1
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Xu W, Zhang Y, Su Y, Li L, Yang X, Wang L, Gao H. USP9X regulates the proliferation, survival, migration and invasion of gastric cancer cells by stabilizing MTH1. BMC Gastroenterol 2024; 24:239. [PMID: 39075342 PMCID: PMC11288101 DOI: 10.1186/s12876-024-03321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND MutT homolog 1 (MTH1) sanitizes oxidized dNTP pools to promote the survival of cancer cells and its expression is frequently upregulated in cancers. Polyubiquitination stabilizes MTH1 to facilitate the proliferation of melanoma cells, suggesting the ubiquitin system controls the stability and function of MTH1. However, whether ubiquitination regulates MTH1 in gastric cancers has not been well defined. This study aims to investigate the interaction between MTH1 and a deubiquitinase, USP9X, in regulating the proliferation, survival, migration, and invasion of gastric cancer cells. METHODS The interaction between USP9X and MTH1 was evaluated by co-immunoprecipitation (co-IP) in HGC-27 gastric cancer cells. siRNAs were used to interfere with USP9X expression in gastric cancer cell lines HGC-27 and MKN-45. MTT assays were carried out to examine the proliferation, propidium iodide (PI) and 7-AAD staining assays were performed to assess the cell cycle, Annexin V/PI staining assays were conducted to examine the apoptosis, and transwell assays were used to determine the migration and invasion of control, USP9X-deficient, and USP9X-deficient plus MTH1-overexpressing HGC-27 and MKN-45 gastric cancer cells. RESULTS Co-IP data show that USP9X interacts with and deubiquitinates MTH1. Overexpression of USP9X elevates MTH1 protein level by downregulating its ubiquitination, while knockdown of USP9X has the opposite effect on MTH1. USP9X deficiency in HGC-27 and MKN-45 cells causes decreased proliferation, cell cycle arrest, extra apoptosis, and defective migration and invasion, which could be rescued by excessive MTH1. CONCLUSION USP9X interacts with and stabilizes MTH1 to promote the proliferation, survival, migration and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Wenji Xu
- Digestive System Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yaping Zhang
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Licheng District, Quanzhou, 362000, China
| | - Yingrui Su
- Nuclear Medicine Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Libin Li
- Digestive System Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xinxia Yang
- Digestive System Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Lixing Wang
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Licheng District, Quanzhou, 362000, China.
| | - Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Licheng District, Quanzhou, 362000, China.
- Neurosurgery Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
3
|
Shen J, Guillén Mancina E, Chen S, Manolakou T, Gad H, Warpman Berglund U, Sanjiv K, Helleday T. Mitotic MTH1 inhibitor TH1579 induces PD-L1 expression and inflammatory response through the cGAS-STING pathway. Oncogenesis 2024; 13:17. [PMID: 38796460 PMCID: PMC11127983 DOI: 10.1038/s41389-024-00518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The mitotic MTH1 inhibitor TH1579 is a dual inhibitor that inhibits mitosis and incorporation of oxidative DNA damage and leads to cancer-specific cell death. The response to immune checkpoint inhibitor (ICI) treatment is often augmented by DNA damaging agents through the cGAS-STING pathway. This study investigates whether TH1579 can improve the efficacy of immune checkpoint blockades through its immunomodulatory properties. Various human and murine cancer cell lines were treated with mitotic MTH1i TH1579, and the expression of PD-L1 and T-cell infiltration-related chemokines was analysed by flow cytometry and real-time qPCR. Syngeneic mouse models were established to examine the combined effect of TH1579 and PD-L1 blockade. In our investigation, we found that TH1579 upregulates PD-L1 expression at both the protein and mRNA levels in human cancer cell lines. However, in murine cell lines, the increase was less pronounced. An in vivo experiment in a syngeneic mouse melanoma model showed that TH1579 treatment significantly increased the efficacy of atezolizumab, an anti-PD-L1 antibody, compared to vehicle or atezolizumab monotherapy. Furthermore, TH1579 exhibited immune-modulatory properties, elevating cytokines such as IFN-β and chemokines including CCL5 and CXCL10, in a cGAS-STING pathway-dependent manner. In conclusion, TH1579 has the potential to improve ICI treatment by modulating immune checkpoint-related proteins and pathways.
Collapse
Affiliation(s)
- Jianyu Shen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emilio Guillén Mancina
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shenyu Chen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodora Manolakou
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, 11334, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Medical School, S10 2RX, Sheffield, UK.
| |
Collapse
|
4
|
Balu KE, Almohdar D, Ratcliffe J, Tang Q, Parwal T, Çağlayan M. Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592774. [PMID: 38766188 PMCID: PMC11100680 DOI: 10.1101/2024.05.06.592774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
DNA ligase 1 (LIG1) joins broken strand-breaks in the phosphodiester backbone to finalize DNA repair pathways. We previously reported that LIG1 fails on nick repair intermediate with 3'-oxidative damage incorporated by DNA polymerase (pol) β at the downstream steps of base excision repair (BER) pathway. Here, we determined X-ray structures of LIG1/nick DNA complexes containing 3'-8oxodG and 3'-8oxorG opposite either a templating Cytosine or Adenine and demonstrated that the ligase active site engages with mutagenic repair intermediates during steps 2 and 3 of the ligation reaction referring to the formation of DNA-AMP intermediate and a final phosphodiester bond, respectively. Furthermore, we showed the mutagenic nick sealing of DNA substrates with 3'-8oxodG:A and 3'-8oxorG:A by LIG1 wild-type, immunodeficiency disease-associated variants, and DNA ligase 3α (LIG3α) in vitro . Finally, we observed that LIG1 and LIG3α seal resulting nick after an incorporation of 8oxorGTP:A by polβ and AP-Endonuclease 1 (APE1) can clean oxidatively damaged ends at the final steps. Overall, our findings uncover a mechanistic insight into how LIG1 discriminates DNA or DNA/RNA junctions including oxidative damage and a functional coordination between the downstream enzymes, polβ, APE1, and BER ligases, to process mutagenic repair intermediates to maintain repair efficiency.
Collapse
|
5
|
Taiyab A, Choudhury A, Haidar S, Yousuf M, Rathi A, Koul P, Chakrabarty A, Islam A, Shamsi A, Hassan MI. Exploring MTH1 inhibitory potential of Thymoquinone and Baicalin for therapeutic targeting of breast cancer. Biomed Pharmacother 2024; 173:116332. [PMID: 38430630 DOI: 10.1016/j.biopha.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Cancers frequently have increased ROS levels due to disrupted redox balance, leading to oxidative DNA and protein damage, mutations, and apoptosis. The MTH1 protein plays a crucial role by sanitizing the oxidized dNTP pools. Hence, cancer cells rely on MTH1 to prevent the integration of oxidized dNTPs into DNA, preventing DNA damage and allowing cancer cell proliferation. We have discovered Thymoquinone (TQ) and Baicalin (BC) as inhibitors of MTH1 using combined docking and MD simulation approaches complemented by experimental validations via assessing binding affinity and enzyme inhibition. Docking and MD simulations studies revealed an efficient binding of TQ and BC to the active site pocket of the MTH1, and the resultant complexes are appreciably stable. Fluorescence measurements estimated a strong binding affinity of TQ and BC with Ka 3.4 ×106 and 1.0 ×105, respectively. Treating breast cancer cells with TQ and BC significantly inhibited the growth and proliferation (IC50 values 28.3 µM and 34.8 µM) and induced apoptosis. TQ and BC increased the ROS production in MCF7 cells, imposing substantial oxidative stress on cancer cells and leading to cell death. Finally, TQ and BC are proven strong MTH1 inhibitors, offering promising prospects for anti-cancer therapy.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haidar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mohd Yousuf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aanchal Rathi
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Koul
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
Ding Y, Liu Q. Targeting the nucleic acid oxidative damage repair enzyme MTH1: a promising therapeutic option. Front Cell Dev Biol 2024; 12:1334417. [PMID: 38357002 PMCID: PMC10864502 DOI: 10.3389/fcell.2024.1334417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
The accumulation of reactive oxygen species (ROS) plays a pivotal role in the development of various diseases, including cancer. Elevated ROS levels cause oxidative stress, resulting in detrimental effects on organisms and enabling tumors to develop adaptive responses. Targeting these enhanced oxidative stress protection mechanisms could offer therapeutic benefits with high specificity, as normal cells exhibit lower dependency on these pathways. MTH1 (mutT homolog 1), a homolog of Escherichia coli's MutT, is crucial in this context. It sanitizes the nucleotide pool, preventing incorporation of oxidized nucleotides, thus safeguarding DNA integrity. This study explores MTH1's potential as a therapeutic target, particularly in cancer treatment, providing insights into its structure, function, and role in disease progression.
Collapse
Affiliation(s)
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Jiangxi, China
| |
Collapse
|
7
|
Broderick K, Moutaoufik MT, Aly KA, Babu M. Sanitation enzymes: Exquisite surveillance of the noncanonical nucleotide pool to safeguard the genetic blueprint. Semin Cancer Biol 2023; 94:11-20. [PMID: 37211293 DOI: 10.1016/j.semcancer.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are common products of normal cellular metabolism, but their elevated levels can result in nucleotide modifications. These modified or noncanonical nucleotides often integrate into nascent DNA during replication, causing lesions that trigger DNA repair mechanisms such as the mismatch repair machinery and base excision repair. Four superfamilies of sanitization enzymes can effectively hydrolyze noncanonical nucleotides from the precursor pool and eliminate their unintended incorporation into DNA. Notably, we focus on the representative MTH1 NUDIX hydrolase, whose enzymatic activity is ostensibly nonessential under normal physiological conditions. Yet, the sanitization attributes of MTH1 are more prevalent when ROS levels are abnormally high in cancer cells, rendering MTH1 an interesting target for developing anticancer treatments. We discuss multiple MTH1 inhibitory strategies that have emerged in recent years, and the potential of NUDIX hydrolases as plausible targets for the development of anticancer therapeutics.
Collapse
Affiliation(s)
- Kirsten Broderick
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
8
|
Pateras IS, Williams C, Gianniou DD, Margetis AT, Avgeris M, Rousakis P, Legaki AI, Mirtschink P, Zhang W, Panoutsopoulou K, Delis AD, Pagakis SN, Tang W, Ambs S, Warpman Berglund U, Helleday T, Varvarigou A, Chatzigeorgiou A, Nordström A, Tsitsilonis OE, Trougakos IP, Gilthorpe JD, Frisan T. Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming. J Transl Med 2023; 21:169. [PMID: 36869333 PMCID: PMC9983166 DOI: 10.1186/s12967-023-03935-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.
Collapse
Affiliation(s)
- Ioannis S Pateras
- 2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62, Athens, Greece.
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Aggelos T Margetis
- 2nd Department of Internal Medicine, Athens Naval and Veterans Hospital, 115 21, Athens, Greece
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 115 27, Athens, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Pantelis Rousakis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, 013 07, Dresden, Germany
| | - Wei Zhang
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Anastasios D Delis
- Centre for Basic Research, Bioimaging Unit, Biomedical Research Foundation, Academy of Athens, 115 27, Athens, Greece
| | - Stamatis N Pagakis
- Centre for Basic Research, Bioimaging Unit, Biomedical Research Foundation, Academy of Athens, 115 27, Athens, Greece
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD, 20892-4258, USA
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD, 20892-4258, USA
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Anastasia Varvarigou
- Department of Paediatrics, University of Patras Medical School, General University Hospital, 265 04, Patras, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, 013 07, Dresden, Germany
| | - Anders Nordström
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Ourania E Tsitsilonis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Jonathan D Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
9
|
Das C, Adhikari S, Bhattacharya A, Chakraborty S, Mondal P, Yadav SS, Adhikary S, Hunt CR, Yadav K, Pandita S, Roy S, Tainer JA, Ahmed Z, Pandita TK. Epigenetic-Metabolic Interplay in the DNA Damage Response and Therapeutic Resistance of Breast Cancer. Cancer Res 2023; 83:657-666. [PMID: 36661847 PMCID: PMC11285093 DOI: 10.1158/0008-5472.can-22-3015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.
Collapse
Affiliation(s)
- Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shalini S. Yadav
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Clayton R Hunt
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kamlesh Yadav
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| | - Shruti Pandita
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, 78229, USA
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - John A Tainer
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zamal Ahmed
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
10
|
miR-4478 Accelerates Nucleus Pulposus Cells Apoptosis Induced by Oxidative Stress by Targeting MTH1. Spine (Phila Pa 1976) 2023; 48:E54-E69. [PMID: 36130054 PMCID: PMC9897280 DOI: 10.1097/brs.0000000000004486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Low back pain is the leading cause of disability in the elderly population and is strongly associated with intervertebral disk degeneration (IVDD). However, the precise molecular mechanisms regulating IVDD remain elusive. This study aimed to investigate the role of differentially expressed miRNAs in the pathogenesis of IVDD. MATERIALS AND METHODS We analyzed miRNA microarray datasets to identify differentially expressed miRNAs in IVDD progression and conducted quantitative real-time polymerase chain reaction and fluorescence in situ hybridization analysis to further confirm the differential expression of miR-4478 in nucleus pulposus (NP) tissues of patients diagnosed with IVDD. Using public databases of miRNA-mRNA interactions, we predicted the target genes of miR-4478, and subsequent flow cytometry and western blot analyses demonstrated the effect of MTH1 in H 2 O 2 -induced nucleus pulposus cells (NPCs) apoptosis. Finally, miR-4478 inhibitor was injected into NP tissues of the IVDD mouse model to explore the effect of miR-4478 in vivo. RESULTS miR-4478 was upregulated in NP tissues from IVDD patients. Silencing of miR-4478 inhibits H 2 O 2 -induced NPCs apoptosis. MTH1 was identified as a target gene for miR-4478, and miR-4478 regulates H 2 O 2 -induced NPCs apoptosis by modulating MTH1. In addition, downregulation of miR-4478 alleviated IVDD in a mouse model. CONCLUSIONS In summary, our study provides evidence that miR-4478 may aggravate IVDD through its target gene MTH1 by accelerating oxidative stress in NPCs and demonstrates that miR-4478 has therapeutic potential in IVDD treatment.
Collapse
|
11
|
Tanushi X, Pinna G, Vandamme M, Siberchicot C, D’Augustin O, Di Guilmi AM, Radicella JP, Castaing B, Smith R, Huet S, Leteurtre F, Campalans A. OGG1 competitive inhibitors show important off-target effects by directly inhibiting efflux pumps and disturbing mitotic progression. Front Cell Dev Biol 2023; 11:1124960. [PMID: 36819096 PMCID: PMC9936318 DOI: 10.3389/fcell.2023.1124960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation. Cancer cells are particularly exposed to ROS, thus challenging their capacity to process oxidative DNA damage has been proposed as a promising therapeutic strategy for cancer treatment. Two competitive inhibitors of OGG1 (OGG1i) have been identified, TH5487 and SU0268, which bind to the OGG1 catalytic pocket preventing its fixation to the DNA. Early studies with these inhibitors show an enhanced cellular sensitivity to cytotoxic drugs and a reduction in the inflammatory response. Our study uncovers two unreported off-targets effects of these OGG1i that are independent of OGG1. In vitro and in cellulo approaches have unveiled that OGG1i TH5487 and SU0268, despite an unrelated molecular structure, are able to inhibit some members of the ABC family transporters, in particular ABC B1 (MDR1) and ABC G2 (BCRP). The inhibition of these efflux pumps by OGG1 inhibitors results in a higher intra-cellular accumulation of various fluorescent probes and drugs, and largely contributes to the enhanced cytotoxicity observed when the inhibitors are combined with cytotoxic agents. Furthermore, we found that SU0268 has an OGG1-independent anti-mitotic activity-by interfering with metaphase completion-resulting in a high cellular toxicity. These two off-target activities are observed at concentrations of OGG1i that are normally used for in vivo studies. It is thus critical to consider these previously unreported non-specific effects when interpreting studies using TH5487 and SU0268 in the context of OGG1 inhibition. Additionally, our work highlights the persistent need for new specific inhibitors of the enzymatic activity of OGG1.
Collapse
Affiliation(s)
- Xhaferr Tanushi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Guillaume Pinna
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie Vandamme
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Capucine Siberchicot
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Ostiane D’Augustin
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Anne-Marie Di Guilmi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - J. Pablo Radicella
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM)UPR4301 CNRS, Université d’Orléans, Orléans, France
| | - Rebecca Smith
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Sebastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France,Institut Universitaire de France, Paris, France
| | - François Leteurtre
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Anna Campalans
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,*Correspondence: Anna Campalans,
| |
Collapse
|
12
|
Abstract
DNA repair enzymes continuously provide surveillance throughout our cells, protecting the enclosed DNA from the damage that is constantly arising from oxidation, alkylating species, and radiation. Members of this enzyme class are intimately linked to pathways controlling cancer and inflammation and are promising targets for diagnostics and future therapies. Their study is benefiting widely from the development of new tools and methods aimed at measuring their activities. Here, we provide an Account of our laboratory's work on developing chemical tools to study DNA repair processes in vitro, as well as in cells and tissues, and what we have learned by applying them.We first outline early work probing how DNA repair enzymes recognize specific forms of damage by use of chemical analogs of the damage with altered shapes and H-bonding abilities. One outcome of this was the development of an unnatural DNA base that is incorporated selectively by polymerase enzymes opposite sites of missing bases (abasic sites) in DNA, a very common form of damage.We then describe strategies for design of fluorescent probes targeted to base excision repair (BER) enzymes; these were built from small synthetic DNAs incorporating fluorescent moieties to engender light-up signals as the enzymatic reaction proceeds. Examples of targets for these DNA probes include UDG, SMUG1, Fpg, OGG1, MutYH, ALKBH2, ALKBH3, MTH1, and NTH1. Several such strategies were successful and were applied both in vitro and in cellular settings; moreover, some were used to discover small-molecule modulators of specific repair enzymes. One of these is the compound SU0268, a potent OGG1 inhibitor that is under investigation in animal models for inhibiting hyperinflammatory responses.To investigate cellular nucleotide sanitation pathways, we designed a series of "two-headed" nucleotides containing a damaged DNA nucleotide at one end and ATP at the other; these were applied to studying the three human sanitation enzymes MTH1, dUTPase, and dITPase, some of which are therapeutic targets. The MTH1 probe (ARGO) was used in collaboration with oncologists to measure the enzyme in tumors as a disease marker and also to develop the first small-molecule activators of the enzyme.We proceed to discuss the development of a "universal" probe of base excision repair processes (UBER), which reacts covalently with abasic site intermediates of base excision repair. UBER probes light up in real time as the reaction occurs, enabling the observation of base excision repair as it occurs in live cells and tissues. UBER probes can also be used in efficient and simple methods for fluorescent labeling of DNA. Finally, we suggest interesting directions for the future of this field in biomedicine and human health.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| |
Collapse
|
13
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Overexpressed c-Myc Sensitizes Cells to TH1579, a Mitotic Arrest and Oxidative DNA Damage Inducer. Biomolecules 2022; 12:biom12121777. [PMID: 36551206 PMCID: PMC9775511 DOI: 10.3390/biom12121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Previously, we reported that MTH1 inhibitors TH588 and TH1579 selectively induce oxidative damage and kill Ras-expressing or -transforming cancer cells, as compared to non-transforming immortalized or primary cells. While this explains the impressive anti-cancer properties of the compounds, the molecular mechanism remains elusive. Several oncogenes induce replication stress, resulting in under replicated DNA and replication continuing into mitosis, where TH588 and TH1579 treatment causes toxicity and incorporation of oxidative damage. Hence, we hypothesized that oncogene-induced replication stress explains the cancer selectivity. To test this, we overexpressed c-Myc in human epithelial kidney cells (HA1EB), resulting in increased proliferation, polyploidy and replication stress. TH588 and TH1579 selectively kill c-Myc overexpressing clones, enforcing the cancer cell selective killing of these compounds. Moreover, the toxicity of TH588 and TH1579 in c-Myc overexpressing cells is rescued by transcription, proteasome or CDK1 inhibitors, but not by nucleoside supplementation. We conclude that the molecular toxicological mechanisms of how TH588 and TH1579 kill c-Myc overexpressing cells have several components and involve MTH1-independent proteasomal degradation of c-Myc itself, c-Myc-driven transcription and CDK activation.
Collapse
|
15
|
Li C, Xue Y, Ba X, Wang R. The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy. Cells 2022; 11:cells11233798. [PMID: 36497058 PMCID: PMC9735852 DOI: 10.3390/cells11233798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis is highly correlated with the accumulation of mutations. The abundant and extensive DNA oxidation product, 8-Oxoguanine (8-oxoG), can cause mutations if it is not repaired by 8-oxoG repair systems. Therefore, the accumulation of 8-oxoG plays an essential role in tumorigenesis. To avoid the accumulation of 8-oxoG in the genome, base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase1 (OGG1), is responsible for the removal of genomic 8-oxoG. It has been proven that 8-oxoG levels are significantly elevated in cancer cells compared with cells of normal tissues, and the induction of DNA damage by some antitumor drugs involves direct or indirect interference with BER, especially through inducing the production and accumulation of reactive oxygen species (ROS), which can lead to tumor cell death. In addition, the absence of the core components of BER can result in embryonic or early post-natal lethality in mice. Therefore, targeting 8-oxoG repair systems with inhibitors is a promising avenue for tumor therapy. In this study, we summarize the impact of 8-oxoG accumulation on tumorigenesis and the current status of cancer therapy approaches exploiting 8-oxoG repair enzyme targeting, as well as possible synergistic lethality strategies involving exogenous ROS-inducing agents.
Collapse
Affiliation(s)
- Chunshuang Li
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Xue
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
- Correspondence: (X.B.); (R.W.)
| | - Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (X.B.); (R.W.)
| |
Collapse
|
16
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
17
|
Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death Dis 2022; 13:754. [PMID: 36050295 PMCID: PMC9436997 DOI: 10.1038/s41419-022-05182-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Ivermectin is a widely used antiparasitic drug and shows promising anticancer activity in various cancer types. Although multiple signaling pathways modulated by ivermectin have been identified in tumor cells, few studies have focused on the exact target of ivermectin. Herein, we report the pharmacological effects and targets of ivermectin in prostate cancer. Ivermectin caused G0/G1 cell cycle arrest, induced cell apoptosis and DNA damage, and decreased androgen receptor (AR) signaling in prostate cancer cells. Further in vivo analysis showed ivermectin could suppress 22RV1 xenograft progression. Using integrated omics profiling, including RNA-seq and thermal proteome profiling, the forkhead box protein A1 (FOXA1) and non-homologous end joining (NHEJ) repair executer Ku70/Ku80 were strongly suggested as direct targets of ivermectin in prostate cancer. The interaction of ivermectin and FOXA1 reduced the chromatin accessibility of AR signaling and the G0/G1 cell cycle regulator E2F1, leading to cell proliferation inhibition. The interaction of ivermectin and Ku70/Ku80 impaired the NHEJ repair ability. Cooperating with the downregulation of homologous recombination repair ability after AR signaling inhibition, ivermectin increased intracellular DNA double-strand breaks and finally triggered cell death. Our findings demonstrate the anticancer effect of ivermectin in prostate cancer, indicating that its use may be a new therapeutic approach for prostate cancer.
Collapse
|
18
|
Karsten S. Targeting the DNA repair enzymes MTH1 and OGG1 as a novel approach to treat inflammatory diseases. Basic Clin Pharmacol Toxicol 2022; 131:95-103. [PMID: 35708697 PMCID: PMC9545756 DOI: 10.1111/bcpt.13765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Autoimmune diseases and acute inflammation like sepsis cause significant morbidity and disability globally, and new targeted therapies are urgently needed. DNA repair and reactive oxygen species (ROS) pathways have long been investigated as targets for cancer treatment, but their role in immunological research has been limited. In this MiniReview, we discuss the DNA repair enzymes MTH1 and OGG1 as targets to treat both T cell-driven diseases and acute inflammation. The MiniReview is based on a PhD thesis where both enzymes were investigated with cell and animal models. For MTH1, we found that its inhibition selectively kills activated T cells without being toxic to resting cells or other tissues. MTH1 inhibition also had an alleviating role in disease models of psoriasis and multiple sclerosis. We further identified a novel MTH1low ROSlow phenotype among activated T cells. Regarding OGG1, we demonstrated a mechanism of action of the OGG1 inhibitor TH5487, which prevents the assembly of pro-inflammatory transcription factors and mitigates acute airway infection in mouse models of pneumonia. Hence, we propose both enzymes to be promising novel targets to treat inflammation and suggest that redox and DNA repair pathways could be useful targets for future immunomodulating therapies.
Collapse
Affiliation(s)
- Stella Karsten
- Department of Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
- Department of Clinical Science, Intervention and Technology, CLINTECKarolinska InstituteStockholmSweden
- Department of Oncology Pathology, SciLifeLabKarolinska InstituteStockholmSweden
| |
Collapse
|
19
|
Centio A, Estruch M, Reckzeh K, Sanjiv K, Vittori C, Engelhard S, Warpman Berglund U, Helleday T, Theilgaard-Mönch K. Inhibition of Oxidized Nucleotide Sanitation By TH1579 and Conventional Chemotherapy Cooperatively Enhance Oxidative DNA Damage and Survival in AML. Mol Cancer Ther 2022; 21:703-714. [PMID: 35247918 DOI: 10.1158/1535-7163.mct-21-0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Currently, the majority of patients with acute myeloid leukemia (AML) still die of their disease due to primary resistance or relapse toward conventional reactive oxygen species (ROS)- and DNA damage-inducing chemotherapy regimens. Herein, we explored the therapeutic potential to enhance chemotherapy response in AML, by targeting the ROS scavenger enzyme MutT homolog 1 (MTH1, NUDT1), which protects cellular integrity through prevention of fatal chemotherapy-induced oxidative DNA damage. We demonstrate that MTH1 is a potential druggable target expressed by the majority of patients with AML and the inv(16)/KITD816Y AML mouse model mimicking the genetics of patients with AML exhibiting poor response to standard chemotherapy (i.e., anthracycline & cytarabine). Strikingly, combinatorial treatment of inv(16)/KITD816Y AML cells with the MTH1 inhibitor TH1579 and ROS- and DNA damage-inducing standard chemotherapy induced growth arrest and incorporated oxidized nucleotides into DNA leading to significantly increased DNA damage. Consistently, TH1579 and chemotherapy synergistically inhibited growth of clonogenic inv(16)/KITD816Y AML cells without substantially inhibiting normal clonogenic bone marrow cells. In addition, combinatorial treatment of inv(16)/KITD816Y AML mice with TH1579 and chemotherapy significantly reduced AML burden and prolonged survival compared with untreated or single treated mice. In conclusion, our study provides a rationale for future clinical studies combining standard AML chemotherapy with TH1579 to boost standard chemotherapy response in patients with AML. Moreover, other cancer entities treated with ROS- and DNA damage-inducing chemo- or radiotherapies might benefit therapeutically from complementary treatment with TH1579.
Collapse
Affiliation(s)
- Anders Centio
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, Centre for Stem Cell Research and Developmental Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Camilla Vittori
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sophia Engelhard
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, Centre for Stem Cell Research and Developmental Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Chen Y, Hua X, Huang B, Karsten S, You Z, Li B, Li Y, Li Y, Liang J, Zhang J, Wei Y, Chen R, Lyu Z, Xiao X, Lian M, Wei J, Fang J, Miao Q, Wang Q, Berglung UW, Tang R, Helleday T, Ma X. MutT Homolog 1 Inhibitor Karonudib Attenuates Autoimmune Hepatitis by Inhibiting DNA Repair in Activated T Cells. Hepatol Commun 2022; 6:1016-1031. [PMID: 34894107 PMCID: PMC9035570 DOI: 10.1002/hep4.1862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory liver disease driven by the hyperactivation of various intrahepatic antigen-specific T cells due to a breach of immune tolerance. Studies in immunometabolism demonstrate that activated T cells harbor increased levels of reactive oxygen species that cause oxidative DNA damage. In this study, we assessed the potential of DNA damage repair enzyme MutT homolog 1 (MTH1) as a therapeutic target in AIH and karonudib as a novel drug for patients with AIH. We report herein that MTH1 expression was significantly increased in liver samples from patients with AIH compared to patients with chronic hepatitis B and nonalcoholic fatty liver disease and from healthy controls. In addition, the expression of MTH1 was positively correlated with AIH disease severity. We further found abundant T cells that expressed MTH1 in AIH. Next, we found that karonudib significantly altered T-cell receptor signaling in human T cells and robustly inhibited proliferation of human T cells in vitro. Interestingly, our data reflected a preferential inhibition of DNA damage repair in activated T cells by karonudib. Moreover, MTH1 was required to develop liver inflammation and damage because specific deletion of MTH1 in T cells ameliorated liver injury in the concanavalin A (Con A)-induced hepatitis model by inhibiting T-cell activation and proliferation. Lastly, we validated the protective effect of karonudib on the Con A-induced hepatitis model. Conclusion: MTH1 functions as a critical regulator in the development of AIH, and its inhibition in activated T cells reduces liver inflammation and damage.
Collapse
Affiliation(s)
- Yong Chen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Xiangwei Hua
- Department of Thyroid Breast OncologyShanghai East Hospital, School of Medicine, Tongji University School of MedicineShanghaiChina
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Liver Surgery and Liver Transplantation CenterRenji HospitalSchool of MedicineShanghaiChina
| | - Bingyuan Huang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Stella Karsten
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
| | - Zhengrui You
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Bo Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - You Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Yikang Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Jubo Liang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Zhang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Yiran Wei
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Ruiling Chen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Zhuwan Lyu
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Xiao Xiao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Min Lian
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Jue Wei
- Department of GastroenterologyShanghai Tongren HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jingyuan Fang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Qi Miao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Qixia Wang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Ulrika Warpman Berglung
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
| | - Ruqi Tang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| | - Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Weston Park Cancer CentreDepartment of Oncology and MetabolismUniversity of SheffieldSheffieldUnited Kingdom
| | - Xiong Ma
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
21
|
Aralov AV, Gubina N, Cabrero C, Tsvetkov VB, Turaev AV, Fedeles BI, Croy RG, Isaakova EA, Melnik D, Dukova S, Ryazantsev DY, Khrulev AA, Varizhuk AM, González C, Zatsepin TS, Essigmann JM. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli. Nucleic Acids Res 2022; 50:3056-3069. [PMID: 35234900 PMCID: PMC8989528 DOI: 10.1093/nar/gkac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.
Collapse
Affiliation(s)
- Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Nina Gubina
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia
| | - Cristina Cabrero
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Anton V Turaev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Bogdan I Fedeles
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ekaterina A Isaakova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Denis Melnik
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Svetlana Dukova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Alexei A Khrulev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Timofei S Zatsepin
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow 119992, Russia
| | - John M Essigmann
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Karsten S, Fiskesund R, Zhang XM, Marttila P, Sanjiv K, Pham T, Rasti A, Bräutigam L, Almlöf I, Marcusson-Ståhl M, Sandman C, Platzack B, Harris RA, Kalderén C, Cederbrant K, Helleday T, Warpman Berglund U. MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death Differ 2022; 29:246-261. [PMID: 34453118 PMCID: PMC8738733 DOI: 10.1038/s41418-021-00854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
T cell-driven diseases account for considerable morbidity and disability globally and there is an urgent need for new targeted therapies. Both cancer cells and activated T cells have an altered redox balance, and up-regulate the DNA repair protein MTH1 that sanitizes the oxidized nucleotide pool to avoid DNA damage and cell death. Herein we suggest that the up-regulation of MTH1 in activated T cells correlates with their redox status, but occurs before the ROS levels increase, challenging the established conception of MTH1 increasing as a direct response to an increased ROS status. We also propose a heterogeneity in MTH1 levels among activated T cells, where a smaller subset of activated T cells does not up-regulate MTH1 despite activation and proliferation. The study suggests that the vast majority of activated T cells have high MTH1 levels and are sensitive to the MTH1 inhibitor TH1579 (Karonudib) via induction of DNA damage and cell cycle arrest. TH1579 further drives the surviving cells to the MTH1low phenotype with altered redox status. TH1579 does not affect resting T cells, as opposed to the established immunosuppressor Azathioprine, and no sensitivity among other major immune cell types regarding their function can be observed. Finally, we demonstrate a therapeutic effect in a murine model of experimental autoimmune encephalomyelitis. In conclusion, we show proof of concept of the existence of MTH1high and MTH1low activated T cells, and that MTH1 inhibition by TH1579 selectively suppresses pro-inflammatory activated T cells. Thus, MTH1 inhibition by TH1579 may serve as a novel treatment option against autoreactive T cells in autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Stella Karsten
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roland Fiskesund
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Xing-Mei Zhang
- grid.4714.60000 0004 1937 0626Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Petra Marttila
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Therese Pham
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bräutigam
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maritha Marcusson-Ståhl
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Carolina Sandman
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Björn Platzack
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Robert A. Harris
- grid.4714.60000 0004 1937 0626Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Kalderén
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Cederbrant
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Thomas Helleday
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.11835.3e0000 0004 1936 9262Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Ulrika Warpman Berglund
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,Oxcia AB, Stockholm, Sweden
| |
Collapse
|
23
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Sanjiv K, Calderón-Montaño JM, Pham TM, Erkers T, Tsuber V, Almlöf I, Höglund A, Heshmati Y, Seashore-Ludlow B, Nagesh Danda A, Gad H, Wiita E, Göktürk C, Rasti A, Friedrich S, Centio A, Estruch M, Våtsveen TK, Struyf N, Visnes T, Scobie M, Koolmeister T, Henriksson M, Wallner O, Sandvall T, Lehmann S, Theilgaard-Mönch K, Garnett MJ, Östling P, Walfridsson J, Helleday T, Warpman Berglund U. MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Cancer Res 2021; 81:5733-5744. [PMID: 34593524 PMCID: PMC9397639 DOI: 10.1158/0008-5472.can-21-0061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, exhibiting high levels of reactive oxygen species (ROS). ROS levels have been suggested to drive leukemogenesis and is thus a potential novel target for treating AML. MTH1 prevents incorporation of oxidized nucleotides into the DNA to maintain genome integrity and is upregulated in many cancers. Here we demonstrate that hematologic cancers are highly sensitive to MTH1 inhibitor TH1579 (karonudib). A functional precision medicine ex vivo screen in primary AML bone marrow samples demonstrated a broad response profile of TH1579, independent of the genomic alteration of AML, resembling the response profile of the standard-of-care treatments cytarabine and doxorubicin. Furthermore, TH1579 killed primary human AML blast cells (CD45+) as well as chemotherapy resistance leukemic stem cells (CD45+Lin-CD34+CD38-), which are often responsible for AML progression. TH1579 killed AML cells by causing mitotic arrest, elevating intracellular ROS levels, and enhancing oxidative DNA damage. TH1579 showed a significant therapeutic window, was well tolerated in animals, and could be combined with standard-of-care treatments to further improve efficacy. TH1579 significantly improved survival in two different AML disease models in vivo. In conclusion, the preclinical data presented here support that TH1579 is a promising novel anticancer agent for AML, providing a rationale to investigate the clinical usefulness of TH1579 in AML in an ongoing clinical phase I trial. SIGNIFICANCE: The MTH1 inhibitor TH1579 is a potential novel AML treatment, targeting both blasts and the pivotal leukemic stem cells while sparing normal bone marrow cells.
Collapse
Affiliation(s)
- Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Therese M. Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tom Erkers
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Viktoriia Tsuber
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Höglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yaser Heshmati
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Akhilesh Nagesh Danda
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elisee Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Friedrich
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anders Centio
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kristin Våtsveen
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,KG Jebsen Center for B cell malignancies, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nona Struyf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Sandvall
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Haematology, Uppsala University, Uppsala, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National Univ. Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Oxcia AB, Stockholm, Sweden.,Corresponding Author: Ulrika Warpman Berglund, Department of Oncology Pathology, Karolinska Institute, Tomtebodavägen 23A, Stockholm 17121, Sweden or Oxcia AB, Norrbackagatan 70C, SE-113 34 Stockholm, Sweden. Phone: 46-73-2709605; E-mail: or
| |
Collapse
|
25
|
Hansel C, Hlouschek J, Xiang K, Melnikova M, Thomale J, Helleday T, Jendrossek V, Matschke J. Adaptation to Chronic-Cycling Hypoxia Renders Cancer Cells Resistant to MTH1-Inhibitor Treatment Which Can Be Counteracted by Glutathione Depletion. Cells 2021; 10:3040. [PMID: 34831264 PMCID: PMC8616547 DOI: 10.3390/cells10113040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor hypoxia and hypoxic adaptation of cancer cells represent major barriers to successful cancer treatment. We revealed that improved antioxidant capacity contributes to increased radioresistance of cancer cells with tolerance to chronic-cycling severe hypoxia/reoxygenation stress. We hypothesized, that the improved tolerance to oxidative stress will increase the ability of cancer cells to cope with ROS-induced damage to free deoxy-nucleotides (dNTPs) required for DNA replication and may thus contribute to acquired resistance of cancer cells in advanced tumors to antineoplastic agents inhibiting the nucleotide-sanitizing enzyme MutT Homologue-1 (MTH1), ionizing radiation (IR) or both. Therefore, we aimed to explore potential differences in the sensitivity of cancer cells exposed to acute and chronic-cycling hypoxia/reoxygenation stress to the clinically relevant MTH1-inhibitor TH1579 (Karonudib) and to test whether a multi-targeting approach combining the glutathione withdrawer piperlongumine (PLN) and TH1579 may be suited to increase cancer cell sensitivity to TH1579 alone and in combination with IR. Combination of TH1579 treatment with radiotherapy (RT) led to radiosensitization but was not able to counteract increased radioresistance induced by adaptation to chronic-cycling hypoxia/reoxygenation stress. Disruption of redox homeostasis using PLN sensitized anoxia-tolerant cancer cells to MTH1 inhibition by TH1579 under both normoxic and acute hypoxic treatment conditions. Thus, we uncover a glutathione-driven compensatory resistance mechanism towards MTH1-inhibition in form of increased antioxidant capacity as a consequence of microenvironmental or therapeutic stress.
Collapse
Affiliation(s)
- Christine Hansel
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Margarita Melnikova
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Juergen Thomale
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Thomas Helleday
- Science for Life Laboratory, Karolinska Institutet, 17121 Stockholm, Sweden;
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| |
Collapse
|
26
|
Shi J, Xiong Z, Wang K, Yuan C, Huang Y, Xiao W, Meng X, Chen Z, Lv Q, Miao D, Liang H, Xu T, Xie K, Yang H, Zhang X. HIF2α promotes tumour growth in clear cell renal cell carcinoma by increasing the expression of NUDT1 to reduce oxidative stress. Clin Transl Med 2021; 11:e592. [PMID: 34841698 PMCID: PMC8567048 DOI: 10.1002/ctm2.592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The key role of hypoxia-inducible factor 2alpha (HIF2α) in the process of renal cancer has been confirmed. In the field of tumour research, oxidative stress is also considered to be an important influencing factor. However, the relationship and biological benefits of oxidative stress and HIF2α in ccRCC remain unclear. This research attempts to explore the effect of oxidative stress on the cancer-promoting effect of HIF2α in ccRCC and reveal its mechanism of action. METHODS The bioinformatics analysis for ccRCC is based on whole transcriptome sequencing and TCGA database. The detection of the expression level of related molecules is realised by western blot and PCR. The expression of Nucleoside diphosphate-linked moiety X-type motif 1 (NUDT1) was knocked down by lentiviral infection technology. The functional role of NUDT1 were further investigated by CCK8 assays, transwell assays and cell oxidative stress indicator detection. The exploration of related molecular mechanisms is realised by Luciferase assays and Chromatin immunoprecipitation (ChIP) assays. RESULTS Molecular screening based on knockdown HIF2α sequencing data and oxidative stress related data sets showed that NUDT1 is considered to be an important molecule for the interaction of HIF2α with oxidative stress. Subsequent experimental results showed that NUDT1 can cooperate with HIF2α to promote the progression of ccRCC. And this biological effect was found to be caused by the oxidative stress regulated by NUDT1. Mechanistically, HIF2α transcription activates the expression of NUDT1, thereby inhibiting oxidative stress and promoting the progression of ccRCC. CONCLUSIONS This research clarified a novel mechanism by which HIF2α stabilises sirtuin 3 (SIRT3) through direct transcriptional activation of NUDT1, thereby inhibiting oxidative stress to promote the development of ccRCC. It provided the possibility for the selection of new therapeutic targets for ccRCC and the study of combination medication regimens.
Collapse
Affiliation(s)
- Jian Shi
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhiyong Xiong
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Keshan Wang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Changfei Yuan
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Yu Huang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Wen Xiao
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiangui Meng
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhixian Chen
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qingyang Lv
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Daojia Miao
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Huageng Liang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Tianbo Xu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kairu Xie
- Department of Pathogenic BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Hongmei Yang
- Department of Pathogenic BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoping Zhang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
27
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
28
|
Identification of Prognostic alternative splicing signatures and their clinical significance in uveal melanoma. Exp Eye Res 2021; 209:108666. [PMID: 34129849 DOI: 10.1016/j.exer.2021.108666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
As a posttranscriptional regulatory mechanism, alternative splicing (AS) has the potential to generate a large amount of protein diversity from limited genes. The purpose of our study was to assess the usefulness of prognostic splicing events as novel diagnostic and therapeutic signatures for uveal melanoma (UM). The datasets, clinical traits and AS data of UM were obtained from The Cancer Genome Atlas (TCGA) database and TCGA SpliceSeq database. Using bioinformatics analysis, we identified 1047 AS events as candidate AS events closely related to prognosis from 920 parent genes. The gene enrichment analysis indicated that these genes were mainly enriched in cellular components (CC) including cytosol, nucleoplasm, cytoplasm and ribosome, and in molecular functions (MF), including protein binding and poly(A) RNA binding. Furthermore, we selected all survival-associated splicing events to generate prognostic signatures, which included 4 exon skip (ES) events (DNASE1L1-90581-ES, NUDT1-78611-ES, BIN1-55198-ES, SEPN1-1195-ES) and 1 alternate promoter (AP) event (DPYSL2-83132-AP). The AS prognostic model was confirmed as independent overall survival (OS)-related factors (p = 0.014). A total of 17 splicing factors (SFs) involved in the regulation of AS were identified as related to the OS of UM patients. Our pooled data highlighted the usefulness and importance of AS biomarkers, which provided a potential strategy for the diagnosis and treatment of UM.
Collapse
|
29
|
|
30
|
Karonudib has potent anti-tumor effects in preclinical models of B-cell lymphoma. Sci Rep 2021; 11:6317. [PMID: 33737576 PMCID: PMC7973795 DOI: 10.1038/s41598-021-85613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 11/08/2022] Open
Abstract
Chemo-immunotherapy has improved survival in B-cell lymphoma patients, but refractory/relapsed diseases still represent a major challenge, urging for development of new therapeutics. Karonudib (TH1579) was developed to inhibit MTH1, an enzyme preventing oxidized dNTP-incorporation in DNA. MTH1 is highly upregulated in tumor biopsies from patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma, hence confirming a rationale for targeting MTH1. Here, we tested the efficacy of karonudib in vitro and in preclinical B-cell lymphoma models. Using a range of B-cell lymphoma cell lines, karonudib strongly reduced viability at concentrations well tolerated by activated normal B cells. In B-cell lymphoma cells, karonudib increased incorporation of 8-oxo-dGTP into DNA, and prominently induced prometaphase arrest and apoptosis due to failure in spindle assembly. MTH1 knockout cell lines were less sensitive to karonudib-induced apoptosis, but were displaying cell cycle arrest phenotype similar to the wild type cells, indicating a dual inhibitory role of the drug. Karonudib was highly potent as single agent in two different lymphoma xenograft models, including an ABC DLBCL patient derived xenograft, leading to prolonged survival and fully controlled tumor growth. Together, our preclinical findings provide a rationale for further clinical testing of karonudib in B-cell lymphoma.
Collapse
|
31
|
Inhibitor development of MTH1 via high-throughput screening with fragment based library and MTH1 substrate binding cavity. Bioorg Chem 2021; 110:104813. [PMID: 33774493 DOI: 10.1016/j.bioorg.2021.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022]
Abstract
MutT Homolog 1 (MTH1) has been proven to hydrolyze oxidized nucleotide triphosphates during DNA repair. It can prevent the incorporation of wrong nucleotides during DNA replication and mitigate cell apoptosis. In a cancer cell, abundant reactive oxygen species can lead to substantial DNA damage and DNA mutations by base-pairing mismatch. MTH1 could eliminate oxidized dNTP and prevent cancer cells from entering cell death. Therefore, inhibition of MTH1 activity is considered to be an anti-cancer therapeutic target. In this study, high-throughput screening techniques were combined with a fragment-based library containing 2,313 compounds, which were used to screen for lead compounds with MTH1 inhibitor activity. Four compounds with MTH1 inhibitor ability were selected, and compound MI0639 was found to have the highest effective inhibition. To discover the selectivity and specificity of this action, several derivatives based on the MTH1 and MI0639 complex structure were synthesized. We compared 14 complex structures of MTH1 and the various compounds in combination with enzymatic inhibition and thermodynamic analysis. Nanomolar-range IC50 inhibition abilities by enzyme kinetics and Kd values by thermodynamic analysis were obtained for two compounds, named MI1020 and MI1024. Based on structural information and compound optimization, we aim to provide a strategy for the development of MTH1 inhibitors with high selectivity and specificity.
Collapse
|
32
|
MTH1 Inhibitors for the Treatment of Psoriasis. J Invest Dermatol 2021; 141:2037-2048.e4. [PMID: 33676948 DOI: 10.1016/j.jid.2021.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Inflammatory diseases, including psoriasis, are characterized by changes in redox regulation. The MTH1 prevents the incorporation of oxidized nucleotides during DNA replication. Using MTH1 small-molecule inhibitors, we found induced apoptosis through 8-oxodeoxyguanosine triphosphate accumulation and DNA double-strand breaks after oxidative stress in normal and malignant keratinocytes. In psoriasis, we detected increased MTH1 expression in lesional skin and PBMCs compared with that in the controls. Using the imiquimod psoriasis mouse model, we found that MTH1 inhibition diminished psoriatic histological characteristics and normalized the levels of neutrophils and T cells in the skin and skin-draining lymph nodes. The inhibition abolished the expression of T helper type 17‒associated cytokines in the skin, which was in line with decreased levels of IL-17-producing γδ T cells in lymph nodes. In human keratinocytes, MTH1 inhibition prevented the upregulation of IL-17‒downstream genes, which was independent of ROS-induced apoptosis. In conclusion, our data support MTH1 inhibition using small molecules suitable for topical application as a promising therapeutic approach to psoriasis.
Collapse
|
33
|
Sun J, Prabhu N, Tang J, Yang F, Jia L, Guo J, Xiao K, Tam WL, Nordlund P, Dai L. Recent advances in proteome-wide label-free target deconvolution for bioactive small molecules. Med Res Rev 2021; 41:2893-2926. [PMID: 33533067 DOI: 10.1002/med.21788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Small-molecule drugs modulate biological processes and disease states through engagement of target proteins in cells. Assessing drug-target engagement on a proteome-wide scale is of utmost importance in better understanding the molecular mechanisms of action of observed beneficial and adverse effects, as well as in developing next generation tool compounds and drugs with better efficacies and specificities. However, systematic assessment of drug-target engagement has been an arduous task. With the continuous development of mass spectrometry-based proteomics instruments and techniques, various chemical proteomics approaches for drug target deconvolution (i.e., the identification of molecular target for drugs) have emerged. Among these, the label-free target deconvolution approaches that do not involve the chemical modification of compounds of interest, have gained increased attention in the community. Here we provide an overview of the basic principles and recent biological applications of the most important label-free methods including the cellular thermal shift assay, pulse proteolysis, chemical denaturant and protein precipitation, stability of proteins from rates of oxidation, drug affinity responsive target stability, limited proteolysis, and solvent-induced protein precipitation. The state-of-the-art technical implications and future outlook for the label-free approaches are also discussed.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Tang
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Kefeng Xiao
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
34
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
35
|
Shi H, Ishikawa R, Heh CH, Sasaki S, Taniguchi Y. Development of MTH1-Binding Nucleotide Analogs Based on 7,8-Dihalogenated 7-Deaza-dG Derivatives. Int J Mol Sci 2021; 22:ijms22031274. [PMID: 33525366 PMCID: PMC7866122 DOI: 10.3390/ijms22031274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.
Collapse
Affiliation(s)
- Hui Shi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.S.); (R.I.); (S.S.)
| | - Ren Ishikawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.S.); (R.I.); (S.S.)
| | - Choon Han Heh
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.S.); (R.I.); (S.S.)
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo City, Nagasaki 859-3298, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.S.); (R.I.); (S.S.)
- Correspondence: ; Tel.: +81-92-642-6569
| |
Collapse
|
36
|
Zhang L, Misiara L, Samaranayake GJ, Sharma N, Nguyen DM, Tahara YK, Kool ET, Rai P. OGG1 co-inhibition antagonizes the tumor-inhibitory effects of targeting MTH1. Redox Biol 2021; 40:101848. [PMID: 33450725 PMCID: PMC7810763 DOI: 10.1016/j.redox.2020.101848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer cells develop protective adaptations against oxidative DNA damage, providing a strong rationale for targeting DNA repair proteins. There has been a high degree of recent interest in inhibiting the mammalian Nudix pyrophosphatase MutT Homolog 1 (MTH1). MTH1 degrades 8-oxo-dGTP, thus limiting its incorporation into genomic DNA. MTH1 inhibition has variously been shown to induce genomic 8-oxo-dG elevation, genotoxic strand breaks in p53-functional cells, and tumor-inhibitory outcomes. Genomically incorporated 8-oxo-dG is excised by the base excision repair enzyme, 8-oxo-dG glycosylase 1 (OGG1). Thus, OGG1 inhibitors have been developed with the idea that their combination with MTH1 inhibitors will have anti-tumor effects by increasing genomic oxidative DNA damage. However, contradictory to this idea, we found that human lung adenocarcinoma with low OGG1 and MTH1 were robustly represented in patient datasets. Furthermore, OGG1 co-depletion mitigated the extent of DNA strand breaks and cellular senescence in MTH1-depleted p53-wildtype lung adenocarcinoma cells. Similarly, shMTH1-transduced cells were less sensitive to the OGG1 inhibitor, SU0268, than shGFP-transduced counterparts. Although the dual OGG1/MTH1 inhibitor, SU0383, induced greater cytotoxicity than equivalent combined or single doses of its parent scaffold MTH1 and OGG1 inhibitors, IACS-4759 and SU0268, this effect was only observed at the highest concentration assessed. Collectively, using both genetic depletion as well as small molecule inhibitors, our findings suggest that OGG1/MTH1 co-inhibition is unlikely to yield significant tumor-suppressive benefit. Instead such co-inhibition may exert tumor-protective effects by preventing base excision repair-induced DNA nicks and p53 induction, thus potentially conferring a survival advantage to the treated tumors. Low MTH1/low OGG1 tumors are robustly represented in patient lung adenocarcinoma datasets but low MTH1/high OGG1 are not. Co-depletion of OGG1 in lung adenocarcinoma cells mitigates shMTH1-induced DNA strand breaks and p53-induced senescence. p53-null tumor cells have lower OGG1 vs. wt p53 counterparts and are more resistant to MTH1 loss-induced anti-tumor effects. Pharmacologic co-inhibition of OGG1 and MTH1 does not enhance cytotoxicity over the respective single inhibitors.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Radiation Oncology, University of Miami Medical School, FL 33136, USA
| | - Laura Misiara
- College of Arts and Sciences, University of Miami, FL 33146, USA
| | - Govindi J Samaranayake
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Medical School, FL 33136, USA
| | - Nisha Sharma
- College of Arts and Sciences, University of Miami, FL 33146, USA
| | - Dao M Nguyen
- Department of Surgery, University of Miami Medical School, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Yu-Ki Tahara
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Priyamvada Rai
- Department of Radiation Oncology, University of Miami Medical School, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
37
|
Visnes T, Benítez-Buelga C, Cázares-Körner A, Sanjiv K, Hanna BMF, Mortusewicz O, Rajagopal V, Albers JJ, Hagey DW, Bekkhus T, Eshtad S, Baquero JM, Masuyer G, Wallner O, Müller S, Pham T, Göktürk C, Rasti A, Suman S, Torres-Ruiz R, Sarno A, Wiita E, Homan EJ, Karsten S, Marimuthu K, Michel M, Koolmeister T, Scobie M, Loseva O, Almlöf I, Unterlass JE, Pettke A, Boström J, Pandey M, Gad H, Herr P, Jemth AS, El Andaloussi S, Kalderén C, Rodriguez-Perales S, Benítez J, Krokan HE, Altun M, Stenmark P, Berglund UW, Helleday T. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Res 2020; 48:12234-12251. [PMID: 33211885 PMCID: PMC7708037 DOI: 10.1093/nar/gkaa1048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim,Norway
| | - Carlos Benítez-Buelga
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Varshni Rajagopal
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Julian J Albers
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tove Bekkhus
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Saeed Eshtad
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Juan Miguel Baquero
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation. University of Bath, Bath BA2 7AY, UK
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Sarah Müller
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Therese Pham
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Sharda Suman
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.,Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway.,Department of Environment and New Resources, SINTEF Ocean, N-7010 Trondheim, Norway
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Stella Karsten
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karthick Marimuthu
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Judith Edda Unterlass
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Aleksandra Pettke
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Johan Boström
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Monica Pandey
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Helge Gad
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Patrick Herr
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | | | - Christina Kalderén
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Hans E Krokan
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway
| | - Mikael Altun
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Experimental Medical Science, Lund University, SE-221 00 Lund, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
38
|
Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chem Biol 2020; 28:394-423. [PMID: 33357463 DOI: 10.1016/j.chembiol.2020.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Phenotype-based screening has emerged as an alternative route for discovering new chemical entities toward first-in-class therapeutics. However, clarifying their mode of action has been a significant bottleneck for drug discovery. For target protein identification, conventionally bioactive small molecules are conjugated onto solid supports and then applied to isolate target proteins from whole proteome. This approach requires a high binding affinity between bioactive small molecules and their target proteins. Besides, the binding affinity can be significantly hampered after structural modifications of bioactive molecules with linkers. To overcome these limitations, two major strategies have recently been pursued: (1) the covalent conjugation between small molecules and target proteins using photoactivatable moieties or electrophiles, and (2) label-free target identification through monitoring target engagement by tracking the thermal, proteolytic, or chemical stability of target proteins. This review focuses on recent advancements in target identification from covalent capturing to label-free strategies.
Collapse
Affiliation(s)
- Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Hankum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea; CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
39
|
Yin Y, Chen F. Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives. Acta Pharm Sin B 2020; 10:2259-2271. [PMID: 33354500 PMCID: PMC7745060 DOI: 10.1016/j.apsb.2020.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1.
Collapse
Key Words
- AI, 7-azaindole
- AID, 7-azaindazole
- AP, aminopyrimidine
- AQ, amidoquinolines
- AZ, 2-aminoquinazoline
- Anticancer
- CETSA, cellular thermal shift assay
- CR, cyclometalated ruthenium
- DDR, DNA damage response
- DNA repair
- F, fragment
- FP, farnesyl phenolic
- IC50, half-maximal inhibitory concentrations
- Inhibitor
- MMR, DNA mismatch repair
- MTH1
- MTH1, human MutT homolog 1
- NSCLC, non-small cell lung cancer
- Oxidized nucleotide
- P, purinone
- PDT, photodynamic therapy
- PM, purinone macrocycle
- Pu, purine
- ROS, reactive oxygen species
- TLR7, Toll-like receptor 7
- TPP, thermal proteome profiling
- TS-FITGE, thermal stability shift-based fluorescence difference in two-dimensional gel electrophoresis
Collapse
Affiliation(s)
- Yizhen Yin
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Corresponding author. Tel./fax: +86 21 65643811.
| |
Collapse
|
40
|
Radiolabeled 6-(2, 3-Dichlorophenyl)-N4-methylpyrimidine-2, 4-diamine (TH287): A Potential Radiotracer for Measuring and Imaging MTH1. Int J Mol Sci 2020; 21:ijms21228860. [PMID: 33238630 PMCID: PMC7700685 DOI: 10.3390/ijms21228860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
MTH1 (MutT homolog 1) or NUDT1 (Nudix Hydrolase 1), also known as oxidized purine nucleoside triphosphatase, has potential as a biomarker for monitoring cancer progression and quantifying target engagement for relevant therapies. In this study, we validate one MTH1 inhibitor TH287 as a PET MTH1 radiotracer. TH287 was radiolabeled with tritium and the binding of [3H]TH287 to MTH1 was evaluated in live glioblastoma cells (U251MG) through saturation and competitive binding assays, together with in vitro enzymatic assays. Furthermore, TH287 was radiolabeled with carbon-11 for in vivo microPET studies. Saturation binding assays show that [3H]TH287 has a dissociation constant (Kd) of 1.97 ± 0.18 nM, Bmax of 2676 ± 122 fmol/mg protein for U251MG cells, and nH of 0.98 ± 0.02. Competitive binding assays show that TH287 (Ki: 3.04 ± 0.14 nM) has a higher affinity for MTH1 in U251MG cells compared to another well studied MTH1 inhibitor: (S)-crizotinib (Ki: 153.90 ± 20.48 nM). In vitro enzymatic assays show that TH287 has an IC50 of 2.2 nM in inhibiting MTH1 hydrolase activity and a Ki of 1.3 nM from kinetics assays, these results are consistent with our radioligand binding assays. Furthermore, MicroPET imaging shows that [11C]TH287 gets into the brain with rapid clearance from the brain, kidney, and heart. The results presented here indicate that radiolabeled TH287 has favorable properties to be a useful tool for measuring MTH1 in vitro and for further evaluation for in vivo PET imaging MTH1 of brain tumors and other central nervous system disorders.
Collapse
|
41
|
Hu M, Ning J, Mao L, Yu Y, Wu Y. Antitumour activity of TH1579, a novel MTH1 inhibitor, against castration-resistant prostate cancer. Oncol Lett 2020; 21:62. [PMID: 33281973 PMCID: PMC7709546 DOI: 10.3892/ol.2020.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) treatment still remains difficult. The aim of the present study was to determine the antitumour efficacy of the MutT homolog 1 (MTH1) inhibitor, TH1579, against castration-resistant prostate cancer. PC-3 and DU-145 prostate cancer cells were treated with different concentrations of TH1579. C4-2 cells with or without androgen receptor (AR) were also treated with TH1579 to assess AR function. Cell survival, 8-oxo-dG levels and DNA damage were measured using cell viability assays, western blotting, immunofluorescence analysis and flow cytometry. TH1579 inhibited CRPC cell proliferation in a dose-dependent manner. The viabilities of PC-3 and DU-145 cells treated with 1 µM of TH1579 were 28.6 and 24.1%, respectively. The viabilities of C4-2 cells with and without AR treated with 1 µM TH1579 were 10.6 and 19.0%, respectively. Moreover, TH1579 treatment increased 8-oxo-dG levels, as well as the number of 53BP1 and γH2A.X foci, resulting in increased DNA double-strand breakage and apoptosis in PC-3 and DU-145 cells. The findings of the present study demonstrated that TH1579 exerted strong antitumour effects on CRPC cells, and may therefore be used as a potential therapeutic agent for the clinical treatment of CRPC.
Collapse
Affiliation(s)
- Mingqiu Hu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Likai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Yuanyuan Yu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Yu Wu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| |
Collapse
|
42
|
Majumdar C, McKibbin PL, Krajewski AE, Manlove AH, Lee JK, David SS. Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY. J Am Chem Soc 2020; 142:20340-20350. [PMID: 33202125 DOI: 10.1021/jacs.0c06767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA glycosylase MutY prevents deleterious mutations resulting from guanine oxidation by recognition and removal of adenine (A) misincorporated opposite 8-oxo-7,8-dihydroguanine (OG). Correct identification of OG:A is crucial to prevent improper and detrimental MutY-mediatedadenine excision from G:A or T:A base pairs. Here we present a structure-activity relationship (SAR) study using analogues of A to probe the basis for OG:A specificity of MutY. We correlate observed in vitro MutY activity on A analogue substrates with their experimental and calculated acidities to provide mechanistic insight into the factors influencing MutY base excision efficiency. These data show that H-bonding and electrostatic interactions of the base within the MutY active site modulate the lability of the N-glycosidic bond. A analogues that were not excised from duplex DNA as efficiently as predicted by calculations provided insight into other required structural features, such as steric fit and H-bonding within the active site for proper alignment with MutY catalytic residues. We also determined MutY-mediated repair of A analogues paired with OG within the context of a DNA plasmid in bacteria. Remarkably, the magnitudes of decreased in vitro MutY excision rates with different A analogue duplexes do not correlate with the impact on overall MutY-mediated repair. The feature that most strongly correlated with facile cellular repair was the ability of the A analogues to H-bond with the Hoogsteen face of OG. Notably, base pairing of A with OG uniquely positions the 2-amino group of OG in the major groove and provides a means to indirectly select only these inappropriately placed adenines for excision. This highlights the importance of OG lesion detection for efficient MutY-mediated cellular repair. The A analogue SARs also highlight the types of modifications tolerated by MutY and will guide the development of specific probes and inhibitors of MutY.
Collapse
Affiliation(s)
- Chandrima Majumdar
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Paige L McKibbin
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Allison E Krajewski
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Amelia H Manlove
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Sheila S David
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
43
|
Li DN, Yang CC, Li J, Ou Yang QG, Zeng LT, Fan GQ, Liu TH, Tian XY, Wang JJ, Zhang H, Dai DP, Cui J, Cai JP. The high expression of MTH1 and NUDT5 promotes tumor metastasis and indicates a poor prognosis in patients with non-small-cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118895. [PMID: 33096144 DOI: 10.1016/j.bbamcr.2020.118895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/03/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022]
Abstract
MutT Homolog 1 (MTH1) is a mammalian 8-oxodGTPase for sanitizing oxidative damage to the nucleotide pool. Nudix type 5 (NUDT5) also sanitizes 8-oxodGDP in the nucleotide pool. The role of MTH1 and NUDT5 in non-small-cell lung cancer (NSCLC) progression and metastasis remains unclear. In the present study, we reported that MTH1 and NUDT5 were upregulated in NSCLC cell lines and tissues, and higher levels of MTH1 or NUDT5 were associated with tumor metastasis and a poor prognosis in patients with NSCLC. Their suppression also restrained tumor growth and lung metastasis in vivo and significantly inhibited NSCLC cell migration, invasion, cell proliferation and cell cycle progression while promoting apoptosis in vitro. The opposite effects were observed in vitro following MTH1 or NUDT5 rescue. In addition, the upregulation of MTH1 or NUDT5 enhanced the MAPK pathway and PI3K/AKT activity. Furthermore, MTH1 and NUDT5 induce epithelial-mesenchymal transition both in vitro and in vivo. These results highlight the essential role of MTH1 and NUDT5 in NSCLC tumor tumorigenesis and metastasis as well as their functions as valuable markers of the NSCLC prognosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Dan-Ni Li
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China
| | - Cheng-Cheng Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Qiu-Geng Ou Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Teng-Hui Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xin-Yuan Tian
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China
| | - Jing-Jing Wang
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China
| | - He Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Jian-Ping Cai
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China.
| |
Collapse
|
44
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
46
|
Das I, Gad H, Bräutigam L, Pudelko L, Tuominen R, Höiom V, Almlöf I, Rajagopal V, Hansson J, Helleday T, Egyházi Brage S, Warpman Berglund U. AXL and CAV-1 play a role for MTH1 inhibitor TH1579 sensitivity in cutaneous malignant melanoma. Cell Death Differ 2020; 27:2081-2098. [PMID: 31919461 PMCID: PMC7308409 DOI: 10.1038/s41418-019-0488-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous malignant melanoma (CMM) is the deadliest form of skin cancer and clinically challenging due to its propensity to develop therapy resistance. Reactive oxygen species (ROS) can induce DNA damage and play a significant role in CMM. MTH1 protein protects from ROS damage and is often overexpressed in different cancer types including CMM. Herein, we report that MTH1 inhibitor TH1579 induced ROS levels, increased DNA damage responses, caused mitotic arrest and suppressed CMM proliferation leading to cell death both in vitro and in an in vivo xenograft CMM zebrafish disease model. TH1579 was more potent in abrogating cell proliferation and inducing cell death in a heterogeneous co-culture setting when compared with CMM standard treatments, vemurafenib or trametinib, showing its broad anticancer activity. Silencing MTH1 alone exhibited similar cytotoxic effects with concomitant induction of mitotic arrest and ROS induction culminating in cell death in most CMM cell lines tested, further emphasizing the importance of MTH1 in CMM cells. Furthermore, overexpression of receptor tyrosine kinase AXL, previously demonstrated to contribute to BRAF inhibitor resistance, sensitized BRAF mutant and BRAF/NRAS wildtype CMM cells to TH1579. AXL overexpression culminated in increased ROS levels in CMM cells. Moreover, silencing of a protein that has shown opposing effects on cell proliferation, CAV-1, decreased sensitivity to TH1579 in a BRAF inhibitor resistant cell line. AXL-MTH1 and CAV-1-MTH1 mRNA expressions were correlated as seen in CMM clinical samples. Finally, TH1579 in combination with BRAF inhibitor exhibited a more potent cell killing effect in BRAF mutant cells both in vitro and in vivo. In summary, we show that TH1579-mediated efficacy is independent of BRAF/NRAS mutational status but dependent on the expression of AXL and CAV-1.
Collapse
Affiliation(s)
- Ishani Das
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Helge Gad
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, S10 2RX, UK
| | - Lars Bräutigam
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Linda Pudelko
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Rainer Tuominen
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Ingrid Almlöf
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Varshni Rajagopal
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
- Department of Oncology, Karolinska University Hospital, S-171 76, Stockholm, Sweden
| | - Thomas Helleday
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, S10 2RX, UK
| | - Suzanne Egyházi Brage
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden.
| |
Collapse
|
47
|
Magkouta SF, Pappas AG, Vaitsi PC, Agioutantis PC, Pateras IS, Moschos CA, Iliopoulou MP, Kosti CN, Loutrari HV, Gorgoulis VG, Kalomenidis IT. MTH1 favors mesothelioma progression and mediates paracrine rescue of bystander endothelium from oxidative damage. JCI Insight 2020; 5:134885. [PMID: 32554927 DOI: 10.1172/jci.insight.134885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress and inadequate redox homeostasis is crucial for tumor initiation and progression. MTH1 (NUDT1) enzyme prevents incorporation of oxidized dNTPs by sanitizing the deoxynucleoside triphosphate (dNTP) pool and is therefore vital for the survival of tumor cells. MTH1 inhibition has been found to inhibit the growth of several experimental tumors, but its role in mesothelioma progression remained elusive. Moreover, although MTH1 is nonessential to normal cells, its role in survival of host cells in tumor milieu, especially tumor endothelium, is unclear. We validated a clinically relevant MTH1 inhibitor (Karonudib) in mesothelioma treatment using human xenografts and syngeneic murine models. We show that MTH1 inhibition impedes mesothelioma progression and that inherent tumoral MTH1 levels are associated with a tumor's response. We also identified tumor endothelial cells as selective targets of Karonudib and propose a model of intercellular signaling among tumor cells and bystander tumor endothelium. We finally determined the major biological processes associated with elevated MTH1 gene expression in human mesotheliomas.
Collapse
Affiliation(s)
- Sophia F Magkouta
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Apostolos G Pappas
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Photene C Vaitsi
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Panagiotis C Agioutantis
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Charalampos A Moschos
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Marianthi P Iliopoulou
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Chrysavgi N Kosti
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Heleni V Loutrari
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ioannis T Kalomenidis
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
48
|
Huang X, Chen J, Wu W, Yang W, Zhong B, Qing X, Shao Z. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater 2020; 109:229-243. [PMID: 32294550 DOI: 10.1016/j.actbio.2020.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) generates highly toxic reactive oxygen species (ROS) during noninvasive cancer treatment. MutT homolog 1 (MTH1) protein is a DNA oxidative damage repair protease and suppressing its function may provide a strategy to enhance PDT efficacy by improving cellular sensitivity to ROS. A nanoparticle, composed of functional graphene oxide (GO) conjugated with polyethylene glycol (PEG), folic acid (FA) and photosensitizer indocyanine green (ICG), was constructed to deliver MTH1 inhibitor (TH287) and doxorubicin. The effects of this nanoparticle on biological properties and cell death of osteosarcoma cells were investigated. We further examined the endoplasmic reticulum (ER) stress and apoptosis in osteosarcoma. A xenograft tumor model was used to validate the results in vivo. This drug-carrying PEG-GO-FA/ICG nanoparticle showed combined chemo-photodynamic therapy (Chemo-PDT) to inhibit the proliferation and migration of osteosarcoma cells. Enhanced Chemo-PDT promoted both apoptosis and autophagy by suppressing the MTH1 protein and promoting the accumulation of ROS. In this study, autophagy served as a rescue pathway against cell death, and suppressing autophagy enhanced the anti-cancer effects of Chemo-PDT. However, Chemo-PDT induced apoptosis was related to the occurrence of ER stress. ROS might contribute to ER stress and further induce apoptosis via the JNK/p53/p21 pathway. These findings provide a mechanistic understanding of nanoparticle-induced cell death in osteosarcoma. The combination of Chemo-PDT with other therapies is promising as a new strategy to treat osteosarcoma. STATEMENT OF SIGNIFICANCE: Administration of chemotherapeutic drugs by traditional methods still has many problems. We designed a functionalized graphene oxide drug delivery system to deliver the photosensitizer indocyanine green, doxorubicin, and MTH1 inhibitor TH287. This nano delivery system showed combined chemo-photodynamic effects to inhibit osteosarcoma. Suppressing MTH1 protein might induce "phenotypic lethality" and enhance chemo-photodynamic therapy efficacy by improving cellular sensitivity to reactive oxygen species.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
49
|
Michel M, Homan EJ, Wiita E, Pedersen K, Almlöf I, Gustavsson AL, Lundbäck T, Helleday T, Warpman Berglund U. In silico Druggability Assessment of the NUDIX Hydrolase Protein Family as a Workflow for Target Prioritization. Front Chem 2020; 8:443. [PMID: 32548091 PMCID: PMC7274155 DOI: 10.3389/fchem.2020.00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/28/2020] [Indexed: 01/13/2023] Open
Abstract
Computational chemistry has now been widely accepted as a useful tool for shortening lead times in early drug discovery. When selecting new potential drug targets, it is important to assess the likelihood of finding suitable starting points for lead generation before pursuing costly high-throughput screening campaigns. By exploiting available high-resolution crystal structures, an in silico druggability assessment can facilitate the decision of whether, and in cases where several protein family members exist, which of these to pursue experimentally. Many of the algorithms and software suites commonly applied for in silico druggability assessment are complex, technically challenging and not always user-friendly. Here we applied the intuitive open access servers of DoGSite, FTMap and CryptoSite to comprehensively predict ligand binding pockets, druggability scores and conformationally active regions of the NUDIX protein family. In parallel we analyzed potential ligand binding sites, their druggability and pocket parameter using Schrödinger's SiteMap. Then an in silico docking cascade of a subset of the ZINC FragNow library using the Glide docking program was performed to assess identified pockets for large-scale small-molecule binding. Subsequently, this initial dual ranking of druggable sites within the NUDIX protein family was benchmarked against experimental hit rates obtained both in-house and by others from traditional biochemical and fragment screening campaigns. The observed correlation suggests that the presented user-friendly workflow of a dual parallel in silico druggability assessment is applicable as a standalone method for decision on target prioritization and exclusion in future screening campaigns.
Collapse
Affiliation(s)
- Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kia Pedersen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology and Metabolism, Sheffield Cancer Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Barguilla I, Barszczewska G, Annangi B, Domenech J, Velázquez A, Marcos R, Hernández A. MTH1 is involved in the toxic and carcinogenic long-term effects induced by zinc oxide and cobalt nanoparticles. Arch Toxicol 2020; 94:1973-1984. [PMID: 32377776 DOI: 10.1007/s00204-020-02737-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
The nanoparticles (NPs) exposure-related oxidative stress is considered among the main causes of the toxic effects induced by these materials. However, the importance of this mechanism has been mostly explored at short term. Previous experience with cells chronically exposed to ZnO and Co NPs hinted to the existence of an adaptative mechanism contributing to the development of oncogenic features. MTH1 is a well-described enzyme expressed exclusively in cancer cells and required to avoid the detrimental consequences of its high prooxidant microenvironment. In the present work, a significantly marked overexpression was found when MTH1 levels were monitored in long-term ZnO and Co NP-exposed cells, a fact that correlates with acquired 2.5-fold and 3.75-fold resistance to the ZnO and Co NPs treatment, respectively. The forced stable inhibition of Mth1 expression by shRNA, followed by 6 additional weeks of exposure, significantly reduced this acquired resistance and sensitized cells to the oxidizing agents H2O2 and KBrO3. When the oncogenic phenotype of Mth1 knock-down cells was evaluated, we found a decrease in several oncogenic markers, including proliferation, anchorage-independent cell growth, and migration and invasion potential. Thus, MTH1 elicits here as a relevant player in the NPs-induced toxicity and carcinogenicity. This study is the first to give a mechanistic explanation for long-term NPs exposure-derived effects. We propose MTH1 as a candidate biomarker to unravel NPs potential genotoxic and carcinogenic effects, as its expression is expected to be elevated only under exposure conditions able to induce DNA damage and the acquisition of an oncogenic phenotype.
Collapse
Affiliation(s)
- Irene Barguilla
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Edifici C, Campus de Bellaterra, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Gabriela Barszczewska
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Edifici C, Campus de Bellaterra, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Edifici C, Campus de Bellaterra, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Josefa Domenech
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Edifici C, Campus de Bellaterra, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Antonia Velázquez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Edifici C, Campus de Bellaterra, 08193, Cerdanyola del Vallès (Barcelona), Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Barcelona, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Edifici C, Campus de Bellaterra, 08193, Cerdanyola del Vallès (Barcelona), Spain. .,CIBER Epidemiología y Salud Pública, ISCIII, Barcelona, Spain.
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Edifici C, Campus de Bellaterra, 08193, Cerdanyola del Vallès (Barcelona), Spain. .,CIBER Epidemiología y Salud Pública, ISCIII, Barcelona, Spain.
| |
Collapse
|