1
|
Shibuya K, Nozawa A, Takahashi C, Sawasaki T. A chemical approach to extend flower longevity of Japanese morning glory via inhibition of master senescence regulator EPHEMERAL1. NATURE PLANTS 2024; 10:1377-1388. [PMID: 39209993 DOI: 10.1038/s41477-024-01767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Petal senescence in flowering plants is a type of programmed cell death with highly regulated onset and progression. A NAM/ATAF1,2/CUC2 transcription factor, EPHEMERAL1 (EPH1), has been identified as a key regulator of petal senescence in Japanese morning glory (Ipomoea nil). Here we used a novel chemical approach to delay petal senescence in Japanese morning glory by inhibiting the DNA-binding activity of EPH1. A cell-free high-throughput screening system and subsequent bioassays found two tetrafluorophthalimide-based compounds, Everlastin1 and Everlastin2, that inhibited the EPH1-DNA interaction and delayed petal senescence. The inhibitory mechanism was due to the suppression of EPH1 dimerization. RNA-sequencing analysis revealed that the chemical treatment strongly suppressed the expression of programmed cell death- and autophagy-related genes. These results suggest that a chemical approach targeting a transcription factor can regulate petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
| | - Akira Nozawa
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan.
| | | | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| |
Collapse
|
2
|
Farooq S, Lone ML, Ul Haq A, Parveen S, Altaf F, Tahir I. Signalling cascades choreographing petal cell death: implications for postharvest quality. PLANT MOLECULAR BIOLOGY 2024; 114:63. [PMID: 38805152 DOI: 10.1007/s11103-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.
Collapse
Affiliation(s)
- Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
3
|
Lone ML, Farooq S, ul Haq A, Altaf F, Parveen S, Tahir I. Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1863-1874. [PMID: 38222281 PMCID: PMC10784253 DOI: 10.1007/s12298-023-01407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
The fine-tuning of the intricate network of plant growth hormones empowers the balanced responses of plants to environmental and developmental signals. Salicylic acid and jasmonates are emerging as advanced hormones that provide plants with resistance to environmental stresses. Senescence is characterized by coordinated and systematic crosstalk between phytohormones that remodels the biochemical and physiological mechanisms in plants, resulting in cell death. The present investigation examines the role of jasmonates (methyl jasmonate and jasmonic acid) and salicylic acid (SA) in regulating the petal senescence of detached stalks of Cosmos sulphureus. Based on our results, it was revealed that SA and jasmonic acid (JA) at 40 μM and methyl jasmonate (MJ) at 0.75 μM concentration delayed the senescence of detached flowers of C. sulphureus considerably. These growth regulators improved the membrane stability, reinforced the antioxidant enzyme activities and averted the upsurge of hydrogen peroxide (H2O2) content in the petals. Additionally, SA and jasmonates preserved higher content of total phenols, reducing sugars and soluble proteins in the petals, besides impeding the bacterial growth in testing solutions which corroborated with the maximum solution uptake. The elevated soluble protein content was found to be associated with low specific protease activity (SPA) and α-amino acid content in the petal tissues. Our study concluded that SA and jasmonates delayed flower senescence by averting oxidative stress and maintaining the nutritional status of the petals.
Collapse
Affiliation(s)
- Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Aehsan ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| |
Collapse
|
4
|
Wang Y, Gao Y, Cui Y, Lv Y, Zhou J, Zhang Q. Functional characterization of two NAC transcription factors HfNAP1 and HfNAC090 associated with flower programmed cell death in daylily (Hemerocallis fulva). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111872. [PMID: 37729968 DOI: 10.1016/j.plantsci.2023.111872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Daylily (Hemerocallis fulva) is one of the most widely used perennial flowers, but its ornamental and economic value is greatly limited due to its ephemeral flowering period. In general, the flower senescence is regulated by the developmental signals and considered as an irreversible process of programmed cell death (PCD). However, the molecular mechanism of flower PCD in daylily still remains unclear. In this study, two NAC transcription factors, namely HfNAP1 and HfNAC090, are first identified and found to be upregulated significantly in both the age-induced and the ABA-induced flower PCD processes in daylily. Then, the functions of HfNAP1 and HfNAC090 in regulating the flower PCD are investigated through transgenic phenotypes analysis. The results demonstrate that the ectopic and transient overexpression of these two genes can effectively regulate the flower PCD in tobacco and daylily. While the overexpression of HfNAP1 accelerates the flower PCD process, the overexpression of HfNAC090 significantly delays that. Furthermore, the yeast two-hybrid assay is performed to discover potential interactions related to these two genes, and the results demonstrate that HfNAP1 and HfNAC090 can interact with each other, or interact with other flower aging-related genes. Additionally, the yeast one-hybrid assay suggests that HfNAP1 and HfNAC090 can bind directly to the promoters of downstream senescence-associated genes HfSAG39 and HfSAG15. Taken overall, this study provides sufficient evidences to confirm that HfNAP1 and HfNAC090 play dominant roles in regulating the flower PCD in daylily, supporting the development of new strategies to prolong the longevity of daylily flowers.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Yike Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China.
| | - Yuxuan Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Yi Lv
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Jing Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| |
Collapse
|
5
|
Yang J, Huang J, Wu X, Xu Y, Gu Z, Chen Y, Zhang Y, Ren Y, Miao Y. NtMYB1 and NtNCED1/2 control abscisic acid biosynthesis and tepal senescence in Chinese narcissus (Narcissus tazetta). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6505-6521. [PMID: 37625033 DOI: 10.1093/jxb/erad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Chinese narcissus (Narcissus tazetta var. chinensis cv. 'Jinzhanyintai') is one of the 10 most famous traditional flowers of China, having a beautiful and highly ornamental flower with a rich fragrance. However, the flower longevity affects its commercial appeal. While petal senescence in Narcissus is ethylene-independent and abscisic acid-dependent, the regulatory mechanism has yet to be determined. In this study, we identified a R2R3-MYB gene (NtMYB1) from Narcissus tazetta and generated oeNtMYB1 and Ntmyb1 RNA interference mutants in Narcissus as well as an oeNtMYB1 construct in Arabidopsis. Overexpressing NtMYB1 in Narcissus or Arabidopsis led to premature leaf yellowing, an elevated level of total carotenoid, a reduced level of chlorophyll b, and a decrease in photosystem II fluorescence (Fv/Fm). A dual-luciferase assay and chromatin immunoprecipitation-quantitative PCR revealed that NtMYB1 directly binds to the promoter of NtNCED1 or NtNCED2 and activates NtNCED1/2 gene expression both in vitro and in vivo. Moreover, overexpressing NtMYB1 accelerated abscisic acid biosynthesis, up-regulated the content of zeatin and abscisic acid, and down-regulated the level of β-carotene and gibberellin A1, leading to petal senescence and leaf yellowing in Narcissus. This study revealed a regulatory process that is fundamentally different between non-photosynthetic organs and leaves.
Collapse
Affiliation(s)
- Jingwen Yang
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiazhi Huang
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Wu
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Xu
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheng Gu
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajue Chen
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Zhang
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujun Ren
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Miao
- Fujian Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Buthelezi LG, Mavengahama S, Sibiya J, Ntuli NR. Variation in Shoot, Peduncle and Fruit Growth of Lagenaria siceraria Landraces. PLANTS (BASEL, SWITZERLAND) 2023; 12:532. [PMID: 36771617 PMCID: PMC9920849 DOI: 10.3390/plants12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Lagenaria siceraria (Molina) Standley is a prominent food source as almost all its plant parts are edible. However, no studies have recorded the changes in shoots, peduncles and fruits during its growth. Hence, this study aimed to record changes in shoot traits and relate the peduncle to the fruit traits of L. siceraria landraces across different growth stages. Changes in shoots, peduncles and fruits during growth were compared within and among landraces using analysis of variance, correlation, principal component analysis, cluster analysis and heritability estimates. Almost all landraces had harvestable shoots at 42 days after sowing. Peduncles became shorter and wider as the fruits elongated. Shoots, peduncles and fruits correlated positively with each other. The informative principal components had a total variability of 84.488%, with a major contribution from shoot traits. The biplot and dendrogram clustered landraces with similar growth habits and the harvestable shoot and fruit attributes into three clusters, but KRI and NSRC formed singlets. Shoot width (60.2%) and peduncle length (55.2%) had high heritability estimates. The general low heritability estimates and genetic advances indicated the presence of non-additive gene action. This study is the first report on changes in harvested shoots and the relationship between peduncles and fruits during growth.
Collapse
Affiliation(s)
- Lungelo Given Buthelezi
- Department of Botany, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sydney Mavengahama
- Food Security and Safety Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2745, South Africa
| | - Julia Sibiya
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | - Nontuthuko Rosemary Ntuli
- Department of Botany, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
7
|
Chang F, Wang S, Lai Z, Zhang Z, Jin Y, Ma H. Cell Biological Analyses of Anther Morphogenesis and Pollen Viability in Arabidopsis and Rice. Methods Mol Biol 2023; 2686:199-218. [PMID: 37540359 DOI: 10.1007/978-1-0716-3299-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Major advances have been made in our understanding of anther developmental processes in flowering plants through a combination of genetic studies, cell biological technologies, biochemical analyses, microarray and high-throughput sequencing-based approaches. In this chapter, we summarize widely used protocols for pollen viability staining, investigation of anther morphogenesis by scanning electron microscopy (SEM), light microscopy of semi-thin sections, ultrathin section-based transmission electron microscopy (TEM), TUNEL (terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick end labeling) assay for tapetum programmed cell death, and laser microdissection procedures to obtain specific cells or cell layers for transcriptome analysis.
Collapse
Affiliation(s)
- Fang Chang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Shuangshuang Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zesen Lai
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zaibao Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Jin
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Xu H, Wang S, Larkin RM, Zhang F. The transcription factors DcHB30 and DcWRKY75 antagonistically regulate ethylene-induced petal senescence in carnation (Dianthus caryophyllus). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7326-7343. [PMID: 36107792 DOI: 10.1093/jxb/erac357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Although numerous transcription factors with antagonistic activities have been shown to contribute to growth and development, whether and how they regulate senescence in plants is largely unknown. In this study, we investigated the role of antagonistic transcription factors in petal senescence in carnation (Dianthus caryophyllus), one of the most common types of ethylene-sensitive cut flowers produced worldwide. We identified DcHB30 that encodes a ZF-HD transcription factor that is down-regulated in ethylene-treated petal transcriptomes. We found that silencing DcHB30 accelerated ethylene-induced petal senescence and that DcHB30 physically interacts with DcWRKY75, a positive regulator of ethylene-induced petal senescence. Phenotypic characterization and molecular evidence indicated that DcHB30 and DcWRKY75 competitively regulate the expression of their co-targeted genes DcACS1, DcACO1, DcSAG12, and DcSAG29 by reciprocally inhibiting the DNA-binding activity of each other on the gene promoters. This transcriptional regulation mechanism demonstrates that these transcription factors serve as positive and negative regulators in ethylene-induced petal senescence in carnation. Thus, our study provides insights into how antagonizing transcription factors regulate plant senescence.
Collapse
Affiliation(s)
- Han Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Preservation, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Preservation, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Preservation, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Jiménez Elvira N, Ushio M, Sakai S. Are microbes growing on flowers evil? Effects of old flower microbes on fruit set in a wild ginger with one-day flowers, Alpinia japonica (Zingiberaceae). METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.84331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flowers are colonized and inhabited by diverse microbes. Flowers have various mechanisms to suppress microbial growth, such as flower volatiles, reactive oxygen and secondary compounds. Besides, plants rapidly replace flowers that have a short lifespan, and old flowers senesce. They may contribute to avoiding adverse effects of the microbes. In this study, we investigate if the flower microbial community on old flowers impedes fruit and seed production in a wild ginger with one-day flowers. We focus on microbes on old flowers because they may be composed of microbes that would grow during flowering if the flowers did not have mechanisms to suppress microbial growth. We inoculated newly opened flowers with old flower microbes, and monitored the effects on fruit and seed set. We also assessed prokaryotic communities on the flowers using 16S rRNA amplicon sequencing. We found six bacterial amplicon sequence variants (ASVs) whose proportions were increased on the inoculated flowers. These ASVs were also found on flower buds and flowers that were bagged by net or paper during anthesis, suggesting that they had been present in small numbers prior to flowering. Fruit set was negatively associated with the proportions of these ASVs, while seed set was not. The results suggest that old flowers harbor microbial communities different from those at anthesis, and that the microbes abundant on old flowers negatively affect plant reproduction. Although it has received little attention, antagonistic microbes that rapidly proliferate on the flowers may have affected the evolution of various flower characteristics such as flower volatiles and life span.
Collapse
|
10
|
Odintsova A. Morphogenesis of fruit as a subject matter for the carpological studies. UKRAINIAN BOTANICAL JOURNAL 2022. [DOI: 10.15407/ukrbotj79.03.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this review, the concept of fruit morphogenesis is treated in the context of implementation of the evo-devo approach in carpology. A new viewpoint on the fruit morphogenesis is proposed and justified, comprising the pre-anthetic, as well as post-anthetic periods of fruit development, id est, development of the gynoecium, and development of the fruit itself. It is proposed to recognize ontogenetical (individual) and evolutionary (historical) aspects of fruit morphogenesis, the first of them we can study directly, while the second aspect can be only hypothesized or treated as a theoretical model of fruit evolution in consequence of some presumed changes in the individual fruit morphogenesis. In this article these aspects are named as "ontomorphogenesis" and "phylomorphogenesis" of the fruit, correspondingly. Our concept of ontomorphogenesis of the fruit involves four components that could not be brought together, such as changes in the morphological structure of the gynoecium, abscission of the extragynecial floral parts and the style, histogenesis of the fruit wall and other fruit parts, and terminal stages of the fruit morphogenesis (dehiscence, splitting, or abscission). The current state of studies of these components in the individual and evolutionary contexts is discussed. By examining the patterns of fruit evolution, we should consider factors acting at both the post-anthetic and pre-anthetic periods of fruit ontomorphogenesis.
Collapse
|
11
|
Takahashi S, Yoshida C, Takahashi H, Nishihara M. Isolation and Functional Analysis of EPHEMERAL1-LIKE ( EPH1L) Genes Involved in Flower Senescence in Cultivated Japanese Gentians. Int J Mol Sci 2022; 23:5608. [PMID: 35628413 PMCID: PMC9147615 DOI: 10.3390/ijms23105608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The elongation of flower longevity increases the commercial value of ornamental plants, and various genes have been identified as influencing flower senescence. Recently, EPHEMERAL1 (EPH1), encoding a NAC-type transcription factor, was identified in Japanese morning glory as a gene that promotes flower senescence. Here we attempted to identify an EPH1 homolog gene from cultivated Japanese gentians and characterized the same with regard to its flower senescence. Two EPH1-LIKE genes (EPH1La and EPH1Lb), considered as alleles, were isolated from a gentian cultivar (Gentiana scabra × G. triflora). Phylogenetic analyses revealed that EPH1L belongs to the NAM subfamily. The transcript levels of EPH1L increased along with its senescence in the field-grown flowers. Under dark-induced senescence conditions, the gentian-detached flowers showed the peak transcription level of EPH1L earlier than that of SAG12, a senescence marker gene, suggesting the involvement of EPH1L in flower senescence. To reveal the EPH1L function, we produced eph1l-knockout mutant lines using the CRISPR/Cas9 system. When the flower longevity was evaluated using the detached flowers as described above, improved longevity was recorded in all genome-edited lines, with delayed induction of SAG12 transcription. The degradation analysis of genomic DNA matched the elongation of flower longevity, cumulatively indicating the involvement of EPH1L in the regulation of flower senescence in gentians.
Collapse
Affiliation(s)
- Shigekazu Takahashi
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan; (S.T.); (C.Y.)
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan; (S.T.); (C.Y.)
| | - Hideyuki Takahashi
- Department of Agriculture, School of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan; (S.T.); (C.Y.)
| |
Collapse
|
12
|
Lin Y, Jones ML. CRISPR/Cas9-Mediated Editing of Autophagy Gene 6 in Petunia Decreases Flower Longevity, Seed Yield, and Phosphorus Remobilization by Accelerating Ethylene Production and Senescence-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:840218. [PMID: 35557714 PMCID: PMC9088004 DOI: 10.3389/fpls.2022.840218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Developmental petal senescence is a type of programmed cell death (PCD), during which the production of ethylene is induced, the expression of PCD-related genes is upregulated, and nutrients are recycled. Autophagy is an intracellular mechanism involved in PCD modulation and nutrient cycling. As a central component of the autophagy pathway, Autophagy Gene 6 (ATG6) was previously shown as a negative regulator of petal senescence. To better understand the role of autophagy in ethylene biosynthesis and nutrient remobilization during petal senescence, we generated and characterized the knockout (KO) mutants of PhATG6 using CRISPR/Cas9 in Petunia × hybrida 'Mitchell Diploid.' PhATG6-KO lines exhibited decreased flower longevity when compared to the flowers of the wild-type or a non-mutated regenerative line (controls), confirming the negative regulatory role of ATG6 in petal senescence. Smaller capsules and fewer seeds per capsule were produced in the KO plants, indicating the crucial function of autophagy in seed production. Ethylene production and ethylene biosynthesis genes were upregulated earlier in the KO lines than the controls, indicating that autophagy affects flower longevity through ethylene. The transcript levels of petal PCD-related genes, including PhATG6, PhATG8d, PhPI3K (Phosphatidylinositol 3-Kinase), and a metacaspase gene PhMC1, were upregulated earlier in the corollas of PhATG6-KO lines, which supported the accelerated PCD in the KO plants. The remobilization of phosphorus was reduced in the KO lines, showing that nutrient recycling was compromised. Our study demonstrated the important role of autophagy in flower lifespan and seed production and supported the interactions between autophagy and various regulatory factors during developmental petal senescence.
Collapse
|
13
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
14
|
Wan Abdullah WMAN, Saidi NB, Yusof MT, Wee CY, Loh HS, Ong-Abdullah J, Lai KS. Vacuolar Processing Enzymes Modulating Susceptibility Response to Fusarium oxysporum f. sp. cubense Tropical Race 4 Infections in Banana. FRONTIERS IN PLANT SCIENCE 2022; 12:769855. [PMID: 35095950 PMCID: PMC8790485 DOI: 10.3389/fpls.2021.769855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4) is a destructive necrotrophic fungal pathogen afflicting global banana production. Infection process involves the activation of programmed cell death (PCD). In this study, seven Musa acuminata vacuolar processing enzyme (MaVPE1-MaVPE7) genes associated with PCD were successfully identified. Phylogenetic analysis and tissue-specific expression categorized these MaVPEs into the seed and vegetative types. FocTR4 infection induced the majority of MaVPE expressions in the susceptible cultivar "Berangan" as compared to the resistant cultivar "Jari Buaya." Consistently, upon FocTR4 infection, high caspase-1 activity was detected in the susceptible cultivar, while low level of caspase-1 activity was recorded in the resistant cultivar. Furthermore, inhibition of MaVPE activities via caspase-1 inhibitor in the susceptible cultivar reduced tonoplast rupture, decreased lesion formation, and enhanced stress tolerance against FocTR4 infection. Additionally, the Arabidopsis VPE-null mutant exhibited higher tolerance to FocTR4 infection, indicated by reduced sporulation rate, low levels of H2O2 content, and high levels of cell viability. Comparative proteomic profiling analysis revealed increase in the abundance of cysteine proteinase in the inoculated susceptible cultivar, as opposed to cysteine proteinase inhibitors in the resistant cultivar. In conclusion, the increase in vacuolar processing enzyme (VPE)-mediated PCD played a crucial role in modulating susceptibility response during compatible interaction, which facilitated FocTR4 colonization in the host.
Collapse
Affiliation(s)
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chien-Yeong Wee
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Hwei-San Loh
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
- Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Kobylińska A, Posmyk MM. Melatonin Protects Tobacco Suspension Cells against Pb-Induced Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:13368. [PMID: 34948164 PMCID: PMC8703733 DOI: 10.3390/ijms222413368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin effectively eliminates oxidative stress (direct and indirect antioxidant) and switches on different defence strategies (preventive and interventive actions) during environmental stresses. In the presented report, exogenous melatonin potential to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) exposed to lead against death was examined. Analyses of cell proliferation and viability, the level of intracellular calcium, changes in mitochondrial membrane potential (ΔΨm) as well as possible translocation of cytochrome c from mitochondria to cytosol and subsequent caspase-like proteolytic activity were conducted. Our results indicate that pretreatment BY-2 with melatonin protected tobacco cells against mitochondrial dysfunction and caspase-like activation caused by lead. The findings suggest the possible role of this indoleamine in the molecular mechanism of mitochondria, safeguarding against potential collapse and cytochrome c release. Thus, it seems that applied melatonin acted as an effective factor, promoting survival and increasing plant tolerance to lead.
Collapse
Affiliation(s)
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland;
| |
Collapse
|
16
|
Du Y, Luo S, Zhao J, Feng Z, Chen X, Ren W, Liu X, Wang Z, Yu L, Li W, Qu Y, Liu J, Zhou L. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC PLANT BIOLOGY 2021; 21:510. [PMID: 34732128 PMCID: PMC8564971 DOI: 10.1186/s12870-021-03283-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flower longevity is closely related to pollen dispersal and reproductive success in all plants, as well as the commercial value of ornamental plants. Mutants that display variation in flower longevity are useful tools for understanding the mechanisms underlying this trait. Heavy-ion beam irradiation has great potential to improve flower shapes and colors; however, few studies are available on the mutation of flower senescence in leguminous plants. RESULTS A mutant (C416) exhibiting blossom duration eight times longer than that of the wild type (WT) was isolated in Lotus japonicus derived from carbon ion beam irradiation. Genetic assays supported that the delayed flower senescence of C416 was a dominant trait controlled by a single gene, which was located between 4,616,611 Mb and 5,331,876 Mb on chromosome III. By using a sorting strategy of multi-sample parallel genome sequencing, candidate genes were narrowed to the gene CUFF.40834, which exhibited high identity to ethylene receptor 1 in other model plants. A physiological assay demonstrated that C416 was insensitive to ethylene precursor. Furthermore, the dynamic changes of phytohormone regulatory network in petals at different developmental stages was compared by using RNA-seq. In brief, the ethylene, jasmonic acid (JA), and salicylic acid (SA) signaling pathways were negatively regulated in C416, whereas the brassinosteroid (BR) and cytokinin signaling pathways were positively regulated, and auxin exhibited dual effects on flower senescence in Lotus japonicus. The abscisic acid (ABA) signaling pathway is positively regulated in C416. CONCLUSION So far, C416 might be the first reported mutant carrying a mutation in an endogenous ethylene-related gene in Lotus japonicus, rather than through the introduction of exogenous genes by transgenic techniques. A schematic of the flower senescence of Lotus japonicus from the perspective of the phytohormone regulatory network was provided based on transcriptome profiling of petals at different developmental stages. This study is informative for elucidating the molecular mechanism of delayed flower senescence in C416, and lays a foundation for candidate flower senescence gene identification in Lotus japonicus. It also provides another perspective for the improvement of flower longevity in legume plants by heavy-ion beam.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Shanwei Luo
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jian Zhao
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, People's Republic of China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Zhuanzi Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Lixia Yu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Wenjian Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China
| | - Jie Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China.
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, People's Republic of China.
| |
Collapse
|
17
|
Li Z, Zhou W, Wang P, Chen Y, Huo S, Wang J, Tian D, Niu J, Zhao Y, Song X. Transcriptome Analysis Reveals the Senescence Process Controlling the Flower Opening and Closure Rhythm in the Waterlilies ( Nymphaea L.). FRONTIERS IN PLANT SCIENCE 2021; 12:701633. [PMID: 34671367 PMCID: PMC8521120 DOI: 10.3389/fpls.2021.701633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Most waterlily flowers open at dawn and close after noon usually for three to four days, and thereafter wilt. The short lifespan of flowers restricts the development of the flower postharvest industry. The termination of flower movements is a key event during flower aging process. However, it is still unclear when the senescence process initiates and how it terminates the movement rhythm. In this study, we observed that the opening diameter of flowers was the smallest on the fourth (last) flowering day. Subsequent transcriptome profiles generated from petals at different flowering stages showed that the multiple signaling pathways were activated at the last closure stage (Time 3, T3) of the flowers, including Ca2+, reactive oxygen species and far red light signaling pathways, as well as auxin, ethylene and jasmonic acid signaling pathways. Moreover, In terms of cell metabolism regulation, the genes related to hydrolase (protease, phospholipase, nuclease) were upregulated at T3 stage, indicating that petals entered the senescence stage at that time; and the genes related to water transport and cell wall modification were also differentially regulated at T3 stage, which would affect the ability of cell expand and contract, and eventually lead to petal not open after the fourth day. Collectively, our data provided a new insight into the termination of flower opening in the waterlilies, and a global understanding of the senescence process of those opening-closure rhythm flowers.
Collapse
Affiliation(s)
- Zhaoji Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Weijuan Zhou
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanfu Chen
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Shaojie Huo
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jian Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Daike Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Centre, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jun Niu
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Ying Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xiqiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
18
|
Zhang Y, Wu Z, Feng M, Chen J, Qin M, Wang W, Bao Y, Xu Q, Ye Y, Ma C, Jiang CZ, Gan SS, Zhou H, Cai Y, Hong B, Gao J, Ma N. The circadian-controlled PIF8-BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night. THE PLANT CELL 2021; 33:2716-2735. [PMID: 34043798 PMCID: PMC8408477 DOI: 10.1093/plcell/koab152] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are unstable reactive molecules that are toxic to cells. Regulation of ROS homeostasis is crucial to protect cells from dysfunction, senescence, and death. In plant leaves, ROS are mainly generated from chloroplasts and are tightly temporally restricted by the circadian clock. However, little is known about how ROS homeostasis is regulated in nonphotosynthetic organs, such as petals. Here, we showed that hydrogen peroxide (H2O2) levels exhibit typical circadian rhythmicity in rose (Rosa hybrida) petals, consistent with the measured respiratory rate. RNA-seq and functional screening identified a B-box gene, RhBBX28, whose expression was associated with H2O2 rhythms. Silencing RhBBX28 accelerated flower senescence and promoted H2O2 accumulation at night in petals, while overexpression of RhBBX28 had the opposite effects. RhBBX28 influenced the expression of various genes related to respiratory metabolism, including the TCA cycle and glycolysis, and directly repressed the expression of SUCCINATE DEHYDROGENASE 1, which plays a central role in mitochondrial ROS (mtROS) homeostasis. We also found that PHYTOCHROME-INTERACTING FACTOR8 (RhPIF8) could activate RhBBX28 expression to control H2O2 levels in petals and thus flower senescence. Our results indicate that the circadian-controlled RhPIF8-RhBBX28 module is a critical player that controls flower senescence by governing mtROS homeostasis in rose.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhicheng Wu
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ming Feng
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiwei Chen
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meizhu Qin
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenran Wang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Bao
- Faculty of Life Science, Tangshan Normal University, Tangshan, 063000, Hebei, China
| | - Qian Xu
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Ye
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cai-Zhong Jiang
- United States Department of Agriculture, Crop Pathology and Genetic Research Unit, Agricultural Research Service, University of California, Davis, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Hougao Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Youming Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Bo Hong
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Author for correspondence:
| |
Collapse
|
19
|
Regulation of Flowering Timing by ABA-NnSnRK1 Signaling Pathway in Lotus. Int J Mol Sci 2021; 22:ijms22083932. [PMID: 33920313 PMCID: PMC8069233 DOI: 10.3390/ijms22083932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
The lotus produces flower buds at each node, yet most of them are aborted because of unfavorable environmental changes and the mechanism remains unclear. In this work, we proposed a potential novel pathway for ABA-mediated flower timing control in the lotus, which was explored by combining molecular, genetic, transcriptomic, biochemical, and pharmacologic approaches. We found that the aborting flower buds experienced extensive programmed cell death (PCD). The hormonal changes between the normal and aborting flower buds were dominated by abscisic acid (ABA). Seedlings treated with increasing concentrations of ABA exhibited a differential alleviating effect on flower bud abortion, with a maximal response at 80 μM. Transcriptome analysis further confirmed the changes of ABA content and the occurrence of PCD, and indicated the importance of PCD-related SNF1-related protein kinase 1 (NnSnRK1). The NnSnRK1-silenced lotus seedlings showed stronger flowering ability, with their flower:leaf ratio increased by 40%. When seedlings were treated with ABA, the expression level and protein kinase activity of NnSnRK1 significantly decreased. The phenotype of NnSnRK1-silenced seedlings could also be enhanced by ABA treatment and reversed by tungstate treatment. These results suggested that the decline of ABA content in lotus flower buds released its repression of NnSnRK1, which then initiated flower bud abortion.
Collapse
|
20
|
Serrano-Bueno G, Sánchez de Medina Hernández V, Valverde F. Photoperiodic Signaling and Senescence, an Ancient Solution to a Modern Problem? FRONTIERS IN PLANT SCIENCE 2021; 12:634393. [PMID: 33777070 PMCID: PMC7988197 DOI: 10.3389/fpls.2021.634393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
The length of the day (photoperiod) is a robust seasonal signal originated by earth orbital and translational movements, a resilient external cue to the global climate change, and a predictable hint to initiate or complete different developmental programs. In eukaryotic algae, the gene expression network that controls the cellular response to photoperiod also regulates other basic physiological functions such as starch synthesis or redox homeostasis. Land plants, evolving in a novel and demanding environment, imbued these external signals within the regulatory networks controlling organogenesis and developmental programs. Unlike algae that largely have to deal with cellular physical cues, within the course of evolution land plants had to transfer this external information from the receiving organs to the target tissues, and mobile signals such as hormones were recruited and incorporated in the regulomes. Control of senescence by photoperiod, as suggested in this perspective, would be an accurate way to feed seasonal information into a newly developed function (senescence) using an ancient route (photoperiodic signaling). This way, the plant would assure that two coordinated aspects of development such as flowering and organ senescence were sequentially controlled. As in the case of senescence, there is growing evidence to support the idea that harnessing the reliability of photoperiod regulation over other, more labile signaling pathways could be used as a robust breeding tool to enhance plants against the harmful effects of climate change.
Collapse
|
21
|
Li JW, Zhang SB, Xi HP, Bradshaw CJA, Zhang JL. Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid. ANNALS OF BOTANY 2020; 126:261-275. [PMID: 32318689 PMCID: PMC7380463 DOI: 10.1093/aob/mcaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/18/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Development of the velamen radicum on the outer surface of the root epidermis is an important characteristic for water uptake and retention in some plant families, particularly epiphytic orchids, for survival under water-limited environments. Velamen radicum cells derive from the primary root meristem; however, following this development, velamen radicum cells die by incompletely understood processes of programmed cell death (PCD). METHODS We combined the use of transmission electron microscopy, X-ray micro-tomography and transcriptome methods to characterize the major anatomical and molecular changes that occur during the development and death of velamen radicum cells of Cymbidium tracyanum, a typical epiphytic orchid, to determine how PCD occurs. KEY RESULTS Typical changes of PCD in anatomy and gene expression were observed in the development of velamen radicum cells. During the initiation of PCD, we found that both cell and vacuole size increased, and several genes involved in brassinosteroid and ethylene pathways were upregulated. In the stage of secondary cell wall formation, significant anatomical changes included DNA degradation, cytoplasm thinning, organelle decrease, vacuole rupture and cell wall thickening. Changes were found in the expression of genes related to the biosynthesis of cellulose and lignin, which are instrumental in the formation of secondary cell walls, and are regulated by cytoskeleton-related factors and phenylalanine ammonia-lyase. In the final stage of PCD, cell autolysis was terminated from the outside to the inside of the velamen radicum. The regulation of genes related to autophagy, vacuolar processing enzyme, cysteine proteases and metacaspase was involved in the final execution of cell death and autolysis. CONCLUSIONS Our results showed that the development of the root velamen radicum in an epiphytic orchid was controlled by the process of PCD, which included initiation of PCD, followed by formation of the secondary cell wall, and execution of autolysis following cell death.
Collapse
Affiliation(s)
- Jia-Wei Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- For correspondence. E-mail or
| | - Hui-Peng Xi
- Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Corey J A Bradshaw
- Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, Australia
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
- For correspondence. E-mail or
| |
Collapse
|
22
|
Uskoković T, Uskoković E, Wu V, Uskoković V. Calcium Phosphate and Senescence of Orange Jubilees in the Summertime. ACS APPLIED BIO MATERIALS 2020; 3:3770-3784. [DOI: 10.1021/acsabm.0c00357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Theo Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, 7 Park Vista, Irvine, California 92604, United States
| | - Evangelina Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, 7 Park Vista, Irvine, California 92604, United States
| | - Victoria Wu
- Advanced Materials and Nanobiotechnology Laboratory, 7 Park Vista, Irvine, California 92604, United States
- MP Biomedicals, 9 Goddard, Irvine, California 92618, United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, 7 Park Vista, Irvine, California 92604, United States
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, California 92697, United States
| |
Collapse
|
23
|
Kovaleva LV, Zakharova EV, Timofeeva GV, Andreev IM, Golivanov YY, Bogoutdinova LR, Baranova EN, Khaliluev MR. Aminooxyacetic acid (АОА), inhibitor of 1-aminocyclopropane-1-carboxilic acid (AСС) synthesis, suppresses self-incompatibility-induced programmed cell death in self-incompatible Petunia hybrida L. pollen tubes. PROTOPLASMA 2020; 257:213-227. [PMID: 31410589 DOI: 10.1007/s00709-019-01430-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Self-incompatibility (SI) is genetically determined reproductive barrier preventing inbreeding and thereby providing the maintenance of plant species diversity. At present, active studies of molecular bases of SI mechanisms are underway. S-RNAse-based SI in Petunia hybrida L. is a self-/non-self recognition system that allows the pistil to reject self pollen and to accept non-self pollen for outcrossing. In the present work, using fluorescent methods including the TUNEL method allowed us to reveal the presence of markers of programmed cell death (PCD), such as DNA fragmentation, in growing in vivo petunia pollen tubes during the passage of the SI reaction. The results of statistical analysis reliably proved that PCD is the factor of S-RNAse-based SI. It was found that preliminary treatment before self-pollination of stigmas of petunia self-incompatible line with aminooxyacetic acid (AOA), inhibitor of ACC synthesis, led to stimulation of pollen tubes growth when the latter did not exhibit any hallmarks of PCD. These data argue in favor of assumption that ethylene controls the passage of PCD in incompatible pollen tubes in the course of S-RNAse-based SI functioning. The involvement of the hormonal regulation in SI mechanism in P. hybrida L. is the finding observed by us for the first time.
Collapse
Affiliation(s)
- L V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia.
| | - E V Zakharova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| | - G V Timofeeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - I M Andreev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Ya Yu Golivanov
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| | - L R Bogoutdinova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| | - E N Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
| | - M R Khaliluev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| |
Collapse
|
24
|
Zhang S, Zhao Q, Zeng D, Xu J, Zhou H, Wang F, Ma N, Li Y. RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. HORTICULTURE RESEARCH 2019; 6:131. [PMID: 31814984 PMCID: PMC6885062 DOI: 10.1038/s41438-019-0221-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 05/27/2023]
Abstract
Rose (Rosa hybrida) plants are major ornamental species worldwide, and their commercial value greatly depends on their open flowers, as both the quality of fully open petals and long vase life are important. Petal senescence can be started and accelerated by various hormone signals, and ethylene is considered an accelerator of petal senescence in rose. To date, however, the underlying mechanism of signaling crosstalk between ethylene and other hormones such as JA in petal senescence remains largely unknown. Here, we isolated RhMYB108, an R2R3-MYB transcription factor, which is highly expressed in senescing petals as well as in petals treated with exogenous ethylene and JA. Applications of exogenous ethylene and JA markedly accelerated petal senescence, while the process was delayed in response to applications of 1-MCP, an ethylene action inhibitor. In addition, silencing of RhMYB108 alter the expression of SAGs such as RhNAC029, RhNAC053, RhNAC092, RhSAG12, and RhSAG113, and finally block ethylene- and JA-induced petal senescence. Furthermore, RhMYB108 was identified to target the promoters of RhNAC053, RhNAC092, and RhSAG113. Our results reveal a model in which RhMYB108 functions as a receptor of ethylene and JA signals to modulate the onset of petal senescence by targeting and enhancing senescence-associated gene expression.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Qingcui Zhao
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Daxing Zeng
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Jiehua Xu
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Nan Ma
- China Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| |
Collapse
|
25
|
Trupkin SA, Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lía VV, Fernández P, Heinz RA. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110195. [PMID: 31481223 DOI: 10.1016/j.plantsci.2019.110195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 05/23/2023]
Abstract
Progression of leaf senescence depends on several families of transcription factors. In Arabidopsis, the NAC family plays crucial roles in the modulation of leaf senescence; however, the mechanisms involved in this NAC-mediated regulation have not been extensively explored in agronomic species. Petunia hybrida is an ornamental plant that is commonly found worldwide. Decreasing the rate of leaf and petal senescence in P. hybrida is essential for maintaining plant quality. In this study, we examined the NAC-mediated networks involved in regulating senescence in this species. From 41 NAC genes, the expression of which changed in Arabidopsis during leaf senescence, we identified 29 putative orthologs in P. hybrida. Analysis using quantitative real-time-PCR indicated that 24 genes in P. hybrida changed their transcript levels during natural leaf senescence. Leaf-expressed genes were subsequently assessed in petals undergoing natural and pollination-induced senescence. Expression data and phylogenetic analysis were used to generate a list of 10-15 candidate genes; 7 of these were considered key regulatory candidates in senescence because of their consistent upregulation in the three senescence processes examined. Altogether, we identified common and distinct patterns of gene expression at different stages of leaf and petal development and during progression of senescence. The results obtained in this study will contribute to the understanding of NAC-mediated regulatory networks in petunia.
Collapse
Affiliation(s)
- Santiago A Trupkin
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco H Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Amilcar H Baigorria
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín N García
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Verónica C Delfosse
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Sergio A González
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Cecilia Pérez de la Torre
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Sebastián Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica V Lía
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Fernández
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Ruth A Heinz
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo - INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
26
|
Wang T, Yang B, Guan Q, Chen X, Zhong Z, Huang W, Zhu W, Tian J. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC PLANT BIOLOGY 2019; 19:198. [PMID: 31088368 PMCID: PMC6518806 DOI: 10.1186/s12870-019-1803-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs' regulatory roles under different developmental stages in L. japonica. RESULTS In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12, chalcone synthase (CHS) and flavonol synthase (FLS), while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19, NAC29, and NAC53 exhibited a positive correlation with the contents of ABA and H2O2, while the expression of WRKY53, WRKY54, and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA. CONCLUSIONS Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica. In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica, thereby providing valuable insights into the molecular networks underlying L. japonica flower development.
Collapse
Affiliation(s)
- Tantan Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Bingxian Yang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Qijie Guan
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Xi Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Zhuoheng Zhong
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Huang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Jingkui Tian
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| |
Collapse
|
27
|
Buono RA, Hudecek R, Nowack MK. Plant proteases during developmental programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2097-2112. [PMID: 30793182 PMCID: PMC7612330 DOI: 10.1093/jxb/erz072] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Proteases are among the key regulators of most forms of programmed cell death (PCD) in animals. Many PCD processes have also been associated with protease expression or activation in plants, However, functional evidence for the roles and actual modes of action of plant proteases in PCD remains surprisingly limited. In this review, we provide an update on protease involvement in the context of developmentally regulated plant PCD. To illustrate the diversity of protease functions, we focus on several prominent developmental PCD processes, including xylem and tapetum maturation, suspensor elimination, endosperm degradation, and seed coat formation, as well as plant senescence processes. Despite the substantial advances in the field, protease functions are often only correlatively linked to developmental PCD, and the specific molecular roles of proteases in many developmental PCD processes remain to be elucidated.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
28
|
Liu M, Li W, Zhao G, Fan X, Long H, Fan Y, Shi M, Tan X, Zhang L. New Insights of Salicylic Acid Into Stamen Abortion of Female Flowers in Tung Tree ( Vernicia fordii). Front Genet 2019; 10:316. [PMID: 31024626 PMCID: PMC6460477 DOI: 10.3389/fgene.2019.00316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/21/2019] [Indexed: 12/03/2022] Open
Abstract
Tung tree (Vernicia fordii), an economically important woody oil plant, is a monoecious and diclinous species with male and female flowers on the same inflorescence. The extremely low proportion of female flowers leads to low fruit yield in tung orchards. The female flower normally develops along with stamen abortion; otherwise sterile ovules will be produced. However, little knowledge is known about the molecular basis of the female flower development in tung tree. In this study, integrated analyses of morphological and cytological observations, endogenous phytohormone assay and RNA-seq were conducted to understand the molecular mechanism of the female flower development in tung tree. Cytological observation suggested that the abortion of stamens in female flowers (SFFs) belongs to the type of programmed cell death (PCD), which was caused by tapetum degeneration at microspore mother cell stage. A total of 1,366 differentially expressed genes (DEGs) were identified in female flowers by RNA-seq analysis, of which 279 (20.42%) DEGs were significantly enriched in phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Stage-specific transcript identification detected dynamically expressed genes of important transcription regulators in female flowers that may be involved in PCD and floral organ development. Gene expression patterns revealed that 17 anther and pollen development genes and 37 PCD-related genes might be involved in the abortion of SFF. Further analyses of phytohormone levels and co-expression networks suggested that salicylic acid (SA) accumulation could trigger PCD and inhibit the development of SFF in tung tree. This study provides new insights into the role of SA in regulating the abortion of SFF to develop normal female flowers.
Collapse
Affiliation(s)
- Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Guang Zhao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Xiaoming Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanru Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Mingwang Shi
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
29
|
Arakawa T, Ue S, Sano C, Matsunaga M, Kagami H, Yoshida Y, Kuroda Y, Taguchi K, Kitazaki K, Kubo T. Identification and characterization of a semi-dominant restorer-of-fertility 1 allele in sugar beet (Beta vulgaris). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:227-240. [PMID: 30341492 DOI: 10.1007/s00122-018-3211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 05/05/2023]
Abstract
The sugar beet Rf1 locus has a number of molecular variants. We found that one of the molecular variants is a weak allele of a previously identified allele. Male sterility (MS) caused by nuclear-mitochondrial interaction is called cytoplasmic male sterility (CMS) in which MS-inducing mitochondria are suppressed by a nuclear gene, restorer-of-fertility. Rf and rf are the suppressing and non-suppressing alleles, respectively. This dichotomic view, however, seems somewhat unsatisfactory to explain the recently discovered molecular diversity of Rf loci. In the present study, we first identified sugar beet line NK-305 as a new source of Rf1. Our crossing experiment revealed that NK-305 Rf1 is likely a semi-dominant allele that restores partial fertility when heterozygous but full fertility when homozygous, whereas Rf1 from another sugar beet line appeared to be a dominant allele. Proper degeneration of anther tapetum is a prerequisite for pollen development; thus, we compared tapetal degeneration in the NK-305 Rf1 heterozygote and the homozygote. Degeneration occurred in both genotypes but to a lesser extent in the heterozygote, suggesting an association between NK-305 Rf1 dose and incompleteness of tapetal degeneration leading to partial fertility. Our protein analyses revealed a quantitative correlation between NK-305 Rf1 dose and a reduction in the accumulation of a 250 kDa mitochondrial protein complex consisting of a CMS-specific mitochondrial protein encoded by MS-inducing mitochondria. The abundance of Rf1 transcripts correlated with NK-305 Rf1 dose. The molecular organization of NK-305 Rf1 suggested that this allele evolved through intergenic recombination. We propose that the sugar beet Rf1 locus has a series of multiple alleles that differ in their ability to restore fertility and are reflective of the complexity of Rf evolution.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sachiyo Ue
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Chihiro Sano
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Muneyuki Matsunaga
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hiroyo Kagami
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yu Yoshida
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Kazunori Taguchi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
30
|
Wojciechowska N, Marzec-Schmidt K, Kalemba EM, Zarzyńska-Nowak A, Jagodziński AM, Bagniewska-Zadworna A. Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa. BMC PLANT BIOLOGY 2018; 18:260. [PMID: 30373512 PMCID: PMC6206944 DOI: 10.1186/s12870-018-1439-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing. RESULTS We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection. CONCLUSIONS The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Katarzyna Marzec-Schmidt
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Ewa M Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Aleksandra Zarzyńska-Nowak
- Department of Virusology and Bacteriology, Institute of Plant Protection, Węgorka 20, 60-318 Poznań, Poland
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
31
|
Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska-Zadworna A. Plant organ senescence - regulation by manifold pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:167-181. [PMID: 29178615 DOI: 10.1111/plb.12672] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well-defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.
Collapse
Affiliation(s)
- N Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Sobieszczuk-Nowicka
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - A Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
32
|
Ma N, Ma C, Liu Y, Shahid MO, Wang C, Gao J. Petal senescence: a hormone view. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:719-732. [PMID: 29425359 DOI: 10.1093/jxb/ery009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Indexed: 05/20/2023]
Abstract
Flowers are highly complex organs that have evolved to enhance the reproductive success of angiosperms. As a key component of flowers, petals play a vital role in attracting pollinators and ensuring successful pollination. Having fulfilled this function, petals senesce through a process that involves many physiological and biochemical changes that also occur during leaf senescence. However, petal senescence is distinct, due to the abundance of secondary metabolites in petals and the fact that petal senescence is irreversible. Various phytohormones are involved in regulating petal senescence, and are thought to act both synergistically and antagonistically. In this regard, there appears to be developmental point during which such regulatory signals are sensed and senescence is initiated. Here, we review current understanding of petal senescence, and discuss associated regulatory mechanisms involving hormone interactions and epigenetic regulation.
Collapse
Affiliation(s)
- Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Muhammad Owais Shahid
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Gene expression of an arabinogalactan lysine-rich protein CaAGP18 during vegetative and reproductive development of bell pepper ( Capsicum annuum L.). 3 Biotech 2018; 8:5. [PMID: 29259880 DOI: 10.1007/s13205-017-1031-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022] Open
Abstract
Lysine-rich (Lys-rich) proteins encoded by AGP17, AGP18, and AGP19 genes are cell wall-associated glycopeptides related to sexual reproduction in flowering plants. This subclass belongs to classical arabinogalactan proteins (AGPs) widely studied in model plants like Arabidopsis. In this study, we identified the CaAGP18 cDNA from bell pepper (Capsicum annuum L.), as well as its expression pattern during vegetative and reproductive development. The deduced amino acid sequence revealed a Lys-rich AGP18 protein of 238 amino acids residues in length with an estimated molecular mass of 22.85 kDa and an isoelectric point of 9.7. The protein is predicted as canonical AGP due to the presence of a small Lys-rich region and a C-terminal sequence essential for posttranslational modification with a glycosylphosphatidylinositol (GPI). Phylogenetic analysis showed that CaAGP18 is clustered together with NtAGP18, SpAGP18, StAGP18 and NaAGP18 from Solanaceae species. CaAGP18 expression through plant phenological stages had the highest transcription level in leaves at the seedling stage, whereas in reproductive organs there was a significant up-regulation in pistils during anthesis, also in petals 2 days post-anthesis (DPA), and in fruit at the expansion stage. Our results open future research for possible roles of CaAGP18 in cell expansion as a wall-associated plasticizer and reproductive processes like pistil interactions and petal cell death.
Collapse
|
34
|
Shibuya K. Molecular aspects of flower senescence and strategies to improve flower longevity. BREEDING SCIENCE 2018; 68:99-108. [PMID: 29681752 PMCID: PMC5903976 DOI: 10.1270/jsbbs.17081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 05/06/2023]
Abstract
Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene-independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, NARO,
2-1 Fujimoto, Tsukuba, Ibaraki 305-0852,
Japan
| |
Collapse
|
35
|
Iakimova ET, Woltering EJ. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. PLANTA 2017; 245:681-705. [PMID: 28194564 PMCID: PMC5357506 DOI: 10.1007/s00425-017-2656-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Collapse
Affiliation(s)
| | - Ernst J Woltering
- Wageningen University and Research, Food and Biobased Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
- Wageningen University, Horticulture and Product Physiology, P.O. Box 630, 6700 AP, Wageningen, The Netherlands.
| |
Collapse
|
36
|
Li Q, Liu B. Genetic regulation of maize flower development and sex determination. PLANTA 2017; 245:1-14. [PMID: 27770199 DOI: 10.1007/s00425-016-2607-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 10/14/2016] [Indexed: 05/23/2023]
Abstract
The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.
Collapse
Affiliation(s)
- Qinglin Li
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| |
Collapse
|
37
|
Shibuya K, Yamada T, Ichimura K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5909-5918. [PMID: 27625416 DOI: 10.1093/jxb/erw337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Petal senescence, or programmed cell death (PCD) in petals, is a developmentally regulated and genetically programmed process. During petal senescence, petal cells show morphological changes associated with PCD: tonoplast rupture and rapid destruction of the cytoplasm. This type of PCD is classified as vacuolar cell death or autolytic PCD based on morphological criteria. In PCD of petal cells, characteristic morphological features including an autophagy-like process, chromatin condensation, and nuclear fragmentation are also observed. While the phytohormone ethylene is known to play a crucial role in petal senescence in some plant species, little is known about the early regulation of ethylene-independent petal senescence. Recently, a NAC (NAM/ATAF1,2/CUC2) transcription factor was reported to control the progression of PCD during petal senescence in Japanese morning glory, which shows ethylene-independent petal senescence. In ethylene-dependent petal senescence, functional analyses of transcription factor genes have revealed the involvement of a basic helix-loop-helix protein and a homeodomain-leucine zipper protein in the transcriptional regulation of the ethylene biosynthesis pathway. Here we review the recent advances in our knowledge of petal senescence, mostly focusing on the morphology of senescing petal cells and the regulatory mechanisms of PCD by senescence-associated transcription factors during petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| | - Tetsuya Yamada
- Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuo Ichimura
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| |
Collapse
|
38
|
Salleh FM, Mariotti L, Spadafora ND, Price AM, Picciarelli P, Wagstaff C, Lombardi L, Rogers H. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium). BMC PLANT BIOLOGY 2016; 16:77. [PMID: 27039085 PMCID: PMC4818919 DOI: 10.1186/s12870-016-0766-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/22/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. RESULTS In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene. CONCLUSIONS A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission.
Collapse
Affiliation(s)
- Faezah Mohd Salleh
- />School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3TL UK
- />Current address: Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| | - Lorenzo Mariotti
- />Department of Biology, University of Pisa, Via Ghini 5, 56126 Pisa, Italy
| | - Natasha D. Spadafora
- />School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3TL UK
| | - Anna M. Price
- />School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3TL UK
- />Current address: Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Piero Picciarelli
- />Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Carol Wagstaff
- />Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, Berkshire RG6 6AP UK
| | - Lara Lombardi
- />Department of Biology, University of Pisa, Via Ghini 5, 56126 Pisa, Italy
| | - Hilary Rogers
- />School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3TL UK
| |
Collapse
|
39
|
Lu D, Ni W, Stanley BA, Ma H. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1. BMC PLANT BIOLOGY 2016; 16:61. [PMID: 26940208 PMCID: PMC4778361 DOI: 10.1186/s12870-015-0571-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/04/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. RESULTS Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type, but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. CONCLUSIONS Our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.
Collapse
Affiliation(s)
- Dihong Lu
- Intercollege Graduate Degree Program in Plant Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, 16802, USA.
| | - Weimin Ni
- Department of Biology, the Pennsylvania State University, University Park, PA, 16802, USA.
- Current address: Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Bruce A Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
40
|
Kacprzyk J, Dauphinee AN, Gallois P, Gunawardena AH, McCabe PF. Methods to Study Plant Programmed Cell Death. Methods Mol Biol 2016; 1419:145-60. [PMID: 27108438 DOI: 10.1007/978-1-4939-3581-9_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Programmed cell death (PCD) is a critical component of plant development, defense against invading pathogens, and response to environmental stresses. In this chapter, we provide detailed technical methods for studying PCD associated with plant development or induced by abiotic stress. A root hair assay or electrolyte leakage assay are excellent techniques for the quantitative determination of PCD and/or cellular injury induced in response to abiotic stress, whereas the lace plant provides a unique model that facilitates the study of genetically regulated PCD during leaf development.
Collapse
Affiliation(s)
- Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Adrian N Dauphinee
- Department of Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R
| | - Patrick Gallois
- Faculty of Life Sciences, University of Manchester, D3515 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
41
|
Galsurker O, Doron-Faigenboim A, Teper-Bamnolker P, Daus A, Fridman Y, Lers A, Eshel D. Cellular and Molecular Changes Associated with Onion Skin Formation Suggest Involvement of Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2016; 7:2031. [PMID: 28119713 PMCID: PMC5220068 DOI: 10.3389/fpls.2016.02031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
Skin formation of onion (Allium cepa L.) bulb involves scale desiccation accompanied by scale senescence, resulting in cell death and tissue browning. Understanding the mechanism of skin formation is essential to improving onion skin and bulb qualities. Although onion skin plays a crucial role in postharvest onion storage and shelf life, its formation is poorly understood. We investigated the mode of cell death in the outermost scales that are destined to form the onion skin. Surprisingly, fluorescein diacetate staining and scanning electron microscopy indicated that the outer scale desiccates from the inside out. This striking observation suggests that cell death in the outer scales, during skin formation, is an internal and organized process that does not derive only from air desiccation. DNA fragmentation, a known hallmark of programmed cell death (PCD), was revealed in the outer scales and gradually decreased toward the inner scales of the bulb. Transmission electron microscopy further revealed PCD-related structural alterations in the outer scales which were absent from the inner scales. De novo transcriptome assembly for three different scales: 1st (outer), 5th (intermediate) and 8th (inner) fleshy scales identified 2,542 differentially expressed genes among them. GO enrichment for cluster analysis revealed increasing metabolic processes in the outer senescent scale related to defense response, PCD processes, carbohydrate metabolism and flavonoid biosynthesis, whereas increased metabolism and developmental growth processes were identified in the inner scales. High expression levels of PCD-related genes were identified in the outer scale compared to the inner ones, highlighting the involvement of PCD in outer-skin development. These findings suggest that a program to form the dry protective skin exists and functions only in the outer scales of onion.
Collapse
Affiliation(s)
- Ortal Galsurker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
- The Robert H. Smith Institute of Field Crops and Vegetables, Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Avinoam Daus
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Yael Fridman
- The Alexander Silberman Institute of Life Science, Edmond Safra Campus (G Ram), The Hebrew UniversityJerusalem, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
- *Correspondence: Dani Eshel,
| |
Collapse
|
42
|
Fagundes D, Bohn B, Cabreira C, Leipelt F, Dias N, Bodanese-Zanettini MH, Cagliari A. Caspases in plants: metacaspase gene family in plant stress responses. Funct Integr Genomics 2015; 15:639-49. [PMID: 26277721 DOI: 10.1007/s10142-015-0459-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022]
Abstract
Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.
Collapse
Affiliation(s)
- David Fagundes
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Bianca Bohn
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Caroline Cabreira
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Fábio Leipelt
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Nathalia Dias
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | | | - Alexandro Cagliari
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| |
Collapse
|
43
|
Fan J, Guo XY, Li L, Huang F, Sun WX, Li Y, Huang YY, Xu YJ, Shi J, Lei Y, Zheng AP, Wang WM. Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain-filling-related genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:577-90. [PMID: 25319482 PMCID: PMC5024071 DOI: 10.1111/jipb.12299] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 05/04/2023]
Abstract
Rice false smut has become an increasingly serious disease in rice (Oryza sativa L.) production worldwide. The typical feature of this disease is that the fungal pathogen Ustilaginoidea virens (Uv) specifically infects rice flower and forms false smut ball, the ustiloxin-containing ball-like fungal colony, of which the size is usually several times larger than that of a mature rice seed. However, the underlying mechanisms of Uv-rice interaction are poorly understood. Here, we applied time-course microscopic and transcriptional approaches to investigate rice responses to Uv infection. The results demonstrated that the flower-opening process and expression of associated transcription factors, including ARF6 and ARF8, were inhibited in Uv-infected spikelets. The ovaries in infected spikelets were interrupted in fertilization and thus were unable to set seeds. However, a number of grain-filling-related genes, including seed storage protein genes, starch anabolism genes and endosperm-specific transcription factors (RISBZ1 and RPBF), were highly transcribed as if the ovaries were fertilized. In addition, critical defense-related genes like NPR1 and PR1 were downregulated by Uv infection. Our data imply that Uv may hijack host nutrient reservoir by activation of the grain-filling network because of growth and formation of false smut balls.
Collapse
Affiliation(s)
- Jing Fan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yi Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fu Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Xian Sun
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Shi
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Lei
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ai-Ping Zheng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
44
|
Polyamines are common players in different facets of plant programmed cell death. Amino Acids 2014; 47:27-44. [PMID: 25399055 DOI: 10.1007/s00726-014-1865-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 01/16/2023]
Abstract
Programmed cell death (PCD) is a process that occurs throughout the life span of every plant life, from initial germination of the seed to the senescence of the plant. It is a normal physiological milestone during the plant's developmental process, but it can also be induced by external factors, including a variety of environmental stresses and as a response to pathogen infections. Changes in the morphology of the nucleus is one of the most noticeable during PCD but all the components of the plant cell (cytoplasm, cytoskeleton and organelles) are involved in this fascinating process. To date, relatively little is known about PCD in plants, but several factors, among which polyamines (PAs) and plant growth regulators, have been shown to play an important role in the initiation and regulation of the process. The role of PAs in plant PCD appears to be multifaceted acting in some instances as pro-survival molecules, whereas in others seem to be implicated in accelerating PCD. The molecular mechanism is still under study. Here we present some PCD plant models, focusing on the role of the enzyme responsible for PA conjugation to proteins: transglutaminase (TGase), an enzyme linked with the process of PCD also in some animal models. The role of PAs and plant TGase in the senescence and PCD in flowers, leaf and the self-incompatibility of pollen will be discussed and examined in depth.
Collapse
|
45
|
Shibuya K, Shimizu K, Niki T, Ichimura K. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1044-51. [PMID: 24961791 DOI: 10.1111/tpj.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 05/22/2023]
Abstract
In flowering plants, floral longevity is species-specific and is closely linked to reproductive strategy; petal senescence, a type of programmed cell death (PCD), is a highly regulated developmental process. However, little is known about regulatory pathways for cell death in petal senescence, which is developmentally controlled in an age-dependent manner. Here, we show that a NAC transcription factor, designated EPHEMERAL1 (EPH1), positively regulates PCD during petal senescence in the ephemeral flowers of Japanese morning glory (Ipomoea nil). EPH1 expression is induced independently of ethylene signaling, and suppression of EPH1 resulted in Japanese morning glory flowers that are in bloom until the second day. The suppressed expression of EPH1 delays progression of PCD, possibly through suppression of the expression of PCD-related genes, including genes for plant caspase and autophagy in the petals. Our data further suggest that EPH1 is involved in the regulation of ethylene-accelerated petal senescence. In this study, we identified a key regulator of PCD in petal senescence, which will facilitate further elucidation of the regulatory network of petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- NARO Institute of Floricultural Science, Tsukuba, 305-8519, Japan
| | | | | | | |
Collapse
|
46
|
Ferradás Y, López M, Rey M, González MV. Programmed cell death in kiwifruit stigmatic arms and its relationship to the effective pollination period and the progamic phase. ANNALS OF BOTANY 2014; 114:35-45. [PMID: 24782437 PMCID: PMC4071096 DOI: 10.1093/aob/mcu073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Kiwifruit is a crop with a highly successful reproductive performance, which is impaired by the short effective pollination period of female flowers. This study investigates whether the degenerative processes observed in both pollinated and non-pollinated flowers after anthesis may be considered to be programmed cell death (PCD). METHODS Features of PCD in kiwifruit, Actinidia chinensis var. deliciosa, were studied in both non-pollinated and pollinated stigmatic arms using transmission electron microscopy, DAPI (4',6-diamidino-2-phenylindole) staining, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assays, DNA gel electrophoresis and caspase-like activity assays. KEY RESULTS In the secretory tissues of the stigmatic arms, cell organelles disintegrated sequentially while progressive vacuolization was detected. At the same time, chromatin condensation, nuclear deformation, and DNA fragmentation and degradation were observed. These features were detected in both non-pollinated and pollinated stigmatic arms; they were evident in the stigmas of pollinated flowers by the second day after anthesis but only by 4 d after anthesis in non-pollinated flowers. In addition, in pollinated stigmatic arms, these features were first initiated in the stigma and gradually progressed through the style, consistent with pollen tube growth. This timing of events was also observed in both non-pollinated and pollinated stigmatic arms for caspase-3-like activity. CONCLUSIONS The data provide evidence to support the hypothesis that PCD processes occurring in the secretory tissue of non-pollinated kiwifruit stigmatic arms could be the origin for the observed short effective pollination period. The results obtained in the secretory tissue of pollinated kiwifruit stigmatic arms upon pollination support the idea that PCD might be accelerated by pollination, pointing to the involvement of PCD during the progamic phase.
Collapse
Affiliation(s)
- Yolanda Ferradás
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872 Santiago de Compostela, Spain
| | - Marián López
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872 Santiago de Compostela, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain
| | - Ma Victoria González
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872 Santiago de Compostela, Spain
| |
Collapse
|
47
|
Sirisha VL, Sinha M, D'Souza JS. Menadione-induced caspase-dependent programmed cell death in the green chlorophyte Chlamydomonas reinhardtii. JOURNAL OF PHYCOLOGY 2014; 50:587-601. [PMID: 26988330 DOI: 10.1111/jpy.12188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/17/2014] [Indexed: 05/19/2023]
Abstract
Menadione, a quinone that undergoes redox cycles leading to the formation of superoxide radicals, induces programmed cell death (PCD) in animals and plants. In this study, we investigated whether the unicellular green alga Chlamydomonas reinhardtii P.A.Dangeard is capable of executing PCD upon exposure to menadione stress. We report here, the morphological, molecular, and biochemical changes after menadione exposure of C. reinhardtii cells. The effect of menadione on cell death has been shown to be dose-dependent; 5-100 μM menadione causes 20%-46% cell death, respectively. It appears that growth is inhibited with the concomitant degradation of the photosynthetic pigments and by a decrease in the photosynthetic capacity. Being an oxidative stress, we found an H2 O2 burst within 15 min of menadione exposure, followed by an increase in antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and ascorbate peroxidase [APX]) activities. In parallel, RT-PCR was performed for transcript analyses of Mn-SOD, CAT, and APX. Our results clearly revealed that expression of these genes were up-regulated upon menadione exposure. Furthermore, classical hallmarks of PCD such as alteration of mitochondrial membrane potential, significant increase in caspase-3-like DEVDase activity, cleavage of poly (ADP) ribose polymerase (PARP)-1-like enzyme, and DNA fragmentation as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and oligosomal DNA fragmentation were observed. Moreover, antibodies against a mammalian active caspase-3 shared epitopes with a caspase-3-like protein of ~17 kDa; its pattern of expression and activity correlated with the onset of cell death. To the best of our knowledge, this is the first report on menadione-induced PCD through a mitochondrian-caspase protease pathway in an algal species.
Collapse
Affiliation(s)
- V L Sirisha
- Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400 098, India
| | - Mahuya Sinha
- Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400 098, India
| | - Jacinta S D'Souza
- Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400 098, India
| |
Collapse
|
48
|
Gui MY, Liu WZ. Programmed cell death during floral nectary senescence in Ipomoea purpurea. PROTOPLASMA 2014; 251:677-685. [PMID: 24185946 DOI: 10.1007/s00709-013-0570-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
The nectaries of Ipomoea purpurea wilt in the late flowering period. The senescence process of nectaries is frequently associated with cell lysis. In this paper, various techniques were used to investigate whether programmed cell death (PCD) was involved in the senescence process of nectaries in I. purpurea. Ultrastructural studies showed that nectary cells began to undergo structural distortion, chromatin condensation, mitochondrial membrane degradation, and vacuolar-membrane dissolution and rupture after bloom. 4',6-Diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine-5'-triphosphate (dUTP) nick end-labeling (TUNEL) assay showed that nectary cell nuclear DNA began to degrade during the budding stage, and disappeared in the fruiting stage. DNA gel electrophoresis showed that degradation of DNA was random. Together, these results suggest that PCD participate in the senescence of the nectary in I. purpurea. PCD began during the budding period, followed by significant changes in nectary morphology and structure during the flowering period. During the fruiting stage, the PCD process is complete and the nectary degrades.
Collapse
Affiliation(s)
- Meng-Yuan Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, school of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, China
| | | |
Collapse
|
49
|
Del Duca S, Serafini-Fracassini D, Cai G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. FRONTIERS IN PLANT SCIENCE 2014; 5:120. [PMID: 24778637 PMCID: PMC3985020 DOI: 10.3389/fpls.2014.00120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 05/14/2023]
Abstract
Research on polyamines (PAs) in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. PAs regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. PAs are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase (TGase), giving rise to "cationization" or cross-links among specific proteins. Senescence and programmed cell death (PCD) can be delayed by PAs; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The TGase-mediated interactions between proteins and PAs are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, TGase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of PAs and proteins, TGase is an important factor involved in multiple, sometimes controversial, roles of PAs during senescence and PCD.
Collapse
Affiliation(s)
- Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences (Botany), University of BolognaBologna, Italy
| | | | - Giampiero Cai
- Department of Life Sciences, University of SienaSiena, Italy
| |
Collapse
|
50
|
Chang X, Donnelly L, Sun D, Rao J, Reid MS, Jiang CZ. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLoS One 2014; 9:e88320. [PMID: 24551088 PMCID: PMC3925126 DOI: 10.1371/journal.pone.0088320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/07/2014] [Indexed: 01/07/2023] Open
Abstract
Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.
Collapse
Affiliation(s)
- Xiaoxiao Chang
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Linda Donnelly
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
| | - Daoyang Sun
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Jingping Rao
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JR); (MSR); (CZJ)
| | - Michael S. Reid
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail: (JR); (MSR); (CZJ)
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
- * E-mail: (JR); (MSR); (CZJ)
| |
Collapse
|