1
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
2
|
Thosteman HE, Eisen K, Petrén H, Boutsi S, Pace L, Halley JM, De Moraes CM, Mescher MC, Buckley J, Friberg M. Integration of attractive and defensive phytochemicals is unlikely to constrain chemical diversification in a perennial herb. THE NEW PHYTOLOGIST 2024; 244:249-264. [PMID: 39081013 DOI: 10.1111/nph.20006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.
Collapse
Affiliation(s)
| | - Katherine Eisen
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Biology, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Sotiria Boutsi
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Agriculture and Environment, Harper Adams University, Newport, TF10 8NB, UK
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - John M Halley
- Department of Biological Applications and Technology, University of Ioannina, Thessaloniki, 45110, Greece
| | - Consuelo M De Moraes
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Plant Ecology Group, Institute of Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - James Buckley
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
3
|
Zhou Q, Zhao F, Shi M, Zhang H, Zhu Z. Variation in the Floral Scent Chemistry of Nymphaea 'Eldorado', a Valuable Water Lily, with Different Flowering Stages and Flower Parts. PLANTS (BASEL, SWITZERLAND) 2024; 13:939. [PMID: 38611469 PMCID: PMC11013332 DOI: 10.3390/plants13070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Nymphaea 'Eldorado', a valuable water lily, is a well-known fragrant plant in China. Studying the temporal and spatial characteristics of the floral components of this plant can provide a reference for the further development and utilization of water lily germplasm resources. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to explore the types and relative contents of floral components at different flowering stages (S1: bud stage; S2: initial-flowering stage; S3: full-flowering stage; S4: end-flowering stage) and in different floral organs of N. 'Elidorado', combined with the observation of the microscopic structure of petals. A total of 60 volatile organic compounds (VOCs) were detected at different flowering stages, and there were significant differences in floral VOCs at different flowering stages and in different flower organs. The volatile compounds of N. 'Eldorado' can be divided into seven chemical classes,, namely, alkenes, alcohols, esters, aldehydes, ketones, alkanes, and others; the most common were alkenes and alkanes. A total of 39, 44, 47, and 42 volatile compounds were detected at S1, S2, S3, and S4. The VOCs present in high concentrations include benzaldehyde, benzyl alcohol, benzyl acetate, trans-α-bergamotene, α-curcumene, cis-α-farnesene, and so on. The types and total contents of volatiles at the full-flowering stage were higher than at other flowering stages. Comparing the VOCs in different parts of flower organs, it was found that the contents of alcohols, esters, and aldehydes were greatest in the petals, the alkenes in stamens were abundant with a relative content of up to 54.93%, and alkanes in the pistil were higher than in other parts. The types and total contents of volatiles in the stamens of N. 'Eldorado' were higher than those in other flower organs; they were the main part releasing fragrance. The observation of petal microstructure revealed that the size and quantity of the papillae on the epidermises of petals, the number of intracellular plastids, and the aggregates of floral components (osmophilic matrix granules) were significantly higher at the full-flowering stage than at the other flowering stages. This study suggested the main flowering stage and location at which the floral VOCs are released by N. 'Eldorado' and provided a reference for guiding the breeding of this water lily, exploring genetic patterns and developing related products.
Collapse
Affiliation(s)
- Qi Zhou
- College of Environmental Ecology, Jiangsu Open University, Nanjing 210036, China;
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China;
| | - Feng Zhao
- College of Architectural Engineering, Jiangsu Open University, Nanjing 210036, China;
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Huihui Zhang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China;
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
4
|
Lev-Yadun S. Visual-, Olfactory-, and Nectar-Taste-Based Flower Aposematism. PLANTS (BASEL, SWITZERLAND) 2024; 13:391. [PMID: 38337924 PMCID: PMC10857241 DOI: 10.3390/plants13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while potentially reducing a plant's fitness by lowering its attraction to pollinators, can, in various cases, be fixed quickly by the production of additional nectar. Therefore, various mechanisms to avoid or reduce florivory have evolved. Here, I focus on one of the flowers' defensive mechanisms, aposematism, i.e., warning signaling to avoid or at least reduce herbivory via the repelling of herbivores. While plant aposematism of various types was almost ignored until the year 2000, it is a common anti-herbivory defense mechanism in many plant taxa, operating visually, olfactorily, and, in the case of nectar, via a bitter taste. Flower aposematism has received only very little focused attention as such, and many of the relevant publications that actually demonstrated herbivore repellence and avoidance learning following flower signaling did not refer to repellence as aposematism. Here, I review what is known concerning visual-, olfactory-, and nectar-taste-based flower aposematism, including some relevant cases of mimicry, and suggest some lines for future research.
Collapse
Affiliation(s)
- Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
5
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
6
|
Sasidharan R, Brokate L, Eilers EJ, Müller C. Chemodiversity in flowers of Tanacetum vulgare has consequences on a florivorous beetle. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1071-1082. [PMID: 37703504 DOI: 10.1111/plb.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
The chemical composition of plant individuals can vary, leading to high intraspecific chemodiversity. Diversity of floral chemistry may impact the responses of flower-feeding insects. Tanacetum vulgare plants vary significantly in their leaf terpenoid composition, forming distinct chemotypes. We investigated the composition of terpenoids and nutrients of flower heads and pollen in plants belonging to three chemotypes - dominated either by β-thujone (BThu), artemisia ketone (Keto) or a mixture of (Z)-myroxide, santolina triene, and artemisyl acetate (Myrox) - using different analytical platforms. We tested the effects of these differences on preferences, weight gain and performance of adults of the shining flower beetle, Olibrus aeneus. The terpenoid composition and diversity of flower heads and pollen significantly differed among individuals belonging to the above chemotypes, while total concentrations of pollen terpenoids, sugars, amino acids, and lipids did not differ. Beetles preferred BThu over the Myrox chemotype in both olfactory and contact choice assays, while the Keto chemotype was marginally repellent according to olfactory assays. The beetles gained the least weight within 48 h and their initial mortality was highest when feeding exclusively on floral tissues of the Myrox chemotype. Short-term weight gain and long-term performance were highest when feeding on the BThu chemotype. In conclusion, the beetles showed chemotype-specific responses towards different T. vulgare chemotypes, which may be attributed to the terpenoid composition in flower heads and pollen rather than to differences in nutrient profiles. Both richness and overall diversity are important factors when determining chemodiversity of individual plants and their consequences on interacting insects.
Collapse
Affiliation(s)
- R Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - L Brokate
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - E J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- CTL GmbH Bielefeld, Bielefeld, Germany
| | - C Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Sasidharan R, Junker RR, Eilers EJ, Müller C. Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals. ANNALS OF BOTANY 2023; 132:1-14. [PMID: 37220889 PMCID: PMC10550281 DOI: 10.1093/aob/mcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.
Collapse
Affiliation(s)
- Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Robert R Junker
- Department of Biology, Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Kapitalgasse 4-6, 5020 Salzburg, Austria
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Dussarrat T, Schweiger R, Ziaja D, Nguyen TTN, Krause L, Jakobs R, Eilers EJ, Müller C. Influences of chemotype and parental genotype on metabolic fingerprints of tansy plants uncovered by predictive metabolomics. Sci Rep 2023; 13:11645. [PMID: 37468576 DOI: 10.1038/s41598-023-38790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Intraspecific plant chemodiversity shapes plant-environment interactions. Within species, chemotypes can be defined according to variation in dominant specialised metabolites belonging to certain classes. Different ecological functions could be assigned to these distinct chemotypes. However, the roles of other metabolic variation and the parental origin (or genotype) of the chemotypes remain poorly explored. Here, we first compared the capacity of terpenoid profiles and metabolic fingerprints to distinguish five chemotypes of common tansy (Tanacetum vulgare) and depict metabolic differences. Metabolic fingerprints captured higher variation in metabolites while preserving the ability to define chemotypes. These differences might influence plant performance and interactions with the environment. Next, to characterise the influence of the maternal origin on chemodiversity, we performed variation partitioning and generalised linear modelling. Our findings revealed that maternal origin was a higher source of chemical variation than chemotype. Predictive metabolomics unveiled 184 markers predicting maternal origin with 89% accuracy. These markers included, among others, phenolics, whose functions in plant-environment interactions are well established. Hence, these findings place parental genotype at the forefront of intraspecific chemodiversity. We recommend considering this factor when comparing the ecology of various chemotypes. Additionally, the combined inclusion of inherited variation in main terpenoids and other metabolites in computational models may help connect chemodiversity and evolutionary principles.
Collapse
Affiliation(s)
- Thomas Dussarrat
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Dominik Ziaja
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Thuan T N Nguyen
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Liv Krause
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Petrén H, Köllner TG, Junker RR. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. THE NEW PHYTOLOGIST 2023; 237:2478-2492. [PMID: 36527232 DOI: 10.1111/nph.18685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Plants produce large numbers of phytochemical compounds affecting plant physiology and interactions with their biotic and abiotic environment. Recently, chemodiversity has attracted considerable attention as an ecologically and evolutionary meaningful way to characterize the phenotype of a mixture of phytochemical compounds. Currently used measures of phytochemical diversity, and related measures of phytochemical dissimilarity, generally do not take structural or biosynthetic properties of compounds into account. Such properties can be indicative of the compounds' function and inform about their biosynthetic (in)dependence, and should therefore be included in calculations of these measures. We introduce the R package chemodiv, which retrieves biochemical and structural properties of compounds from databases and provides functions for calculating and visualizing chemical diversity and dissimilarity for phytochemicals and other types of compounds. Our package enables calculations of diversity that takes the richness, relative abundance and - most importantly - structural and/or biosynthetic dissimilarity of compounds into account. We illustrate the use of the package with examples on simulated and real datasets. By providing the R package chemodiv for quantifying multiple aspects of chemodiversity, we hope to facilitate investigations of how chemodiversity varies across levels of biological organization, and its importance for the ecology and evolution of plants and other organisms.
Collapse
Affiliation(s)
- Hampus Petrén
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
10
|
Floral scent divergence across an elevational hybrid zone with varying pollinators. Oecologia 2023; 201:45-57. [PMID: 36374316 DOI: 10.1007/s00442-022-05289-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Divergence in floral traits attractive to different pollinators can promote reproductive isolation in related species. When isolation is incomplete, hybridization may occur, which offers the opportunity to explore mechanisms underlying reproductive isolation. Recent work suggests that divergence in floral scent may frequently contribute to reproductive barriers, although such divergence has seldom been examined in species with generalized pollination. Here, we used two closely related Penstemon species, P. newberryi and P. davidsonii, and their natural hybrids from an elevational gradient with pollinator communities that are predicted to vary in their reliance on floral scent (i.e., primarily hummingbirds at low elevation vs. bees at high elevation). The species vary in a suite of floral traits, but scent is uncharacterized. To address whether scent varies along elevation and potentially contributes to reproductive isolation, we genetically characterized individuals collected at field and identified whether they were parental species or hybrids. We then characterized scent amount and composition. Although the parental species had similar total emissions, some scent characteristics (i.e., scent composition, aromatic emission) diverged between them and may contribute to their isolation. However, the species emitted similar compound sets which could explain hybridization in the contact area. Hybrids were similar to the parents for most scent traits, suggesting that their floral scent would not provide a strong barrier to backcrossing. Our study suggests floral scent may be a trait contributing to species boundaries even in plants with generalized pollination, and reinforces the idea that evolutionary pollinator transitions may involve changes in multiple floral traits.
Collapse
|
11
|
Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet, which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.
Collapse
|
12
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
13
|
Dumoulin CE, Armsworth PR. Environmental stochasticity increases extinction risk to a greater degree in pollination specialists than in generalists. OIKOS 2022. [DOI: 10.1111/oik.09214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Leonhardt SD, Peters B, Keller A. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210171. [PMID: 35491605 DOI: 10.1098/rstb.2021.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Emil Fischer Strasse, 97074 Würzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Pontes CADS, Domingos-Melo A, Milet-Pinheiro P, Navarro DMDAF, Lima Nadia T, Machado IC. Staminode of Jacaranda rugosa A.H. Gentry (Bignoniaceae) promotes functional specialization by ensuring signaling and mechanical fit to medium-sized bees. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Gfrerer E, Laina D, Wagner R, Gibernau M, Hörger AC, Comes HP, Dötterl S. Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L. Sci Rep 2022; 12:5086. [PMID: 35332183 PMCID: PMC8948215 DOI: 10.1038/s41598-022-08196-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Insect-pollinated plants often release complex mixtures of floral scents to attract their pollinators. Yet scent compounds eliciting physiological or behavioural responses in pollinators have only been identified in few plant species. The sapromyiophilous aroid Arum maculatum releases a highly diverse dung-like scent with overall more than 300 different compounds recorded so far to attract its psychodid and other fly pollinators. The volatiles' role in pollinator attraction is mostly unknown. To identify potential behaviourally active compounds, we recorded electroantennographic responses of four Psychodidae and one Sphaeroceridae species to (1) inflorescence scents of A. maculatum and (2) the scents released by cow dung, likely imitated by the plant species. Here we show that these flies are sensitive to 78 floral volatiles of various chemical classes, 18 of which were also found in cow dung. Our study, which for the first time determined physiologically active compounds in the antennae of Psychoda spp. and Sphaeroceridae, identified various volatiles not known to be biologically active in any floral visitors so far. The obtained results help deciphering the chemical basis that enables A. maculatum and other plants, pollinated by psychodids and sphaerocerids, to attract and deceive their pollinators.
Collapse
Affiliation(s)
- Eva Gfrerer
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Danae Laina
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Rüdiger Wagner
- Department of Limnology, University of Kassel, 34127, Kassel, Germany
| | - Marc Gibernau
- Laboratory of Sciences for the Environment, CNRS - University of Corsica, 20000, Ajaccio, France
| | - Anja C Hörger
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Hans Peter Comes
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, 5020, Salzburg, Austria.
| |
Collapse
|
17
|
Bechen LL, Johnson MG, Broadhead GT, Levin RA, Overson RP, Jogesh T, Fant JB, Raguso RA, Skogen KA, Wickett NJ. Differential gene expression associated with a floral scent polymorphism in the evening primrose Oenothera harringtonii (Onagraceae). BMC Genomics 2022; 23:124. [PMID: 35151274 PMCID: PMC8840323 DOI: 10.1186/s12864-022-08370-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Plant volatiles play an important role in both plant-pollinator and plant-herbivore interactions. Intraspecific polymorphisms in volatile production are ubiquitous, but studies that explore underlying differential gene expression are rare. Oenothera harringtonii populations are polymorphic in floral emission of the monoterpene (R)-(−)-linalool; some plants emit (R)-(−)-linalool (linalool+ plants) while others do not (linalool- plants). However, the genes associated with differential production of this floral volatile in Oenothera are unknown. We used RNA-Seq to broadly characterize differential gene expression involved in (R)-(−)-linalool biosynthesis. To identify genes that may be associated with the polymorphism for this trait, we used RNA-Seq to compare gene expression in six different Oenothera harringtonii tissues from each of three linalool+ and linalool- plants. Results Three clusters of differentially expressed genes were enriched for terpene synthase activity: two were characterized by tissue-specific upregulation and one by upregulation only in plants with flowers that produce (R)-(−)-linalool. A molecular phylogeny of all terpene synthases identified two putative (R)-(−)-linalool synthase transcripts in Oenothera harringtonii, a single allele of which is found exclusively in linalool+ plants. Conclusions By using a naturally occurring polymorphism and comparing different tissues, we were able to identify candidate genes putatively involved in the biosynthesis of (R)-(−)-linalool. Expression of these genes in linalool- plants, while low, suggests a regulatory polymorphism, rather than a population-specific loss-of-function allele. Additional terpene biosynthesis-related genes that are up-regulated in plants that emit (R)-(−)-linalool may be associated with herbivore defense, suggesting a potential economy of scale between plant reproduction and defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08370-6.
Collapse
|
18
|
Zhou Q, Shi M, Zhang H, Zhu Z. Comparative Study of the Petal Structure and Fragrance Components of the Nymphaea hybrid, a Precious Water Lily. Molecules 2022; 27:408. [PMID: 35056722 PMCID: PMC8777938 DOI: 10.3390/molecules27020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Nymphaea hybrid, a precious water lily, is a widely-cultivated aquatic flower with high ornamental, economic, medicinal, and ecological value; it blooms recurrently and emits a strong fragrance. In the present study, in order to understand the volatile components of N. hybrid and its relationship with petals structure characteristics, the morphologies and anatomical structures of the flower petals of N. hybrid were investigated, and volatile compounds emitted from the petals were identified. Scanning and transmission electron microscopy were used to describe petal structures, and the volatile constituents were collected using headspace solid-phase microextraction (HS-SPME) fibers and analyzed using gas chromatography coupled with mass spectrometry (GC-MS). The results indicated that the density and degree of protrusion and the number of plastids and osmiophilic matrix granules in the petals play key roles in emitting the fragrance. There were distinct differences in the components and relative contents of volatile compounds among the different strains of N. hybrid. In total, 29, 34, 39, and 43 volatile compounds were detected in the cut flower petals of the blue-purple type (Nh-1), pink type (Nh-2), yellow type (Nh-3) and white type (Nh-4) of N. hybrid at the flowering stage, with total relative contents of 96.78%, 97.64%, 98.56%, and 96.15%, respectively. Analyses of these volatile components indicated that alkenes, alcohols, and alkanes were the three major types of volatile components in the flower petals of N. hybrid. The predominant volatile compounds were benzyl alcohol, pentadecane, trans-α-bergamotene, (E)-β-farnesene, and (6E,9E)-6,9-heptadecadiene, and some of these volatile compounds were terpenes, which varied among the different strains. Moreover, on the basis of hierarchical cluster analysis (HCA) and principal component analysis (PCA), the N. hybrid samples were divided into four groups: alcohols were the most important volatile compounds for Nh-4 samples; esters and aldehydes were the predominant volatiles in Nh-3 samples; and ketones and alkenes were important for Nh-2 samples. These compounds contribute to the unique flavors and aromas of the four strains of N. hybrid.
Collapse
Affiliation(s)
- Qi Zhou
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Huihui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Höfer RJ, Ayasse M, Kuppler J. Water Deficit, Nitrogen Availability, and Their Combination Differently Affect Floral Scent Emission in Three Brassicaceae Species. J Chem Ecol 2022; 48:882-899. [PMID: 36525146 PMCID: PMC9840598 DOI: 10.1007/s10886-022-01393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022]
Abstract
Floral scent plays a central role in plant-pollinator interactions, as flower visitors can discriminate between scent differences to recognize and forage on rewarding flowers. Changes in scent compositions might therefore lead to recognition mismatches between host plants and flower visitors. An understanding of the phenotypic plasticity of floral scent, especially in crop species, is becoming important because of climate change, e.g., increasing drought periods, and other anthropogenic influences, e.g., nitrogen (N) deposition. We have investigated the effects of the combination of progressive water deficits (dry-down) and N supplementation on floral scent emission in three Brassicaceae species (cultivated vs. wild). Individuals were randomly assigned to one of four treatments: (1) well-watered without N supplementation; (2) well-watered with N supplementation; (3) dry-down without N supplementation; (4) dry-down with N supplementation. We collected scent on day 0, 2, 7, and 14 after the commencement of the watering treatment. All samples were analyzed using gas chromatography coupled with mass spectrometry. We found that the highly cultivated Brassica napus had the lowest overall emission rate; its scent composition was affected by the interaction of watering treatment and N supplementation. Scent bouquets of the cultivated Sinapis alba also changed under these treatments. Scent bouquets of the common weed Sinapis arvensis were affected by watering treatment, but not by time and N supplementation. Furthermore, the influence of treatments on the emission rate of single compounds was highly compound-specific. Nonetheless, our study revealed that especially terpenes were negatively affected by drought-stress.
Collapse
Affiliation(s)
- Rebecca J. Höfer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
20
|
Floral secondary metabolites in context of biotic and abiotic stress factors. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
van der Kooi CJ, Vallejo-Marín M, Leonhardt SD. Mutualisms and (A)symmetry in Plant-Pollinator Interactions. Curr Biol 2021; 31:R91-R99. [PMID: 33497641 DOI: 10.1016/j.cub.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The majority of flowering plants relies on animal pollinators for sexual reproduction and many animal pollinators rely on floral resources. However, interests of plants and pollinators are often not the same, resulting in an asymmetric relationship that ranges from mutualistic to parasitic interactions. Our understanding of the processes that underlie this asymmetry remains fragmentary. In this Review, we bring together evidence from evolutionary biology, plant chemistry, biomechanics, sensory ecology and behaviour to illustrate that the degree of symmetry often depends on the perspective taken. We also highlight variation in (a)symmetry within and between plant and pollinator species as well as between geographic locations. Through taking different perspectives from the plant and pollinator sides we provide new ground for studies on the maintenance and evolution of animal pollination and on the (a)symmetry in plant-pollinator interactions.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | | | - Sara D Leonhardt
- Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
22
|
Ruiz-Hernández V, Joubert L, Rodríguez-Gómez A, Artuso S, Pattrick JG, Gómez PA, Eckerstorfer S, Brandauer SS, Trcka-Rojas CGI, Martínez-Reina L, Booth J, Lau-Zhu A, Weiss J, Bielza P, Glover BJ, Junker RR, Egea-Cortines M. Humans Share More Preferences for Floral Phenotypes With Pollinators Than With Pests. FRONTIERS IN PLANT SCIENCE 2021; 12:647347. [PMID: 34497617 PMCID: PMC8419516 DOI: 10.3389/fpls.2021.647347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Studies on the selection of floral traits usually consider pollinators and sometimes herbivores. However, humans also exert selection on floral traits of ornamental plants. We compared the preferences of bumblebees (Bombus terrestris), thrips (Frankliniella occidentalis), and humans for flowers of snapdragon. From a cross of two species, Antirrhinum majus and Antirrhinum linkianum, we selected four Recombinant Inbred Lines (RILs). We characterised scent emission from whole flowers and stamens, pollen content and viability, trichome density, floral shape, size and colour of floral parts. We tested the preferences of bumblebees, thrips, and humans for whole flowers, floral scent bouquets, stamen scent, and individual scent compounds. Humans and bumblebees showed preferences for parental species, whereas thrips preferred RILs. Colour and floral scent, in combination with other floral traits, seem relevant phenotypes for all organisms. Remarkably, visual traits override scent cues for bumblebees, although, scent is an important trait when bumblebees cannot see the flowers, and methyl benzoate was identified as a key attractant for them. The evolutionary trajectory of flowers is the result of multiple floral traits interacting with different organisms with different habits and modes of interaction.
Collapse
Affiliation(s)
- Victoria Ruiz-Hernández
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Biosciences, University Salzburg, Salzburg, Austria
| | - Lize Joubert
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Amador Rodríguez-Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Silvia Artuso
- Department of Biosciences, University Salzburg, Salzburg, Austria
| | - Jonathan G. Pattrick
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Perla A. Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
| | | | | | | | - Luis Martínez-Reina
- Departamento de Arquitectura y Tecnología de la Edificación, Escuela Técnica Superior de Arquitectura y Edificación, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Josh Booth
- Department of Sociology, University of Cambridge, Cambridge, United Kingdom
| | - Alex Lau-Zhu
- Oxford Institute of Clinical Psychology Training and Research, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Julia Weiss
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Pablo Bielza
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Beverley J. Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Robert R. Junker
- Department of Biosciences, University Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Marcos Egea-Cortines
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+I, Campus Muralla del Mar, Cartagena, Spain
- Departamento de Ingeniería Agronómica, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
23
|
Zhang W, Jiang Y, Chen S, Chen F, Chen F. Concentration-dependent emission of floral scent terpenoids from diverse cultivars of Chrysanthemum morifolium and their wild relatives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110959. [PMID: 34134850 DOI: 10.1016/j.plantsci.2021.110959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Floral scent is an important trait that has a significant influence on the reproduction of many flowering plants and the market value of several ornamental crops. The family of Asteraceae is well known for its unique floral structure (capitulum) that consists of many florets. Although the constituents of either floral essential oils or emitted floral volatiles have been reported in many species of Asteraceae, little information is available on the mechanisms that determine floral volatile emission. In the present study, a total of 44 species/varieties of Chrysanthemum were analyzed to determine the relationship between the internal accumulation of floral terpenoids and their release as volatiles. By performing both headspace collection and organic extraction, it has been found that the emission rates of floral terpenoids are largely correlated to their internal concentrations. Particularly, the flowers of cultivated C. morifolium, when compared to their wild relatives, were found to exhibit lower emission rates that contain lowered concentrations of floral terpenoids. The differences were largely determined by six monoterpenes and five sesquiterpenes that were revealed by principal component analysis. Besides, the relationship between concentrations and emission rates of floral terpenoids as well as the sizes of capitulum was studied in detail. Separated into three different parts, disc florets were found to have a larger contribution to floral volatile emission than ray florets, whereas the phyllaries and receptacles are the main parts of volatiles accumulation. Finally, the potential biosynthetic pathway of the floral terpenoids produced in capitula of Chrysanthemum was proposed. In summary, our findings on the diversity and variations of floral terpenoids in Chrysanthemum reveal correlations between their production and emission. These findings can be useful to develop different plant breeding methods to create novel aromatic cultivars of Chrysanthemum.
Collapse
Affiliation(s)
- Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
24
|
Identification and Evaluation of Aromatic Volatile Compounds in 26 Cultivars and 8 Hybrids of Freesia hybrida. Molecules 2021; 26:molecules26154482. [PMID: 34361635 PMCID: PMC8347352 DOI: 10.3390/molecules26154482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Freesia hybrida is a group of cultivars in the genus Freesia with a strong floral scent composed of diverse volatile organic compounds (VOCs). In this study, the VOCs of 34 F. hybrida were extracted and analyzed by headspace solid phase microextraction and gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 164 VOCs whose relative contents were higher than 0.05% were detected. The numbers of VOCs in all germplasms differed between 11 to 38, and the relative contents ranged from 32.39% to 94.28%, in which most germplasms were higher than 80%. Terpenoids, especially monoterpenes, were the crucial type of VOCs in most germplasms, of which linalool and D-limonene were the most frequently occurring. Principal component analysis (PCA) clearly separated samples based on whether linalool was the main component, and hierarchical clustering analysis (HCA) clustered samples into 4 groups according to the preponderant compounds linalool and (E)-β-ocimene. Comparison of parental species and hybrids showed heterosis in three hybrids, and the inherited and novel substances suggested that monoterpene played an important role in F. hybrida floral scent. This study established a foundation for the evaluation of Freesia genetic resources, breeding for the floral aroma and promoting commercial application.
Collapse
|
25
|
Moré M, Soteras F, Ibañez AC, Dötterl S, Cocucci AA, Raguso RA. Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2021; 10:1512. [PMID: 34451557 PMCID: PMC8398055 DOI: 10.3390/plants10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a 'warm Lowland Subtropical nectar-rewarding clade' with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or sesquiterpenoid volatiles, and (ii) a 'cool-temperate brood-deceptive clade' of largely fly-pollinated species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including cresol, indole and sulfuric volatiles. The joint consideration of floral scent profiles, pollination mode, and geoclimatic context helped us to disentangle the factors that shaped floral scent evolution across "pollinator climates" (geographic differences in pollinator abundance or preference). Our findings suggest that the ability of plants in the genus Jaborosa to colonize newly formed habitats during Andean orogeny was associated with striking transitions in flower scent composition that trigger specific odor-driven behaviors in nocturnal hawkmoths and saprophilous fly pollinators.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria;
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Eisen KE, Geber MA, Raguso RA. Emission rates of species-specific volatiles vary across communities of Clarkia species: Evidence for multi-modal character displacement. Am Nat 2021; 199:824-840. [DOI: 10.1086/715501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Petrén H, Toräng P, Ågren J, Friberg M. Evolution of floral scent in relation to self-incompatibility and capacity for autonomous self-pollination in the perennial herb Arabis alpina. ANNALS OF BOTANY 2021; 127:737-747. [PMID: 33555338 PMCID: PMC8103803 DOI: 10.1093/aob/mcab007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic-alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer. METHODS In a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece. KEY RESULTS The self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories. CONCLUSIONS Our study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.
Collapse
Affiliation(s)
- Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
- SLU Swedish Species Information Centre, Box 7007, SE-750 07 Uppsala, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
28
|
Rabeschini G, Joaquim Bergamo P, Nunes CEP. Meaningful Words in Crowd Noise: Searching for Volatiles Relevant to Carpenter Bees among the Diverse Scent Blends of Bee Flowers. J Chem Ecol 2021; 47:444-454. [PMID: 33683547 DOI: 10.1007/s10886-021-01257-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Olfactory cues constitute one of the most important plant-pollinator communication channels. Specific chemical components can be associated with specific pollinator functional groups due to pollinator-mediated selection on flower volatile (FV) emission. Here, we used multivariate analyses of FV data to detect an association between FVs and the worldwide distributed pollinator group of the carpenter bees (Xylocopa spp.). We compiled FVs of 29 plant species: 9 pollinated by carpenter bees, 20 pollinated by other bee pollinator functional groups. We tested whether FV emission differed between these groups. To rule out any phylogenetic bias in our dataset, we tested FV emission for phylogenetic signal. Finally, using field assays, we tested the attractive function of two FVs found to be associated with carpenter bees. We found no significant multivariate difference between the two plant groups FVs. However, seven FVs (five apocarotenoid terpenoids, one long-chain alkane and one benzenoid) were significantly associated with carpenter bee pollination, thus being "predictor" compounds of pollination by this pollinator functional group. From those, β-ionone and (E)-methyl cinnamate presented the highest indicator values and had their behavioural function assessed in field assays. Phylogenetic signal for FVs emission was weak, suggesting that their emission could result from pollinator-mediated selection. In field assays, the apocarotenoid β-ionone attracted carpenter bees, but also bees from other functional groups. The benzenoid (E)-methyl cinnamate did not attract significant numbers of pollinators. Thus, β-ionone functions as a non-specific bee attractant, while apocarotenoid FVs emerge as consistent indicators of pollination by large food-foraging bees among bee-pollinated flowers.
Collapse
Affiliation(s)
- Gabriela Rabeschini
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Pedro Joaquim Bergamo
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.,Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos E P Nunes
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.,Department of Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
29
|
Eilers EJ, Kleine S, Eckert S, Waldherr S, Müller C. Flower Production, Headspace Volatiles, Pollen Nutrients, and Florivory in Tanacetum vulgare Chemotypes. FRONTIERS IN PLANT SCIENCE 2021; 11:611877. [PMID: 33552105 PMCID: PMC7855176 DOI: 10.3389/fpls.2020.611877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 06/01/2023]
Abstract
Floral volatiles and reward traits are major drivers for the behavior of mutualistic as well as antagonistic flower visitors, i.e., pollinators and florivores. These floral traits differ tremendously between species, but intraspecific differences and their consequences on organism interactions remain largely unknown. Floral volatile compounds, such as terpenoids, function as cues to advertise rewards to pollinators, but should at the same time also repel florivores. The reward composition, e.g., protein and lipid contents in pollen, differs between individuals of distinct plant families. Whether the nutritional value of rewards within the same plant species is linked to their chemotypes, which differ in their pattern of specialized metabolites, has yet not been investigated. In the present study, we compared Tanacetum vulgare plants of five terpenoid chemotypes with regard to flower production, floral headspace volatiles, pollen macronutrient and terpenoid content, and floral attractiveness to florivorous beetles. Our analyses revealed remarkable differences between the chemotypes in the amount and diameter of flower heads, duration of bloom period, and pollen nutritional quality. The floral headspace composition of pollen-producing mature flowers, but not of premature flowers, was correlated to that of pollen and leaves in the same plant individual. For two chemotypes, florivorous beetles discriminated between the scent of mature and premature flower heads and preferred the latter. In semi-field experiments, the abundance of florivorous beetles and flower tissue miners differed between T. vulgare chemotypes. Moreover, the scent environment affected the choice and beetles were more abundant in homogenous plots composed of one single chemotype than in plots with different neighboring chemotypes. In conclusion, flower production, floral metabolic composition and pollen quality varied to a remarkable extend within the species T. vulgare, and the attractiveness of floral scent differed also intra-individually with floral ontogeny. We found evidence for a trade-off between pollen lipid content and pollen amount on a per-plant-level. Our study highlights that chemotypes which are more susceptible to florivory are less attacked when they grow in the neighborhood of other chemotypes and thus gain a benefit from high overall chemodiversity.
Collapse
Affiliation(s)
| | - Sandra Kleine
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Silvia Eckert
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Simon Waldherr
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
30
|
Farré-Armengol G, Fernández-Martínez M, Filella I, Junker RR, Peñuelas J. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:1154. [PMID: 32849712 PMCID: PMC7412988 DOI: 10.3389/fpls.2020.01154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/02/2023]
Abstract
Currently, a global analysis of the information available on the relative composition of the floral scents of a very diverse variety of plant species is missing. Such analysis may reveal general patterns on the distribution and dominance of the volatile compounds that form these mixtures, and may also allow measuring the effects of factors such as the phylogeny, pollination vectors, and climatic conditions on the floral scents of the species. To fill this gap, we compiled published data on the relative compositions and emission rates of volatile organic compounds (VOCs) in the floral scents of 305 plant species from 66 families. We also gathered information on the groups of pollinators that visited the flowers and the climatic conditions in the areas of distribution of these species. This information allowed us to characterize the occurrence and relative abundances of individual volatiles in floral scents and the effects of biotic and climatic factors on floral scent. The monoterpenes trans-β-ocimene and linalool and the benzenoid benzaldehyde were the most abundant floral VOCs, in both ubiquity and predominance in the floral blends. Floral VOC richness and relative composition were moderately preserved traits across the phylogeny. The reliance on different pollinator groups and the climate also had important effects on floral VOC richness, composition, and emission rates of the species. Our results support the hypothesis that key compounds or compounds originating from specific biosynthetic pathways mediate the attraction of the main pollinators. Our results also indicate a prevalence of monoterpenes in the floral blends of plants that grow in drier conditions, which could link with the fact that monoterpene emissions protect plants against oxidative stresses throughout drought periods and their emissions are enhanced under moderate drought stress. Sesquiterpenes, in turn, were positively correlated with mean annual temperature, supporting that sesquiterpene emissions are dominated mainly by ambient temperature. This study is the first to quantitatively summarise data on floral-scent emissions and provides new insights into the biotic and climatic factors that influence floral scents.
Collapse
Affiliation(s)
- Gerard Farré-Armengol
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | | | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Robert R. Junker
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
31
|
Dani KGS, Fineschi S, Michelozzi M, Trivellini A, Pollastri S, Loreto F. Diversification of petal monoterpene profiles during floral development and senescence in wild roses: relationships among geraniol content, petal colour, and floral lifespan. Oecologia 2020; 197:957-969. [PMID: 32712874 PMCID: PMC8591013 DOI: 10.1007/s00442-020-04710-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
Wild roses store and emit a large array of fragrant monoterpenes from their petals. Maximisation of fragrance coincides with floral maturation in many angiosperms, which enhances pollination efficiency, reduces floral predation, and improves plant fitness. We hypothesized that petal monoterpenes serve additional lifelong functions such as limiting metabolic damage from reactive oxygen species (ROS), and altering isoprenoid hormonal abundance to increase floral lifespan. Petal monoterpenes were quantified at three floral life-stages (unopened bud, open mature, and senescent) in 57 rose species and 16 subspecies originating from Asia, America, and Europe, and relationships among monoterpene richness, petal colour, ROS, hormones, and floral lifespan were analysed within a phylogenetic context. Three distinct types of petal monoterpene profiles, revealing significant developmental and functional differences, were identified: Type A, species where monoterpene abundance peaked in open mature flowers depleting thereafter; Type B, where monoterpenes peaked in senescing flowers increasing from bud stage, and a rare Type C (8 species) where monoterpenes depleted from bud stage to senescence. Cyclic monoterpenes peaked during early floral development, whereas acyclic monoterpenes (dominated by geraniol and its derivatives, often 100-fold more abundant than other monoterpenes) peaked during floral maturation in Type A and B roses. Early-diverging roses were geraniol-poor (often Type C) and white-petalled. Lifetime changes in hydrogen peroxide (H2O2) revealed a significant negative regression with the levels of petal geraniol at all floral life-stages. Geraniol-poor Type C roses also showed higher cytokinins (in buds) and abscisic acid (in mature petals), and significantly shorter floral lifespan compared with geraniol-rich Type A and B roses. We conclude that geraniol enrichment, intensification of petal colour, and lower potential for H2O2-related oxidative damage characterise and likely contribute to longer floral lifespan in monoterpene-rich wild roses.
Collapse
Affiliation(s)
- K G Srikanta Dani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy.
| | - Silvia Fineschi
- Institute of Heritage Science, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Marco Michelozzi
- Laboratory for the Analysis and Research in Environmental Chemistry, Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124, Pisa, Italy
| | - Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy.
| |
Collapse
|
32
|
Benvenuti S, Mazzoncini M, Cioni PL, Flamini G. Wildflower-pollinator interactions: Which phytochemicals are involved? Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Saved by the pulse? Separating the effects of total and temporal food abundance on the growth and reproduction of bumble bee microcolonies. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Seasonal and diel variations in scent composition of ephemeral Murraya paniculata (Linn.) Jack flowers are contributed by separate volatile components. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Müller C, Bräutigam A, Eilers E, Junker R, Schnitzler JP, Steppuhn A, Unsicker S, van Dam N, Weisser W, Wittmann M. Ecology and Evolution of Intraspecific Chemodiversity of Plants. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e49810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An extraordinarily high intraspecific chemical diversity, i.e. chemodiversity, has been found in several plant species, of which some are of major ecological or economic relevance. Moreover, even within an individual plant there is substantial chemodiversity among tissues and across seasons. This chemodiversity likely has pronounced ecological effects on plant mutualists and antagonists, associated foodwebs and, ultimately, biodiversity. Surprisingly, studies on interactions between plants and their herbivores or pollinators often neglect plant chemistry as a level of diversity and phenotypic variation. The main aim of this Research Unit (RU) is to understand the emergence and maintenance of intraspecific chemodiversity in plants. We address the following central questions:
1) How does plant chemodiversity vary across levels, i.e., within individuals, among individuals within populations, and among populations?
2) What are the ecological consequences of intraspecific plant chemodiversity?
3) How is plant chemodiversity genetically determined and maintained?
By combining field and laboratory studies with metabolomics, transcriptomics, genetic tools, statistical data analysis and modelling, we aim to understand causes and consequences of plant chemodiversity and elucidate its impacts on the interactions of plants with their biotic environment. Furthermore, we want to identify general principles, which hold across different species, and develop meaningful measures to describe the fascinating diversity of defence chemicals in plants. These tasks require integrated scientific collaboration of experts in experimental and theoretical ecology, including chemical and molecular ecology, (bio)chemistry and evolution.
Collapse
|
36
|
Hammerbacher A, Coutinho TA, Gershenzon J. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. PLANT, CELL & ENVIRONMENT 2019; 42:2827-2843. [PMID: 31222757 DOI: 10.1111/pce.13602] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 05/22/2023]
Abstract
Plants emit a large variety of volatile organic compounds during infection by pathogenic microbes, including terpenes, aromatics, nitrogen-containing compounds, and fatty acid derivatives, as well as the volatile plant hormones, methyl jasmonate, and methyl salicylate. Given the general antimicrobial activity of plant volatiles and the timing of emission following infection, these compounds have often been assumed to function in defence against pathogens without much solid evidence. In this review, we critically evaluate current knowledge on the toxicity of volatiles to fungi, bacteria, and viruses and their role in plant resistance as well as how they act to induce systemic resistance in uninfected parts of the plant and in neighbouring plants. We also discuss how microbes can detoxify plant volatiles and exploit them as nutrients, attractants for insect vectors, and inducers of volatile emissions, which stimulate immune responses that make plants more susceptible to infection. Although much more is known about plant volatile-herbivore interactions, knowledge of volatile-microbe interactions is growing and it may eventually be possible to harness plant volatiles to reduce disease in agriculture and forestry. Future research in this field can be facilitated by making use of the analytical and molecular tools generated by the prolific research on plant-herbivore interactions.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| | - Teresa A Coutinho
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Centre for Microbial Ecology and Genetics, University of Pretoria, Pretoria, 0002, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
37
|
Paul I, Chatterjee A, Maiti S, Bhadoria PBS, Mitra A. Dynamic trajectories of volatile and non-volatile specialised metabolites in 'overnight' fragrant flowers of Murraya paniculata. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:899-910. [PMID: 30866144 DOI: 10.1111/plb.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Ephemeral flowers, especially nocturnal ones, usually emit characteristic scent profiles within their post-anthesis lifespans of a few hours. Whether these flowers exhibit temporal variability in the composition and profile of volatile and non-volatile specialised metabolites has received little attention. Flowers of Murraya paniculata bloom in the evenings during the summer and monsoon, and their sweet, intense fragrance enhances the plant's value as an ornamental. We aimed to investigate profiles of both volatile and non-volatile endogenous specialised metabolites (ESM) in nocturnal ephemeral flowers of M. paniculata to examine whether any biochemically diverse groups of ESM follow distinct patterns of accumulation while maintaining synchrony with defensive physiological functions. Targeted ESM contents of M. paniculata flowers were profiled at ten time points at 2-h intervals, starting from late bud stage (afternoon) up to the start of petal senescence (mid-morning). Emitted volatiles were monitored continuously within the whole 20-h period using headspace sampling. The ESM contents were mapped by time point to obtain a highly dynamic and biochemically diverse profile. Relative temporal patterns of ESM accumulation indicated that the active fragrance-emitting period might be divided into 'early bloom', 'mid-bloom' and 'late bloom' phases. Early and late bloom phases were characterised by high free radical generation, with immediate enhancement of antioxidant enzymes and phenolic compounds. The mid-bloom phase was relatively stable and dedicated to maximum fragrance emission, with provision for strong terpenoid-mediated defence against herbivores. The late bloom phase merged into senescence with the start of daylight; however, even the senescent petals continued to emit fragrance to attract diurnal pollinators. Our study suggests that dynamic relations between the different ESM groups regulate the short-term requirements of floral advertisement and phytochemical defence in this ephemeral flower. This study also provided fundamental information on the temporal occurrence of emitted volatiles and internal pools of specialised metabolites in M. paniculata flowers, which could serve as an important model for pollination biology of Rutaceae, which includes many important fruit crops.
Collapse
Affiliation(s)
- I Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - A Chatterjee
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - S Maiti
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - P B S Bhadoria
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - A Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
38
|
Boachon B, Lynch JH, Ray S, Yuan J, Caldo KMP, Junker RR, Kessler SA, Morgan JA, Dudareva N. Natural fumigation as a mechanism for volatile transport between flower organs. Nat Chem Biol 2019; 15:583-588. [PMID: 31101916 DOI: 10.1038/s41589-019-0287-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Plants synthesize volatile organic compounds (VOCs) to attract pollinators and beneficial microorganisms, to defend themselves against herbivores and pathogens, and for plant-plant communication. In general, VOCs accumulate in and are emitted from the tissue of their biosynthesis. However, using biochemical and reverse genetic approaches, we demonstrate a new physiological phenomenon: inter-organ aerial transport of VOCs via natural fumigation. Before petunia flowers open, a tube-specific terpene synthase produces sesquiterpenes, which are released inside the buds and then accumulate in the stigma, potentially defending the developing stigma from pathogens. These VOCs also affect reproductive organ development and seed yield, which are previously unknown functions of terpenoid compounds.
Collapse
Affiliation(s)
- Benoît Boachon
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,BVpam FRE 3727, Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, Saint-Etienne, France
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Shaunak Ray
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jing Yuan
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | | | - Robert R Junker
- Department of Biosciences, University Salzburg, Salzburg, Austria
| | - Sharon A Kessler
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
39
|
Kessler D, Bing J, Haverkamp A, Baldwin IT. The defensive function of a pollinator‐attracting floral volatile. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danny Kessler
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Julia Bing
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Alexander Haverkamp
- Department of Neuroethology Max Planck Institute for Chemical Ecology Jena Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|
40
|
Bergamo PJ, Wolowski M, Telles FJ, De Brito VLG, Varassin IG, Sazima M. Bracts and long-tube flowers of hummingbird-pollinated plants are conspicuous to hummingbirds but not to bees. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Pedro Joaquim Bergamo
- Plant Biology Department, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
- Graduate Program in Ecology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Marina Wolowski
- Institute of Natural Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Francismeire Jane Telles
- Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, campus Umuarama, Uberlândia, MG, Brazil
| | | | - Isabela Galarda Varassin
- Laboratório de Interações e Biologia Reprodutiva, Botany Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Marlies Sazima
- Plant Biology Department, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
41
|
Kigathi RN, Weisser WW, Reichelt M, Gershenzon J, Unsicker SB. Plant volatile emission depends on the species composition of the neighboring plant community. BMC PLANT BIOLOGY 2019; 19:58. [PMID: 30727963 PMCID: PMC6366091 DOI: 10.1186/s12870-018-1541-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/20/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plants grow in multi-species communities rather than monocultures. Yet most studies on the emission of volatile organic compounds (VOCs) from plants in response to insect herbivore feeding focus on one plant species. Whether the presence and identity of neighboring plants or plant community attributes, such as plant species richness and plant species composition, affect the herbivore-induced VOC emission of a focal plant is poorly understood. METHODS We established experimental plant communities in pots in the greenhouse where the focal plant species, red clover (Trifolium pratense), was grown in monoculture, in a two species mixture together with Geranium pratense or Dactylis glomerata, or in a mixture of all three species. We measured VOC emission of the focal plant and the entire plant community, with and without herbivory of Spodoptera littoralis caterpillars caged on one red clover individual within the communities. RESULTS Herbivory increased VOC emission from red clover, and increasing plant species richness changed emissions of red clover and also from the entire plant community. Neighbor identity strongly affected red clover emission, with highest emission rates for plants growing together with D. glomerata. CONCLUSION The results from this study indicate that the blend of VOCs perceived by host searching insects can be affected by plant-plant interactions.
Collapse
Affiliation(s)
- Rose N. Kigathi
- Institute of Ecology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
- Present Address: Department of Biological Sciences, Pwani University, P.O Box 195-80108, Kilifi, Kenya
| | - Wolfgang W. Weisser
- Institute of Ecology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- Present Address: Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
42
|
Tölke ED, Bachelier JB, de Lima EA, Ferreira MJP, Demarco D, Carmello-Guerreiro SM. Osmophores and floral fragrance in Anacardium humile and Mangifera indica (Anacardiaceae): an overlooked secretory structure in Sapindales. AOB PLANTS 2018; 10:ply062. [PMID: 30402215 PMCID: PMC6215388 DOI: 10.1093/aobpla/ply062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/04/2018] [Indexed: 05/07/2023]
Abstract
Flowers of Anacardiaceae and other Sapindales typically produce nectar, but scent, often associated with a reward for pollinators, has surprisingly been mentioned only rarely for members of the family and order. However, flowers of Anacardium humile and Mangifera indica produce a strong sweet scent. The origin and composition of these floral scents is the subject of this study. Screening of potential osmophores on the petals and investigations of their anatomy were carried out by light, scanning and transmission electron microscopy. The composition of the floral fragrance was characterized by gas chromatography-mass spectrometry. In both species, the base of the adaxial side of each petal revealed specialized secretory epidermal cells which are essentially similar in structure and distinct from all other neighbouring cells. These cells also showed evidence of granulocrine secretory mechanisms and slight specific variations in their subcellular apparatus coinciding with the respective composition of the floral fragrance, predominantly composed of sesquiterpenes in A. humile and monoterpenes in M. indica. This study reports the presence of osmophores for the first time in flowers of Anacardiaceae and confirms the link between the ultrastructural features of their secretory cells and the volatiles produced by the flowers. The flowers of most Sapindales, including Anacardiaceae, are nectariferous. However, the presence of osmophores has only been described for very few genera of Rutaceae and Sapindaceae. Both the occurrence of osmophores and fragrance may have largely been overlooked in Anacardiaceae and Sapindales until now. Further studies are needed to better understand the nature and diversity of the interactions of their nectariferous flowers with their pollinators.
Collapse
Affiliation(s)
- Elisabeth Dantas Tölke
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CEP Campinas, São Paulo, Brazil
| | - Julien B Bachelier
- Institute of Biology, Structural and Functional Plant Diversity Group, Freie Universität Berlin, Altensteinstrasse, Berlin, Germany
| | - Elimar Alves de Lima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CEP Campinas, São Paulo, Brazil
| | - Marcelo José Pena Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP 05508-090 São Paulo, São Paulo, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP 05508-090 São Paulo, São Paulo, Brazil
| | - Sandra Maria Carmello-Guerreiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CEP Campinas, São Paulo, Brazil
| |
Collapse
|
43
|
Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? THE NEW PHYTOLOGIST 2018; 220:692-702. [PMID: 27604856 DOI: 10.1111/nph.14178] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/02/2016] [Indexed: 05/19/2023]
Abstract
All plants synthesize a suite of several hundred terpenoid compounds with roles that include phytohormones, protein modification reagents, anti-oxidants, and more. Different plant lineages also synthesize hundreds of distinct terpenoids, with the total number of such specialized plant terpenoids estimated in the scores of thousands. Phylogenetically restricted terpenoids are implicated in defense or in the attraction of beneficial organisms. A popular hypothesis is that the ability of plants to synthesize new compounds arose incrementally by selection when, as a result of gradual changes in their biotic partners and enemies, the 'old' plant compounds were no longer effective, a process dubbed the 'coevolutionary arms race'. Another hypothesis posits that often the sheer diversity of such compounds provides benefits that a single compound cannot. In this article, we review the unique features of the biosynthetic apparatus of terpenes in plants that facilitate the production of large numbers of distinct terpenoids in each species and how facile genetic and biochemical changes can lead to the further diversification of terpenoids. We then discuss evidence relating to the hypotheses that given ecological functions may be enhanced by the presence of mixtures of terpenes and that the acquisition of new functions by terpenoids may favor their retention once the original functions are lost.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Michigan, MI, 48109, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
44
|
Glenny WR, Runyon JB, Burkle LA. Drought and increased CO 2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. THE NEW PHYTOLOGIST 2018; 220:785-798. [PMID: 29575008 DOI: 10.1111/nph.15081] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/05/2018] [Indexed: 05/10/2023]
Abstract
Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were measured from individuals of four forb species subjected to drought or normal water availability, and elevated or ambient concentrations of CO2 in a factorial design. Pollinator visitation rates and community composition were observed in single-species and multi-species forb assemblages. Drought decreased floral visual traits and pollinator visitation rates but increased volatile organic compound (VOC) emissions, whereas elevated CO2 positively affected floral visual traits, VOC emissions and pollinator visitation rates. There was little evidence of interactive effects of drought and CO2 on floral traits and pollinator visitation. Interestingly, the effects of climate treatments on pollinator visitation depended on whether plants were in single- or multi-species assemblages. Components of climate change altered floral traits and pollinator visitation, but effects were modulated by plant community context. Investigating the response of floral traits, including VOCs, and context-dependency of pollinator attraction provides additional insights and may aid in understanding the overall effects of climate change on plant-pollinator interactions.
Collapse
Affiliation(s)
- William R Glenny
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Justin B Runyon
- Rocky Mountain Research Station, USDA Forest Service, Bozeman, MT, 59717, USA
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
45
|
Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Egan PA, Junker RR, Irwin RE, Stevenson PC. Chemistry of floral rewards: intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1335] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Evan C. Palmer-Young
- Department of Biology; University of Massachusetts at Amherst; Amherst Massachusetts 01003 USA
| | - Iain W. Farrell
- Royal Botanic Gardens, Kew; Richmond Surrey TW9 3AB United Kingdom
| | - Lynn S. Adler
- Department of Biology; University of Massachusetts at Amherst; Amherst Massachusetts 01003 USA
| | - Nelson J. Milano
- Department of Biology; University of Massachusetts at Amherst; Amherst Massachusetts 01003 USA
| | - Paul A. Egan
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; SE-23053 Alnarp Sweden
| | - Robert R. Junker
- Department of Bioscience; University of Salzburg; Hellbrunnerstrasse 34 5020 Salzburg Austria
| | - Rebecca E. Irwin
- Department of Applied Ecology; North Carolina State University; Raleigh North Carolina 27695 USA
| | - Philip C. Stevenson
- Royal Botanic Gardens, Kew; Richmond Surrey TW9 3AB United Kingdom
- University of Greenwich; Medway ME4 4 TB United Kingdom
| |
Collapse
|
46
|
Beck JJ, Alborn HT, Block AK, Christensen SA, Hunter CT, Rering CC, Seidl-Adams I, Stuhl CJ, Torto B, Tumlinson JH. Interactions Among Plants, Insects, and Microbes: Elucidation of Inter-Organismal Chemical Communications in Agricultural Ecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6663-6674. [PMID: 29895142 DOI: 10.1021/acs.jafc.8b01763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The last 2 decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe, and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires nontrivial planning. This planning can include an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system, correctly identifying and understanding unexpected observations that may occur during the experiment and thorough interpretation of the resultant data. This challenge of planning, performing, and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles but also include and understand the biochemistry of the plant's response to these stressors. In this review, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary, and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.
Collapse
Affiliation(s)
- John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Hans T Alborn
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology , Penn State University , University Park , Pennsylvania 16802 , United States
| | - Charles J Stuhl
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe) , 30772-00100 , Nairobi , Kenya
| | - James H Tumlinson
- Center for Chemical Ecology , Penn State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
47
|
Rusman Q, Lucas‐Barbosa D, Poelman EH. Dealing with mutualists and antagonists: Specificity of plant‐mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| |
Collapse
|
48
|
Community-wide integration of floral colour and scent in a Mediterranean scrubland. Nat Ecol Evol 2017; 1:1502-1510. [DOI: 10.1038/s41559-017-0298-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 07/27/2017] [Indexed: 01/27/2023]
|
49
|
Pragadheesh VS, Chanotiya CS, Rastogi S, Shasany AK. Scent from Jasminum grandiflorum flowers: Investigation of the change in linalool enantiomers at various developmental stages using chemical and molecular methods. PHYTOCHEMISTRY 2017; 140:83-94. [PMID: 28463687 DOI: 10.1016/j.phytochem.2017.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/21/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Jasminum species are among the most preferred fresh cut flowers in India since ancient times. The plant produces small and fragrant flowers, which are of great demand in the preparation of fragrant garlands and also in perfume industries. Floral volatile of Jasminum grandiflorum L. (Family: Oleaceae) was extracted using solid-phase microextraction and analyzed in enantioselective gas chromatography. Chemical classes of identified volatiles revealed the presence of terpenoids, phenylpropanoids, and fatty acid derivatives. Marker constituent of flower volatiles, linalool was selected for analytical characterization on ethyl- and acetyl-β-cyclodextrin stationary phase. (R)-(-)-Linalool was found as major enantiomer in volatiles of floral buds whereas (S)-(+)-linalool predominated in the volatiles of matured flowers. Simultaneously, a quantitative real-time PCR was performed to find the gene expression of linalool synthase to investigate the mechanism of enantiomeric inversion. The emission pattern of (R)-(-)-linalool at different flower developmental stages was well correlated (P = 0.01) with the gene expression of the cloned linalool synthase from J. grandiflorum. We observed that the successive change in (R)- to (S)-linalool ratio from bud to mature flower was mainly due to the enantio- specific transformation and temporal decline of (R)-linalool producing gene in J. grandiflorum. This enantiomeric change also leads to the difference in flower aroma. Furthermore, this is probably the reason behind consumer's acceptance for jasmine buds rather than bloomed flowers in cut flower segments.
Collapse
Affiliation(s)
- V S Pragadheesh
- Laboratory of Aromatic Plants and Chiral Separation, Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India; Academy of Scientific and Innovative Research, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India
| | - Chandan S Chanotiya
- Laboratory of Aromatic Plants and Chiral Separation, Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India; Academy of Scientific and Innovative Research, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India.
| | - Shubhra Rastogi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India
| |
Collapse
|
50
|
Plant survival and keystone pollinator species in stochastic coextinction models: role of intrinsic dependence on animal-pollination. Sci Rep 2017; 7:6915. [PMID: 28761144 PMCID: PMC5537349 DOI: 10.1038/s41598-017-07037-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022] Open
Abstract
Coextinction models are useful to understand community robustness to species loss and resilience to disturbances. We simulated pollinator extinctions in pollination networks by using a hybrid model that combined a recently developed stochastic coextinction model (SCM) for plant extinctions and a topological model (TCM) for animal extinctions. Our model accounted for variation in interaction strengths and included empirical estimates of plant dependence on pollinators to set seeds. The stochastic nature of such model allowed us determining plant survival to single (and multiple) extinction events, and identifying which pollinators (keystone species) were more likely to trigger secondary extinctions. Consistently across three different pollinator removal sequences, plant robustness was lower than in a pure TCM, and plant survival was more determined by dependence on the mutualism than by interaction strength. As expected, highly connected and dependent plants were the most sensitive to pollinator loss and collapsed faster in extinction cascades. We predict that the relationship between dependence and plant connectivity is crucial to determine network robustness to interaction loss. Finally, we showed that honeybees and several beetles were keystone species in our communities. This information is of great value to foresee consequences of pollinator losses facing current global change and to identify target species for effective conservation.
Collapse
|