan Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Zhuzhou Qianjin Pharmaceutical Co. Ltd, Zhuzhou, 412007, China
| | - Xiaolin Xiong
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Baohua Gu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Wei He
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Bing Liu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Qingyun Ren
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Jianping Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bo Chi
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Hang Zhang
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Yanzhong Zhao
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yangrui Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
32
|
Liu K, Gao R, Wu H, Wang Z, Han G. Single-cell analysis reveals metastatic cell heterogeneity in clear cell renal cell carcinoma. J Cell Mol Med 2021; 25:4260-4274. [PMID: 33759378 PMCID: PMC8093989 DOI: 10.1111/jcmm.16479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the leading causes of cancer-related death worldwide. Tumour metastasis and heterogeneity lead to poor survival outcomes and drug resistance in patients with metastatic RCC (mRCC). In this study, we aimed to assess intratumoural heterogeneity (ITH) in mRCC cells by performing a combined analysis of bulk data and single-cell RNA-sequencing data, and develop novel biomarkers for prognosis prediction on the basis of the potential molecular mechanisms underlying tumorigenesis. Eligible single-cell cohorts related to mRCC were acquired using the Gene Expression Omnibus (GEO) dataset to identify potential mRCC subpopulations. We then performed gene set variation analysis to understand the differential function in primary RCC and mRCC samples. Subsequently, we applied weighted correlation network analysis to identify coexpressing gene modules that were related to the external trait of metastasis. Protein-protein interactions were used to screen hub subpopulation-difference (sub-dif) markers (ACTG1, IL6, CASP3, ACTB and RAP1B) that might be involved in the regulation of RCC metastasis and progression. Cox regression analysis revealed that ACTG1 was a protective factor (HR < 1), whereas the other four genes (IL6, CASP3, ACTB and RAP1B) were risk factors (HR > 1). Kaplan-Meier survival analysis suggested the potential prognostic value of these sub-dif markers. The expression of sub-dif markers in mRCC was further evaluated in clinical samples by immunohistochemistry (IHC). Additionally, the genetic features of sub-dif marker expression patterns, such as genetic variation profiles, correlations with tumour-infiltrating lymphocytes (TILs), and targeted signalling pathway activities, were assessed in bulk RNA-seq datasets. In conclusion, we established novel subpopulation markers as key prognostic factors affecting EMT-related signalling pathway activation in mRCC, which could facilitate the implementation of a treatment for mRCC patients.
Collapse
Affiliation(s)
- Kun Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Gao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- Department of Gastrointestinal Oncology, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Mori JI, Adachi K, Sakoda Y, Sasaki T, Goto S, Matsumoto H, Nagashima Y, Matsuyama H, Tamada K. Anti-tumor efficacy of human anti-c-met CAR-T cells against papillary renal cell carcinoma in an orthotopic model. Cancer Sci 2021; 112:1417-1428. [PMID: 33539630 PMCID: PMC8019206 DOI: 10.1111/cas.14835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)‐T cell therapy has shown salient efficacy in cancer immunotherapy, particularly in the treatment of B cell malignancies. However, the efficacy of CAR‐T for solid tumors remains inadequate. In this study, we displayed that c‐met is an appropriate therapeutic target for papillary renal cell carcinoma (PRCC) using clinical samples, developed an anti‐human c‐met CAR‐T cells, and investigated the anti‐tumor efficacy of the CAR‐T cells using an orthotopic mouse model as pre‐clinical research. Administration of the anti‐c‐met CAR‐T cells induced marked infiltration of the CAR‐T cells into the tumor tissue and unambiguous suppression of tumor growth. Furthermore, in combination with axitinib, the anti‐tumor efficacy of the CAR‐T cells was synergistically augmented. Taken together, our current study demonstrated the potential for clinical application of anti‐c‐met CAR‐T cells in the treatment of patients with PRCC.
Collapse
Affiliation(s)
- Jun-Ich Mori
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Urology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Keishi Adachi
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yukimi Sakoda
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Sasaki
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shunsuke Goto
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Urology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Matsumoto
- Department of Urology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
34
|
Schmidt AL, Bain PA, McGregor BA. Tissue Based Biomarkers for Metastatic Clear Cell Renal Carcinoma: A Systematic Review. KIDNEY CANCER 2020. [DOI: 10.3233/kca-200103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Treatments for metastatic clear cell renal carcinoma (mccRCC) are evolving with multiple targeted and immune therapy drugs currently approved by regulatory agencies as single agents or in combination. Developing predictive biomarkers to determine which patients derive a differential benefit from a particular treatment is an area of ongoing clinical research. Objective: We sought to systematically evaluate the role of tumour tissue-based biomarkers that assist in selection of therapy for mccRCC. Methods: Literature addressing the role of biomarkers in mccRCC was identified through a search of the electronic databases MEDLINE, Embase, and the Web of Science and a hand search of major conference abstracts (from Jan 2010 –Sep 2020). Abstracts were screened to identify papers meriting full-text review. Studies with a comparison arm were included to assess biomarker relevance. A narrative review of studies was performed. Results: The literature search yielded 6784 potentially relevant articles. 133 articles met criteria for full text review, and 10 articles were identified by scanning bibliographies of relevant studies. A total of 33 articles (involving 13 studies) were selected for data extraction and subsequent review. Conclusions: Predictive biomarkers for immediate use in the clinic are lacking, and embedding their evaluation and validation in future clinical trials is needed to refine practice and patient selection.
Collapse
Affiliation(s)
- Andrew L. Schmidt
- Lark Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul A. Bain
- Countway Library, Harvard Medical School, Boston, MA, USA
| | - Bradley A. McGregor
- Lark Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
35
|
Metabolomic Analysis to Elucidate Mechanisms of Sunitinib Resistance in Renal Cell Carcinoma. Metabolites 2020; 11:metabo11010001. [PMID: 33374949 PMCID: PMC7821950 DOI: 10.3390/metabo11010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolomics analysis possibly identifies new therapeutic targets in treatment resistance by measuring changes in metabolites accompanying cancer progression. We previously conducted a global metabolomics (G-Met) study of renal cell carcinoma (RCC) and identified metabolites that may be involved in sunitinib resistance in RCC. Here, we aimed to elucidate possible mechanisms of sunitinib resistance in RCC through intracellular metabolites. We established sunitinib-resistant and control RCC cell lines from tumor tissues of RCC cell (786-O)-injected mice. We also quantified characteristic metabolites identified in our G-Met study to compare intracellular metabolism between the two cell lines using liquid chromatography-mass spectrometry. The established sunitinib-resistant RCC cell line demonstrated significantly desuppressed protein kinase B (Akt) and mesenchymal-to-epithelial transition (MET) phosphorylation compared with the control RCC cell line under sunitinib exposure. Among identified metabolites, glutamine, glutamic acid, and α-KG (involved in glutamine uptake into the tricarboxylic acid (TCA) cycle for energy metabolism); fructose 6-phosphate, D-sedoheptulose 7-phosphate, and glucose 1-phosphate (involved in increased glycolysis and its intermediate metabolites); and glutathione and myoinositol (antioxidant effects) were significantly increased in the sunitinib-resistant RCC cell line. Particularly, glutamine transporter (SLC1A5) expression was significantly increased in sunitinib-resistant RCC cells compared with control cells. In this study, we demonstrated energy metabolism with glutamine uptake and glycolysis upregulation, as well as antioxidant activity, was also associated with sunitinib resistance in RCC cells.
Collapse
|
36
|
Chen S, Wang Y, Chen L, Xia Y, Cui J, Wang W, Jiang X, Wang J, Zhu Y, Sun S, Zou Y, Gong Y, Shi B. CUL4B promotes aggressive phenotypes of renal cell carcinoma via upregulating c-Met expression. Int J Biochem Cell Biol 2020; 130:105887. [PMID: 33227394 DOI: 10.1016/j.biocel.2020.105887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Cullin 4B (CUL4B), encoding a scaffold protein in Cullin RING ubiquitin-ligase complexes (CRL4B), is overexpressed and serves as an oncogene in various solid tumors. However, the roles and the underlying mechanisms of CUL4B in renal cell carcinoma (RCC) are still unknown. In this study, we demonstrated that CUL4B was significantly upregulated in RCC cells and clinical specimens, and its overexpression was correlated with poor survival of RCC patients. Knockdown of CUL4B resulted in the inhibition of proliferation, migration and invasion of RCC cells. Furthermore, we found that the expression of CUL4B is positively correlated with c-Met expression in RCC cells and tissues. Konckdown of c-Met or treatment with c-Met inhibitor, SU11274, could block the increase in cell proliferation, migration and invasion induced by CUL4B-overexpression. We also showed that CUL4B overexpression significantly accelerated xenograft tumor growth, and administration of SU11274 could also abrogate the accelerated tumor growth induced by CUL4B overexpression in vivo. These findings shed light on the contribution of CUL4B to tumorigenesis in RCC via activating c-Met signaling and its therapeutic implications in RCC patients.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Wang
- Department of Urology, The People's Hospital of Laoling City, Dezhou, Shandong, 253600, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
37
|
Li J, Hu K, Zhou L, Huang J, Zeng S, Xu Z, Yan Y. Spectrum of Mesenchymal-Epithelial Transition Aberrations and Potential Clinical Implications: Insights From Integrative Pancancer Analysis. Front Oncol 2020; 10:560615. [PMID: 33178590 PMCID: PMC7593712 DOI: 10.3389/fonc.2020.560615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background The receptor tyrosine kinase mesenchymal-epithelial transition factor (MET) is frequently altered in cancers and is a common therapeutic target for cancers with MET variants. However, abnormal MET alterations and their associations with patient outcome across different cancer types have not been studied simultaneously. In this study, we try to fill the vacancy in a comprehensive manner and capture the full MET alteration spectrum. Methods A total of 10,967 tumor samples comprising 32 cancer types from The Cancer Genome Atlas (TCGA) datasets were analyzed for MET abnormal expression, mutations, and copy number variants (CNVs). Results MET abnormal expression, alteration frequency, mutation site distribution, and functional impact varied across different cancer types. Lung adenocarcinoma (LUAD) has most targetable mutations located in the juxtamembrane domain, and both high expression and amplification of MET are significantly associated with poor prognosis. Kidney renal papillary cell carcinoma (KIRP) harbored the third highest alteration frequency of MET, which was dominated by mutations. While most mutations were in the Pkinase_Tyr domain, a few were targetable. Pancreatic adenocarcinoma (PAAD) harbors very few alterations, but increased MET expression is associated with poor outcomes. Esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), and ovarian serous cystadenocarcinoma (OV) had similar characteristics: a high frequency of MET CNVs but relatively few MET mutations, and high MET expression associated with poor prognosis. Conclusion This study provided significant and comprehensive information regarding MET abnormal expression, alterations (mutations and CNVs), and their clinical associations among 32 cancer types and offered insights into the full MET alteration spectrum and its implications for prognosis and treatment.
Collapse
Affiliation(s)
- Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Silva Paiva R, Gomes I, Casimiro S, Fernandes I, Costa L. c-Met expression in renal cell carcinoma with bone metastases. J Bone Oncol 2020; 25:100315. [PMID: 33024658 PMCID: PMC7527574 DOI: 10.1016/j.jbo.2020.100315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is a common metastatic site in renal cell carcinoma (RCC). HGF/c-Met pathway is particularly relevant in tumors with bone metastases. c-Met/HGF pathway is involved in RCC progression, conferring poor prognosis. Several c-Met targeting therapies are currently in clinical development. c-Met expression is an important therapeutic target in RCC with bone metastases.
Hepatocyte growth factor (HGF)/c-Met pathway is implicated in embryogenesis and organ development and differentiation. Germline or somatic mutations, chromosomal rearrangements, gene amplification, and transcriptional upregulation in MET or alterations in autocrine or paracrine c-Met signalling have been associated with cancer cell proliferation and survival, including in renal cell carcinoma (RCC), and associated with disease progression. HGF/c-Met pathway has been shown to be particularly relevant in tumors with bone metastases (BMs). However, the efficacy of targeting c-Met in bone metastatic disease, including in RCC, has not been proven. Therefore, further investigation is required focusing the particular role of HGF/c-Met pathway in bone microenvironment (BME) and how to effectively target this pathway in the context of bone metastatic disease.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase gene
- AR, androgen receptor
- ATP, adenosine triphosphate
- AXL, AXL Receptor Tyrosine Kinase
- BME, bone microenvironment
- BMPs, bone morphogenetic proteins
- BMs, bone metastases
- BPs, Bisphosphonates
- BTAs, Bone-targeting agents
- Bone metastases
- CCL20, chemokine (C-C motif) ligand 20
- CI, confidence interval
- CRPC, Castration Resistant Prostate Cancer
- CSC, cancer stem cells
- CTC, circulating tumor cells
- CaSR, calcium/calcium-sensing receptor
- EMA, European Medicines Agency
- EMT, epithelial-to-mesenchymal transition
- FDA, US Food and Drug Administration
- FLT-3, FMS-like tyrosine kinase 3
- GEJ, Gastroesophageal Junction
- HCC, Hepatocellular Carcinoma
- HGF, hepatocyte growth factor
- HGF/c-Met
- HIF, hypoxia-inducible factors
- HR, hazard ratio
- IGF, insulin-like growth factor
- IGF2BP3, insulin mRNA Binding Protein-3
- IL, interleukin
- IRC, independent review committees
- KIT, tyrosine-protein kinase KIT
- Kidney cancer
- M-CSF, macrophage colony-stimulating factor
- MET, MET proto-oncogene, receptor tyrosine kinase
- NSCLC, non-small cell lung carcinoma
- ORR, overall response rate
- OS, overall survival
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- PTHrP, parathyroid hormone-related peptide
- RANKL, receptor activator of nuclear factor-κB ligand
- RCC, renal cell carcinoma
- RET, rearranged during transfection proto-oncogene
- ROS, proto-oncogene tyrosine-protein kinase ROS
- RTK, receptor tyrosine kinase
- SCLC, Squamous Cell Lung Cancer
- SREs, skeletal-related events
- SSE, symptomatic skeletal events
- TGF-β, transforming growth factor-β
- TIE-2, Tyrosine-Protein Kinase Receptor TIE-2
- TKI, tyrosine kinase inhibitor
- TRKB, Tropomyosin receptor kinase B
- Targeted therapy
- VEGFR, vascular endothelial growth factor receptor
- VHL, Hippel-Lindau tumor suppressor gene
- ZA, zoledronic acid
- ccRCC, clear-cell RCC
- mAb, monoclonal antibodies
- pRCC, papillary renal cell carcinoma
Collapse
Affiliation(s)
- Rita Silva Paiva
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
| | - Inês Gomes
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Isabel Fernandes
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Costa
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Corresponding author at: Oncology Division, Hospital de Santa Maria, 1649-035 Lisbon, Portugal.
| |
Collapse
|
39
|
Zhang Y, Ellinger J, Ritter M, Schmidt-Wolf IGH. Clinical Studies Applying Cytokine-Induced Killer Cells for the Treatment of Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092471. [PMID: 32882824 PMCID: PMC7564072 DOI: 10.3390/cancers12092471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Cytokine-induced killer (CIK) cells are a heterogeneous population of polyclonal T effector cells expanded ex vivo. Here, we updated our last review published in 2012 and provided a synopsis of current 15 clinical studies, including 382 patients with renal cell carcinoma (RCC) enrolled in CIK cell immunotherapy. CIK cells exhibited promising synergistic anti-tumor effects when combined with conventional therapies and showed mild adverse effects in patients with RCC. Preclinical researches also identified potential molecular targets that augmented CIK cell cytotoxicity against renal carcinoma cells. In future, large randomized clinical trials should be organized to further evaluate the clinical efficacy and optimize the treatment modality of CIK cells in RCC. Abstract There is growing interest in cytokine-induced killer (CIK) cells on the integrated therapy of patients with RCC, especially those in the late stage or refractory to conventional chemotherapy and radiotherapy. In this review, a total of 15 clinical studies including 681 patients enrolled in CIK cell immunotherapy were outlined. Three-hundred-and-eighty-two patients with RCC were treated with CIK cells alone or in combination with DC vaccination, targeted agents sunitinib or sorafenib, and the PD-1 inhibitor pembrolizumab. Significantly improved 3-year overall survival rate was reported in four trials, whereas remarkably longer median progression-free survival was observed in three studies. Adverse reactions were mild and usually controllable fever and fatigue. Besides, preclinical research progresses were reviewed to increase our understanding about the underlying mechanisms of CIK cell cytotoxicity and identify potential targets to enhance their anti-tumor activity. These studies suggest that CIK cell-based immunotherapy has potential clinical benefits with a good safety profile and could become a promising approach in the combined therapies of RCC patients. However, further large-scale studies are required to evaluate the clinical efficacy of CIK cells and more efforts should be performed to identify the optimal CIK cell-based therapeutic regimen for RCC patients.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Integrated Oncology, CIO Bonn, University Hospital Bonn, Venusberg-Campus 1, D 53127 Bonn, Germany;
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Venusberg-Campus 1, D 53127 Bonn, Germany; (J.E.); (M.R.)
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn, Venusberg-Campus 1, D 53127 Bonn, Germany; (J.E.); (M.R.)
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, CIO Bonn, University Hospital Bonn, Venusberg-Campus 1, D 53127 Bonn, Germany;
- Correspondence: ; Tel.: +492-2828-717-048
| |
Collapse
|
40
|
Pereira PMR, Norfleet J, Lewis JS, Escorcia FE. Immuno-PET Detects Changes in Multi-RTK Tumor Cell Expression Levels in Response to Targeted Kinase Inhibition. J Nucl Med 2020; 62:366-371. [PMID: 32646879 PMCID: PMC8049345 DOI: 10.2967/jnumed.120.244897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 01/25/2023] Open
Abstract
Receptor tyrosine kinase (RTK) coexpression facilitates tumor resistance due to redundancies in the phosphatidylinositol-3′-kinase/protein kinase B and KRAS/extracellular-signal–regulated kinase signaling pathways, among others. Crosstalk between the oncogenic RTK hepatocyte growth factor receptor (MET), epidermal growth factor receptor (EGFR), and human epidermal growth factor receptor 2 (HER2) are involved in tumor resistance to RTK-targeted therapies. Methods: In a relevant renal cell carcinoma patient–derived xenograft model, we use the 89Zr-labeled anti-RTK antibodies (immuno-PET) onartuzumab, panitumumab, and trastuzumab to monitor MET, EGFR, and HER2 protein levels, respectively, during treatment with agents to which the model was resistant (cetuximab) or sensitive (INC280 and trametinib). Results: Cetuximab treatment resulted in continued tumor growth, as well as an increase in all RTK protein levels at the tumor in vivo on immuno-PET and ex vivo at the cellular level. Conversely, after dual MET/mitogen-activated protein kinase inhibition, tumor growth was significantly blunted and corresponded to a decrease in RTK levels. Conclusion: These data show the utility of RTK-targeted immuno-PET to annotate RTK changes in protein expression and inform tumor response to targeted therapies.
Collapse
Affiliation(s)
- Patricia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jalen Norfleet
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program and Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, and Departments of Pharmacology and Radiology, Weill Cornell Medical College, New York, New York; and
| | - Freddy E Escorcia
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Bergerot P, Lamb P, Wang E, Pal SK. Cabozantinib in Combination with Immunotherapy for Advanced Renal Cell Carcinoma and Urothelial Carcinoma: Rationale and Clinical Evidence. Mol Cancer Ther 2020; 18:2185-2193. [PMID: 31792125 DOI: 10.1158/1535-7163.mct-18-1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
The treatment landscape for metastatic renal cell carcinoma (mRCC) and urothelial carcinoma (mUC) has evolved rapidly in recent years with the approval of several checkpoint inhibitors. Despite these advances, survival rates for metastatic disease remain poor, and additional strategies will be needed to improve the efficacy of checkpoint inhibitors. Combining anti-VEGF/VEGFR agents with checkpoint inhibitors has emerged as a potential strategy to advance the immunotherapy paradigm, because VEGF inhibitors have immunomodulatory potential. Cabozantinib is a tyrosine kinase inhibitor (TKI) whose targets include MET, AXL, and VEGFR2. Cabozantinib has a unique immunomodulatory profile and has demonstrated clinical efficacy as a monotherapy in mRCC and mUC, making it a potentially suitable partner for checkpoint inhibitor therapy. In this review, we summarize the current status of immunotherapy for mRCC and mUC and discuss the development of immunotherapy-TKI combinations, with a focus on cabozantinib. We discuss the rationale for such combinations based on our growing understanding of the tumor microenvironment, and we review in detail the preclinical and clinical studies supporting their use.
Collapse
Affiliation(s)
- Paulo Bergerot
- City of Hope National Medical Center, Duarte, California
| | | | | | - Sumanta K Pal
- City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
42
|
Jang A, Chen SR, Xie J, Bilen MA, Barata PC. Skeletal-Related Events in Patients with Metastatic Renal Cell Carcinoma: A Systematic Review. KIDNEY CANCER 2020. [DOI: 10.3233/kca-200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Albert Jang
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shuang R. Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - John Xie
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mehmet A. Bilen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Pedro C. Barata
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, New Orleans, LA, USA
| |
Collapse
|
43
|
Cabozantinib, a Multityrosine Kinase Inhibitor of MET and VEGF Receptors Which Suppresses Mouse Laser-Induced Choroidal Neovascularization. J Ophthalmol 2020; 2020:5905269. [PMID: 32655941 PMCID: PMC7322600 DOI: 10.1155/2020/5905269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Choroidal neovascularization (CNV) is a leading cause of blindness in the elderly in developed countries and is particularly associated with age-related macular degeneration (AMD). Cabozantinib (CBZ) hinders the activation of multiple receptor tyrosine kinases involved in tumor angiogenesis, such as hepatocyte growth factor receptor (MET) and vascular endothelial growth factor receptor 2 (VEGFR2). We aimed to investigate the role and mechanism of CBZ in a mouse laser-induced CNV model. In zebrafish embryos, CBZ perturbed intersegmental vessel (ISV) formation without obvious neurodevelopment impairment. In the mouse laser-induced CNV model, phosphorylated hepatocyte growth factor receptor (p-MET) and phosphorylated vascular endothelial growth factor receptor 2 (p-VEGFR2) were increased in the CNV region. CBZ intravitreal injection or oral gavage alleviated CNV leakage and the CNV lesion area without obvious intraocular toxicity, as well as disturbed the phosphorylation of MET and VEGFR2. Additionally, CBZ downregulated the expression of the hepatocyte growth factor (HGF) with no effect on the expression of the vascular endothelial growth factor (VEGF). CBZ downregulated HGF, p-MET, and p-VEGFR2 expressions in vitro, as well as inhibited the proliferation, migration, and tube formation of b-End3 cells. In summary, CBZ alleviates mouse CNV formation possibly via inhibiting the activation of MET and VEGFR2. The findings provide a novel potential therapy method for CNV patients.
Collapse
|
44
|
Yang J, Yang L, Li S, Hu N. HGF/c-Met Promote Renal Carcinoma Cancer Stem Cells Enrichment Through Upregulation of Cir-CCDC66. Technol Cancer Res Treat 2020; 19:1533033819901114. [PMID: 31994979 PMCID: PMC6990613 DOI: 10.1177/1533033819901114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increasing studies have suggested that circular RNAs play an important function in the process of numerous cancers. We aimed to investigate the possible role of cir-CCDC66 in renal carcinoma cancer. As cancer stem cells are responsible for the renal carcinoma cancer tumor growth and resistance to conventional therapy, we focus on the cir-CCDC66 influence on renal carcinoma cancer stem cells. In this study, we performed experiments in human renal tubular epithelial cell HK2 cells and several renal carcinoma cancer cancer cell lines. The results showed that cir-CCDC66 was upregulated not only in renal carcinoma cancer cancer cell lines but also in cancer stem cell spheres. What's more, the results showed that cir-CCDC66 enhanced the cancer stem cell enrichment. Further mechanistic studies showed that hepatocyte growth factor/c-Met pathway was activated in cancer stem cell enrichment and responsible for the cir-CCDC66 upregulation. Inhibition of hepatocyte growth factor/c-Met could block cir-CCDC66-induced cancer stem cell enrichment. In conclusion, our research revealed a novel mechanism between hepatocyte growth factor/c-Met/cir-CCDC66 and cancer stem cell enrichment. We verified that cir-CCDC66 could be a promising biomarker and therapy target for renal carcinoma cancer treatment.
Collapse
Affiliation(s)
- Juhong Yang
- Department of Nephrology, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Lei Yang
- Department of Urology Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Shen Li
- Department of Cardiovascular, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Ning Hu
- Department of Nephrology, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| |
Collapse
|
45
|
MMPs, tyrosine kinase signaling and extracellular matrix proteolysis in kidney cancer. Urol Oncol 2020; 39:316-321. [PMID: 32487351 DOI: 10.1016/j.urolonc.2020.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Patients diagnosed with metastatic renal cell carcinoma (RCC) have ∼12% chance for 5-year survival. The integrity of the extracellular matrix (ECM) that surrounds tumor cells influences their behavior and, when disturbed, it could facilitate local invasion and spread of tumor cells to distant sites. The interplay between von Hippel-Lindau/hypoxia inducible factor signaling axis and activated kinase networks results in aberrant ECM and tumor progression. Matrix metalloproteinases (MMPs) are proteolytic enzymes implicated in ECM remodeling, tumor angiogenesis, and immune cell infiltration. Understanding the cross-talk between kinase signaling and ECM proteolysis in RCC could provide insights into developing drugs that interfere specifically with the process of invasion. In this review, we discuss changes in the MMPs/ECM axis in RCC, prominent kinase signaling pathways implicated in MMPs induction, and comment on emerging extracellular regulatory networks that modulate MMPs activity.
Collapse
|
46
|
Itkin B, Breen A, Turyanska L, Sandes EO, Bradshaw TD, Loaiza-Perez AI. New Treatments in Renal Cancer: The AhR Ligands. Int J Mol Sci 2020; 21:E3551. [PMID: 32443455 PMCID: PMC7279047 DOI: 10.3390/ijms21103551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer rapidly acquires resistance to antiangiogenic agents, such as sunitinib, developing an aggressive migratory phenotype (facilitated by c-Metsignal transduction). The Aryl hydrocarbon receptor (AhR) has recently been postulated as a molecular target for cancer treatment. Currently, there are two antitumor agent AhR ligands, with activity against renal cancer, that have been tested clinically: aminoflavone (AFP 464, NSC710464) and the benzothiazole (5F 203) prodrug Phortress. Our studies investigated the action of AFP 464, the aminoflavone pro-drug currently used in clinical trials, and 5F 203 on renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis and cell migration. Both compounds caused cell cycle arrest and apoptosis but only 5F 203 potently inhibited the migration of TK-10, Caki-1 and SN12C cells as well as the migration signal transduction cascade, involving c-Met signaling, in TK-10 cells. Current investigations are focused on the development of nano-delivery vehicles, apoferritin-encapsulated benzothiazoles 5F 203 and GW610, for the treatment of renal cancer. These compounds have shown improved antitumor effects against TK-10 cells in vitro at lower concentrations compared with a naked agent.
Collapse
Affiliation(s)
- Boris Itkin
- Department of Oncology, Hospital General de Agudos Juan Fernandez, C1425 CABA Buenos Aires, Argentina;
| | - Alastair Breen
- School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK; (A.B.); (T.D.B.)
| | - Lyudmila Turyanska
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK;
| | - Eduardo Omar Sandes
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin 5481, C1417 DTB Buenos Aires, Argentina;
| | - Tracey D. Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK; (A.B.); (T.D.B.)
| | - Andrea Irene Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin 5481, C1417 DTB Buenos Aires, Argentina;
| |
Collapse
|
47
|
Schmidt AL, Siefker-Radtke A, McConkey D, McGregor B. Renal Cell and Urothelial Carcinoma: Biomarkers for New Treatments. Am Soc Clin Oncol Educ Book 2020; 40:1-11. [PMID: 32379987 DOI: 10.1200/edbk_279905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Therapies for genitourinary malignancies have evolved considerably in the past five years. Combination treatment targeting biologically relevant immune and angiogenic pathways is improving patient survival in metastatic renal cell carcinoma (RCC), whereas immune checkpoint blockade (ICB), novel targeted therapy, and antibody drug conjugates have changed the landscape of urothelial cancer (UC) treatment. A daily challenge for clinicians is identifying patients who derive a preferential benefit from the available therapeutic options. The completion of large-scale genomics projects has yielded comprehensive descriptions of the molecular heterogeneity present in RCC and UC, although clinical applications of these data continue to evolve. Major molecular subtypes of RCC align well with histology subtype, and although some molecular characteristics appear to carry prognostic information, biomarkers predicting benefit from tyrosine kinase inhibitor (TKI) or immunotherapy are generally lacking. Unexpectedly, similar work has demonstrated that UC can be grouped into "molecular subtypes" that share properties with those found in breast cancer and other solid tumors. Furthermore, this molecular subtype classification is prognostic and potentially predictive of differential benefit from conventional and targeted therapies. This article provides an update on the current state of molecular biomarker development and potential clinical utility in RCC and UC.
Collapse
Affiliation(s)
| | | | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
| | | |
Collapse
|
48
|
Aurilio G, Santoni M, Cimadamore A, Massari F, Scarpelli M, Lopez-Beltran A, Cheng L, Battelli N, Nolé F, Montironi R. Renal Cell Carcinoma: genomic landscape and clinical implications. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1733407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| | | | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Franco Nolé
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| |
Collapse
|
49
|
Abstract
Chromophobe renal cell carcinoma is one of four malignant kidney tumor subtypes. Due to its morphological variance in clinical pathological routine diagnostics, this subtype can cause certain difficulties. The tumor can be mistaken for more aggressive or benign tumors. In both cases the consequences of misdiagnosis regarding treatment decisions can be serious. Due to the morphological variance of the tumor, it has not yet been possible to develop a generally accepted, prognostically convincing graduation scheme. The aim is to improve the quality of diagnostics and estimation of prognosis for this subtype of tumor in order to optimize patient care.
Collapse
Affiliation(s)
- F Erlmeier
- Pathologisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland.
- Pathologie München-Nord, Ernst-Platz-Str. 2, 80992, München, Deutschland.
| |
Collapse
|
50
|
Prisciandaro M, Ratta R, Massari F, Fornarini G, Caponnetto S, Iacovelli R, De Giorgi U, Facchini G, Scagliarini S, Sabbatini R, Caserta C, Peverelli G, Mennitto A, Verzoni E, Procopio G. Safety and Efficacy of Cabozantinib for Metastatic Nonclear Renal Cell Carcinoma: Real-world Data From an Italian Managed Access Program. Am J Clin Oncol 2019; 42:42-45. [PMID: 30204614 DOI: 10.1097/coc.0000000000000478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The activity of cabozantinib in nonclear cell histologies has not been evaluated. MATERIALS AND METHODS Data were collected across 24 Italian hospitals. Patients were aged 18 years and older with advanced nonclear cell renal cell carcinoma (RCC), with an Eastern Cooperative Oncology Group Performance Status 0 to 2, who had relapsed after previous systemic treatments for metastatic disease. Cabozantinib was administered orally at 60 mg once a day in 28 days cycles. Dose reductions to 40 or 20 mg were made due to toxicity. Adverse events (AEs) were monitored using CTCAE version 4.0. RESULTS Seventeen patients were enrolled. Three (18%) patients were diagnosed type I papillary RCC, 9 (53%) type II papillary, 3 (18%) chromophobe, and 2 (11%) with Bellini duct carcinoma. In total, 11 patients started with 60 mg. Six patients started a lower dose of 40 mg. Median progression-free survival was 7.83 months (0.4 to 13.4 mo), while median overall survival was not reached but 1-year overall survival was about 60%. Six patients (35%) experienced a partial response to treatment and 6 patients (35%) showed a stable disease. In the remaining 5 (30%), we observed a progressive disease. Grade 3 and 4 AEs were observed in 41% of patients. Among 20 patients, only 1 (6%) discontinued treatment due to AEs. Asthenia (41%), diarrhea (35%), aminotransferase increasing (35%), mucosal inflammation (35%), hand and foot syndrome (24%), and hypothyroidism (24%) were the most frequently AEs. CONCLUSIONS Our data showed that, cabozantinib is a active and feasible treatment in patient with nonclear cell RCC.
Collapse
Affiliation(s)
- Michele Prisciandaro
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Raffaele Ratta
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | | | - Giuseppe Fornarini
- Medical Oncology Department, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova
| | - Salvatore Caponnetto
- Department of Medical Oncology B, Policlinico Umberto I "Sapienza" University of Rome, Rome
| | - Roberto Iacovelli
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata (AOUI), University of Verona, Verona
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola
| | - Gaetano Facchini
- Department of Uro-Gynaecological Oncology, Division of Medical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale (IRCCS)
| | | | - Roberto Sabbatini
- Department of Oncology and Haematology and Respiratory Disease, University Hospital, Modena
| | | | - Giorgia Peverelli
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Alessia Mennitto
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Elena Verzoni
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Giuseppe Procopio
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| |
Collapse
|