1
|
Permann C, Holzinger A. Zygospore formation in Zygnematophyceae predates several land plant traits. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230356. [PMID: 39343014 PMCID: PMC11449217 DOI: 10.1098/rstb.2023.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Recent research on a special type of sexual reproduction and zygospore formation in Zygnematophyceae, the sister group of land plants, is summarized. Within this group, gamete fusion occurs by conjugation. Zygospore development in Mougeotia, Spirogyra and Zygnema is highlighted, which has recently been studied using Raman spectroscopy, allowing chemical imaging and detection of changes in starch and lipid accumulation. Three-dimensional reconstructions after serial block-face scanning electron microscopy (SBF-SEM) or focused ion beam SEM (FIB-SEM) made it possible to visualize and quantify cell wall and organelle changes during zygospore development. The zygospore walls undergo strong modifications starting from uniform thin cell walls to a multilayered structure. The mature cell wall is composed of a cellulosic endospore and exospore and a central mesospore built up by aromatic compounds. In Spirogyra, the exospore and endospore consist of thick layers of helicoidally arranged cellulose fibrils, which are otherwise only known from stone cells of land plants. While starch is degraded during maturation, providing building blocks for cell wall formation, lipid droplets accumulate and fill large parts of the ripe zygospores, similar to spores and seeds of land plants. Overall, data show similarities between streptophyte algae and embryophytes, suggesting that the genetic toolkit for many land plant traits already existed in their shared algal ancestor. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| |
Collapse
|
2
|
Kunz CF, de Vries S, de Vries J. Plant terrestrialization: an environmental pull on the evolution of multi-sourced streptophyte phenolics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230358. [PMID: 39343031 PMCID: PMC11528360 DOI: 10.1098/rstb.2023.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 10/01/2024] Open
Abstract
Phenolic compounds of land plants are varied: they are chemodiverse, are sourced from different biosynthetic routes and fulfil a broad spectrum of functions that range from signalling phytohormones, to protective shields against stressors, to structural compounds. Their action defines the biology of land plants as we know it. Often, their roles are tied to environmental responses that, however, impacted already the algal progenitors of land plants, streptophyte algae. Indeed, many streptophyte algae successfully dwell in terrestrial habitats and have homologues for enzymatic routes for the production of important phenolic compounds, such as the phenylpropanoid pathway. Here, we synthesize what is known about the production of specialized phenolic compounds across hundreds of millions of years of streptophyte evolution. We propose an evolutionary scenario in which selective pressures borne out of environmental cues shaped the chemodiversity of phenolics in streptophytes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Cäcilia F. Kunz
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goettingen37077, Germany
| |
Collapse
|
3
|
Zhang Y, Ju J, Li M, Ma Z, Lu W, Yang H. Dose-dependent effects of polystyrene nanoplastics on growth, photosynthesis, and astaxanthin synthesis in Haematococcus pluvialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124574. [PMID: 39029865 DOI: 10.1016/j.envpol.2024.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Microalgae play an important role in aquatic ecosystems, but the widespread presence of micro- and nano-plastics (MNPs) poses significant threats to them. Haematococcus pluvialis is well-known for its ability to produce the antioxidant astaxanthin when it experiences stress from environmental conditions. Here we examined the effects of polystyrene nanoplastics (PS-NPs) at concentrations of 0.1, 1, and 10 mg/L on H. pluvialis over an 18-day period. Our results show that PS-NPs caused a significant, dose-dependent inhibition of H. pluvialis growth and a reduction in photosynthesis. Furthermore, PS-NPs severely damaged the morphology of H. pluvialis, leading to cell shrinkage, collapse, content release, and aggregation. Additionally, PS-NPs induced a dose-dependent increase in soluble protein content and a decrease in the production of extracellular polymeric substances. These findings indicate that PS-NPs has the potential to adversely affect both the physiology and morphology of H. pluvialis. An increase in reactive oxygen species and antioxidant enzyme activities was also observed, suggesting an oxidative stress response to PS-NPs exposure. Notably, the synthesis of astaxanthin, which is crucial for H. pluvialis's survival under stress, was significantly inhibited in a dose-dependent manner under strong light conditions, along with the down-regulation of genes involved in the astaxanthin biosynthesis pathway. This suggests that PS-NPs exposure reduces H. pluvialis's ability to survive under adverse conditions. This study enhances our understanding of the toxic effects of PS-NPs on microalgae and underscores the urgent need for measures to mitigate MNP pollution to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Min Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
4
|
Zhao W, Deng J, Wang J, Ge C, Yang H. Adverse effects of microplastics on the growth, photosynthesis, and astaxanthin synthesis of Haematococcus pluvialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176427. [PMID: 39326759 DOI: 10.1016/j.scitotenv.2024.176427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Due to the widespread pollution, microplastics (MPs) have garnered increasing attention. Research has shown that MPs negatively affect many organisms. Microalgae are primary producers in aquatic environments and play a crucial role in the stability of aquatic ecosystems. However, research on the effects of MPs on microalgae is relatively limited. Haematococcus pluvialis is known for its ability to produce astaxanthin, a powerful antioxidant, in response to environmental stress. MP exposure is also an environmental stressor, and we are curious whether MP stress will affect astaxanthin synthesis in H. pluvialis. To investigate the effects and mechanisms of MPs on H. pluvialis growth and astaxanthin synthesis, we exposed H. pluvialis to 5 μm polystyrene MPs at different concentrations (0.1, 1, and 10 mg/L) for 18 days, followed by high light induction of astaxanthin synthesis. Growth and photosynthesis-related indicators suggested that PS-MPs had a hormesis-like effect on H. pluvialis, with short-term exposure stimulating photosynthetic activity and growth, and long-term exposure inhibiting them. Morphological observations, oxidative stress markers, soluble proteins, and extracellular polymeric substance indicators showed that prolonged PS-MP exposure primarily disrupted the morphology and normal physiological functions of H. pluvialis by inducing oxidative stress. Although H. pluvialis actively resists the oxidative stress caused by PS-MPs, it cannot fully counteract the adverse effects. Prolonged PS-MP exposure ultimately resulted in reduced levels of photosynthetic pigments and inhibited photosynthetic activity, as well as the decreased expression of genes related to astaxanthin synthesis and reduced astaxanthin production. Integrated biomarker response analysis further indicated that the overall toxic effects of MPs on H. pluvialis exhibit a dose-dependent pattern. MP exposure potentially weakens the survival capability of H. pluvialis under adverse conditions. These findings highlight the impact of MP pollution on the stability of aquatic ecosystems and underscore the urgent need for policies and actions to mitigate MP pollution and protect aquatic environments.
Collapse
Affiliation(s)
- Weibin Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Jiaye Deng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiamei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Bierenbroodspot MJ, Pröschold T, Fürst-Jansen JMR, de Vries S, Irisarri I, Darienko T, de Vries J. Phylogeny and evolution of streptophyte algae. ANNALS OF BOTANY 2024; 134:385-400. [PMID: 38832756 PMCID: PMC11341676 DOI: 10.1093/aob/mcae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). Although Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of probably >5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes, hence particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae relative to land plants, but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits, such as intricate signalling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants but were bequeathed from their algal progenitors.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Thomas Pröschold
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Research Department for Limnology, University of Innsbruck, Mondseestr. 9, 5310 Mondsee, Austria
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- Section of Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Department of Experimental Phycology and Culture Collection of Algae, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstraße 1, 37077 Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| |
Collapse
|
6
|
Dhabalia Ashok A, de Vries S, Darienko T, Irisarri I, de Vries J. Evolutionary assembly of the plant terrestrialization toolkit from protein domains. Proc Biol Sci 2024; 291:20240985. [PMID: 39081174 PMCID: PMC11289646 DOI: 10.1098/rspb.2024.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.
Collapse
Affiliation(s)
- Amra Dhabalia Ashok
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, Hamburg20146, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
7
|
Chakraborty T, Trujillo JT, Kendall T, Mosher RA. Charophytic Green Algae Encode Ancestral Polymerase IV/Polymerase V Subunits and a CLSY/DRD1 Homolog. Genome Biol Evol 2024; 16:evae119. [PMID: 38874416 PMCID: PMC11194755 DOI: 10.1093/gbe/evae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
In flowering plants, euchromatic transposons are transcriptionally silenced by RNA-directed DNA Methylation, a small RNA-guided de novo methylation pathway. RNA-directed DNA Methylation requires the activity of the RNA Polymerases IV and V, which produce small RNA precursors and noncoding targets of small RNAs, respectively. These polymerases are distinguished from Polymerase II by multiple plant-specific paralogous subunits. Most RNA-directed DNA Methylation components are present in all land plants, and some have been found in the charophytic green algae, a paraphyletic group that is sister to land plants. However, the evolutionary origin of key RNA-directed DNA Methylation components, including the two largest subunits of Polymerase IV and Polymerase V, remains unclear. Here, we show that multiple lineages of charophytic green algae encode a single-copy precursor of the largest subunits of Polymerase IV and Polymerase V, resolving the two presumed duplications in this gene family. We further demonstrate the presence of a Polymerase V-like C-terminal domain, suggesting that the earliest form of RNA-directed DNA Methylation utilized a single Polymerase V-like polymerase. Finally, we reveal that charophytic green algae encode a single CLSY/DRD1-type chromatin remodeling protein, further supporting the presence of a single specialized polymerase in charophytic green algae.
Collapse
Affiliation(s)
| | - Joshua T Trujillo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, USA
- Department of Biochemistry, Purdue University, West Lafayette, USA
| | - Timmy Kendall
- The School of Plant Sciences, University of Arizona, Tucson, USA
| | - Rebecca A Mosher
- The School of Plant Sciences, University of Arizona, Tucson, USA
| |
Collapse
|
8
|
Oszoli I, Zachar I. Group-selection via aggregative propagule-formation enables cooperative multicellularity in an individual based, spatial model. PLoS Comput Biol 2024; 20:e1012107. [PMID: 38713735 PMCID: PMC11101088 DOI: 10.1371/journal.pcbi.1012107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/17/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The emergence of multicellularity is one of the major transitions in evolution that happened multiple times independently. During aggregative multicellularity, genetically potentially unrelated lineages cooperate to form transient multicellular groups. Unlike clonal multicellularity, aggregative multicellular organisms do not rely on kin selection instead other mechanisms maintain cooperation against cheater phenotypes that benefit from cooperators but do not contribute to groups. Spatiality with limited diffusion can facilitate group selection, as interactions among individuals are restricted to local neighbourhoods only. Selection for larger size (e.g. avoiding predation) may facilitate the emergence of aggregation, though it is unknown, whether and how much role such selection played during the evolution of aggregative multicellularity. We have investigated the effect of spatiality and the necessity of predation on the stability of aggregative multicellularity via individual-based modelling on the ecological timescale. We have examined whether aggregation facilitates the survival of cooperators in a temporally heterogeneous environment against cheaters, where only a subset of the population is allowed to periodically colonize a new, resource-rich habitat. Cooperators constitutively produce adhesive molecules to promote aggregation and propagule-formation while cheaters spare this expense to grow faster but cannot aggregate on their own, hence depending on cooperators for long-term survival. We have compared different population-level reproduction modes with and without individual selection (predation) to evaluate the different hypotheses. In a temporally homogeneous environment without propagule-based colonization, cheaters always win. Predation can benefit cooperators, but it is not enough to maintain the necessary cooperator amount in successive dispersals, either randomly or by fragmentation. Aggregation-based propagation however can ensure the adequate ratio of cooperators-to-cheaters in the propagule and is sufficient to do so even without predation. Spatiality combined with temporal heterogeneity helps cooperators via group selection, thus facilitating aggregative multicellularity. External stress selecting for larger size (e.g. predation) may facilitate aggregation, however, according to our results, it is neither necessary nor sufficient for aggregative multicellularity to be maintained when there is effective group-selection.
Collapse
Affiliation(s)
- István Oszoli
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| | - István Zachar
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- HUN-REN Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
9
|
Kurtović K, Schmidt V, Nehasilová M, Vosolsobě S, Petrášek J. Rediscovering Chara as a model organism for molecular and evo-devo studies. PROTOPLASMA 2024; 261:183-196. [PMID: 37880545 DOI: 10.1007/s00709-023-01900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Chara has been used as a model for decades in the field of plant physiology, enabling the investigation of fundamental physiological processes. In electrophysiological studies, Chara has been utilized thanks to its large internodal cells that can be easily manipulated. Additionally, Chara played a pioneering role in elucidating the presence and function of the cytoskeleton in cytoplasmic streaming, predating similar findings in terrestrial plants. Its representation considerably declined following the establishment and routine application of genetic transformation techniques in Arabidopsis. Nevertheless, the recent surge in evo-devo studies can be attributed to the whole genome sequencing of the Chara braunii, which has shed light on ancestral traits prevalent in land plants. Surprisingly, the Chara braunii genome encompasses numerous genes that were previously regarded as exclusive to land plants, suggesting their acquisition prior to the colonization of terrestrial habitats. This review summarizes the established methods used to study Chara, while incorporating recent molecular data, to showcase its renewed importance as a model organism in advancing plant evolutionary developmental biology.
Collapse
Affiliation(s)
- Katarina Kurtović
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Vojtěch Schmidt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Nehasilová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Zou Y, Sabljić I, Horbach N, Dauphinee AN, Åsman A, Sancho Temino L, Minina EA, Drag M, Stael S, Poreba M, Ståhlberg J, Bozhkov PV. Thermoprotection by a cell membrane-localized metacaspase in a green alga. THE PLANT CELL 2024; 36:665-687. [PMID: 37971931 PMCID: PMC10896300 DOI: 10.1093/plcell/koad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Caspases are restricted to animals, while other organisms, including plants, possess metacaspases (MCAs), a more ancient and broader class of structurally related yet biochemically distinct proteases. Our current understanding of plant MCAs is derived from studies in streptophytes, and mostly in Arabidopsis (Arabidopsis thaliana) with 9 MCAs with partially redundant activities. In contrast to streptophytes, most chlorophytes contain only 1 or 2 uncharacterized MCAs, providing an excellent platform for MCA research. Here we investigated CrMCA-II, the single type-II MCA from the model chlorophyte Chlamydomonas (Chlamydomonas reinhardtii). Surprisingly, unlike other studied MCAs and similar to caspases, CrMCA-II dimerizes both in vitro and in vivo. Furthermore, activation of CrMCA-II in vivo correlated with its dimerization. Most of CrMCA-II in the cell was present as a proenzyme (zymogen) attached to the plasma membrane (PM). Deletion of CrMCA-II by genome editing compromised thermotolerance, leading to increased cell death under heat stress. Adding back either wild-type or catalytically dead CrMCA-II restored thermoprotection, suggesting that its proteolytic activity is dispensable for this effect. Finally, we connected the non-proteolytic role of CrMCA-II in thermotolerance to the ability to modulate PM fluidity. Our study reveals an ancient, MCA-dependent thermotolerance mechanism retained by Chlamydomonas and probably lost during the evolution of multicellularity.
Collapse
Affiliation(s)
- Yong Zou
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Natalia Horbach
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Lucia Sancho Temino
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| |
Collapse
|
11
|
Procházková L, Remias D, Nedbalová L, Raymond JA. A DUF3494 ice-binding protein with a root cap domain in a streptophyte glacier ice alga. FRONTIERS IN PLANT SCIENCE 2024; 14:1306511. [PMID: 38250448 PMCID: PMC10796529 DOI: 10.3389/fpls.2023.1306511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Ice-binding proteins (IBPs) of the DUF3494 type have been found in many ice-associated unicellular photoautotrophs, including chlorophytes, haptophytes, diatoms and a cyanobacterium. Unrelated IBPs have been found in many land plants (streptophytes). Here we looked for IBPs in two streptophyte algae that grow only on glaciers, a group in which IBPs have not previously been examined. The two species, Ancylonema nordenskioeldii and Ancylonema. alaskanum, belong to the class Zygnematophyceae, whose members are the closest relatives to all land plants. We found that one of them, A. nordenskioeldii, expresses a DUF3494-type IBP that is similar to those of their chlorophyte ancestors and that has not previously been found in any streptophytes. The protein is unusual in having what appears to be a perfect array of TXT motifs that have been implicated in water or ice binding. The IBP strongly binds to ice and almost certainly has a role in mitigating the daily freeze-thaw cycles that the alga is exposed to during late summer. No IBP was found in the second species, A. alaskanum, which may rely more on glycerol production for its freeze-thaw tolerance. The IBP is also unusual in having a 280-residue domain with a β sandwich structure (which we designate as the DPH domain) that is characteristic of root cap proteins of land plants, and that may have a role in forming IBP oligomers. We also examined existing transcriptome data obtained from land plants to better understand the tissue and temperature dependence of expression of this domain.
Collapse
Affiliation(s)
| | - Daniel Remias
- Department of Environment and Biodiversity, Paris Lodron University Salzburg, Salzburg, Austria
| | | | - James A. Raymond
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
12
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
13
|
Turchetto C, Silvério ADC, Waschburger EL, Lacerda MEG, Quintana IV, Turchetto-Zolet AC. Genome-wide identification and evolutionary view of ALOG gene family in Solanaceae. Genet Mol Biol 2023; 46:e20230142. [PMID: 38048778 PMCID: PMC10695626 DOI: 10.1590/1415-4757-gmb-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
The ALOG gene family, which was named after its earliest identified members ( Arabidopsis LSH1 and Oryza G1), encodes a class of transcription factors (TF) characterized by the presence of a highly conserved ALOG domain. These proteins are found in various plant species playing regulatory roles in plant growth, development, and morphological diversification of inflorescence. The functional characterization of these genes in some plant species has demonstrated their involvement in floral architecture. In this study, we used a genome-wide and phylogenetic approach to gain insights into plants' origin, diversification, and functional aspects of the ALOG gene family. In total, 648 ALOG homologous genes were identified in 77 Viridiplantae species, and their evolutionary relationships were inferred using maximum likelihood phylogenetic analyses. Our results suggested that the ALOG gene family underwent several rounds of gene duplication and diversification during angiosperm evolution. Furthermore, we found three functional orthologous groups in Solanaceae species. The study provides insights into the evolutionary history and functional diversification of the ALOG gene family, which could aid in understanding the mechanisms underlying floral architecture in angiosperms.
Collapse
Affiliation(s)
- Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Ariadne de Castro Silvério
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Edgar Luis Waschburger
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Maria Eduarda Gonçalves Lacerda
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Isadora Vieira Quintana
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Caygill S, Dolan L. ATP binding cassette transporters and uridine diphosphate glycosyltransferases are ancient protein families that evolved roles in herbicide resistance through exaptation. PLoS One 2023; 18:e0287356. [PMID: 37733747 PMCID: PMC10513242 DOI: 10.1371/journal.pone.0287356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
ATP-binding cassette (ABC) transporters actively transport various substances across membranes, while uridine diphosphate (UDP) glycosyltransferases (UGTs) are proteins that catalyse the chemical modification of various organic compounds. Both of these protein superfamilies have been associated with conferring herbicide resistance in weeds. Little is known about the evolutionary history of these protein families in the Archaeplastida. To infer the evolutionary histories of these protein superfamilies, we compared protein sequences collected from 10 species which represent distinct lineages of the Archaeplastida-the lineage including glaucophyte algae, rhodophyte algae, chlorophyte algae and the streptophytes-and generated phylogenetic trees. We show that ABC transporters were present in the last common ancestor of the Archaeplastida which lived 1.6 billion years ago, and the major clades identified in extant plants were already present then. Conversely, we only identified UGTs in members of the streptophyte lineage, which suggests a loss of these proteins in earlier diverging Archaeplastida lineages or arrival of UGTs into a common ancestor of the streptophyte lineage through horizontal gene transfer from a non-Archaeplastida eukaryote lineage. We found that within the streptophyte lineage, most diversification of the UGT protein family occurred in the vascular lineage, with 17 of the 20 clades identified in extant plants present only in vascular plants. Based on our findings, we conclude that ABC transporters and UGTs are ancient protein families which diversified during Archaeplastida evolution, which may have evolved for developmental functions as plants began to occupy new environmental niches and are now being selected to confer resistance to a diverse range of herbicides in weeds.
Collapse
Affiliation(s)
- Samuel Caygill
- Gregor Mendel Institute, Vienna, Austria
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
16
|
Fathy WA, Techen N, Elsayed KNM, Essawy EA, Tawfik E, Alwutayd KM, Abdelhameed MS, Hammouda O, Ross SA. Applying an internal transcribed spacer as a single molecular marker to differentiate between Tetraselmis and Chlorella species. Front Microbiol 2023; 14:1228869. [PMID: 37680531 PMCID: PMC10482269 DOI: 10.3389/fmicb.2023.1228869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
In the realm of applied phycology, algal physiology, and biochemistry publications, the absence of proper identification and documentation of microalgae is a common concern. This poses a significant challenge for non-specialists who struggle to identify numerous eukaryotic microalgae. However, a promising solution lies in employing an appropriate DNA barcoding technique and establishing comprehensive databases of reference sequences. To address this issue, we conducted a study focusing on the molecular characterization and strain identification of Tetraselmis and Chlorella species, utilizing the internal transcribed spacer (ITS) barcode approach. By analyzing the full nuclear ITS region through the Sanger sequencing approach, we obtained ITS barcodes that were subsequently compared with other ITS sequences of various Tetraselmis and Chlorella species. To ensure the reliability of our identification procedure, we conducted a meticulous comparison of the DNA alignment, constructed a phylogenetic tree, and determined the percentage of identical nucleotides. The findings of our study reveal the significant value of the ITS genomic region as a tool for distinguishing and identifying morphologically similar chlorophyta. Moreover, our results demonstrate that both the ITS1 and ITS2 regions are capable of effectively discriminating isolates from one another; however, ITS2 is preferred due to its greater intraspecific variation. These results underscore the indispensability of employing ITS barcoding in microalgae identification, highlighting the limitations of relying solely on morphological characterization.
Collapse
Affiliation(s)
- Wael A. Fathy
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Natascha Techen
- National Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Khaled N. M. Elsayed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ehab A. Essawy
- Biochemistry Division, Department of Chemistry, Faculty of Science, Helwan University, Helwan, Egypt
| | - Eman Tawfik
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Helwan, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Abdelhameed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ola Hammouda
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samir A. Ross
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
17
|
Gamalero E, Lingua G, Glick BR. Ethylene, ACC, and the Plant Growth-Promoting Enzyme ACC Deaminase. BIOLOGY 2023; 12:1043. [PMID: 37626930 PMCID: PMC10452086 DOI: 10.3390/biology12081043] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Here, a brief summary of the biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) and ethylene in plants, as well as overviews of how ACC and ethylene act as signaling molecules in plants, is presented. Next, how the bacterial enzyme ACC deaminase cleaves plant-produced ACC and thereby decreases or prevents the ethylene or ACC modulation of plant gene expression is considered. A detailed model of ACC deaminase functioning, including the role of indoleacetic acid (IAA), is presented. Given that ACC is a signaling molecule under some circumstances, this suggests that ACC, which appears to have evolved prior to ethylene, may have been a major signaling molecule in primitive plants prior to the evolution of ethylene and ethylene signaling. Due to their involvement in stimulating ethylene production, the role of D-amino acids in plants is then considered. The enzyme D-cysteine desulfhydrase, which is structurally very similar to ACC deaminase, is briefly discussed and the possibility that ACC deaminase arose as a variant of D-cysteine desulfhydrase is suggested.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
18
|
Permann C, Pichrtová M, Šoljaková T, Herburger K, Jouneau P, Uwizeye C, Falconet D, Marechal E, Holzinger A. 3D-reconstructions of zygospores in Zygnema vaginatum (Charophyta) reveal details of cell wall formation, suggesting adaptations to extreme habitats. PHYSIOLOGIA PLANTARUM 2023; 175:e13988. [PMID: 37616005 PMCID: PMC10953328 DOI: 10.1111/ppl.13988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
The streptophyte green algal class Zygnematophyceae is the immediate sister lineage to land plants. Their special form of sexual reproduction via conjugation might have played a key role during terrestrialization. Thus, studying Zygnematophyceae and conjugation is crucial for understanding the conquest of land. Moreover, sexual reproduction features are important for species determination. We present a phylogenetic analysis of a field-sampled Zygnema strain and analyze its conjugation process and zygospore morphology, both at the micro- and nanoscale, including 3D-reconstructions of the zygospore architecture. Vegetative filament size (26.18 ± 1.07 μm) and reproductive features allowed morphological determination of Zygnema vaginatum, which was combined with molecular analyses based on rbcL sequencing. Transmission electron microscopy (TEM) depicted a thin cell wall in young zygospores, while mature cells exhibited a tripartite wall, including a massive and sculptured mesospore. During development, cytological reorganizations were visualized by focused ion beam scanning electron microscopy (FIB-SEM). Pyrenoids were reorganized, and the gyroid cubic central thylakoid membranes, as well as the surrounding starch granules, degraded (starch granule volume: 3.58 ± 2.35 μm3 in young cells; 0.68 ± 0.74 μm3 at an intermediate stage of zygospore maturation). Additionally, lipid droplets (LDs) changed drastically in shape and abundance during zygospore maturation (LD/cell volume: 11.77% in young cells; 8.79% in intermediate cells, 19.45% in old cells). In summary, we provide the first TEM images and 3D-reconstructions of Zygnema zygospores, giving insights into the physiological processes involved in their maturation. These observations help to understand mechanisms that facilitated the transition from water to land in Zygnematophyceae.
Collapse
Affiliation(s)
| | - Martina Pichrtová
- Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tereza Šoljaková
- Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Klaus Herburger
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
- Institute of Biological Sciences, University of RostockRostockGermany
| | - Pierre‐Henri Jouneau
- Laboratoire Modélisation et Exploration des MatériauxIRIG, CEA, Univ. Grenoble AlpesGrenobleFrance
| | - Clarisse Uwizeye
- Laboratoire de Physiologie Cellulaire et VégétaleCEA, CNRS, INRAE, Univ. Grenoble AlpesGrenobleFrance
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et VégétaleCEA, CNRS, INRAE, Univ. Grenoble AlpesGrenobleFrance
| | - Eric Marechal
- Laboratoire de Physiologie Cellulaire et VégétaleCEA, CNRS, INRAE, Univ. Grenoble AlpesGrenobleFrance
| | | |
Collapse
|
19
|
Mueller KK, Pfeifer L, Schuldt L, Szövényi P, de Vries S, de Vries J, Johnson KL, Classen B. Fern cell walls and the evolution of arabinogalactan proteins in streptophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:875-894. [PMID: 36891885 DOI: 10.1111/tpj.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.
Collapse
Affiliation(s)
- Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lina Schuldt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zurich, Switzerland
- Zurich-Basel Plant Science Center (PSC), ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtsr. 1, 37077, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Kim L Johnson
- Department of Animal, Plant and Soil Science, La Trobe Institute for Agriculture & Food, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| |
Collapse
|
20
|
Frangedakis E, Marron AO, Waller M, Neubauer A, Tse SW, Yue Y, Ruaud S, Waser L, Sakakibara K, Szövényi P. What can hornworts teach us? FRONTIERS IN PLANT SCIENCE 2023; 14:1108027. [PMID: 36968370 PMCID: PMC10030945 DOI: 10.3389/fpls.2023.1108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.
Collapse
Affiliation(s)
| | - Alan O. Marron
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Yuling Yue
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Stephanie Ruaud
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Lucas Waser
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
21
|
Lüth VM, Rempfer C, van Gessel N, Herzog O, Hanser M, Braun M, Decker EL, Reski R. A Physcomitrella PIN protein acts in spermatogenesis and sporophyte retention. THE NEW PHYTOLOGIST 2023; 237:2118-2135. [PMID: 36696950 DOI: 10.1111/nph.18691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens), three canonical PINs (PpPINA-C) are expressed in the leafy shoot (gametophore). PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development. Here, we examined the role of PpPINC in the life cycle of Physcomitrella. We established reporter and knockout lines for PpPINC and analysed vegetative and reproductive tissues using microscopy and transcriptomic sequencing of moss gametangia. PpPINC is expressed in immature leaves, mature gametangia and during sporophyte development. The sperm cells (spermatozoids) of pinC knockout mutants exhibit increased motility and an altered flagella phenotype. Furthermore, the pinC mutants have a higher portion of differentially expressed genes related to spermatogenesis, increased fertility and an increased abortion rate of premeiotic sporophytes. Here, we show that PpPINC is important for spermatogenesis and sporophyte retention. We propose an evolutionary conserved way of polar growth during early moss embryo development and sporophyte attachment to the gametophore while suggesting the mechanical function in sporophyte retention of a ring structure, the Lorch ring.
Collapse
Affiliation(s)
- Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Herzog
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Melanie Hanser
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Marion Braun
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
22
|
Willems P, Huang J, Messens J, Van Breusegem F. Functionally annotating cysteine disulfides and metal binding sites in the plant kingdom using AlphaFold2 predicted structures. Free Radic Biol Med 2023; 194:220-229. [PMID: 36493985 DOI: 10.1016/j.freeradbiomed.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Deep learning algorithms such as AlphaFold2 predict three-dimensional protein structure with high confidence. The recent release of more than 200 million structural models provides an unprecedented resource for functional protein annotation. Here, we used AlphaFold2 predicted structures of fifteen plant proteomes to functionally and evolutionary analyze cysteine residues in the plant kingdom. In addition to identification of metal ligands coordinated by cysteine residues, we systematically analyzed cysteine disulfides present in these structural predictions. Our analysis demonstrates most of these predicted disulfides are trustworthy due their high agreement (∼96%) with those present in X-ray and NMR protein structures, their characteristic disulfide stereochemistry, the biased subcellular distribution of their proteins and a higher degree of oxidation of their respective cysteines as measured by proteomics. Adopting an evolutionary perspective, zinc binding sites are increasingly present at the expense of iron-sulfur clusters in plants. Interestingly, disulfide formation is increased in secreted proteins of land plants, likely promoting sequence evolution to adapt to changing environments encountered by plants. In summary, Alphafold2 predicted structural models are a rich source of information for studying the role of cysteines residues in proteins of interest and for protein redox biology in general.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, 9052, Ghent, Belgium.
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| |
Collapse
|
23
|
Permann C, Gierlinger N, Holzinger A. Zygospores of the green alga Spirogyra: new insights from structural and chemical imaging. FRONTIERS IN PLANT SCIENCE 2022; 13:1080111. [PMID: 36561459 PMCID: PMC9763465 DOI: 10.3389/fpls.2022.1080111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Zygnematophyceae, a class of streptophyte green algae and sister group to land plants (Embryophytes) live in aquatic to semi-terrestrial habitats. The transition from aquatic to terrestrial environments requires adaptations in the physiology of vegetative cells and in the structural properties of their cell walls. Sexual reproduction occurs in Zygnematophyceae by conjugation and results in the formation of zygospores, possessing unique multi-layered cell walls, which might have been crucial in terrestrialization. We investigated the structure and chemical composition of field sampled Spirogyra sp. zygospore cell walls by multiple microscopical and spectral imaging techniques: light microscopy, confocal laser scanning microscopy, transmission electron microscopy following high pressure freeze fixation/freeze substitution, Raman spectroscopy and atomic force microscopy. This comprehensive analysis allowed the detection of the subcellular organization and showed three main layers of the zygospore wall, termed endo-, meso- and exospore. The endo- and exospore are composed of polysaccharides with different ultrastructural appearance, whereas the electron dense middle layer contains aromatic compounds as further characterized by Raman spectroscopy. The possible chemical composition remains elusive, but algaenan or a sporopollenin-like material is suggested. Similar compounds with a non-hydrolysable character can be found in moss spores and pollen of higher plants, suggesting a protective function against desiccation stress and high irradiation. While the tripartite differentiation of the zygospore wall is well established in Zygnematopyhceae, Spirogyra showed cellulose fibrils arranged in a helicoidal pattern in the endo- and exospore. Initial incorporation of lipid bodies during early zygospore wall formation was also observed, suggesting a key role of lipids in zygospore wall synthesis. Multimodal imaging revealed that the cell wall of the sexually formed zygospores possess a highly complex internal structure as well as aromatics, likely acting as protective compounds and leading to impregnation. Both, the newly discovered special three-dimensional arrangement of microfibrils and the integration of highly resistant components in the cell wall are not found in the vegetative state. The variety of methods gave a comprehensive view on the intricate zygospore cell wall and its potential key role in the terrestrial colonization and plant evolution is discussed.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| |
Collapse
|
24
|
Khan K, Van Aken O. The colonization of land was a likely driving force for the evolution of mitochondrial retrograde signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7182-7197. [PMID: 36055768 PMCID: PMC9675596 DOI: 10.1093/jxb/erac351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
25
|
Han J, Xie X, Zhang Y, Yu X, He G, Li Y, Yang G. Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants. PLANT PHYSIOLOGY 2022; 190:421-440. [PMID: 35695786 PMCID: PMC9434268 DOI: 10.1093/plphys/kiac286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/26/2022] [Indexed: 06/13/2023]
Abstract
Adapting to unfavorable environments is a necessary step in plant terrestrialization and radiation. The dehydration-responsive element-binding (DREB) protein subfamily plays a pivotal role in plant abiotic stress regulation. However, relationships between the origin and expansion of the DREB subfamily and adaptive evolution of land plants are still being elucidated. Here, we constructed the evolutionary history of the DREB subfamily by compiling APETALA2/ethylene-responsive element-binding protein superfamily genes from 169 representative species of green plants. Through extensive phylogenetic analyses and comparative genomic analysis, our results revealed that the DREB subfamily diverged from the ethylene-responsive factor (ERF) subfamily in the common ancestor of Zygnemophyceae and Embryophyta during the colonization of land by plants, followed by expansions to form three different ancient archetypal genes in Zygnemophyceae species, designated as groups archetype-I, archetype-II/III, and archetype-IV. Four large-scale expansions paralleling the evolution of land plants led to the nine-subgroup divergence of group archetype-II/III in angiosperms, and five whole-genome duplications during Brassicaceae and Poaceae radiation shaped the diversity of subgroup IIb-1. We identified a Poaceae-specific gene in subgroup IIb-1, ERF014, remaining in a Poaceae-specific microsynteny block and co-evolving with a small heat shock protein cluster. Expression analyses demonstrated that heat acclimation may have driven the neofunctionalization of ERF014s in Pooideae by engaging in the conserved heat-responsive module in Poaceae. This study provides insights into lineage-specific expansion and neofunctionalization in the DREB subfamily, together with evolutionary information valuable for future functional studies of plant stress biology.
Collapse
Affiliation(s)
- Jiapeng Han
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxue Xie
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
26
|
Reboledo G, Agorio A, Ponce De León I. Moss transcription factors regulating development and defense responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4546-4561. [PMID: 35167679 DOI: 10.1093/jxb/erac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
27
|
Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes. Viruses 2022; 14:v14061245. [PMID: 35746717 PMCID: PMC9228606 DOI: 10.3390/v14061245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
The development of recessive resistance by loss of susceptibility is a consistent strategy to combat and limit damages caused by plant viruses. Susceptibility genes can be turned into resistances, a feat that can either be selected among the plant’s natural diversity or engineered by biotechnology. Here, we summarize the current knowledge on the phosphoglycerate kinases (PGK), which have emerged as a new class of susceptibility factors to single-stranded positive RNA viruses, including potyviruses. PGKs are metabolic enzymes involved in glycolysis and the carbon reduction cycle, encoded by small multigene families in plants. To fulfil their role in the chloroplast and in the cytosol, PGKs genes encode differentially addressed proteins. Here, we assess the diversity and homology of chloroplastic and cytosolic PGKs sequences in several crops and review the current knowledge on their redundancies during plant development, taking Arabidopsis as a model. We also show how PGKs have been shown to be involved in susceptibility—and resistance—to viruses. Based on this knowledge, and drawing from the experience with the well-characterized translation initiation factors eIF4E, we discuss how PGKs genes, in light of their subcellular localization, function in metabolism, and susceptibility to viruses, could be turned into efficient genetic resistances using genome editing techniques.
Collapse
|
28
|
Nascimento LBDS, Tattini M. Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. Int J Mol Sci 2022; 23:5284. [PMID: 35563675 PMCID: PMC9101737 DOI: 10.3390/ijms23095284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Plants evolved an impressive arsenal of multifunctional specialized metabolites to cope with the novel environmental pressures imposed by the terrestrial habitat when moving from water. Here we examine the multifarious roles of flavonoids in plant terrestrialization. We reason on the environmental drivers, other than the increase in UV-B radiation, that were mostly responsible for the rise of flavonoid metabolism and how flavonoids helped plants in land conquest. We are reasonably based on a nutrient-deficiency hypothesis for the replacement of mycosporine-like amino acids, typical of streptophytic algae, with the flavonoid metabolism during the water-to-land transition. We suggest that flavonoids modulated auxin transport and signaling and promoted the symbiosis between plants and fungi (e.g., arbuscular mycorrhizal, AM), a central event for the conquest of land by plants. AM improved the ability of early plants to take up nutrients and water from highly impoverished soils. We offer evidence that flavonoids equipped early land plants with highly versatile "defense compounds", essential for the new set of abiotic and biotic stressors imposed by the terrestrial environment. We conclude that flavonoids have been multifunctional since the appearance of plants on land, not only acting as UV filters but especially improving both nutrient acquisition and biotic stress defense.
Collapse
Affiliation(s)
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, 50019 Sesto Fiorentino, Florence, Italy;
| |
Collapse
|
29
|
New Insights into Evolution of the ABC Transporter Family in Mesostigma viride, a Unicellular Charophyte Algae. Curr Issues Mol Biol 2022; 44:1646-1660. [PMID: 35723370 PMCID: PMC9164057 DOI: 10.3390/cimb44040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play an important role in driving the exchange of multiple molecules across cell membranes. The plant ABC transporter family is among the largest protein families, and recent progress has advanced our understanding of ABC classification. However, the ancestral form and deep origin of plant ABCs remain elusive. In this study, we identified 59 ABC transporters in Mesostigma viride, a unicellular charophyte algae that represents the earliest diverging lineage of streptophytes, and 1034 ABCs in genomes representing a broad taxonomic sampling from distantly related plant evolutionary lineages, including chlorophytes, charophytes, bryophytes, lycophytes, gymnosperms, basal angiosperms, monocots, and eudicots. We classified the plant ABC transporters by comprehensive phylogenetic analysis of each subfamily. Our analysis revealed the ancestral type of ABC proteins as well as duplication and gene loss during plant evolution, contributing to our understanding of the functional conservation and diversity of this family. In summary, this study provides new insight into the origin and evolution of plant ABC transporters.
Collapse
|
30
|
Román-Palacios C, Moraga-López D, Wiens JJ. The origins of global biodiversity on land, sea and freshwater. Ecol Lett 2022; 25:1376-1386. [PMID: 35334149 DOI: 10.1111/ele.13999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
Many biodiversity studies focus on explaining high tropical species richness, but an equally dramatic yet understudied pattern involves the divergent richness of land, sea and freshwater. Here, we reveal the origins of these richness differences among habitats across animals and plants. Most plant and animal species are terrestrial, although these habitats cover only ~28% of Earth's surface. Marine habitats have fewer species over a larger area (~70%). Freshwater habitats have relatively high richness and exceptional phylogenetic diversity given their tiny area (2%). The relative richness of habitats is related to variation in diversification rates. Based on ancestral reconstructions of habitat, we find that most marine species are descended from marine ancestors and most terrestrial species from freshwater ancestors. Yet, most extant animal richness in freshwater is derived from terrestrial ancestors. Overall, our results reveal the origins of fundamental but neglected biodiversity patterns, and highlight the conservation importance of freshwater habitats.
Collapse
Affiliation(s)
| | - Daniela Moraga-López
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
31
|
Kwantes M, Wichard T. The APAF1_C/WD40 repeat domain-encoding gene from the sea lettuce Ulva mutabilis sheds light on the evolution of NB-ARC domain-containing proteins in green plants. PLANTA 2022; 255:76. [PMID: 35235070 PMCID: PMC8891106 DOI: 10.1007/s00425-022-03851-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/07/2022] [Indexed: 06/02/2023]
Abstract
We advance Ulva's genetic tractability and highlight its value as a model organism by characterizing its APAF1_C/WD40 domain-encoding gene, which belongs to a family that bears homology to R genes. The multicellular chlorophyte alga Ulva mutabilis (Ulvophyceae, Ulvales) is native to coastal ecosystems worldwide and attracts both high socio-economic and scientific interest. To further understand the genetic mechanisms that guide its biology, we present a protocol, based on adapter ligation-mediated PCR, for retrieving flanking sequences in U. mutabilis vector-insertion mutants. In the created insertional library, we identified a null mutant with an insertion in an apoptotic protease activating factor 1 helical domain (APAF1_C)/WD40 repeat domain-encoding gene. Protein domain architecture analysis combined with phylogenetic analysis revealed that this gene is a member of a subfamily that arose early in the evolution of green plants (Viridiplantae) through the acquisition of a gene that also encoded N-terminal nucleotide-binding adaptor shared by APAF-1, certain R-gene products and CED-4 (NB-ARC) and winged helix-like (WH-like) DNA-binding domains. Although phenotypic analysis revealed no mutant phenotype, gene expression levels in control plants correlated to the presence of bacterial symbionts, which U. mutabilis requires for proper morphogenesis. In addition, our analysis led to the discovery of a putative Ulva nucleotide-binding site and leucine-rich repeat (NBS-LRR) Resistance protein (R-protein), and we discuss how the emergence of these R proteins in green plants may be linked to the evolution of the APAF1_C/WD40 protein subfamily.
Collapse
Affiliation(s)
- Michiel Kwantes
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany.
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany.
- Jena School for Microbial Communication, 07743, Jena, Germany.
| |
Collapse
|
32
|
Serrano-Pérez E, Romero-Losada AB, Morales-Pineda M, García-Gómez ME, Couso I, García-González M, Romero-Campero FJ. Transcriptomic and Metabolomic Response to High Light in the Charophyte Alga Klebsormidium nitens. FRONTIERS IN PLANT SCIENCE 2022; 13:855243. [PMID: 35599877 PMCID: PMC9121098 DOI: 10.3389/fpls.2022.855243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 05/04/2023]
Abstract
The characterization of the molecular mechanisms, such as high light irradiance resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies since the conquest of land by plants played a pivotal role in life evolution on Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta. Charophyta are used in evolutionary studies on plant terrestralization since they are generally accepted as the extant algal species most closely related to current land plants. In this study, we have chosen the facultative terrestrial early charophyte alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic analysis under high light in order to unveil key mechanisms involved in the early steps of plants terrestralization. We found a fast chloroplast retrograde signaling possibly mediated by reactive oxygen species and the inositol polyphosphate 1-phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) pathways inducing gene expression and accumulation of specific metabolites. Systems used by both Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an accumulation of zeaxanthin and protein folding and repair mechanisms constituted by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on proton gradient regulation 5, was strongly activated under high light. We detected a simultaneous co-activation of the non-photochemical quenching mechanisms based on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems for the synthesis, sensing, and response to the phytohormone auxin were also activated under high light in K. nitens leading to an increase in auxin content with the concomitant accumulation of amino acids such as tryptophan, histidine, and phenylalanine.
Collapse
Affiliation(s)
- Emma Serrano-Pérez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - Ana B. Romero-Losada
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - María Morales-Pineda
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - M. Elena García-Gómez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Mercedes García-González
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Francisco J. Romero-Campero
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
- *Correspondence: Francisco J. Romero-Campero,
| |
Collapse
|
33
|
Hawkins C, Ginzburg D, Zhao K, Dwyer W, Xue B, Xu A, Rice S, Cole B, Paley S, Karp P, Rhee SY. Plant Metabolic Network 15: A resource of genome-wide metabolism databases for 126 plants and algae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1888-1905. [PMID: 34403192 DOI: 10.1111/jipb.13163] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 05/18/2023]
Abstract
To understand and engineer plant metabolism, we need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we generated genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants (https://plantcyc.org). Of these, 104 have not been reported before. We systematically evaluated the quality of the databases, which revealed that our semi-automated validation pipeline dramatically improves the quality. We then compared the metabolic content across the 126 organisms using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently published sorghum transcriptomics data to discover previously unreported trends of metabolism underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to infer cell type-specific metabolic pathways. This work shows the quality and quantity of our resource and demonstrates its wide-ranging utility in integrating metabolism with other areas of plant biology.
Collapse
Affiliation(s)
- Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - William Dwyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Bo Xue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Selena Rice
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Benjamin Cole
- DOE-Joint Genome Institute, Lawrence Berkeley Laboratory, Berkeley, California, 94720, USA
| | - Suzanne Paley
- SRI International, Menlo Park, California, 94025, USA
| | - Peter Karp
- SRI International, Menlo Park, California, 94025, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| |
Collapse
|
34
|
Ekwealor JTB, Mishler BD. Transcriptomic Effects of Acute Ultraviolet Radiation Exposure on Two Syntrichia Mosses. FRONTIERS IN PLANT SCIENCE 2021; 12:752913. [PMID: 34777431 PMCID: PMC8581813 DOI: 10.3389/fpls.2021.752913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet radiation (UVR) is a major environmental stressor for terrestrial plants. Here we investigated genetic responses to acute broadband UVR exposure in the highly desiccation-tolerant mosses Syntrichia caninervis and Syntrichia ruralis, using a comparative transcriptomics approach. We explored whether UVR protection is physiologically plastic and induced by UVR exposure, addressing the following questions: (1) What is the timeline of changes in the transcriptome with acute UVR exposure in these two species? (2) What genes are involved in the UVR response? and (3) How do the two species differ in their transcriptomic response to UVR? There were remarkable differences between the two species after 10 and 30 min of UVR exposure, including no overlap in significantly differentially abundant transcripts (DATs) after 10 min of UVR exposure and more than twice as many DATs for S. caninervis as there were for S. ruralis. Photosynthesis-related transcripts were involved in the response of S. ruralis to UVR, while membrane-related transcripts were indicated in the response of S. caninervis. In both species, transcripts involved in oxidative stress and those important for desiccation tolerance (such as late embryogenesis abundant genes and early light-inducible protein genes) were involved in response to UVR, suggesting possible roles in UVR tolerance and cross-talk with desiccation tolerance in these species. The results of this study suggest potential UVR-induced responses that may have roles outside of UVR tolerance, and that the response to URV is different in these two species, perhaps a reflection of adaptation to different environmental conditions.
Collapse
Affiliation(s)
- Jenna T. B. Ekwealor
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Brent D. Mishler
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
35
|
Artur MAS, Kajala K. Convergent evolution of gene regulatory networks underlying plant adaptations to dry environments. PLANT, CELL & ENVIRONMENT 2021; 44:3211-3222. [PMID: 34196969 PMCID: PMC8518057 DOI: 10.1111/pce.14143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/25/2021] [Indexed: 05/21/2023]
Abstract
Plants transitioned from an aquatic to a terrestrial lifestyle during their evolution. On land, fluctuations on water availability in the environment became one of the major problems they encountered. The appearance of morpho-physiological adaptations to cope with and tolerate water loss from the cells was undeniably useful to survive on dry land. Some of these adaptations, such as carbon concentrating mechanisms (CCMs), desiccation tolerance (DT) and root impermeabilization, appeared in multiple plant lineages. Despite being crucial for evolution on land, it has been unclear how these adaptations convergently evolved in the various plant lineages. Recent advances on whole genome and transcriptome sequencing are revealing that co-option of genes and gene regulatory networks (GRNs) is a common feature underlying the convergent evolution of these adaptations. In this review, we address how the study of CCMs and DT has provided insight into convergent evolution of GRNs underlying plant adaptation to dry environments, and how these insights could be applied to currently emerging understanding of evolution of root impermeabilization through different barrier cell types. We discuss examples of co-option, conservation and innovation of genes and GRNs at the cell, tissue and organ levels revealed by recent phylogenomic (comparative genomic) and comparative transcriptomic studies.
Collapse
Affiliation(s)
- Mariana A. S. Artur
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
36
|
Pan L, Fonseca De Lima CF, Vu LD, De Smet I. A Comprehensive Phylogenetic Analysis of the MAP4K Family in the Green Lineage. FRONTIERS IN PLANT SCIENCE 2021; 12:650171. [PMID: 34484252 PMCID: PMC8415026 DOI: 10.3389/fpls.2021.650171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The kinase-mediated phosphorylation impacts every basic cellular process. While mitogen-activated protein kinase technology kinase kinases (MAP4Ks) are evolutionarily conserved, there is no comprehensive overview of the MAP4K family in the green lineage (Viridiplantae). In this study, we identified putative MAP4K members from representative species of the two core groups in the green lineage: Chlorophyta, which is a diverse group of green algae, and Streptophyta, which is mostly freshwater green algae and land plants. From that, we inferred the evolutionary relationships of MAP4K proteins through a phylogenetic reconstruction. Furthermore, we provided a classification of the MAP4Ks in the green lineage into three distinct.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
37
|
Wang L, Jia X, Zhang Y, Xu L, Menand B, Zhao H, Zeng H, Dolan L, Zhu Y, Yi K. Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. MOLECULAR PLANT 2021; 14:838-846. [PMID: 33515767 DOI: 10.1016/j.molp.2021.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is an essential nutrient for plants. It is stored as inorganic phosphate (Pi) in the vacuoles of land plants but as inorganic polyphosphate (polyP) in chlorophyte algae. Although it is recognized that the SPX-Major Facilitator Superfamily (MFS) and VPE proteins are responsible for Pi influx and efflux, respectively, across the tonoplast in land plants, the mechanisms that underlie polyP homeostasis and the transition of phosphorus storage forms during the evolution of green plants remain unclear. In this study, we showed that CrPTC1, encoding a protein with both SPX and SLC (permease solute carrier 13) domains for Pi transport, and CrVTC4, encoding a protein with both SPX and vacuolar transporter chaperone (VTC) domains for polyP synthesis, are required for vacuolar polyP accumulation in the chlorophyte Chlamydomonas reinhardtii. Phylogenetic analysis showed that the SPX-SLC, SPX-VTC, and SPX-MFS proteins were present in the common ancestor of green plants (Viridiplantae). The SPX-SLC and SPX-VTC proteins are conserved among species that store phosphorus as vacuolar polyP and absent from genomes of plants that store phosphorus as vacuolar Pi. By contrast, SPX-MFS genes are present in the genomes of streptophytes that store phosphorus as Pi in the vacuoles. These results suggest that loss of SPX-SLC and SPX-VTC genes and functional conservation of SPX-MFS proteins during the evolution of streptophytes accompanied the change from ancestral polyP storage to Pi storage.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxin Zhang
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Xu
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Benoit Menand
- Aix Marseille Univ, CEA, CNRS, BIAM, Luminy Plant Genetics and Biophysics Team, Marseille 13009, France
| | - Hongyu Zhao
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
38
|
Su D, Yang L, Shi X, Ma X, Zhou X, Hedges SB, Zhong B. Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants. Mol Biol Evol 2021; 38:3332-3344. [PMID: 33871608 PMCID: PMC8321542 DOI: 10.1093/molbev/msab106] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The relationships among the four major embryophyte lineages (mosses, liverworts, hornworts, vascular plants) and the timing of the origin of land plants are enigmatic problems in plant evolution. Here, we resolve the monophyly of bryophytes by improving taxon sampling of hornworts and eliminating the effect of synonymous substitutions. We then estimate the divergence time of crown embryophytes based on three fossil calibration strategies, and reveal that maximum calibration constraints have a major effect on estimating the time of origin of land plants. Moreover, comparison of priors and posteriors provides a guide for evaluating the optimal calibration strategy. By considering the reliability of fossil calibrations and the influences of molecular data, we estimate that land plants originated in the Precambrian (980–682 Ma), much older than widely recognized. Our study highlights the important contribution of molecular data when faced with contentious fossil evidence, and that fossil calibrations used in estimating the timescale of plant evolution require critical scrutiny.
Collapse
Affiliation(s)
- Danyan Su
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - S Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, PA, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
39
|
Brown AR, Ettefagh KA, Todd DA, Cole PS, Egan JM, Foil DH, Lacey EP, Cech NB. Bacterial efflux inhibitors are widely distributed in land plants. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113533. [PMID: 33137433 DOI: 10.1016/j.jep.2020.113533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Secondary metabolites play a critical role in plant defense against disease and are of great importance to ethnomedicine. Bacterial efflux pumps are active transport proteins that bacterial cells use to protect themselves against multiple toxic compounds, including many antimicrobials. Efflux pump inhibitors from plants can block these efflux pumps, increasing the potency of antimicrobial compounds. This study demonstrates that efflux pump inhibition against the Gram-positive bacterial pathogen Staphylococcus aureus is widespread in extracts prepared from individual species throughout the land plant lineage. It therefore suggests a general mechanism by which plants used by indigenous species may be effective as a topical treatment for some bacterial infections. AIM OF THE STUDY The goal of this research was to evaluate the distribution of efflux pump inhibitors in nine plant extracts with an ethnobotanical use suggestive of an antimicrobial function for the presence of efflux pump inhibitory activity against Staphylococcus aureus. MATERIALS AND METHODS Plants were collected, dried, extracted, and vouchers submitted to the Herbarium of the University of North Carolina Chapel Hill (NCU). The extracts were analyzed by quantitative mass spectrometry (UPLC-MS) to determine the presence and concentration of flavonoids with known efflux pump inhibitory activity. A mass spectrometry-based assay was employed to measure efflux pump inhibition for all extracts against Staphylococcus aureus. The assay relies on UPLC-MS measurement of changes in ethidium concentration in the spent culture broth when extracts are incubated with bacteria. RESULTS Eight of these nine plant extracts inhibited toxic compound efflux at concentrations below the MIC (minimum inhibitory concentration) value for the same extract. The most active extracts were those prepared from Osmunda claytoniana L. and Pinus strobes L., which both demonstrated IC50 values for efflux inhibition of 19 ppm. CONCLUSIONS Our findings indicate that efflux pump inhibitors active against Staphylococcus aureus are common in land plants. By extension, this activity is likely to be important in many plant-derived antimicrobial extracts, including those used in traditional medicine, and evaluation of efflux pump inhibition may often be valuable when studying natural product efficacy.
Collapse
Affiliation(s)
- Adam R Brown
- Department of Chemistry/Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., Greensboro, NC, 27402, USA.
| | - Keivan A Ettefagh
- Department of Chemistry/Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., Greensboro, NC, 27402, USA.
| | - Daniel A Todd
- Department of Chemistry/Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., Greensboro, NC, 27402, USA.
| | - Patrick S Cole
- Department of Chemistry/Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., Greensboro, NC, 27402, USA.
| | - Joseph M Egan
- Department of Chemistry/Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., Greensboro, NC, 27402, USA.
| | - Daniel H Foil
- Department of Chemistry/Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., Greensboro, NC, 27402, USA.
| | - Elizabeth P Lacey
- Department of Biology, The University of North Carolina Greensboro, 312 Eberhart Building, Greensboro, NC, 27402, USA.
| | - Nadja B Cech
- Department of Chemistry/Biochemistry, The University of North Carolina Greensboro, 435 Sullivan Bldg., Greensboro, NC, 27402, USA.
| |
Collapse
|
40
|
de Vries J, Ischebeck T. Ties between Stress and Lipid Droplets Pre-date Seeds. TRENDS IN PLANT SCIENCE 2020; 25:1203-1214. [PMID: 32921563 DOI: 10.1016/j.tplants.2020.07.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 05/12/2023]
Abstract
Seeds were a key evolutionary innovation. These durable structures provide a concerted solution to two challenges on land: dispersal and stress. Lipid droplets (LDs) that act as nutrient storage reservoirs are one of the main cell-biological reasons for seed endurance. Although LDs are key structures in spermatophytes and are especially abundant in seeds, they are found across plants and algae, and increase during stress. Further, the proteins that underpin their form and function often have deep homologs. We propose an evolutionary scenario in which (i) the generation of LDs arose as a mechanism to mediate general drought and desiccation resilience, and (ii) the required protein framework was co-opted by spermatophytes for a seed-specific program.
Collapse
Affiliation(s)
- Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstrasse 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidtstrasse 1, 37077 Goettingen, Germany.
| | - Till Ischebeck
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.
| |
Collapse
|
41
|
Feng X, Liu W, Cao F, Wang Y, Zhang G, Chen ZH, Wu F. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6587-6600. [PMID: 32766860 DOI: 10.1093/jxb/eraa354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the major cationic inorganic nutrient utilized for osmotic regulation, cell growth, and enzyme activation in plants. Inwardly rectifying K+ channel 1 (AKT1) is the primary channel for root K+ uptake in plants, but the function of HvAKT1 in barley plants under drought stress has not been fully elucidated. In this study, we conducted evolutionary bioinformatics, biotechnological, electrophysiological, and biochemical assays to explore molecular mechanisms of HvAKT1 in response to drought in barley. The expression of HvAKT1 was significantly up-regulated by drought stress in the roots of XZ5-a drought-tolerant wild barley genotype. We isolated and functionally characterized the plasma membrane-localized HvAKT1 using Agrobacterium-mediated plant transformation and Barley stripe mosaic virus-induced gene silencing of HvAKT1 in barley. Evolutionary bioinformatics indicated that the K+ selective filter in AKT1 originated from streptophyte algae and is evolutionarily conserved in land plants. Silencing of HvAKT1 resulted in significantly decreased biomass and suppressed K+ uptake in root epidermal cells under drought treatment. Disruption of HvAKT1 decreased root H+ efflux, H+-ATPase activity, and nitric oxide (NO) synthesis, but increased hydrogen peroxide (H2O2) production in the roots under drought stress. Furthermore, we observed that overexpression of HvAKT1 improves K+ uptake and increases drought resistance in barley. Our results highlight the importance of HvAKT1 for root K+ uptake and its pleiotropic effects on root H+-ATPase, and H2O2 and NO in response to drought stress, providing new insights into the genetic basis of drought tolerance and K+ nutrition in barley.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GKS, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 2020; 4:1220-1231. [PMID: 32572216 PMCID: PMC7455551 DOI: 10.1038/s41559-020-1221-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.3 Mb) between the extremely compact, small genomes of picoplanktonic Mamiellophyceae (Chlorophyta) and the larger, more complex genomes of early-diverging streptophyte algae. Reconstruction of the minimal core genome of Viridiplantae allowed identification of an ancestral toolkit of transcription factors and flagellar proteins. Adaptations of P. coloniale to its deep-water, oligotrophic environment involved expansion of light-harvesting proteins, reduction of early light-induced proteins, evolution of a distinct type of C4 photosynthesis and carbon-concentrating mechanism, synthesis of the metal-complexing metabolite picolinic acid, and vitamin B1, B7 and B12 auxotrophy. The P. coloniale genome provides first insights into the dawn of green plant evolution.
Collapse
Affiliation(s)
- Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Birger Marin
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Haoyuan Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tanja Reder
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Zehra Çebi
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany.
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Feng X, Liu W, Qiu C, Zeng F, Wang Y, Zhang G, Chen Z, Wu F. HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H + homoeostasis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1683-1696. [PMID: 31917885 PMCID: PMC7336388 DOI: 10.1111/pbi.13332] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 05/18/2023]
Abstract
Plant K+ uptake typically consists low-affinity mechanisms mediated by Shaker K+ channels (AKT/KAT/KC) and high-affinity mechanisms regulated by HAK/KUP/KT transporters, which are extensively studied. However, the evolutionary and genetic roles of both K+ uptake mechanisms for drought tolerance are not fully explored in crops adapted to dryland agriculture. Here, we employed evolutionary bioinformatics, biotechnological and electrophysiological approaches to determine the role of two important K+ transporters HvAKT2 and HvHAK1 in drought tolerance in barley. HvAKT2 and HvHAK1 were cloned and functionally characterized using barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) in drought-tolerant wild barley XZ5 and agrobacterium-mediated gene transfer in the barley cultivar Golden Promise. The hallmarks of the K+ selective filters of AKT2 and HAK1 are both found in homologues from strepotophyte algae, and they are evolutionarily conserved in strepotophyte algae and land plants. HvAKT2 and HvHAK1 are both localized to the plasma membrane and have high selectivity to K+ and Rb+ over other tested cations. Overexpression of HvAKT2 and HvHAK1 enhanced K+ uptake and H+ homoeostasis leading to drought tolerance in these transgenic lines. Moreover, HvAKT2- and HvHAK1-overexpressing lines showed distinct response of K+ , H+ and Ca2+ fluxes across plasma membrane and production of nitric oxide and hydrogen peroxide in leaves as compared to the wild type and silenced lines. High- and low-affinity K+ uptake mechanisms and their coordination with H+ homoeostasis play essential roles in drought adaptation of wild barley. These findings can potentially facilitate future breeding programs for resilient cereal crops in a changing global climate.
Collapse
Affiliation(s)
- Xue Feng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Wenxing Liu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Cheng‐Wei Qiu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Fanrong Zeng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yizhou Wang
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Guoping Zhang
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zhong‐Hua Chen
- School of ScienceHawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
- Collaborative Innovation Center for Grain IndustryCollege of AgricultureYangtze UniversityJingzhouChina
| | - Feibo Wu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| |
Collapse
|
44
|
de Vries J, de Vries S, Curtis BA, Zhou H, Penny S, Feussner K, Pinto DM, Steinert M, Cohen AM, von Schwartzenberg K, Archibald JM. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1025-1048. [PMID: 32333477 DOI: 10.1111/tpj.14782] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 05/20/2023]
Abstract
All land plants (embryophytes) share a common ancestor that likely evolved from a filamentous freshwater alga. Elucidating the transition from algae to embryophytes - and the eventual conquering of Earth's surface - is one of the most fundamental questions in plant evolutionary biology. Here, we investigated one of the organismal properties that might have enabled this transition: resistance to drastic temperature shifts. We explored the effect of heat stress in Mougeotia and Spirogyra, two representatives of Zygnematophyceae - the closest known algal sister lineage to land plants. Heat stress induced pronounced phenotypic alterations in their plastids, and high-performance liquid chromatography-tandem mass spectroscopy-based profiling of 565 transitions for the analysis of main central metabolites revealed significant shifts in 43 compounds. We also analyzed the global differential gene expression responses triggered by heat, generating 92.8 Gbp of sequence data and assembling a combined set of 8905 well-expressed genes. Each organism had its own distinct gene expression profile; less than one-half of their shared genes showed concordant gene expression trends. We nevertheless detected common signature responses to heat such as elevated transcript levels for molecular chaperones, thylakoid components, and - corroborating our metabolomic data - amino acid metabolism. We also uncovered the heat-stress responsiveness of genes for phosphorelay-based signal transduction that links environmental cues, calcium signatures and plastid biology. Our data allow us to infer the molecular heat stress response that the earliest land plants might have used when facing the rapidly shifting temperature conditions of the terrestrial habitat.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| | - Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitätsstr. 1, 40225, Duesseldorf, Germany
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Hong Zhou
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - Susanne Penny
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), 37077, Goettingen, Germany
| | - Devanand M Pinto
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, NS, B3H 4R2, Canada
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Alejandro M Cohen
- Biological Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Klaus von Schwartzenberg
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, 661 University Ave, Suite 505, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
45
|
Protoplast Isolation and Manipulation in the Unicellular Model Plant Penium margaritaceum. Methods Mol Biol 2020; 2149:111-124. [PMID: 32617932 DOI: 10.1007/978-1-0716-0621-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The unicellular freshwater green alga Penium margaritaceum has become a novel and valuable model organism for elucidating cell wall dynamics in plants. We describe a rapid and simple means for isolating protoplasts using commercial enzymes in a mannitol-based buffer. Protoplasts can be cultured and cell wall recovery can be monitored in sequentially diluted mannitol-based medium. We also describe an optimized protocol to prepare highly pure, organelle-free nuclei fractions from protoplasts using sucrose gradients. This technology provides a new and effective tool in Penium biology that can be used for analysis of cell wall polymer deposition, organelle isolation and characterization, and molecular research including genetic transformation and somatic hybridization.
Collapse
|
46
|
Caisová L. Draparnaldia: a chlorophyte model for comparative analyses of plant terrestrialization. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3305-3313. [PMID: 32100007 DOI: 10.1093/jxb/eraa102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/25/2020] [Indexed: 05/22/2023]
Abstract
It is generally accepted that land plants evolved from streptophyte algae. However, there are also many chlorophytes (a sister group of streptophyte algae and land plants) that moved to terrestrial habitats and even resemble mosses. This raises the question of why no land plants evolved from chlorophytes. In order to better understand what enabled streptophyte algae to conquer the land, it is necessary to study the chlorophytes as well. This review will introduce the freshwater filamentous chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. It will also focus on current knowledge about the evolution of morphological complexity in chlorophytes versus streptophytes and their respective morphological/behavioural adaptations to semi-terrestrial habitats, and will show why Draparnaldia is needed as a new model system.
Collapse
Affiliation(s)
- Lenka Caisová
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, UK
| |
Collapse
|
47
|
Fürst-Jansen JMR, de Vries S, de Vries J. Evo-physio: on stress responses and the earliest land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3254-3269. [PMID: 31922568 PMCID: PMC7289718 DOI: 10.1093/jxb/eraa007] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 05/19/2023]
Abstract
Embryophytes (land plants) can be found in almost any habitat on the Earth's surface. All of this ecologically diverse embryophytic flora arose from algae through a singular evolutionary event. Traits that were, by their nature, indispensable for the singular conquest of land by plants were those that are key for overcoming terrestrial stressors. Not surprisingly, the biology of land plant cells is shaped by a core signaling network that connects environmental cues, such as stressors, to the appropriate responses-which, thus, modulate growth and physiology. When did this network emerge? Was it already present when plant terrestrialization was in its infancy? A comparative approach between land plants and their algal relatives, the streptophyte algae, allows us to tackle such questions and resolve parts of the biology of the earliest land plants. Exploring the biology of the earliest land plants might shed light on exactly how they overcame the challenges of terrestrialization. Here, we outline the approaches and rationale underlying comparative analyses towards inferring the genetic toolkit for the stress response that aided the earliest land plants in their conquest of land.
Collapse
Affiliation(s)
- Janine M R Fürst-Jansen
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
| | - Sophie de Vries
- Population Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
48
|
Orton LM, Fitzek E, Feng X, Grayburn WS, Mower JP, Liu K, Zhang C, Duvall MR, Yin Y. Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3361-3373. [PMID: 32206790 DOI: 10.1093/jxb/eraa149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 05/22/2023]
Abstract
The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.
Collapse
Affiliation(s)
- Lauren M Orton
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Elisabeth Fitzek
- Biology/Computational Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld, Germany
| | - Xuehuan Feng
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - W Scott Grayburn
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Yanbin Yin
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
49
|
Becker B, Feng X, Yin Y, Holzinger A. Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3270-3278. [PMID: 32107542 PMCID: PMC7289719 DOI: 10.1093/jxb/eraa105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.
Collapse
Affiliation(s)
| | - Xuehuan Feng
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yanbin Yin
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Innsbruck, Austria
- Correspondence:
| |
Collapse
|
50
|
Domozych DS, Sun L, Palacio-Lopez K, Reed R, Jeon S, Li M, Jiao C, Sørensen I, Fei Z, Rose JKC. Endomembrane architecture and dynamics during secretion of the extracellular matrix of the unicellular charophyte, Penium margaritaceum. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3323-3339. [PMID: 31974570 PMCID: PMC7289721 DOI: 10.1093/jxb/eraa039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
- Correspondence:
| | - Li Sun
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | | | - Reagan Reed
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Susan Jeon
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Mingjia Li
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|