1
|
Chen Y, Zhang H, Chen W, Gao Y, Xu K, Sun X, Huo L. The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. PLANT CELL REPORTS 2024; 43:278. [PMID: 39531178 DOI: 10.1007/s00299-024-03367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Waterlogging stands as a common environmental challenge, significantly affecting plant growth, yield, and, in severe cases, survival. In response to waterlogging stress, plants exhibit a series of intricate physiologic, metabolic, and morphologic adaptations. Notably, the gaseous phytohormone ethylene is rapidly accumulated in the plant submerged tissues, assuming an important regulatory factor in plant-waterlogging tolerance. In this review, we summarize recent advances in research on the mechanisms of ethylene in the regulation of plant responses to waterlogging stress. Recent advances found that both ethylene biosynthesis and signal transduction make indispensable contributions to modulating plant adaptation mechanisms to waterlogged condition. Ethylene was also discovered to play an important role in plant physiologic metabolic responses to waterlogging stress, including the energy mechanism, morphologic adaptation, ROS regulation and interactions with other phytohormones. The comprehensive exploration of ethylene and its associated genes provides valuable insights into the precise strategies to leverage ethylene metabolism for enhancing plant resistance to waterlogging stress.
Collapse
Affiliation(s)
- Yunyun Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hao Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Zhou L, Li X, Hao S, Hong L, Chen L, Li QQ. Distinct molecular responses of mangrove plants to hypoxia and reoxygenation stresses contribute to their resilience in coastal wetland environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177357. [PMID: 39500460 DOI: 10.1016/j.scitotenv.2024.177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Mangroves adapt to periodical submergence and constitute resilient ecosystems in coastal environments. The question is whether they can sustain long submergence stress when sea level rises as a consequence of climate change. To address this, seedlings of two representative mangrove species that acclimate to low to mid tide (Avicennia marina) and mid to high tide (Kandelia obovata) conditions were treated with continual submergence for 7 days as extended hypoxia, or semi-diurnal cyclic submergence and reoxygenation for 7 days. At specific time points, leaves were collected to construct RNA-Sequencing libraries for gene expression analysis. Through the lens of transcriptome, the initial response of A. marina to submergence was mild but more dramatic after prolong immersion. However, the initial response of K. obovata was drastic and reduced in latitude later, suggesting distinct species-specific responses. After adapting to diurnal cycles, both species minimized transcriptome fluctuations similarly. Metabolically, during initial response, sucrose and starch were converted into glucose for fermentation to increase glycolytic flux, coupled with regeneration of NAD+. The energy amelioration was accompanied by longer term phytohormone regulations where ethylene signal transduction pathway was enhanced, but abscisic acid biosynthesis was reduced. Notably, gibberellic acids biosynthesis increased in A. marina but decreased in K. obovata as a unique feature. Genomic level analysis indicated that only about 30 % of the conserved plant submergence responsive genes were expressed during submergence in these mangroves. The function of an ethylene responsive gene was validated in transgenic Arabidopsis. This research elucidates distinct molecular mechanisms and metabolic pathways that empower A. marina and K. obovata to endure prolonged submergence and hypoxia. By highlighting their unique adaptive strategies in response to rising sea levels, these findings enhance our understanding of mangrove resilience and provide insights for the conservation and management of these essential coastal ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Lichun Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
3
|
Liu XD, Zeng YY, Hasan MM, Ghimire S, Jiang H, Qi SH, Tian XQ, Fang XW. Diverse functional interactions between ABA and ethylene in plant development and responses to stress. PHYSIOLOGIA PLANTARUM 2024; 176:e70000. [PMID: 39686889 DOI: 10.1111/ppl.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized. In this review, we first introduce the general synthesis and action signaling pathways of these two plant hormones individually and their interactions in relation to seed dormancy and germination, primary root growth, shoot development, fruit ripening, leaf senescence and abscission, and stomatal movement regulation under both normal and stress conditions. A better understanding of the complex interactions between ABA and ethylene will enhance our knowledge of how plant hormones regulate development and respond to stress and may facilitate the development of crops with higher yields and greater tolerance to stressful environments through tissue-specific genetic modifications in the future.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Yuan-Yuan Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shi-Hua Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Liu H, Lan Y, Wang L, Jiang N, Zhang X, Wu M, Xiang Y. CiAP2/ERF65 and CiAP2/ERF106, a pair of homologous genes in pecan (Carya illinoensis), regulate plant responses during submergence in transgenic Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154166. [PMID: 38163387 DOI: 10.1016/j.jplph.2023.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
When plants are entirely submerged, photosynthesis and respiration are severely restricted, affecting plant growth and potentially even causing plant death. The AP2/ERF superfamily has been widely reported to play a vital role in plant growth, development and resistance to biotic and abiotic stresses. However, no relevant studies exist on flooding stress in pecan. In this investigation, we observed that CiAP2/ERF65 positively modulated the hypoxia response during submergence, whereas CiAP2/ERF106 was sensitive to submergence. The levels of physiological and biochemical indicators, such as POD, CAT and among others, in CiAP2/ERF65-OE lines were significantly higher than those in wild-type Arabidopsis thaliana, indicating that the antioxidant capacity of CiAP2/ERF65-OE lines was enhanced under submergence. The RNA-seq results revealed that the maintenance of the expression levels of the antenna protein gene, different signaling pathways for regulation, as well as the storage and consumption of ATP, might account for the opposite phenotypes of CiAP2/ERF65 and CiAP2/ERF106. Furthermore, the expression of some stress-related genes was altered during submergence and reoxygenation. Overall, these findings enhance our understanding of submergence stress in pecan, providing important candidate genes for the molecular design and breeding of hypoxia resistant in plants.
Collapse
Affiliation(s)
- Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Nianqin Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyue Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Gamalero E, Lingua G, Glick BR. Ethylene, ACC, and the Plant Growth-Promoting Enzyme ACC Deaminase. BIOLOGY 2023; 12:1043. [PMID: 37626930 PMCID: PMC10452086 DOI: 10.3390/biology12081043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Here, a brief summary of the biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) and ethylene in plants, as well as overviews of how ACC and ethylene act as signaling molecules in plants, is presented. Next, how the bacterial enzyme ACC deaminase cleaves plant-produced ACC and thereby decreases or prevents the ethylene or ACC modulation of plant gene expression is considered. A detailed model of ACC deaminase functioning, including the role of indoleacetic acid (IAA), is presented. Given that ACC is a signaling molecule under some circumstances, this suggests that ACC, which appears to have evolved prior to ethylene, may have been a major signaling molecule in primitive plants prior to the evolution of ethylene and ethylene signaling. Due to their involvement in stimulating ethylene production, the role of D-amino acids in plants is then considered. The enzyme D-cysteine desulfhydrase, which is structurally very similar to ACC deaminase, is briefly discussed and the possibility that ACC deaminase arose as a variant of D-cysteine desulfhydrase is suggested.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
6
|
Hu J, Duan Y, Yang J, Gan L, Chen W, Yang J, Xiao G, Guan L, Chen J. Transcriptome Analysis Reveals Genes Associated with Flooding Tolerance in Mulberry Plants. Life (Basel) 2023; 13:life13051087. [PMID: 37240733 DOI: 10.3390/life13051087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Mulberry (Morus alba), a widely distributed economic plant, can withstand long-term flooding stress. However, the regulatory gene network underlying this tolerance is unknown. In the present study, mulberry plants were subjected to submergence stress. Subsequently, mulberry leaves were collected to perform quantitative reverse-transcription PCR (qRT-PCR) and transcriptome analysis. Genes encoding ascorbate peroxidase and glutathione S-transferase were significantly upregulated after submergence stress, indicating that they could protect the mulberry plant from flood damage by mediating ROS homeostasis. Genes that regulate starch and sucrose metabolism; genes encoding pyruvate kinase, alcohol dehydrogenase, and pyruvate decarboxylase (enzymes involved in glycolysis and ethanol fermentation); and genes encoding malate dehydrogenase and ATPase (enzymes involved in the TCA cycle) were also obviously upregulated. Hence, these genes likely played a key role in mitigating energy shortage during flooding stress. In addition, genes associated with ethylene, cytokinin, abscisic acid, and MAPK signaling; genes involved in phenylpropanoid biosynthesis; and transcription factor genes also showed upregulation under flooding stress in mulberry plants. These results provide further insights into the adaptation mechanisms and genetics of submergence tolerance in mulberry plants and could aid in the molecular breeding of these plants.
Collapse
Affiliation(s)
- Jingtao Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yanyan Duan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Junnian Yang
- College of Teacher Education, Chongqing Three Gorges University, Chongqing 404100, China
| | - Liping Gan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Wenjing Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Jin Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| |
Collapse
|
7
|
Lee KW, Chen JJW, Wu CS, Chang HC, Chen HY, Kuo HH, Lee YS, Chang YL, Chang HC, Shiue SY, Wu YC, Ho YC, Chen PW. Auxin plays a role in the adaptation of rice to anaerobic germination and seedling establishment. PLANT, CELL & ENVIRONMENT 2023; 46:1157-1175. [PMID: 36071575 DOI: 10.1111/pce.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Auxin is well known to stimulate coleoptile elongation and rapid seedling growth in the air. However, its role in regulating rice germination and seedling establishment under submergence is largely unknown. Previous studies revealed that excessive levels of indole-3-acetic acid(IAA) frequently cause the inhibition of plant growth and development. In this study, the high-level accumulation of endogenous IAA is observed under dark submergence, stimulating rice coleoptile elongation but limiting the root and primary leaf growth during anaerobic germination (AG). We found that oxygen and light can reduce IAA levels, promote the seedling establishment and enhance rice AG tolerance. miRNA microarray profiling and RNA gel blot analysis results show that the expression of miR167 is negatively regulated by submergence; it subsequently modulates the accumulation of free IAA through the miR167-ARF-GH3 pathway. The OsGH3-8 encodes an IAA-amido synthetase that functions to prevent free IAA accumulation. Reduced miR167 levels or overexpressing OsGH3-8 increase auxin metabolism, reduce endogenous levels of free IAA and enhance rice AG tolerance. Our studies reveal that poor seed germination and seedling growth inhibition resulting from excessive IAA accumulation would cause intolerance to submergence in rice, suggesting that a certain threshold level of auxin is essential for rice AG tolerance.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Shen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ho-Chun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hong-Yue Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hsin-Hao Kuo
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ya-Shan Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yan-Lun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hung-Chia Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Shiau-Yu Shiue
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Chen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Peng-Wen Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
8
|
Dalle Carbonare L, Jiménez JDLC, Lichtenauer S, van Veen H. Plant responses to limited aeration: Advances and future challenges. PLANT DIRECT 2023; 7:e488. [PMID: 36993903 PMCID: PMC10040318 DOI: 10.1002/pld3.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.
Collapse
Affiliation(s)
| | | | - Sophie Lichtenauer
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Hans van Veen
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
9
|
Shahid M, Singh UB, Khan MS, Singh P, Kumar R, Singh RN, Kumar A, Singh HV. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front Microbiol 2023; 14:1132770. [PMID: 37180266 PMCID: PMC10174264 DOI: 10.3389/fmicb.2023.1132770] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Growth and productivity of crop plants worldwide are often adversely affected by anthropogenic and natural stresses. Both biotic and abiotic stresses may impact future food security and sustainability; global climate change will only exacerbate the threat. Nearly all stresses induce ethylene production in plants, which is detrimental to their growth and survival when present at higher concentrations. Consequently, management of ethylene production in plants is becoming an attractive option for countering the stress hormone and its effect on crop yield and productivity. In plants, ACC (1-aminocyclopropane-1-carboxylate) serves as a precursor for ethylene production. Soil microorganisms and root-associated plant growth promoting rhizobacteria (PGPR) that possess ACC deaminase activity regulate growth and development of plants under harsh environmental conditions by limiting ethylene levels in plants; this enzyme is, therefore, often designated as a "stress modulator." TheACC deaminase enzyme, encoded by the AcdS gene, is tightly controlled and regulated depending upon environmental conditions. Gene regulatory components of AcdS are made up of the LRP protein-coding regulatory gene and other regulatory components that are activated via distinct mechanisms under aerobic and anaerobic conditions. ACC deaminase-positive PGPR strains can intensively promote growth and development of crops being cultivated under abiotic stresses including salt stress, water deficit, waterlogging, temperature extremes, and presence of heavy metals, pesticides and other organic contaminants. Strategies for combating environmental stresses in plants, and improving growth by introducing the acdS gene into crop plants via bacteria, have been investigated. In the recent past, some rapid methods and cutting-edge technologies based on molecular biotechnology and omics approaches involving proteomics, transcriptomics, metagenomics, and next generation sequencing (NGS) have been proposed to reveal the variety and potential of ACC deaminase-producing PGPR that thrive under external stresses. Multiple stress-tolerant ACC deaminase-producing PGPR strains have demonstrated great promise in providing plant resistance/tolerance to various stressors and, therefore, it could be advantageous over other soil/plant microbiome that can flourish under stressed environments.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Ratan Kumar
- Krishi Vigyan Kendra, Rohtas, Bihar Agricultural University, Bikramganj, Bihar, India
| | - Raj Narian Singh
- Directorate of Extension Education, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Arun Kumar
- Swamy Keshwanand Rajasthan Agriculture University, Bikaner, Rajasthan, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
| |
Collapse
|
10
|
Shao Z, Zhao B, Kotla P, Burns JG, Tran J, Ke M, Chen X, Browning KS, Qiao H. Phosphorylation status of Bβ subunit acts as a switch to regulate the function of phosphatase PP2A in ethylene-mediated root growth inhibition. THE NEW PHYTOLOGIST 2022; 236:1762-1778. [PMID: 36073540 PMCID: PMC9828452 DOI: 10.1111/nph.18467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 05/20/2023]
Abstract
The various combinations and regulations of different subunits of phosphatase PP2A holoenzymes underlie their functional complexity and importance. However, molecular mechanisms governing the assembly of PP2A complex in response to external or internal signals remain largely unknown, especially in Arabidopsis thaliana. We found that the phosphorylation status of Bβ of PP2A acts as a switch to regulate the activity of PP2A. In the absence of ethylene, phosphorylated Bβ leads to an inactivation of PP2A; the substrate EIR1 remains to be phosphorylated, preventing the EIR1-mediated auxin transport in epidermis, leading to normal root growth. Upon ethylene treatment, the dephosphorylated Bβ mediates the formation of the A2-C4-Bβ protein complex to activate PP2A, resulting in the dephosphorylation of EIR1 to promote auxin transport in epidermis of elongation zone, leading to root growth inhibition. Altogether, our research revealed a novel molecular mechanism by which the dephosphorylation of Bβ subunit switches on PP2A activity to dephosphorylate EIR1 to establish EIR1-mediated auxin transport in the epidermis in elongation zone for root growth inhibition in response to ethylene.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Bo Zhao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Prashanth Kotla
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jackson G. Burns
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jaclyn Tran
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Karen S. Browning
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Hong Qiao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| |
Collapse
|
11
|
Nurrahma AHI, Yabuta S, Junaedi A, Sakagami JI. Different survival strategies involve carbon translocation rather than de novo C assimilation under complete submergence in rice plant. PHOTOSYNTHESIS RESEARCH 2022; 154:183-193. [PMID: 36169786 DOI: 10.1007/s11120-022-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effect of transient submergence on the recovery of photosynthetic activity and translocation of photosynthate in IR67520 (Sub1A genotype) and IR72442 (non-Sub1A genotype) using 13C-labeled tracer, coupled with some photosynthetic physiological assessments. Plant growth, photosynthetic capacity, and photosynthetic recovery were studied by treating the two rice genotypes without or completely submerged for 7 days in transparent acrylic tanks filled with water to a depth of 80 cm, followed by 7 days of reaeration. Results revealed that the IR67520 was able to obtain new carbon source for assimilation during at 7 days of recovery periods. The IR72442 genotype partitioned 13C to the newly developed upper leaves more than the IR67520 genotype did. This was due to its inability to obtain CO2 from other source during post submergence. Recovery of chlorophyll content, ability to retain higher biomass, and ability to grow faster at 7 days of recovery periods also indicated the ability of Sub1A genotype to reactivate its photosynthetic capacity.
Collapse
Affiliation(s)
- Arinal Haq Izzawati Nurrahma
- The United Graduate School in Agriculture Sciences, Kagoshima University, Kagoshima, Japan
- Research Center for Food Crops, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Shin Yabuta
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Ahmad Junaedi
- Faculty of Agriculture, Bogor Agricultural University, Bogor, Indonesia
| | - Jun-Ichi Sakagami
- The United Graduate School in Agriculture Sciences, Kagoshima University, Kagoshima, Japan.
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
12
|
Yang J, Wei J, Xu J, Xiong Y, Deng G, Liu J, Fahad S, Wang H. Mapping QTLs for anaerobic tolerance at germination and bud stages using new high density genetic map of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:985080. [PMID: 36325568 PMCID: PMC9618957 DOI: 10.3389/fpls.2022.985080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Due to its low cost and convenience, direct seeding is an efficient technique for the production of rice in different rice growing areas. However, anaerobic conditions are a major obstacle to the direct seeding of rice and result in poor seedling establishment, which leads to yield losses. We constructed a collection of recombinant inbred lines (RIL) comprising 275 lines derived from the H335 and CHA-1 cross by the method of single seed descent. Via a genotyping-by-sequencing (GBS) strategy, a high-density genetic map containing 2498 recombination bin markers was constructed, the average physical distance between the markers was only 149.38 Kb. After anaerobic treatment, 12 phenotypes related to both the coleoptile at germination and seedling quality at budding were evaluated. There were no significant correlations between seedling and bud traits. Genetic mapping of quantitative traits was performed for these traits across two cropping seasons. A total of 20 loci were detected, named locus 1~20. Three of them were repeatedly detected across both seasons. Six loci overlapped with those in previous reports, and nine loci were associated with multiple traits at both stages. Notably, locus 3, which is located on chromosome 2 (26,713,837 to 27,333,897 bp), was detected for both the germination and bud traits. By focusing on the locus 3 interval and by combining gene annotation and expression analyses, we identified a promising candidate gene, trehalose-6-phosphate phosphatase (OsTPP1, LOC_Os02g44230). Furthermore, RILs (G289, G379, G403, G430 and G454) that have superior phenotypes and that pyramid elite alleles were recognized. The findings of present study provide new genetic resources for direct-seeding rice (DSR) varieties for molecular breeding strategies and expand our knowledge of genetic regulation of seedling establishment under anaerobic conditions.
Collapse
Affiliation(s)
- Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Ji Wei
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Jifen Xu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Yumeng Xiong
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Shah Fahad
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| |
Collapse
|
13
|
The Role of Aquaporins in Plant Growth under Conditions of Oxygen Deficiency. Int J Mol Sci 2022; 23:ijms231710159. [PMID: 36077554 PMCID: PMC9456501 DOI: 10.3390/ijms231710159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Plants frequently experience hypoxia due to flooding caused by intensive rainfall or irrigation, when they are partially or completely submerged under a layer of water. In the latter case, some resistant plants implement a hypoxia avoidance strategy by accelerating shoot elongation, which allows lifting their leaves above the water surface. This strategy is achieved due to increased water uptake by shoot cells through water channels (aquaporins, AQPs). It remains a puzzle how an increased flow of water through aquaporins into the cells of submerged shoots can be achieved, while it is well known that hypoxia inhibits the activity of aquaporins. In this review, we summarize the literature data on the mechanisms that are likely to compensate for the decline in aquaporin activity under hypoxic conditions, providing increased water entry into cells and accelerated shoot elongation. These mechanisms include changes in the expression of genes encoding aquaporins, as well as processes that occur at the post-transcriptional level. We also discuss the involvement of hormones, whose concentration changes in submerged plants, in the control of aquaporin activity.
Collapse
|
14
|
Chen H, Wu Q, Ni M, Chen C, Han C, Yu F. Transcriptome Analysis of Endogenous Hormone Response Mechanism in Roots of Styrax tonkinensis Under Waterlogging. FRONTIERS IN PLANT SCIENCE 2022; 13:896850. [PMID: 35734248 PMCID: PMC9208659 DOI: 10.3389/fpls.2022.896850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
As a promising oil species, Styrax tonkinensis has great potential as a biofuel due to an excellent fatty acid composition. However, frequent flooding caused by global warming and the low tolerance of the species to waterlogging largely halted its expansion in waterlogged areas. To explore endogenous hormones and phytohormone-related molecular response mechanism of S. tonkinensis under waterlogging, we determined 1-aminocyclopropane-1-carboxylic acid (ACC) and three phytohormone content (ABA, abscisic acid; SA, salicylic acid; IAA, indole-3-acetic acid) and analyzed the transcriptome of its seedlings under waterlogged condition of 3-5 cm. The sample collecting time was 0, 9, 24, and 72 h, respectively. It was concluded that ACC presented an upward trend, but other plant hormones showed a downward trend from 0 to 72 h under waterlogging stress. A total of 84,601 unigenes were assembled with a total length of 81,389,823 bp through transcriptome analysis. The GO enrichment analysis of total differentially expressed genes (DEGs) revealed that 4,637 DEGs, 8,238 DEGs, and 7,146 DEGs were assigned into three main GO functional categories in 9 vs. 0 h, 24 vs. 0 h, and 72 vs. 0 h, respectively. We also discovered several DEGs involved in phytohormone synthesis pathway and plant hormone signaling pathway. It was concluded that the decreased transcription of PYL resulted in the weak ABA signal transduction pathway. Moreover, decreased SA content caused by the low-expressed PAL might impact the resistance of S. tonkinensis seedlings under waterlogging stress. Our research may provide a scientific basis for the understanding of the endogenous hormone response mechanism of S. tonkinensis to waterlogging and lay a foundation for further exploration of the waterlogging defect resistance genes of S. tonkinensis and improving its resistance to waterlogging stress.
Collapse
Affiliation(s)
- Hong Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ming Ni
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chao Han
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| |
Collapse
|
15
|
Du Y, Zhou Q, Peng Z, Peng F, Xi L, Li Y. Does a Widespread Species Have a Higher Competitive Ability Than an Endemic Species? A Case Study From the Dongting Lake Wetlands. FRONTIERS IN PLANT SCIENCE 2022; 13:864316. [PMID: 35685024 PMCID: PMC9171367 DOI: 10.3389/fpls.2022.864316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The distribution range of plants is usually related to their competitiveness. The competitive ability between common widespread, which are generally considered to be invasive, and common endemic species, is still not very clear. Five plant communities were monitored in the field to compare the competitive abilities of widespread species, Phragmites australis, and endemic species, Triarrhena lutarioriparia, in the Dongting Lake wetlands. The ratios of individual numbers of T. lutarioriparia to P. australis per square meter were found to be 9:0, 14:1, 10:5, 7:6, and 0:11 in the five respective communities. A manipulation experiment was then performed with five planting modes (T. lutarioriparia: P. australis was 4:0, 3:1, 2:2, 1:3, and 0:4, respectively). Results from field monitoring showed that the two plant species exhibited similar decreased survival percentages during flooding. P. australis had higher aboveground biomass before the flooding and a higher relative elongation rate, whereas T. lutarioriparia had higher aboveground biomass after flooding and a higher relative growth rate (RGR). P. australis had a higher competitive ability than T. lutarioriparia before and after the flooding. The manipulation experiment revealed that P. australis had a higher survival percentage than T. lutarioriparia, with no differences in plant biomass, RGR, and the relative elongation rate between the two species. P. australis was found to have a higher competitive ability than T. lutarioriparia in the early growing stage and a lower competitive ability in the middle and later stages. The relative yield total in the field monitoring and manipulation experiment was 1, indicating that T. lutarioriparia and P. australis occupied different niches in the experimental conditions. It was concluded that, compared with T. lutarioriparia, P. australis has a higher competitive ability in submerged habitats and a lower competitive ability in the non-submerged habitat. The niche differences between the two species enabled their coexistence in the Dongting Lake wetlands with seasonal flooding.
Collapse
Affiliation(s)
- Yuhang Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, China
| | - Qiaoqiao Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, China
| | - Zenghui Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, China
| | - Fangcheng Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, China
| | - Lianlian Xi
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, China
| | - Youzhi Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Hypoxia-Induced Aquaporins and Regulation of Redox Homeostasis by a Trans-Plasma Membrane Electron Transport System in Maize Roots. Antioxidants (Basel) 2022; 11:antiox11050836. [PMID: 35624700 PMCID: PMC9137787 DOI: 10.3390/antiox11050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
In plants, flooding-induced oxygen deficiency causes severe stress, leading to growth reduction and yield loss. It is therefore important to understand the molecular mechanisms for adaptation to hypoxia. Aquaporins at the plasma membrane play a crucial role in water uptake. However, their role during hypoxia and membrane redox changes is still not fully understood. The influence of 24 h hypoxia induction on hydroponically grown maize (Zea mays L.) was investigated using an oil-based setup. Analyses of physiological parameters revealed typical flooding symptoms such as increased ethylene and H2O2 levels, an increased alcohol dehydrogenase activity, and an increased redox activity at the plasma membrane along with decreased oxygen of the medium. Transcriptomic analysis and shotgun proteomics of plasma membranes and soluble fractions were performed to determine alterations in maize roots. RNA-sequencing data confirmed the upregulation of genes involved in anaerobic metabolism, biosynthesis of the phytohormone ethylene, and its receptors. Transcripts of several antioxidative systems and other oxidoreductases were regulated. Mass spectrometry analysis of the plasma membrane proteome revealed alterations in redox systems and an increased abundance of aquaporins. Here, we discuss the importance of plasma membrane aquaporins and redox systems in hypoxia stress response, including the regulation of plant growth and redox homeostasis.
Collapse
|
17
|
Su S, Zhu T, Su J, Li J, Zhao Q, Kang X, Zheng R. Transcriptome analysis of gibberellins and abscisic acid during the flooding response in Fokienia hodginsii. PLoS One 2022; 17:e0263530. [PMID: 35148337 PMCID: PMC8836328 DOI: 10.1371/journal.pone.0263530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Flooding is one of the main abiotic stresses suffered by plants. Plants respond to flooding stress through regulating their morphological structure, endogenous hormone biosynthesis, and genetic signaling transduction. We previously found that Fokienia hodginsii varieties originating from Gutian exhibited typical flooding tolerance traits compared to three other provenances (Yongzhou, Sanming, Nanping), expressed as increased height, longer diameter at breast height (DBH), and smaller branch angle. Herein, the changes in endogenous gibberellins (GA) and abscisic acid (ABA) contents were measured under flooding stress in F. hodginsii, and ABA was found to decrease, whereas GA increased with time. Furthermore, the GA and ABA contents of the varieties originating from Gutian and the three other provenances were measured, and the results indicated that F. hodginsii from Gutian could respond more rapidly to flooding stress. The transcriptomes of the varieties originating from Gutian and the other three provenances were compared using RNA sequencing to explore the underlying genetic mechanisms of the flood-resistant phenotypes in F. hodginsii. The results indicated that two flood-stress response genes (TRINITY_DN142_c0_g2 and TRINITY_DN7657_c0_g1) were highly related to both the ABA and GA response in F. hodginsii.
Collapse
Affiliation(s)
- Shunde Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China Key Laboratory of Forest Culture and Forest Product Processing Utilization of Fujian Province, Fuzhou, China
| | - Tengfei Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Renhua Zheng
- Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China Key Laboratory of Forest Culture and Forest Product Processing Utilization of Fujian Province, Fuzhou, China
| |
Collapse
|
18
|
Qian Z, Wu L, Tang L. Effects of Flooding and Endogenous Hormone on the Formation of Knee Roots in Taxodium ascendens. FRONTIERS IN PLANT SCIENCE 2022; 13:803619. [PMID: 35185981 PMCID: PMC8850469 DOI: 10.3389/fpls.2022.803619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Taxodium ascendens is a typical tree species with high flood tolerance, and it can generate knee roots in the wetlands. This study investigated the number and size of knee roots and the soil flooding conditions. Furthermore, we also measured physiology, biochemical responses, and the anatomical structure of knee roots and underground roots at different developmental stages. This study aimed to understand the adaptation mechanism of T. ascendens to flooding stress and the formation mechanism of the knee roots. The results showed that the formation of knee roots was significantly affected by the soil water table (P < 0.05). The middle water table was more conducive to the formation of knee roots. In the middle water table, the 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase activity were significantly lower in the knee roots than in the underground roots. The knee roots at the young-aged stage showed the highest ACC oxidase activity among the development stages of the knee roots. The ethylene release rate was significantly higher in the knee roots than in the underground roots (P < 0.05). Indole-3-acetic acid (IAA) content first increased, then decreased with knee root development. The periderm cells at the apex of the knee roots were dead and had many intercellular spaces, which was beneficial for the growth of T. ascendens. In conclusion, the middle water table induced the ethylene and IAA production, which promoted the formation of knee roots, which improved roots ventilation and flooding tolerance of T. ascendens. The results obtained can provide information about mechanisms of knee roots formation and provide scientific evidence for the afforestation and management under wetland conditions.
Collapse
|
19
|
Chen Y, Yang J, Guo H, Du Y, Liu G, Yu C, Zhong F, Lian B, Zhang J. Comparative transcriptomic analysis reveals potential mechanisms for high tolerance to submergence in arbor willows. PeerJ 2022; 10:e12881. [PMID: 35186476 PMCID: PMC8818271 DOI: 10.7717/peerj.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Submergence threatens plant growth and survival by decreasing or eliminating oxygen supply. Uncovering the complex regulatory network underlying the tolerance of Salix to submergence and identifying the key regulators are important for molecular-assisted breeding of Salix. METHODS In this study, we screened germplasm resources of arbor willows and discovered both submergence-tolerant and submergence-sensitive varieties. Then, by performing RNA-seq, we compared the differences between the transcriptomes of two varieties, i.e., the submergence-tolerant variety "Suliu 795" and the submergence-sensitive variety "Yanliu No. 1," and the different submergence treatment time points to identify the potential mechanisms of submergence in Salix and the unique approaches by which the variety "Suliu 795" possessed a higher tolerance compared to "Yanliu No. 1". RESULTS A total of 22,790 differentially expressed genes were identified from 25 comparisons. Using gene ontology annotation and pathway enrichment analysis, the expression pattern of transcriptional factors, important players in hormone signaling, carbohydrate metabolism, and the anaerobic respiration pathway were found to differ significantly between the two varieties. The principal component analysis and qRT-PCR results verified the reliability of the RNA sequencing data. The results of further analysis indicated that "Suliu 795" had higher submergence tolerant activity than "Yanliu No. 1" because of three characteristics: (1) high sensitivity to the probable low oxygen stress and initiation of appropriate responding mechanisms in advance; (2) maintenance of energy homeostasis to prevent energy depletion under hypoxic stress; and (3) keep "quiescence" through fine-tuning the equilibrium between phytohormones GA, SA and ethylene.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Jie Yang
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Hongyi Guo
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Yawen Du
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Chunmei Yu
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Fei Zhong
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Bolin Lian
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Jian Zhang
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
20
|
Del-Saz NF, Douthe C, Carriquí M, Ortíz J, Sanhueza C, Rivas-Medina A, McDonald A, Fernie AR, Ribas-Carbo M, Gago J, Florez-Sarasa I, Flexas J. Different Metabolic Roles for Alternative Oxidase in Leaves of Palustrine and Terrestrial Species. FRONTIERS IN PLANT SCIENCE 2021; 12:752795. [PMID: 34804092 PMCID: PMC8600120 DOI: 10.3389/fpls.2021.752795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τa) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa, together with stronger metabolic relationships between τa and sugars, important for water conservation. Palustrine plants showed relationships between τa and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation via AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.
Collapse
Affiliation(s)
- Nestor Fernandez Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jose Ortíz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Alicia Rivas-Medina
- Departamento de Ingeniería Topográfica y Cartografía, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
| | - Allison McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Miquel Ribas-Carbo
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jorge Gago
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Barcelona, Spain
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| |
Collapse
|
21
|
Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L. THE PLANT CELL 2021; 33:3272-3292. [PMID: 34312675 PMCID: PMC8505872 DOI: 10.1093/plcell/koab192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
Heterophylly is the development of different leaf forms in a single plant depending on the environmental conditions. It is often observed in amphibious aquatic plants that can grow under both aerial and submerged conditions. Although heterophylly is well recognized in aquatic plants, the associated developmental mechanisms and the molecular basis remain unclear. To clarify these underlying developmental and molecular mechanisms, we analyzed heterophyllous leaf formation in an aquatic plant, Callitriche palustris. Morphological analyses revealed extensive cell elongation and the rearrangement of cortical microtubules in the elongated submerged leaves of C. palustris. Our observations also suggested that gibberellin, ethylene, and abscisic acid all regulate the formation of submerged leaves. However, the perturbation of one or more of the hormones was insufficient to induce the formation of submerged leaves under aerial conditions. Finally, we analyzed gene expression changes during aerial and submerged leaf development and narrowed down the candidate genes controlling heterophylly via transcriptomic comparisons, including a comparison with a closely related terrestrial species. We discovered that the molecular mechanism regulating heterophylly in C. palustris is associated with hormonal changes and diverse transcription factor gene expression profiles, suggesting differences from the corresponding mechanisms in previously investigated amphibious plants.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Author for correspondence:
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Responses of Ecological Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus to Periodic Submergence in Mega-Reservoir: Growth of Taxodium distichum and Taxodium ascendens. PLANTS 2021; 10:plants10102040. [PMID: 34685849 PMCID: PMC8540895 DOI: 10.3390/plants10102040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022]
Abstract
Ecological stoichiometric studies can be useful for managing the deteriorated riparian zones of mega-reservoirs in which nutrients significantly impact the balanced vegetation cover. The present study aims to explore the effects of periodic submergence on the stoichiometric ecological characteristics of carbon (C), nitrogen (N), and phosphorus (P), as well as the growth conditions of two leading conifer species (Taxodium distichum and Taxodium ascendens) in the hydro-fluctuation zone of the Three Gorges Reservoir (TGR) region, China. The stoichiometrical contents of C, N, and P in fine roots, leaves, and branches, and the growth conditions of T. distichum and T. ascendens were measured in July 2019. The results showed that periodic submergence affected the stoichiometric characteristics and growth conditions of these two woody species, and the impact was restrained, but both grew well. The effects of inundation on the C, N, and P ecological stoichiometric characteristics differed in different parts of trees. In general, the C contents showed the following pattern: leaves > branches > fine roots. The N and P content showed the following pattern: leaves > fine roots > branches, while the C/N and C/P ratios showed an opposite trend to that of N and P. The N and P content in all parts of T. distichum (with means of 17.18 and 1.70 g/kg for leaves, 4.80 and 0.57 g/kg for branches, and 6.88 and 1.10 g/kg for fine roots, respectively) and T. ascendens (with means of 14.56 and 1.87 g/kg for leaves, 5.03 and 0.63 g/kg for branches, and 8.17 and 1.66 g/kg for fine roots, respectively) were higher than the national average level (with means of 14.14 and 1.11 g/kg for leaves, 3.04 and 0.31 g/kg for branches, and 4.85 and 0.47 g/kg for fine roots, respectively). Except for N and P contents in the leaves of T. distichum, there was a significant correlation between N and P elements in other parts (p < 0.05). Nevertheless, the N/P ratio (10.15, 8.52, 6.44, and 7.93, 8.12, 5.20 in leaves, branches, and fine roots of T. distichum and T. ascendens, respectively) was lower than the critical ratio of 14. The growth conditions of T. distichum and T. ascendens were significantly negatively correlated with their leaf C contents and significantly positively correlated with their fine root N and P contents. This study showed that T. distichum and T. ascendens could maintain their normal growth needs by properly allocating nutrients between different organs to adapt to the long periodic submergence in the hydro-fluctuation zone of the TGR region.
Collapse
|
23
|
Zou X, Liu L, Hu Z, Wang X, Zhu Y, Zhang J, Li X, Kang Z, Lin Y, Yin C. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-jasmonate interaction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5656-5672. [PMID: 33999128 DOI: 10.1093/jxb/erab206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The phytohormones ethylene and jasmonate play important roles in the adaptation of rice plants to salt stress. However, the molecular interactions between ethylene and jasmonate on rice seminal root growth under salt stress are unknown. In this study, the effects of NaCl on the homeostasis of ethylene and jasmonate, and on rice seminal root growth were investigated. Our results indicate that NaCl treatment promotes ethylene biosynthesis by up-regulating the expression of ethylene biosynthesis genes, whereas NaCl-induced ethylene does not inhibit rice seminal root growth directly, but rather indirectly, by promoting jasmonate biosynthesis. NaCl treatment also promotes jasmonate biosynthesis through an ethylene-independent pathway. Moreover, NaCl-induced jasmonate reduces meristem cell number and cell division activity via down-regulated expression of Oryza sativa PLETHORA (OsPLT) and cell division-related genes, respectively. Additionally, NaCl-induced jasmonate inhibits seminal root cell elongation by down-regulating the expression of cell elongation-related genes. Overall, salt stress promotes jasmonate biosynthesis through ethylene-dependent and -independent pathways in rice seminal roots, and jasmonate inhibits rice seminal root growth by inhibiting root meristem cell proliferation and root cell elongation.
Collapse
Affiliation(s)
- Xiao Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science, Shandong University of Technology, Zibo 255000, China
| | - Zhubing Hu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuekui Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialiang Zhang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuefei Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyi Kang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxi Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
25
|
Li Y, Shi LC, Yang J, Qian ZH, He YX, Li MW. Physiological and transcriptional changes provide insights into the effect of root waterlogging on the aboveground part of Pterocarya stenoptera. Genomics 2021; 113:2583-2590. [PMID: 34111522 DOI: 10.1016/j.ygeno.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Pterocarya stenoptera is a tree species that occurs along rivers and has high tolerance to waterlogging. Identification of waterlogging response genes in the aboveground part of P. stenoptera will increase understanding of tolerance mechanisms under root waterlogging conditions. In this study, we employed four physiological indicators and comparative transcriptome sequencing to investigate the waterlogging tolerance mechanism in P. stenoptera. The physiological results showed that the aboveground part of P. stenoptera was not obviously affected by waterlogging. P. stenoptera enhanced waterlogging tolerance by increasing the synthesis of alpha-Linolenic acids and flavonoids and activating the jasmonic acid, ethylene, and auxin signaling pathways. Our results confirmed our hypothesis that P. stenoptera, a species that is widely distributed along rivers, has evolved a range of mechanisms in response to waterlogging. Our research will provide new insights for understanding the tolerance mechanism of species to waterlogging.
Collapse
Affiliation(s)
- Yong Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Long-Chen Shi
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Jing Yang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Zhi-Hao Qian
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yan-Xia He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Ming-Wan Li
- College of Forestry, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
26
|
Bal HB, Adhya TK. Alleviation of Submergence Stress in Rice Seedlings by Plant Growth-Promoting Rhizobacteria With ACC Deaminase Activity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Submergence stress slows seed germination, imposes fatalities, and delays seedling establishment in rice. Seeds of submergence susceptible rice variety IR 42 were inoculated with four 1-aminocyclopropane-1-carboxylic acid (ACC) utilizing isolates viz., Bacillus sp. (AR-ACC1), Microbacterium sp. (AR-ACC2), Methylophaga sp. (AR-ACC3), and Paenibacillus sp. (ANR-ACC3) and subjected to submergence stress under controlled conditions for 7 days. Seeds treated with Microbacterium sp. AR-ACC2, Paenibacillus sp. ANR-ACC3, and Methylophaga sp. AR-ACC3 significantly enhanced the germination percentage (GP), seedling vigor index (SVI), and other growth parameters like root and shoot length and total chlorophyll contents, when compared with nonbacterized seeds submerged similarly. However, the values were statistically at par when control seeds were treated with l-α-(2-aminoethoxyvinyl) glycine hydrochloride (AVG), a known inhibitor of ethylene production. Results suggest that stress ethylene production was significantly reduced by around 85% in seedlings treated with Microbacterium sp. AR-ACC2 as compared with untreated control seeds under submergence. Paenibacillus sp. ANR-ACC3 and Methylophaga sp. AR-ACC3 were the next effective strains. Ethylene synthesis in seedlings was statistically at par with seeds treated with AVG suggesting ACC deaminase can effectively reduce ethylene levels in plants subjected to submergence. Bacillus sp. (AR-ACC1) was neither able to significantly promote seedling growth parameters nor inhibit ethylene production as compared with control seeds. Results suggest that flooded soil planted to rice harbor microorganisms with plant growth-promoting properties that can be used effectively to alleviate submergence stresses in susceptible rice varieties under field conditions.
Collapse
|
27
|
Jia W, Ma M, Chen J, Wu S. Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms22031088. [PMID: 33499312 PMCID: PMC7865476 DOI: 10.3390/ijms22031088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.
Collapse
|
28
|
Chakraborty K, Guru A, Jena P, Ray S, Guhey A, Chattopadhyay K, Sarkar RK. Rice with SUB1 QTL possesses greater initial leaf gas film thickness leading to delayed perception of submergence stress. ANNALS OF BOTANY 2021; 127:251-265. [PMID: 32939540 PMCID: PMC7789114 DOI: 10.1093/aob/mcaa171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Submergence tolerance in rice is primarily attributed to the action of the SUB1 gene, but other associated traits such as leaf gas film (LGF) thickness, leaf hydrophobicity, porosity and leaf density have been known to aid submergence tolerance in rice. However, association of these traits with SUB1 quantitative trait locus (QTL) has not been demonstrated. In this study, we aim to investigate (1) whether the presence of the SUB1 QTL in the genetic background has any influence on the thickness of the LGF and (ii) whether its removal has any impact on stress perception and submergence tolerance in Sub1 and non-Sub1 rice. METHODS We examined 12 genotypes (including both Sub1 and non-Sub1 types) for different leaf traits such as initial LGF thickness, leaf hydrophobicity, tissue porosity and leaf density in order to work out the relatioship of these traits to the SUB1 QTL in rice. Furthermore, we investigated the changes in the gene expression profile and different metabolic processes in selected genotypes in the presence and absence of their LGF to study its impact on stress perception and adaptation. KEY RESULTS The initial thickness of the LGF and hydrophobicity seemed to have a highly positive correlation with the presence of the SUB1 QTL in the genetic background of rice; however, other leaf traits such as porosity and density seemed to be independent of it. Artificial removal of the LGF resulted in partial loss of tolerance, showing increased ethylene production and early induction of anoxia-related genes (SUB1A-1, ACS5, Ramy3D and ADH1) which manifested symptoms such as increased stem elongation, faster chlorophyll and starch breakdown, and partial loss of quiescence in SUB1-containing rice genotypes. Stripping of the LGF resulted in early and enhanced induction of SUB1A-1, indicating a quicker perception of stress. CONCLUSIONS The presence of SUB1 in the genetic background positively influences surface hydrophobicity and the concomitant LGF thickness of rice. Furthermore, LGF helps in terms of providing better ethylene dissipation and reduced in planta accumulation, owing to the slowing down of ethylene-induced leaf senescence under submergence stress.
Collapse
Affiliation(s)
- Koushik Chakraborty
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
- For correspondence. E-mail ; or
| | - Akankhya Guru
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
- Indira Gandhi Krishi Viswavidyalaya, Raipur, Chattisgarh, India
| | - Priyanka Jena
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Soham Ray
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Arti Guhey
- Indira Gandhi Krishi Viswavidyalaya, Raipur, Chattisgarh, India
| | | | - Ramani K Sarkar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
29
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
González-Guzmán M, Gómez-Cadenas A, Arbona V. Abscisic Acid as an Emerging Modulator of the Responses of Plants to Low Oxygen Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:661789. [PMID: 33981326 PMCID: PMC8107475 DOI: 10.3389/fpls.2021.661789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Different environmental and developmental cues involve low oxygen conditions, particularly those associated to abiotic stress conditions. It is widely accepted that plant responses to low oxygen conditions are mainly regulated by ethylene (ET). However, interaction with other hormonal signaling pathways as gibberellins (GAs), auxin (IAA), or nitric oxide (NO) has been well-documented. In this network of interactions, abscisic acid (ABA) has always been present and regarded to as a negative regulator of the development of morphological adaptations to soil flooding: hyponastic growth, adventitious root emergence, or formation of secondary aerenchyma in different plant species. However, recent evidence points toward a positive role of this plant hormone on the modulation of plant responses to hypoxia and, more importantly, on the ability to recover during the post-hypoxic period. In this work, the involvement of ABA as an emerging regulator of plant responses to low oxygen conditions alone or in interaction with other hormones is reviewed and discussed.
Collapse
|
31
|
Lee HJ, Park JS, Shin SY, Kim SG, Lee G, Kim HS, Jeon JH, Cho HS. Submergence deactivates wound-induced plant defence against herbivores. Commun Biol 2020; 3:651. [PMID: 33159149 PMCID: PMC7648080 DOI: 10.1038/s42003-020-01376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Flooding is a common and critical disaster in agriculture, because it causes defects in plant growth and even crop loss. An increase in herbivore populations is often observed after floods, which leads to additional damage to the plants. Although molecular mechanisms underlying the plant responses to flooding have been identified, how plant defence systems are affected by flooding remains poorly understood. Herein, we show that submergence deactivates wound-induced defence against herbivore attack in Arabidopsis thaliana. Submergence rapidly suppressed the wound-induced expression of jasmonic acid (JA) biosynthesis genes, resulting in reduced JA accumulation. While plants exposed to hypoxia in argon gas exhibited similar reduced wound responses, the inhibitory effects were initiated after short-term submergence without signs for lack of oxygen. Instead, expression of ethylene-responsive genes was increased after short-term submergence. Blocking ethylene signalling by ein2-1 mutation partially restored suppressed expression of several wound-responsive genes by submergence. In addition, submergence rapidly removed active markers of histone modifications at a gene locus involved in JA biosynthesis. Our findings suggest that submergence inactivates defence systems of plants, which would explain the proliferation of herbivores after flooding. Hyo-Jun Lee et al. show that submergence in Arabidopsis deactivates wound-induced defence against herbivore attack by suppressing the expression of jasmonic acid biosynthesis genes and increasing expression of ethylene-responsive genes. These results shed light on how flooding may impact plant defence systems.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
32
|
Li M, Hameed I, Cao D, He D, Yang P. Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus. Int J Mol Sci 2020; 21:ijms21145087. [PMID: 32708483 PMCID: PMC7404260 DOI: 10.3390/ijms21145087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is a relic aquatic plant with two types of leaves, which have distinct rigidity of petioles. Here we assess the difference from anatomic structure to the expression of genes and proteins in two petioles types, and identify key pathways involved in petiole rigidity formation in sacred lotus. Anatomically, great variation between the petioles of floating and vertical leaves were observed. The number of collenchyma cells and thickness of xylem vessel cell wall was higher in the initial vertical leaves’ petiole (IVP) compared to the initial floating leaves’ petiole (IFP). Among quantified transcripts and proteins, 1021 and 401 transcripts presented 2-fold expression increment (named DEGs, genes differentially expressed between IFP and IVP) in IFP and IVP, 421 and 483 proteins exhibited 1.5-fold expression increment (named DEPs, proteins differentially expressed between IFP and IVP) in IFP and IVP, respectively. Gene function and pathway enrichment analysis displayed that DEGs and DEPs were significantly enriched in cell wall biosynthesis and lignin biosynthesis. In consistent with genes and proteins expressions in lignin biosynthesis, the contents of lignin monomers precursors were significantly different in IFP and IVP. These results enable us to understand lotus petioles rigidity formation better and provide valuable candidate genes information on further investigation.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
| | - Ishfaq Hameed
- Departments of Botany, University of Chitral, Chitral 17200, Khyber Pukhtunkhwa, Pakistan;
| | - Dingding Cao
- Institue of Oceanography, Minjiang University, Fuzhou 350108, China;
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
- Correspondence:
| |
Collapse
|
33
|
Li G, Hu S, Yang J, Zhao X, Kimura S, Schultz EA, Hou H. Establishment of an Agrobacterium mediated transformation protocol for the detection of cytokinin in the heterophyllous plant Hygrophila difformis (Acanthaceae). PLANT CELL REPORTS 2020; 39:737-750. [PMID: 32146519 DOI: 10.1007/s00299-020-02527-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/21/2020] [Indexed: 05/09/2023]
Abstract
This is the first report of a highly efficient Agrobacterium tumefaciens-mediated transformation protocol for Acanthaceae and its utilization in revealing important roles of cytokinin in regulating heterophylly in Hygrophila difformis. Plants show amazing morphological differences in leaf form in response to changes in the surrounding environment, which is a phenomenon called heterophylly. Previous studies have shown that the aquatic plant Hygrophila difformis (Acanthaceae) is an ideal model for heterophylly study. However, low efficiency and poor reproducibility of genetic transformation restricted H. difformis as a model plant. In this study, we reported successful induction of callus, shoots and the establishment of an efficient stable transformation protocol as mediated by Agrobacterium tumefaciens LBA4404. We found that the highest callus induction efficiency was achieved with 1 mg/L 1-Naphthaleneacetic acid (NAA) and 2 mg/L 6-benzyladenine (6-BA), that efficient shoot induction required 0.1 mg/L NAA and 0.1 mg/L 6-BA and that high transformation efficiency required 100 µM acetosyringone. Due to the importance of phytohormones in the regulation of heterophylly and the inadequate knowledge about the function of cytokinin (CK) in this process, we analyzed the function of CK in the regulation of heterophylly by exogenous CK application and endogenous CK detection. By using our newly developed transformation system to detect CK signals, contents and distribution in H. difformis, we revealed an important role of CK in environmental mediated heterophylly.
Collapse
Affiliation(s)
- Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shiqi Hu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto-shi, Kyoto, 603-8555, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto-shi, Kyoto, 603-8555, Japan
| | - Elizabeth A Schultz
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
34
|
Bryophytes can recognize their neighbours through volatile organic compounds. Sci Rep 2020; 10:7405. [PMID: 32366980 PMCID: PMC7198583 DOI: 10.1038/s41598-020-64108-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/28/2020] [Indexed: 02/03/2023] Open
Abstract
Communication between vascular plants through volatile organic compounds (VOCs) impacts on ecosystem functioning. However, nothing is known about that between non-vascular plants. To investigate plant-plant VOCs interaction in bryophytes we exposed rare peatland moss Hamatocaulis vernicosus to VOCs of its common competitor Sphagnum flexuosum in an air-flow system of connected containers under artificial light, supplemented or unsupplemented by far-red (FR) light. When exposed to VOCs of S. flexuosum, shoots of H. vernicosus elongated and emitted six times higher amounts of a compound chemically related to β-cyclocitral, which is employed in stress signalling and allelopathy in vascular plants. The VOCs emission was affected similarly by FR light addition, possibly simulating competition stress. This is the first evidence of plant-plant VOCs interaction in non-vascular plants, analogous to that in vascular plants. The findings open new possibilities for understanding the language and evolution of communication in land plants.
Collapse
|
35
|
Kim E, Kim M, Choi HK. Alteration of metabolic profiles in Lemna paucicostata culture and enhanced production of GABA and ferulic acid by ethephon treatment. PLoS One 2020; 15:e0231652. [PMID: 32298342 PMCID: PMC7162458 DOI: 10.1371/journal.pone.0231652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Lemna species have been used in the food, feed, and pharmaceutical industries, as they are inexpensive sources of proteins, starches, and fatty acids. In this study, we treated L. paucicostata with different concentrations (0.05, 0.1, 0.2, 0.5, or 1 mM) of ethephon. The total dry weight decreased in all ethephon-treated groups compared to the control group. We also investigated the alteration of metabolic profiles induced by ethephon treatment by using gas chromatography-mass spectrometry. This analysis identified 48 metabolites, and the relative levels of most of alcohols, amino acids, fatty acids, and phenols increased by the ethephon treatment, whereas levels of organic acids and sugars decreased. Among these, the highest production of γ-aminobutyric acid (GABA, 5.041 ± 1.373 mg/L) and ferulic acid (0.640 ± 0.071 mg/L) was observed in the 0.5 mM and the 0.2 mM ethephon treatment groups, respectively. These results could be useful for large-scale culture of L. paucicostata with enhanced GABA and ferulic acid content for utilization in the food, feed, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- EunBi Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Myeongsun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Hong CP, Wang MC, Yang CY. NADPH Oxidase RbohD and Ethylene Signaling are Involved in Modulating Seedling Growth and Survival Under Submergence Stress. PLANTS 2020; 9:plants9040471. [PMID: 32276372 PMCID: PMC7238110 DOI: 10.3390/plants9040471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
In higher plants under low oxygen or hypoxic conditions, the phytohormone ethylene and hydrogen peroxide (H2O2) are involved in complex regulatory mechanisms in hypoxia signaling pathways. The respiratory burst oxidase homolog D (RbohD), an NADPH oxidase, is involved in the primary stages of hypoxia signaling, modulating the expression of downstream hypoxia-inducible genes under hypoxic stress. In this study, our data revealed that under normoxic conditions, seed germination was delayed in the rbohD/ein2-5 double mutant, whereas postgermination stage root growth was promoted. Under submergence, the rbohD/ein2-5 double mutant line had an inhibited root growth phenotype. Furthermore, chlorophyll content and leaf survival were reduced in the rbohD/ein2-5 double mutant compared with wild-type plants under submerged conditions. In quantitative RT-PCR analysis, the induction of Ethylene-responsive factor 73/hypoxia responsive 1 (AtERF73/HRE1) and alcohol dehydrogenase 1 (AtADH1) transcripts was lower in the rbohD/ein2-5 double mutant during hypoxic stress than in wild-type plants and in rbohD and ein2-5 mutant lines. Taken together, our results indicate that an interplay of ethylene and RbohD is involved in regulating seed germination and post-germination stages under normoxic conditions. Moreover, ethylene and RbohD are involved in modulating seedling root growth, leaf chlorophyll content, and hypoxia-inducible gene expression under hypoxic conditions.
Collapse
Affiliation(s)
- Chen-Pu Hong
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Mao-Chang Wang
- Department of Accounting, Chinese Culture University, Taipei 11114, Taiwan;
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: ; Tel.: +886-4-22840777 (ext. 608); Fax: +886-4-22877054
| |
Collapse
|
37
|
Yemelyanov VV, Lastochkin VV, Chirkova TV, Lindberg SM, Shishova MF. Indoleacetic Acid Levels in Wheat and Rice Seedlings under Oxygen Deficiency and Subsequent Reoxygenation. Biomolecules 2020; 10:E276. [PMID: 32054127 PMCID: PMC7072260 DOI: 10.3390/biom10020276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023] Open
Abstract
The lack of oxygen and post-anoxic reactions cause significant alterations of plant growth and metabolism. Plant hormones are active participants in these alterations. This study focuses on auxin-a phytohormone with a wide spectrum of effects on plant growth and stress tolerance. The indoleacetic acid (IAA) content in plants was measured by ELISA. The obtained data revealed anoxia-induced accumulation of IAA in wheat and rice seedlings related to their tolerance of oxygen deprivation. The highest IAA accumulation was detected in rice roots. Subsequent reoxygenation was accompanied with a fast auxin reduction to the control level. A major difference was reported for shoots: wheat seedlings contained less than one-third of normoxic level of auxin during post-anoxia, while IAA level in rice seedlings rapidly recovered to normoxic level. It is likely that the mechanisms of auxin dynamics resulted from oxygen-induced shift in auxin degradation and transport. Exogenous IAA treatment enhanced plant survival under anoxia by decreased electrolyte leakage, production of hydrogen peroxide and lipid peroxidation. The positive effect of external IAA application coincided with improvement of tolerance to oxygen deprivation in the 35S:iaaM × 35S:iaaH lines of transgene tobacco due to its IAA overproduction.
Collapse
Affiliation(s)
- Vladislav V. Yemelyanov
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| | - Victor V. Lastochkin
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| | - Tamara V. Chirkova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| | - Sylvia M. Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Maria F. Shishova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| |
Collapse
|
38
|
Progress of ethylene action mechanism and its application on plant type formation in crops. Saudi J Biol Sci 2020; 27:1667-1673. [PMID: 32489309 PMCID: PMC7253889 DOI: 10.1016/j.sjbs.2019.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 11/21/2022] Open
Abstract
The plant hormone ethylene exerts a huge influence in the whole life cycle of plants, especially stress-resistance responses. With the development of functional genomics, that the action mechanism of ethylene takes part in mediated plant architecture has been clarified gradually, such as plant roots, stems, leaves, fiber elongation and so on. Accordingly, the application of ethylene on crops chemical control and genetic improvement is greatly expanded. From the view of ethylene mediated plant architecture in crops, here reviewed advances in ethylene biosynthesis and signal transduction pathway, stress-resistance responses and the yield potential enhance of crops in recently 20 years. On these grounds, the objectives of this paper were to provide scientific reference and a useful clue for the crop creation of ideal plant type.
Collapse
|
39
|
Armstrong W, Beckett PM, Colmer TD, Setter TL, Greenway H. Tolerance of roots to low oxygen: 'Anoxic' cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:92-108. [PMID: 31255944 DOI: 10.1016/j.jplph.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via 'anoxic' cores rather than being triggered by O2 sensors. The evidence for 'anoxic' cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the 'anaerobic enzymes' ADH and PDC in the 'anoxic' core, and inhibition of Cl- transport to the xylem. These cores are predicted to develop within 15-20 min after sudden transfer of a root to hypoxia, so that the cores are 'anoxically-shocked'. We suggest that 'anoxic' cores could emanate a signal(s), such as ACC the precursor of ethylene and/or propagation of a 'Ca2+ wave', to other tissue zones. There, the signalling would result in acclimation of the tissues to energy crisis metabolism. An O2 diffusion model for tissues with an 'anoxic' core, indicates that the phytoglobin-nitric oxide (Pgb-NO) cycle would only be engaged in a thin 'shell' (annulus) of tissue surrounding the 'anoxic' core, and so would only contribute small amounts of ATP on a whole organ basis (e.g. whole roots). A key feature within this annulus of tissue, where O2 is likely to be limiting, is that the ratio (ATP formed) / (O2 consumed) is 5-6, both when the NAD(P)H of glycolysis is converted to NAD(P)+ by the Pgb-NO cycle or by the TCA cycle linked to the electron transport chain. The main function of the Pgb-NO cycle may be the modulating of NO levels and O2 scavenging, thus preventing oxidative damage. We speculate that an 'anoxic' core in hypoxic plant organs may have a particularly high tolerance to anoxia because cells might receive a prolonged supply of carbohydrates and/or ATP from the regions still receiving sufficient O2 for oxidative phosphorylation. Severely hypoxic or 'anoxic' cores are well documented, but much research on responses of roots to hypoxia is still based on bulk tissue analyses. More research is needed on the interaction between 'anoxic' cores and tissues still receiving sufficient O2 for oxidative phosphorylation, both during a hypoxic exposure and during subsequent anoxia of the tissue/organ as a whole.
Collapse
Affiliation(s)
- William Armstrong
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia; Department of Biological Sciences, The University of Hull, Hull, UK
| | | | - Timothy D Colmer
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia.
| | - Timothy L Setter
- Agricultural and Environmental Consultant, P.O. Box 305, Bull Creek, 6149, WA, Australia
| | - Hank Greenway
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia
| |
Collapse
|
40
|
Krishnan HB, Oehrle NW, Alaswad AA, Stevens WG, Maria John KM, Luthria DL, Natarajan SS. Biochemical and Anatomical Investigation of Sesbania herbacea (Mill.) McVaugh Nodules Grown under Flooded and Non-Flooded Conditions. Int J Mol Sci 2019; 20:E1824. [PMID: 31013805 PMCID: PMC6514687 DOI: 10.3390/ijms20081824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Sesbania herbacea, a native North American fast-growing legume, thrives in wet and waterlogged conditions. This legume enters into symbiotic association with rhizobia, resulting in the formation of nitrogen-fixing nodules on the roots. A flooding-induced anaerobic environment imposes a challenge for the survival of rhizobia and negatively impacts nodulation. Very little information is available on how S. herbacea is able to thrive and efficiently fix N2 in flooded conditions. In this study, we found that Sesbania plants grown under flooded conditions were significantly taller, produced more biomass, and formed more nodules when compared to plants grown on dry land. Transmission electron microscopy of Sesbania nodules revealed bacteroids from flooded nodules contained prominent polyhydroxybutyrate crystals, which were absent in non-flooded nodules. Gas and ion chromatography mass spectrometry analysis of nodule metabolites revealed a marked decrease in asparagine and an increase in the levels of gamma aminobutyric acid in flooded nodules. 2-D gel electrophoresis of nodule bacteroid proteins revealed flooding-induced changes in their protein profiles. Several of the bacteroid proteins that were prominent in flooded nodules were identified by mass spectrometry to be members of the ABC transporter family. The activities of several key enzymes involved in nitrogen metabolism was altered in Sesbania flooded nodules. Aspartate aminotransferase (AspAT), an enzyme with a vital role in the assimilation of reduced nitrogen, was dramatically elevated in flooded nodules. The results of our study highlight the potential of S. herbacea as a green manure and sheds light on the morphological, structural, and biochemical adaptations that enable S. herbacea to thrive and efficiently fix N2 in flooded conditions.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA.
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA.
| | - Alaa A Alaswad
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - William Gene Stevens
- Plant Science Division, University of Missouri, Delta Center, Portageville, MO 63873, USA.
| | - K M Maria John
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD 20705, USA.
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, BHNRC, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
41
|
Horiguchi G, Nemoto K, Yokoyama T, Hirotsu N. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Hygrophila difformis. AOB PLANTS 2019; 11:plz009. [PMID: 30911367 PMCID: PMC6426153 DOI: 10.1093/aobpla/plz009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 05/07/2023]
Abstract
Hygrophila difformis, a heterophyllous amphibious plant, develops serrated or dissected leaves when grown in terrestrial or submerged conditions, respectively. In this study, we tested whether submerged leaves and ethylene-induced leaves of the heterophyllous, amphibious plant H. difformis have improved photosynthetic ability under submerged conditions. Also, we investigated how this amphibious plant photosynthesizes underwater and whether a HCO3 - transport system is present. We have analysed leaf morphology, measured underwater photosynthetic rates and HCO3 - affinity in H. difformis to determine if there are differences in acclimation ability dependent on growth conditions: terrestrial, submerged, terrestrial treated with ethylene and submerged treated with an ethylene inhibitor. Moreover, we measured time courses for changes in leaf anatomical characteristics and underwater photosynthesis in terrestrial leaves after submersion. Compared with the leaves of terrestrially grown plants, leaf thickness of submerged plants was significantly thinner. The stomatal density on the abaxial surface of submerged leaves was also reduced, and submerged plants had a significantly higher O2 evolution rate. When the leaves of terrestrially grown plants were treated with ethylene, their leaf morphology and underwater photosynthesis increased to levels comparable to those of submerged leaves. Underwater photosynthesis of terrestrial leaves was significantly higher by 5 days after submersion. In contrast, leaf morphology did not change after submergence. Submerged leaves and submerged terrestrial leaves were able to use bicarbonate but submerged terrestrial leaves had an intermediate ability to use HCO3 - that was between terrestrial leaves and submerged leaves. Ethoxyzolamide, an inhibitor of intracellular carbonic anhydrase, significantly inhibited underwater photosynthesis in submerged leaves. This amphibious plant acclimates to the submerged condition by changing leaf morphology and inducing a HCO3 - utilizing system, two processes that are regulated by ethylene.
Collapse
Affiliation(s)
- Genki Horiguchi
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| | - Kyosuke Nemoto
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| | - Tomomi Yokoyama
- Faculty of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
- Faculty of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| |
Collapse
|
42
|
Vanderstraeten L, Depaepe T, Bertrand S, Van Der Straeten D. The Ethylene Precursor ACC Affects Early Vegetative Development Independently of Ethylene Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:1591. [PMID: 31867034 PMCID: PMC6908520 DOI: 10.3389/fpls.2019.01591] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 05/22/2023]
Abstract
The plant hormone ethylene plays a pivotal role in virtually every aspect of plant development, including vegetative growth, fruit ripening, senescence, and abscission. Moreover, it acts as a primary defense signal during plant stress. Being a volatile, its immediate biosynthetic precursor, 1-aminocyclopropane-1-carboxylic acid, ACC, is generally employed as a tool to provoke ethylene responses. However, several reports propose a role for ACC in parallel or independently of ethylene signaling. In this study, pharmacological experiments with ethylene biosynthesis and signaling inhibitors, 2-aminoisobutyric acid and 1-methylcyclopropene, as well as mutant analyses demonstrate ACC-specific but ethylene-independent growth responses in both dark- and light-grown Arabidopsis seedlings. Detection of ethylene emanation in ethylene-deficient seedlings by means of laser-based photoacoustic spectroscopy further supports a signaling role for ACC. In view of these results, future studies employing ACC as a proxy for ethylene should consider ethylene-independent effects as well. The use of multiple knockout lines of ethylene biosynthesis genes will aid in the elucidation of the physiological roles of ACC as a signaling molecule in addition to its function as an ethylene precursor.
Collapse
|
43
|
Tan X, Xu H, Khan S, Equiza MA, Lee SH, Vaziriyeganeh M, Zwiazek JJ. Plant water transport and aquaporins in oxygen-deprived environments. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:20-30. [PMID: 29779706 DOI: 10.1016/j.jplph.2018.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Oxygen deprivation commonly affects plants exposed to flooding and soil compaction. The resulting root hypoxia has an immediate effect on plant water relations and upsets water balance. Hypoxia inhibits root water transport and triggers stomatal closure. The processes contributing to the inhibition of root hydraulic conductivity and conductance (hydraulic conductivity of the whole root system) are complex and involve changes in root morphology and the functions of aquaporins. Aquaporins (AQPs) comprise a group of membrane intrinsic proteins that are responsible for the transport of water, as well as some small neutral solutes and ions. They respond to a wide range of environmental stresses including O2 deprivation, but the underlying functional mechanisms are still elusive. The aquaporin-mediated water transport is affected by the acidification of the cytoplasm and depletion of ATP that is required for aquaporin phosphorylation and membrane functions. Cytoplasmic pH, phosphorylation, and intracellular Ca2+ concentration directly control AQP gating, all of which are related to O2 deprivation. This review addresses the structural determinants that are essential for pore conformational changes in AQPs, to highlight the underlying mechanisms triggered by O2 deprivation stress. Gene expression of AQPs is modified in hypoxic plants, which may constitute an important, yet little explored, mechanism of hypoxia tolerance. In addition to water transport, AQPs may contribute to hypoxia tolerance by transporting O2, H2O2, and lactic acid. Responses of plants to O2 deprivation, and especially those that contribute to maintenance of water transport, are highly complex and entail the signals originating in roots and shoots that lead to and follow the stomatal closure. These complex responses may involve ethylene, abscisic acid, and possibly other hormonal factors and signaling molecules in ways that remain to be elucidated.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Hao Xu
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Maria A Equiza
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Seong H Lee
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Maryamsadat Vaziriyeganeh
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
44
|
Utami D, Kawahata A, Sugawara M, Jog RN, Miwa K, Morikawa M. Effect of Exogenous General Plant Growth Regulators on the Growth of the Duckweed Lemna minor. Front Chem 2018; 6:251. [PMID: 30038905 PMCID: PMC6046615 DOI: 10.3389/fchem.2018.00251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Gibberellic acid (GA3), indole-3-acetic acid (IAA), salicylic acid (SA), abscidic acid (ABA), jasmonic acid (JA) 1-amino cyclopropane-1-carboxylic acid (ACC) and aminoethoxyvinylglycine (AVG) are popular growth regulators of plants. However, the effects of their exogenous addition on the biomass production of aquatic plants, including Lemnoideae plants, "duckweeds," are largely unknown. In this study, the growth of Lemna minor was tested for 10 d in Hoagland medium containing each compound at different concentrations of 0-50 μM. GA3, IAA, and SA were found to have no apparent positive effect on the growth at all concentrations tested. Conversely, ACC and JA moderately and AVG and ABA severely inhibited the growth of L. minor. Among the tested compounds, ascorbic acid had an apparent growth-promoting effect.
Collapse
Affiliation(s)
- Desi Utami
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Ami Kawahata
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Masayuki Sugawara
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Rahul N Jog
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Lee HY, Yoon GM. Regulation of Ethylene Biosynthesis by Phytohormones in Etiolated Rice ( Oryza sativa L.) Seedlings. Mol Cells 2018; 41:311-319. [PMID: 29463069 PMCID: PMC5935104 DOI: 10.14348/molcells.2018.2224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 11/27/2022] Open
Abstract
The gaseous hormone ethylene influences many aspects of plant growth, development, and responses to a variety of stresses. The biosynthesis of ethylene is tightly regulated by various internal and external stimuli, and the primary target of the regulation is the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis. We have previously demonstrated that the regulation of ethylene biosynthesis is a common feature of most of the phytohormones in etiolated Arabidopsis seedlings via the modulation of the protein stability of ACS. Here, we show that various phytohormones also regulate ethylene biosynthesis from etiolated rice seedlings in a similar manner to those in Arabidopsis. Cytokinin, brassinosteroids, and gibberellic acid increase ethylene biosynthesis without changing the transcript levels of neither OsACS nor ACC oxidases (OsACO), a family of enzymes catalyzing the final step of the ethylene biosynthetic pathway. Likewise, salicylic acid and abscisic acid do not alter the gene expression of OsACS, but both hormones downregulate the transcript levels of a subset of ACO genes, resulting in a decrease in ethylene biosynthesis. In addition, we show that the treatment of the phytohormones results in distinct etiolated seedling phenotypes, some of which resemble ethylene-responsive phenotypes, while others display ethylene-independent morphologies, indicating a complicated hormone crosstalk in rice. Together, our study brings a new insight into crosstalk between ethylene biosynthesis and other phytohormones, and provides evidence that rice ethylene biosynthesis could be regulated by the post-transcriptional regulation of ACS proteins.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
46
|
Minami A, Yano K, Gamuyao R, Nagai K, Kuroha T, Ayano M, Nakamori M, Koike M, Kondo Y, Niimi Y, Kuwata K, Suzuki T, Higashiyama T, Takebayashi Y, Kojima M, Sakakibara H, Toyoda A, Fujiyama A, Kurata N, Ashikari M, Reuscher S. Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding. PLANT PHYSIOLOGY 2018; 176:3081-3102. [PMID: 29475897 PMCID: PMC5884608 DOI: 10.1104/pp.17.00858] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/15/2018] [Indexed: 05/29/2023]
Abstract
Water submergence is an environmental factor that limits plant growth and survival. Deepwater rice (Oryza sativa) adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses. A transcriptomic comparison between deepwater rice cv C9285 and nondeepwater rice cv Taichung 65 revealed both similar and differential expression patterns between the two genotypes during submergence. The expression of genes related to gibberellin biosynthesis, trehalose biosynthesis, anaerobic fermentation, cell wall modification, and transcription factors that include ethylene-responsive factors was significantly different between the varieties. Interestingly, in both varieties, the jasmonic acid content at the shoot base decreased during submergence, while exogenous jasmonic acid inhibited submergence-induced internode elongation in cv C9285, suggesting that jasmonic acid plays a role in the submergence response of rice. Furthermore, a targeted de novo transcript assembly revealed transcripts that were specific to cv C9285, including submergence-induced biotic stress-related genes. Our multifaceted transcriptome approach using the rice shoot base region illustrates a differential response to submergence between deepwater and nondeepwater rice. Jasmonic acid metabolism appears to participate in the submergence-mediated internode elongation response of deepwater rice.
Collapse
Affiliation(s)
- Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kenji Yano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Rico Gamuyao
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Kuroha
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Madoka Ayano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanari Nakamori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masaya Koike
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuma Kondo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Niimi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takamasa Suzuki
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- ERATO Higashiyama Live-Holonics Project, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- ERATO Higashiyama Live-Holonics Project, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya Aichi 464-8601, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Nori Kurata
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Motoyuki Ashikari
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Stefan Reuscher
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
47
|
Kim J, Joo Y, Kyung J, Jeon M, Park JY, Lee HG, Chung DS, Lee E, Lee I. A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus. PLoS Genet 2018; 14:e1007208. [PMID: 29447166 PMCID: PMC5831646 DOI: 10.1371/journal.pgen.1007208] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/28/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023] Open
Abstract
Ranunculus trichophyllus is an amphibious plant that produces thin and cylindrical leaves if grown under water but thick and broad leaves if grown on land. We found that such heterophylly is widely controlled by two plant hormones, abscisic acid (ABA) and ethylene, which control terrestrial and aquatic leaf development respectively. Aquatic leaves produced higher levels of ethylene but lower levels of ABA than terrestrial leaves. In aquatic leaves, their distinct traits with narrow shape, lack of stomata, and reduced vessel development were caused by EIN3-mediated overactivation of abaxial genes, RtKANADIs, and accompanying with reductions of STOMAGEN and VASCULAR-RELATED NAC-DOMAIN7 (VDN7). In contrast, in terrestrial leaves, ABI3-mediated activation of the adaxial genes, RtHD-ZIPIIIs, and STOMAGEN and VDN7 established leaf polarity, and stomata and vessel developments. Heterophylly of R.trichophyllus could be also induced by external cues such as cold and hypoxia, which is accompanied with the changes in the expression of leaf polarity genes similar to aquatic response. A closely-related land plant R. sceleratus did not show such heterophyllic responses, suggesting that the changes in the ABA/ethylene signaling and leaf polarity are one of key evolutionary steps for aquatic adaptation.
Collapse
Affiliation(s)
- Juhyun Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jong Yoon Park
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ho Gyun Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Doo Soo Chung
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Eunju Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
48
|
Saha I, De AK, Ghosh A, Sarkar B, Dey N, Adak MK. Preliminary Variations in Physiological Modules When <i>sub</i>1<i>A</i> QTL Is under Soil-Moisture Deficit Stress. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.94058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF. Systems biology approach in plant abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:58-73. [PMID: 29096174 DOI: 10.1016/j.plaphy.2017.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 05/05/2023]
Abstract
Plant abiotic stresses are the major constraint on plant growth and development, causing enormous crop losses across the world. Plants have unique features to defend themselves against these challenging adverse stress conditions. They modulate their phenotypes upon changes in physiological, biochemical, molecular and genetic information, thus making them tolerant against abiotic stresses. It is of paramount importance to determine the stress-tolerant traits of a diverse range of genotypes of plant species and integrate those traits for crop improvement. Stress-tolerant traits can be identified by conducting genome-wide analysis of stress-tolerant genotypes through the highly advanced structural and functional genomics approach. Specifically, whole-genome sequencing, development of molecular markers, genome-wide association studies and comparative analysis of interaction networks between tolerant and susceptible crop varieties grown under stress conditions can greatly facilitate discovery of novel agronomic traits that protect plants against abiotic stresses.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Science, King Saud University, P.O. Box 24160, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
50
|
Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox. Sci Rep 2017; 7:14353. [PMID: 29085042 PMCID: PMC5662596 DOI: 10.1038/s41598-017-14798-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022] Open
Abstract
Phyllostachys praecox bamboo stands significantly recede after 3 or 4 years using an organic-material mulching technique consecutively. We hypothesized that the bamboo recession is caused by the up-floating of underground rhizome stimulated by soil hypoxia through the mulching technique. This study aimed to validate this hypothesis by field investigation. Bamboo underground rhizome distribution in the soil profile of P. praecox subjected to various mulching times was investigated. Results showed that bamboo rhizome weights and lengths increased with increased mulching time. However, after 4 years of mulching, the number of fresh rhizomes decreased significantly, and more than 50% of rhizomes floated upward to the shallow soil layer (0–10 cm). Moreover, the 0–10 cm soil layer suffered severe acidification that severely impeded bamboo-rhizome growth. The soil hypoxia induced by the mulching technique must be responsible for the bamboo rhizome up-floating. We confirmed that bamboo rhizome up-floating was the critical factor that caused the bamboo growth to recede under the mulching technique. Therefore, managing this bamboo rhizome up-floating is the key to sustainable bamboo production. The effect of soil hypoxia in the absence of flooding or waterlogging on plant root growth also warrants further and extensive study.
Collapse
|