1
|
Guo X, Li J, Li M, Zhou B, Zheng S, Li L. A molecular module connects abscisic acid with auxin signals to facilitate seasonal wood formation in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:4323-4336. [PMID: 38963121 DOI: 10.1111/pce.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Perennial trees have a recurring annual cycle of wood formation in response to environmental fluctuations. However, the precise molecular mechanisms that regulate the seasonal formation of wood remain poorly understood. Our prior study indicates that VCM1 and VCM2 play a vital role in regulating the activity of the vascular cambium by controlling the auxin homoeostasis of the cambium zone in Populus. This study indicates that abscisic acid (ABA) affects the expression of VCM1 and VCM2, which display seasonal fluctuations in relation to photoperiod changes. ABA-responsive transcription factors AREB4 and AREB13, which are predominantly expressed in stem secondary vascular tissue, bind to VCM1 and VCM2 promoters to induce their expression. Seasonal changes in the photoperiod affect the ABA amount, which is linked to auxin-regulated cambium activity via the functions of VCM1 and VCM2. Thus, the study reveals that AREB4/AREB13-VCM1/VCM2-PIN5b acts as a molecular module connecting ABA and auxin signals to control vascular cambium activity in seasonal wood formation.
Collapse
Affiliation(s)
- Xulei Guo
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Li
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Li
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhou
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Zheng
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laigeng Li
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Tian Q, He Z, Xiao S, Peng X, Lin P, Zhu X, Feng X. Intra-annual stem radial growth of Qinghai spruce and its environmental drivers in the Qilian Mountains, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170093. [PMID: 38224885 DOI: 10.1016/j.scitotenv.2024.170093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Tree stem radial growth could be used to estimate forest productivity, which plays a dominant role in the carbon sink of terrestrial ecosystems. However, it is still obscure how intra-annual stem radial growth is regulated by environmental variables. Here, we monitored Qinghai spruce stem radial growth over seven years and analyzed the environmental drivers of the intra-annual stem radial changes in the Qilian Mountains at low (2700 m) and high altitudes (3200 m). We found that stem radial growth initiated when the daily mean minimum air temperature reached 1.6oC, while the cessation of stem growth was unrelated to temperatures and water conditions. Initiations of stem growth at 2700 m were significantly earlier than that at 3200 m. Maximum growth rates were observed before the summer solstice at low altitude, whereas at high altitude, the majority of them occurred after the summer solstice. Most variability in annual stem increment (AI) can be explained by the rate (Rm) than by the duration of stem growth (∆t), and 78.9 % and 69.6 % of the variability in AI were attributable to Rm for the lower and upper site, respectively. Structural equation modeling revealed that precipitation (P) could both directly positively influence stem radial increment (SRI) and indirectly positively influence SRI through influencing relative humidity (RH), but the positive effect of P on SRI was higher at low altitude than at high altitude. Daily minimum air temperature (Tmin) was also the main direct diver of SRI, and the positive effect of Tmin on SRI was higher at high altitude than at low altitude. Considering the trends in climate warming and humidification over the past decades, climate changes would result in earlier initiation of Qinghai spruce stem growth and promote the growth through positive response to increased precipitation in low altitude and through elevated temperature in high altitude, respectively.
Collapse
Affiliation(s)
- Quanyan Tian
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China
| | - Zhibin He
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China.
| | - Shengchun Xiao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China; Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaomei Peng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengfei Lin
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China
| | - Xi Zhu
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China
| | - Xiangyan Feng
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li D, Li X, Li Z, Fu Y, Zhang J, Zhao Y, Wang Y, Liang E, Rossi S. Drought limits vegetation carbon sequestration by affecting photosynthetic capacity of semi-arid ecosystems on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168778. [PMID: 38008313 DOI: 10.1016/j.scitotenv.2023.168778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Drought is the driver for ecosystem production in semi-arid areas. However, the response mechanism of ecosystem productivity to drought remains largely unknown. In particular, it is still unclear whether drought limits the production via photosynthetic capacity or phenological process. Herein, we assess the effects of maximum seasonal photosynthesis, growing season length, and climate on the annual gross primary productivity (GPP) in vegetation areas of the Loess Plateau using multi-source remote sensing and climate data from 2001 to 2021. We found that maximum seasonal photosynthesis rather than growing season length dominates annual GPP, with above 90 % of the study area showing significant and positive correlation. GPP and maximum seasonal photosynthesis were positively correlated with self-calibrating Palmer Drought Severity Index (scPDSI), standardized precipitation and evapotranspiration index (SPEI) in >95 % of the study area. Structural equation model demonstrated that both drought indices contributed to the annual GPP by promoting the maximum seasonal photosynthesis. Total annual precipitation had a positive and significant effect on two drought indices, whereas the effects of temperature and radiation were not significant. Evidence from wood formation data also confirmed that low precipitation inhibited long-term carbon sequestration by decreasing the maximum growth rate in forests. Our findings suggest that drought limits ecosystem carbon sequestration by inhibiting vegetation photosynthetic capacity rather than phenology, providing a support for assessing the future dynamics of the terrestrial carbon cycle and guiding landscape management in semi-arid ecosystems.
Collapse
Affiliation(s)
- Dou Li
- College of Ecology, Lanzhou University, Lanzhou 730000, China; Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yang Fu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; College of Earth and Environment Science, Lanzhou University, Lanzhou 730000, China
| | - Jingtian Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yijin Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yafeng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| |
Collapse
|
4
|
Silvestro R, Zeng Q, Buttò V, Sylvain JD, Drolet G, Mencuccini M, Thiffault N, Yuan S, Rossi S. A longer wood growing season does not lead to higher carbon sequestration. Sci Rep 2023; 13:4059. [PMID: 36906726 PMCID: PMC10008533 DOI: 10.1038/s41598-023-31336-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
A reliable assessment of forest carbon sequestration depends on our understanding of wood ecophysiology. Within a forest, trees exhibit different timings and rates of growth during wood formation. However, their relationships with wood anatomical traits remain partially unresolved. This study evaluated the intra-annual individual variability in growth traits in balsam fir [Abies balsamea (L.) Mill.]. We collected wood microcores weekly from April to October 2018 from 27 individuals in Quebec (Canada) and prepared anatomical sections to assess wood formation dynamics and their relationships with the anatomical traits of the wood cells. Xylem developed in a time window ranging from 44 to 118 days, producing between 8 and 79 cells. Trees with larger cell production experienced a longer growing season, with an earlier onset and later ending of wood formation. On average, each additional xylem cell lengthened the growing season by 1 day. Earlywood production explained 95% of the variability in xylem production. More productive individuals generated a higher proportion of earlywood and cells with larger sizes. Trees with a longer growing season produced more cells but not more biomass in the wood. Lengthening the growing season driven by climate change may not lead to enhanced carbon sequestration from wood production.
Collapse
Affiliation(s)
- Roberto Silvestro
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada.
| | - Qiao Zeng
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Valentina Buttò
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Jean-Daniel Sylvain
- Direction de la recherche forestiere Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G1P3W8, Canada
| | - Guillaume Drolet
- Direction de la recherche forestiere Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G1P3W8, Canada
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - Nelson Thiffault
- Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, 1055, du P.E.P.S., Sainte-Foy Stn., P.O. Box 10380, Quebec, QC, G1V 4C7, Canada.,Centre for Forest Research, Faculty of Forestry, Geography and Geomatics, Université Laval, 2405 rue de la Terrasse, Quebec, QC, G1V 0A6, Canada
| | - Shaoxiong Yuan
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Sergio Rossi
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
5
|
Silvestro R, Sylvain JD, Drolet G, Buttò V, Auger I, Mencuccini M, Rossi S. Upscaling xylem phenology: sample size matters. ANNALS OF BOTANY 2022; 130:811-824. [PMID: 36018569 PMCID: PMC9758298 DOI: 10.1093/aob/mcac110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Upscaling carbon allocation requires knowledge of the variability at the scales at which data are collected and applied. Trees exhibit different growth rates and timings of wood formation. However, the factors explaining these differences remain undetermined, making samplings and estimations of the growth dynamics a complicated task, habitually based on technical rather than statistical reasons. This study explored the variability in xylem phenology among 159 balsam firs [Abies balsamea (L.) Mill.]. METHODS Wood microcores were collected weekly from April to October 2018 in a natural stand in Quebec, Canada, to detect cambial activity and wood formation timings. We tested spatial autocorrelation, tree size and cell production rates as explanatory variables of xylem phenology. We assessed sample size and margin of error for wood phenology assessment at different confidence levels. KEY RESULTS Xylem formation lasted between 40 and 110 d, producing between 12 and 93 cells. No effect of spatial proximity or size of individuals was detected on the timings of xylem phenology. Trees with larger cell production rates showed a longer growing season, starting xylem differentiation earlier and ending later. A sample size of 23 trees produced estimates of xylem phenology at a confidence level of 95 % with a margin of error of 1 week. CONCLUSIONS This study highlighted the high variability in the timings of wood formation among trees within an area of 1 km2. The correlation between the number of new xylem cells and the growing season length suggests a close connection between the processes of wood formation and carbon sequestration. However, the causes of the observed differences in xylem phenology remain partially unresolved. We point out the need to carefully consider sample size when assessing xylem phenology to explore the reasons underlying this variability and to allow reliable upscaling of carbon allocation in forests.
Collapse
Affiliation(s)
- Roberto Silvestro
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
| | - Jean-Daniel Sylvain
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Guillaume Drolet
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Valentina Buttò
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Isabelle Auger
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra, 08193, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
| |
Collapse
|
6
|
Chen Y, Rademacher T, Fonti P, Eckes‐Shephard AH, LeMoine JM, Fonti MV, Richardson AD, Friend AD. Inter-annual and inter-species tree growth explained by phenology of xylogenesis. THE NEW PHYTOLOGIST 2022; 235:939-952. [PMID: 35488501 PMCID: PMC9325364 DOI: 10.1111/nph.18195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/15/2022] [Indexed: 05/13/2023]
Abstract
Wood formation determines major long-term carbon (C) accumulation in trees and therefore provides a crucial ecosystem service in mitigating climate change. Nevertheless, we lack understanding of how species with contrasting wood anatomical types differ with respect to phenology and environmental controls on wood formation. In this study, we investigated the seasonality and rates of radial growth and their relationships with climatic factors, and the seasonal variations of stem nonstructural carbohydrates (NSC) in three species with contrasting wood anatomical types (red oak: ring-porous; red maple: diffuse-porous; white pine: coniferous) in a temperate mixed forest during 2017-2019. We found that the high ring width variability observed in both red oak and red maple was caused more by changes in growth duration than growth rate. Seasonal radial growth patterns did not vary following transient environmental factors for all three species. Both angiosperm species showed higher concentrations and lower inter-annual fluctuations of NSC than the coniferous species. Inter-annual variability of ring width varied by species with contrasting wood anatomical types. Due to the high dependence of annual ring width on growth duration, our study highlights the critical importance of xylem formation phenology for understanding and modelling the dynamics of wood formation.
Collapse
Affiliation(s)
- Yizhao Chen
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
| | - Tim Rademacher
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
- Harvard ForestHarvard UniversityPetershamMA01366USA
- Institut des Sciences de la Forêt TempéréeUniversité du Québec en OutaouaisRiponQCJOV1V0Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSLBirmensdorfCH‐8903Switzerland
| | - Annemarie H. Eckes‐Shephard
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundS‐223 62Sweden
| | - James M. LeMoine
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
| | - Marina V. Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSLBirmensdorfCH‐8903Switzerland
- Institute of Ecology and GeographySiberian Federal UniversitySvobodny pr 79Krasnoyarsk660041Russia
| | - Andrew D. Richardson
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
| | - Andrew D. Friend
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
| |
Collapse
|
7
|
The Impact of Climate and Adaptative Forest Management on the Intra-Annual Growth of Pinus halepensis Based on Long-Term Dendrometer Recordings. FORESTS 2022. [DOI: 10.3390/f13060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Future climate predictions for the Mediterranean area include prolonged droughts and an increase in the frequency of extreme events. Silvicultural modification of stand density can buffer the response of tree growth to changes in climate by enhancing soil water availability. We analyzed the stem growth dynamics of Pinus halepensis, including the days of the year when 25%, 50% and 75% of the intra-annual basal growth was achieved, considering two different social statuses (suppressed and dominant) under four different thinning intensities (15%, 30% and 45% removal of the basal area) for 8 years, based on biweekly band dendrometer recordings. The moment the trees reached 25% of the intra-annual basal growth was significantly influenced by the amount of precipitation accumulated during the previous winter. On the other hand, the moment the trees reached 75% of the intra-annual basal growth was significantly influenced by water availability in a shorter term, which also affected the length of the growing period. Modification of competition through thinning showed a significantly positive impact on growth, causing a delayed attainment of 50% of the intra-annual basal growth. These results imply valuable information about forest dynamics that will support forest managers’ decisions dealing with low water-availability in forests.
Collapse
|
8
|
D’Orangeville L, Itter M, Kneeshaw D, Munger JW, Richardson AD, Dyer JM, Orwig DA, Pan Y, Pederson N. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. TREE PHYSIOLOGY 2022; 42:304-316. [PMID: 34312673 PMCID: PMC8842417 DOI: 10.1093/treephys/tpab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.
Collapse
Affiliation(s)
- Loïc D’Orangeville
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
- Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada
| | - Malcolm Itter
- Research Center for Ecological Change, University of Helsinki, P.O. Box 4, 00014, Finland
- Department of Environmental Conservation, University of Massachusetts Amherst, 225 Holdsworth Hall, Amherst MA 01003, USA
| | - Dan Kneeshaw
- Center for Forest Research, Université du Québec à Montréal, CP 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S. Knoles Dr., Flagstaff, AZ 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, P.O. Box 5620, Flagstaff, AZ 86011, USA
| | - James M Dyer
- Department of Geography, Ohio University, Clippinger 122, Athens, OH 45701, USA
| | - David A Orwig
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| | - Yude Pan
- U.S. Department of Agriculture Forest Service, 11 Campus Blvd #200, Newtown Square, PA 19073, USA
| | - Neil Pederson
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| |
Collapse
|
9
|
Abstract
More than 60% of tree phytomass is concentrated in stem wood, which is the result of periodic activity of the cambium. Nevertheless, there are few attempts to quantitatively describe cambium dynamics. In this study, we develop a state-of-the-art band model of cambium development, based on the kinetic heterogeneity of the cambial zone and the connectivity of the cell structure. The model describes seasonal cambium development based on an exponential function under climate forcing which can be effectively used to estimate the seasonal cell production for individual trees. It was shown that the model is able to simulate different cell production for fast-, middle- and slow-growing trees under the same climate forcing. Based on actual measurements of cell production for two contrasted trees, the model effectively reconstructed long-term cell production variability (up to 75% of explained variance) of both tree-ring characteristics over the period 1937−2012. The new model significantly simplifies the assessment of seasonal cell production for individual trees of a studied forest stand and allows the entire range of individual absolute variability in the ring formation of any tree in the stand to be quantified, which can lead to a better understanding of the anatomy of xylem formation, a key component of the carbon cycle.
Collapse
|
10
|
Kara F, Keleş SÖ, Loewenstein EF. Development and anatomical traits of black pine on an abandoned agricultural land compared to forested areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:621. [PMID: 34476631 DOI: 10.1007/s10661-021-09403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Global acreage of forested lands has increased in some countries. At least some of this increase is due to the natural conversion of abandoned agricultural lands into forests. However, little is known about how these new stands develop on abandoned agricultural lands in comparison with natural regeneration of existing forests. Specifically, knowledge of how black pine (Pinus nigra Arnold) naturally establishes and develops on abandoned agricultural lands is limited. In this study, we examined the density and growth of black pine saplings as well as some morphological and anatomical characteristics on an abandoned agricultural land (AAS). These data were compared with those observed in a naturally regenerated stand (NRS), and in a forest opening (FOS). The greatest sapling density was observed in the NRS site, while sapling growth and stem biomass were higher in AAS followed by NRS and FOS. Moreover, each study site exhibited site-specific morphological and anatomical traits in their saplings. Our findings showed that site treatments and overstory openness would both play crucial role for establishment and development of black pine.
Collapse
Affiliation(s)
- Ferhat Kara
- Faculty of Forestry, Kastamonu University, 37100, Kastamonu, Turkey.
| | | | | |
Collapse
|
11
|
Marchand LJ, Dox I, Gričar J, Prislan P, Van den Bulcke J, Fonti P, Campioli M. Timing of spring xylogenesis in temperate deciduous tree species relates to tree growth characteristics and previous autumn phenology. TREE PHYSIOLOGY 2021; 41:1161-1170. [PMID: 33367844 DOI: 10.1093/treephys/tpaa171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We explored the timing of spring xylogenesis and its potential drivers in homogeneous mature forest stands in a temperate European region. Three species with contrasting leaf development dynamics and wood anatomy were studied: European beech, silver birch and pedunculate oak. Detailed phenological observations of xylogenesis and leaf phenology were performed from summer 2017 until spring 2018. Cambium reactivation (CR) occurred before the buds of oak and birch were swollen, whereas these two phenological phases were concurrent for beech. On the other hand, initial earlywood vessels were fully differentiated (FDIEV) after leaf unfolding for all three species. Timing of CR was correlated to average ring-width of the last 10 years (2008-17), tree diameter and, partially, with tree age. In addition, the timing of FDIEV was correlated to tree age and previous year's autumn phenology, i.e., timing of wood growth cessation and onset of leaf senescence. Multivariate models could explain up to 68% of the variability of CR and 55% of the variability of FDIEV. In addition to the 'species' factor, the variability could be explained by ca 30% by tree characteristics and previous year's autumn phenology for both CR and FDIEV. These findings are important to better identify which factors (other than environment) can be driving the onset of the growing season, and highlight the influence of tree growth characteristics and previous year's phenology on spring wood phenology, wood formation and, potentially, forest production.
Collapse
Affiliation(s)
- Lorène Julia Marchand
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
- UMR 6553 ECOBIO (Ecosystèmes, Biodiversité, Evolution), Université de Rennes 1, CNRS, 263 Av. du Général Leclerc, 35042 Rennes, France
| | - Inge Dox
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
| | - Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Patrick Fonti
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matteo Campioli
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
| |
Collapse
|
12
|
Oberhuber W, Landlinger-Weilbold A, Schröter DM. Triggering Bimodal Radial Stem Growth in Pinus sylvestris at a Drought-Prone Site by Manipulating Stem Carbon Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:674438. [PMID: 34122490 PMCID: PMC8193578 DOI: 10.3389/fpls.2021.674438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
A bimodal radial growth (RG) pattern, i.e., growth peaks in spring and autumn, was repeatedly found in trees in the Mediterranean regions, where summer drought causes reduction or cessation of cambial activity. In a dry inner Alpine valley of the Eastern Alps (Tyrol, Austria, 750 m asl), Pinus sylvestris shows unimodal RG with onset and cessation of cambial activity in early April and late June, respectively. A resumption of cambial activity after intense summer rainfall was not observed in this region. In a field experiment, we tested the hypothesis that early cessation of cambial activity at this drought-prone site is an adaptation to limited water availability leading to an early and irreversible switch of carbon (C) allocation to belowground. To accomplish this, the C status of young P. sylvestris trees was manipulated by physical blockage of phloem transport (girdling) 6 weeks after cessation of cambial cell division. Influence of manipulated C availability on RG was recorded by stem dendrometers, which were mounted above the girdling zone. In response to blockage of phloem flow, resumption of cambial activity was detected above girdling after about 2 weeks. Although the experimentally induced second growth surge lasted for the same period as in spring (c. 2 months), the increment was more than twice as large due to doubling of daily maximum RG rate. After girdling, wood anatomical traits above girdling no longer showed any significant differences between earlywood and latewood tracheids indicating pronounced effects of C availability on cell differentiation. Below girdling, no reactivation of cambial activity occurred, but cell wall thickness of last formed latewood cell was reduced due to lack of C supply after girdling. Intense RG resumption after girdling indicates that cessation of cambial activity can be reversed by manipulating C status of the stem. Hence, our girdling study yielded strong support for the hypothesis that belowground organs exert high C sink strengths on the drought-prone study site. Furthermore, this work highlights the need of in-depth experimental studies in order to understand the interactions between endogenous and exogenous factors on cambial activity and xylem cell differentiation more clearly.
Collapse
Affiliation(s)
- Walter Oberhuber
- Department of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
13
|
Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. FORESTS 2021. [DOI: 10.3390/f12030331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change will affect radial growth patterns of trees, which will result in different forest productivity, wood properties, and timber quality. While many studies have been published on xylem phenology and anatomy lately, little is known about the phenology of earlywood and latewood formation, also in relation to cambial phenology. Even less information is available for phloem. Here, we examined year-to-year variability of the transition dates from earlywood to latewood and from early phloem to late phloem in Norway spruce (Picea abies) from three temperate sites, two in Slovenia and one in the Czech Republic. Data on xylem and phloem formation were collected during 2009–2011. Sensitivity analysis was performed to determine the specific contribution of growth rate and duration on wood and phloem production, separately for early and late formed parts. We found significant differences in the transition date from earlywood to latewood between the selected sites, but not between growth seasons in trees from the same site. It occurred in the first week of July at PAN and MEN and more than two weeks later at RAJ. The duration of earlywood formation was longer than that of latewood formation; from 31.4 days at PAN to 61.3 days at RAJ. In phloem, we found differences in transition date from early phloem to late phloem also between the analysed growth seasons; from 2.5 weeks at PAN to 4 weeks at RAJ Compared to the transition from earlywood to latewood the transition from early phloem to late phloem occurred 25–64 days earlier. There was no significant relationship between the onset of cambial cell production and the transition dates. The findings are important to better understand the inter-annual variability of these phenological events in spruce from three contrasting temperate sites, and how it is reflected in xylem and phloem anatomy.
Collapse
|
14
|
Effects of Intra-Seasonal Drought on Kinetics of Tracheid Differentiation and Seasonal Growth Dynamics of Norway Spruce along an Elevational Gradient. FORESTS 2021. [DOI: 10.3390/f12030274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Research Highlights: Our results provide novel perspectives on the effectiveness and collapse of compensatory mechanisms of tracheid development of Norway spruce during intra-seasonal drought and the environmental control of intra-annual density fluctuations. Background and Objectives: This study aimed to compare and integrate complementary methods for investigating intra-annual wood formation dynamics to gain a better understanding of the endogenous and environmental control of tree-ring development and the impact of anticipated climatic changes on forest growth and productivity. Materials and Methods: We performed an integrated analysis of xylogenesis observations, quantitative wood anatomy, and point-dendrometer measurements of Norway spruce (Picea abies (L.) Karst.) trees growing along an elevational gradient in South-western Germany during a growing season with an anomalous dry June followed by an extraordinary humid July. Results: Strong endogenous control of tree-ring formation was suggested at the highest elevation where the decreasing rates of tracheid enlargement and wall thickening during drought were effectively compensated by increased cell differentiation duration. A shift to environmental control of tree-ring formation during drought was indicated at the lowest elevation, where we detected absence of compensatory mechanisms, eventually stimulating the formation of an intra-annual density fluctuation. Transient drought stress in June also led to bimodal patterns and decreasing daily rates of stem radial displacement, radial xylem growth, and woody biomass production. Comparing xylogenesis data with dendrometer measurements showed ambivalent results and it appears that, with decreasing daily rates of radial xylem growth, the signal-to-noise ratio in dendrometer time series between growth and fluctuations of tree water status becomes increasingly detrimental. Conclusions: Our study provides new perspectives into the complex interplay between rates and durations of tracheid development during dry-wet cycles, and, thereby, contributes to an improved and mechanistic understanding of the environmental control of wood formation processes, leading to the formation of intra-annual density fluctuations in tree-rings of Norway spruce.
Collapse
|
15
|
Xylem Phenology and Growth Response of European Beech, Silver Fir and Scots Pine along an Elevational Gradient during the Extreme Drought Year 2018. FORESTS 2021. [DOI: 10.3390/f12010075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Highlights: European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) displayed parabolic elevational trends of the cessation of xylem cell differentiation phases. Xylem phenology and growth rates of Scots pine (Pinus sylvestris L.) appeared to be less influenced by the 2018 drought, whereas beech reduced growth on the lowest elevation and fir seemed negatively affected in general. Background: The year 2018 was characterized by multiple drought periods and heat waves during the growing season. Our aim was to understand species-specific responses of xylem phenology and growth to drought and how this effect was modified along an elevational gradient. Materials and Methods: We sampled microcores and increment cores along an elevational gradient in the southwestern Black Forest (SW Germany) region and analyzed xylem phenology and growth response to drought. Results: Termination of cell enlargement and lignification occurred earliest in beech and latest in pine. Beech had the highest growth rates but shortest growth durations, fir achieved moderate rates and medium durations and pine had lowest growth rates despite long growth durations. In contrast to pine, onsets of cell differentiation phases of fir and beech did not show clear linear relationships with elevation. Cessation of cell production and lignification of beech and fir followed a parabolic elevational trend and occurred earliest on low elevations, whereas pine showed no changes with elevation. Tree-ring width, generally, depended 3–4 times more on the growth rate than on growth duration. Conclusions: The possibly drought-induced early cessation of cell differentiation and considerable growth reduction of beech appeared to be most severe on the lowest elevation. In comparison, growth reductions of fir were larger and seemed independent from elevation. We found evidence, that productivity might be severely affected at lower elevations, whereas at high elevations wood production might not equally benefit during global warming.
Collapse
|
16
|
D'Andrea E, Rezaie N, Prislan P, Gričar J, Collalti A, Muhr J, Matteucci G. Frost and drought: Effects of extreme weather events on stem carbon dynamics in a Mediterranean beech forest. PLANT, CELL & ENVIRONMENT 2020; 43:2365-2379. [PMID: 32705694 DOI: 10.1111/pce.13858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015-2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.
Collapse
Affiliation(s)
- Ettore D'Andrea
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
| | - Negar Rezaie
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), Monterotondo Scalo, Rome, Italy
| | | | | | - Alessio Collalti
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Perugia, Perugia, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Jan Muhr
- Bioclimatology, University of Göttingen, Göttingen, Germany
- Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Giorgio Matteucci
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
- Institute for BioEconomy (CNR-IBE), National Research Council of Italy, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
17
|
Rahman MH, Kudo K, Yamagishi Y, Nakamura Y, Nakaba S, Begum S, Nugroho WD, Arakawa I, Kitin P, Funada R. Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci Rep 2020; 10:14341. [PMID: 32868796 PMCID: PMC7458908 DOI: 10.1038/s41598-020-70356-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
Temperature is an important factor for the cambial growth in temperate trees. We investigated the way daily temperatures patterns (maximum, average and minimum) from late winter to early spring affected the timing of cambial reactivation and xylem differentiation in stems of the conifer Chamaecyparis pisifera. When the daily temperatures started to increase earlier from late winter to early spring, cambial reactivation occurred earlier. Cambium became active when it achieves the desired accumulated temperature above the threshold (cambial reactivation index; CRI) of 13 °C in 11 days in 2013 whereas 18 days in 2014. This difference in duration required for achieving accumulated temperature can be explained with the variations in the daily temperature patterns in 2013 and 2014. Our formula for calculation of CRI predicted the cambial reactivation in 2015. A hypothetical increase of 1-4 °C to the actual daily maximum temperatures of 2013 and 2014 shifted the timing of cambial reactivation and had different effects on cambial reactivation in the two consecutive years because of variations in the actual daily temperatures patterns. Thus, the specific annual pattern of accumulation of temperature from late winter to early spring is a critical factor in determining the timing of cambial reactivation in trees.
Collapse
Affiliation(s)
- Md Hasnat Rahman
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
| | - Kayo Kudo
- Institute of Wood Technology, Akita Prefectural University, Noshiro, Akita, 016-0876, Japan
| | - Yusuke Yamagishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yusuke Nakamura
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Satoshi Nakaba
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
| | - Shahanara Begum
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Widyanto Dwi Nugroho
- Faculty of Forestry, Universitas Gadjah Mada, Jalan Agro No. 1 Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Izumi Arakawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
| | - Peter Kitin
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ryo Funada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan.
| |
Collapse
|
18
|
Peters RL, von Arx G, Nievergelt D, Ibrom A, Stillhard J, Trotsiuk V, Mazurkiewicz A, Babst F. Axial changes in wood functional traits have limited net effects on stem biomass increment in European beech (Fagus sylvatica). TREE PHYSIOLOGY 2020; 40:498-510. [PMID: 32031220 PMCID: PMC7182063 DOI: 10.1093/treephys/tpaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
During the growing season, trees allocate photoassimilates to increase their aboveground woody biomass in the stem (ABIstem). This 'carbon allocation' to structural growth is a dynamic process influenced by internal and external (e.g., climatic) drivers. While radial variability in wood formation and its resulting structure have been intensively studied, their variability along tree stems and subsequent impacts on ABIstem remain poorly understood. We collected wood cores from mature trees within a fixed plot in a well-studied temperate Fagus sylvatica L. forest. For a subset of trees, we performed regular interval sampling along the stem to elucidate axial variability in ring width (RW) and wood density (ρ), and the resulting effects on tree- and plot-level ABIstem. Moreover, we measured wood anatomical traits to understand the anatomical basis of ρ and the coupling between changes in RW and ρ during drought. We found no significant axial variability in ρ because an increase in the vessel-to-fiber ratio with smaller RW compensated for vessel tapering towards the apex. By contrast, temporal variability in RW varied significantly along the stem axis, depending on the growing conditions. Drought caused a more severe growth decrease, and wetter summers caused a disproportionate growth increase at the stem base compared with the top. Discarding this axial variability resulted in a significant overestimation of tree-level ABIstem in wetter and cooler summers, but this bias was reduced to ~2% when scaling ABIstem to the plot level. These results suggest that F. sylvatica prioritizes structural carbon sinks close to the canopy when conditions are unfavorable. The different axial variability in RW and ρ thereby indicates some independence of the processes that drive volume growth and wood structure along the stem. This refines our knowledge of carbon allocation dynamics in temperate diffuse-porous species and contributes to reducing uncertainties in determining forest carbon fixation.
Collapse
Affiliation(s)
- Richard L Peters
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Georg von Arx
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Daniel Nievergelt
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Andreas Ibrom
- Technical University of Denmark (DTU), Department of Environmental Engineering, Air, Land and Water Resources Section, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Jonas Stillhard
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Volodymyr Trotsiuk
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcka Cesta 1176, CZ-165 21 Praha 6-Suchdol, Czech Republic
| | - Aleksandra Mazurkiewicz
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| | - Flurin Babst
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Department of Ecology, W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland
| |
Collapse
|
19
|
Vieira J, Carvalho A, Campelo F. Tree Growth Under Climate Change: Evidence From Xylogenesis Timings and Kinetics. FRONTIERS IN PLANT SCIENCE 2020; 11:90. [PMID: 32133022 PMCID: PMC7040628 DOI: 10.3389/fpls.2020.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 05/31/2023]
Abstract
Tree growth is one of the most studied aspects of tree biology, particularly secondary growth. In the Mediterranean region, cambial activity is mostly determined by water availability. Climatic projections for the Mediterranean region predict more frequent and intense droughts, and longer periods without precipitation. To investigate tree growth under the predicted scenarios of climate change, a water manipulation experiment was conducted in a maritime pine stand (Pinus pinaster Aiton). In 2017, fifteen trees were divided into three groups: control, rain exclusion, and irrigation. Drought conditions were simulated by installing a continuous plastic sheet on the forest floor from March to September. Trees under irrigation treatment were watered twice a week in September. Cambial activity and xylem formation was monitored every 10 days from February 2017 until March 2018. Cell production was maximal around the spring equinox in all treatments. Trees under rain exclusion decreased cell production rates, xylogenesis duration, and latewood cell wall thickness. The extra irrigation in September did not produce noticeable differences in xylogenesis compared to trees in the control treatment. The synchronization of maximum cambial division rates around the vernal equinox (spring) could allow Mediterranean trees to mitigate the impact of summer drought. With the predicted increase in drought intensity and frequency, lower tree productivity, carbon sequestration, and wood biomass are expected.
Collapse
|
20
|
Seasonal Drought Effects on Intra-Annual Stem Growth of Taiwan Pine along an Elevational Gradient in Subtropical China. FORESTS 2019. [DOI: 10.3390/f10121128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of intra-annual stem growth dynamics across environmental gradients is important for advancing our ability to understand the adaptability and vulnerability of subtropical tree species to future climate change. To assess the effects of seasonal drought on intra-annual stem growth, stem radial variation of Taiwan pine (Pinus taiwanensis Hayata) was monitored with band dendrometers for two years along an elevation transect from 921 to 1402 m in the Lushan Mountains, a transect that covers the contrasting climatic growing conditions for Taiwan pine in southeastern China. We found that the onset of stem growth was nearly synchronous across the transect, in early April 2017 and in late March 2018, whereas large elevational differences were observed for the end of the growing season, which was much earlier at lower elevations. Tree stems frequently rehydrated during the dry growing seasons at the two higher elevations, suggesting that seasonal drought had minor influence on the offset of high-elevation stem growth. A substantial and continuous tree water deficit of low-elevation Taiwan pine was detected during dry seasons, leading to an early growth cessation in late July in both years. Tree water status (reflected by tree water deficit) revealed a higher sensitivity to precipitation and soil water content across wet- and dry-seasons at the lowest elevation than at high elevations, indicating that low-elevation stem radial growth was highly dependent on moisture variables over the whole growing season. Due to the influences of seasonal drought on growth cessation and rates, Taiwan pine produced a rather narrow annual growth at the lowest site, whereas high-elevation Taiwan pine could benefit from the optimal wet-season environmental conditions and the reactivation of cambial activity during dry seasons. Our findings suggest that the more frequent and intensive drought episodes in the future will reduce tree growth of Taiwan pine at the dry edge, probably resulting in upward shifting of the optimal elevation for Taiwan pine in subtropical China.
Collapse
|
21
|
Li X, Rossi S, Liang E. The onset of xylogenesis in Smith fir is not related to outer bark thickness. AMERICAN JOURNAL OF BOTANY 2019; 106:1386-1391. [PMID: 31529807 DOI: 10.1002/ajb2.1360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The resumption of stem growth varies across the ontogenetic development of trees. Compared with younger trees, older ones have thicker outer bark with a temperature-insulating effect that could potentially prevent the stem from warming in the spring. However, the question of whether xylogenesis in old trees is influenced by the thick bark still remains unresolved. METHODS We investigated the onset of xylogenesis across the ontogenetic development of Smith fir (Abies georgei var. smithii) trees in the Sygera Mountains, southeastern Tibetan Plateau. The outer bark of older trees was also removed. Xylogenesis was monitored in microcores we collected every 3 days during May and June in 2017. RESULTS Xylogenesis began in late May in young (<50 yr) and mature (50-100 yr) trees, 1 week earlier than in adult (>100-150 yr) and old (>150-200 yr) trees. Older (>200 yr) trees had the latest onset of xylogenesis, 2 weeks after young trees. The resumption of xylogenesis was similar between the control and bark-removed trees. CONCLUSIONS Growth resumption was delayed in older and bigger trees. Outer bark did not affect the onset of xylogenesis, which indicated that the delayed resumption of growth during the lifespan of trees could be more related to endogenous factors than to an insulating effect of the thick bark of older individuals.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Laboratoire d'Écologie Végétale, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi, (QC), G7H2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
22
|
Monthly Radial Growth Model of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.), and the Relationships between Radial Increment and Climate Factors. FORESTS 2019. [DOI: 10.3390/f10090757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is the most commonly grown afforestation species in subtropical China. It is essential that we understand the response of radial tree growth to climate factors, yet most experiments have been conducted based on total annual growth and not on monthly dynamics, which alone can detail the influence of climatic factors. In this study, we aimed to: (i) construct a monthly growth model and compare the growth rate of different social statuses of trees, and (ii) determine the response of radial increments of different social statuses to climate factors. The radial growth was monitored monthly during four years using manual band dendrometers (MBD). The data were fitted using the Gompertz function. Within-stand differences in the social status of Chinese firs resulted in growing period and growth rate length variations. The radial growth began in March, and suppressed trees—especially groups of AS1 and BS1 (suppressed trees of classes I in sites A and B)—stopped in September, whereas dominant and intermediate trees were delayed and stopped in November. The periodic monthly increment curve showed double peaks, and the maximum growth rate occurred in April and August. The peak values were affected by social status, which showed that dominant trees had the greatest radial growth rates. S-shaped Gompertz meant that monthly increment models were successfully fitted to our data, which explained more than 98% of the variation in increment data and passed the uncertainty test. Temperature and precipitation had a significant influence on radial growth, and the correlation between radial growth and air temperature was the highest. Our results also revealed that temperatures explain the double-peak features of Chinese fir. The limiting factors of radial growth changed with the seasons and were mainly affected by temperature and precipitation, which should be considered in predicting the response of tree growth to climate change.
Collapse
|
23
|
Forest type and height are important in shaping the altitudinal change of radial growth response to climate change. Sci Rep 2019; 9:1336. [PMID: 30718624 PMCID: PMC6362071 DOI: 10.1038/s41598-018-37823-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/13/2018] [Indexed: 11/12/2022] Open
Abstract
Tree radial growth is widely found to respond differently to climate change across altitudinal gradients, but the relative roles of biotic factors (e.g. forest type, height and density) vs. climate gradient remain unclear. We sampled tree rings from 15 plots along a large altitudinal gradient in northeast China, and examined how climate gradient, forest type, height, tree size and density affect: (1) temporal growth variability [mean sensitivity (MS) and standard deviation (SD) of the chronologies], and (2) the relationship of ring width indices (RWI) with historical climate. We used BIC based model selection and variable importance to explore the major drivers of their altitudinal patterns. The results showed that: both growth variability and RWI-climate relationships changed significantly with altitude. Forest height was the most important predictor for altitudinal changes of MS and SD. For RWI-climate relationships, forest type was more important than climate gradient, while height and stem density were weak but necessary predictors. We showed that the altitudinal difference in growth response to climate change cannot be explained by climate gradient alone, and highlight the necessity to examine the influence of biotic factors (which covary with climate across geographic gradient) to better understand forest response to climate change.
Collapse
|
24
|
Belmecheri S, Wright WE, Szejner P, Morino KA, Monson RK. Carbon and oxygen isotope fractionations in tree rings reveal interactions between cambial phenology and seasonal climate. PLANT, CELL & ENVIRONMENT 2018; 41:2758-2772. [PMID: 29995977 DOI: 10.1111/pce.13401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
We developed novel approaches for using the isotope composition of tree-ring subdivisions to study seasonal dynamics in tree-climate relations. Across a 30-year time series, the δ13 C and δ18 O values of the earlywood (EW) cellulose in the annual rings of Pinus ponderosa reflected relatively high intrinsic water-use efficiencies and high evaporative fractionation of 18 O/16 O, respectively, compared with the false latewood (FLW), summerwood (SW), and latewood (LW) subdivisions. This result is counterintuitive, given the spring origins of the EW source water and midsummer origins of the FLW, SW, and LW. With the use of the Craig-Gordon (CG), isotope-climate model revealed that the isotope ratios in all of the ring subdivision are explained by the existence of seasonal lags, lasting several weeks, between the initial formation of tracheids and the production of cellulosic secondary cell walls during maturation. In contrast to some past studies, modification of the CG model according to conventional methods to account for mixing of needle water between fractionated and nonfractionated sources did not improve the accuracy of predictions. Our results reveal new potential in the use of tree-ring isotopes to reconstruct past intra-annual tree-climate relations if lags in cambial phenology are reconciled with isotope ratio observations and included in theoretical treatments.
Collapse
Affiliation(s)
- Soumaya Belmecheri
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - William E Wright
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - Paul Szejner
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona
| | - Kiyomi A Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - Russell K Monson
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
25
|
Yasuda Y, Utsumi Y, Tan X, Tashiro N, Fukuda K, Koga S. Suppression of growth and death of meristematic tissues in Abies sachalinensis under strong shading: comparisons between the terminal bud, the terminally lateral bud and the stem cambium. JOURNAL OF PLANT RESEARCH 2018; 131:817-825. [PMID: 29936574 DOI: 10.1007/s10265-018-1051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The suppression of apical growth and radial trunk growth in trees under shade is a key factor in the competition mechanism among individuals in natural and artificial forests. However, the timing of apical and radial growth suppression after shading and the physiological processes involved have not been evaluated precisely. Twenty-one Abies sachalinensis seedlings of 5-years-old were shaded artificially under a relative light intensity of 5% for 70 days from August 1, and the histological changes of the terminal bud and terminally lateral bud of terminal leader and the cambial zone of the trunk base were analyzed periodically. In shade-grown trees, cell death of the leaf primordia in a terminal bud of terminal leader was observed in one of the three samples after 56 and 70 days of shading, whereas the leaf primordia in a terminal bud of terminal leader in all open-grown trees survived until the end of the experiment. In addition, the leaf primordia of the terminally lateral buds of terminal leader retained their cell nuclei until the end of the experiment. No histological changes were observed in the cambial cells after shading, but the shade-grown trees had less cambial activity than the open-grown trees through the experiment. Strong shading appeared to inhibit the formation and survival of cells in the terminal bud of terminal leader rather than the terminally lateral buds of terminal leader and the cambium. The suppression of the terminal bud growth and elongation of the surviving lateral buds would result in an umbrella-shaped crown under shade.
Collapse
Affiliation(s)
- Yuko Yasuda
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yasuhiro Utsumi
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Xianfang Tan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Naoaki Tashiro
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shinya Koga
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| |
Collapse
|
26
|
Rathgeber CBK, Santenoise P, Cuny HE. CAVIAR: an R package for checking, displaying and processing wood-formation-monitoring data. TREE PHYSIOLOGY 2018; 38:1246-1260. [PMID: 29788468 DOI: 10.1093/treephys/tpy054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/24/2018] [Indexed: 05/17/2023]
Abstract
In the last decade, the pervasive question of climate change impacts on forests has revived investigations on intra-annual dynamics of wood formation, involving disciplines such as plant ecology, tree physiology and dendrochronology. This resulted in the creation of many research groups working on this topic worldwide and a rapid increase in the number of studies and publications. Wood-formation-monitoring studies are generally based on a common conceptual model describing xylem cell formation as the succession of four differentiation phases (cell division, cell enlargement, cell wall thickening and mature cells). They generally use the same sampling techniques, sample preparation methods and anatomical criteria to separate between differentiation zones and discriminate and count forming xylem cells, resulting in very similar raw data. However, the way these raw data are then processed, producing the elaborated data on which statistical analyses are performed, still remains quite specific to each individual study. Thereby, despite very similar raw data, wood-formation-monitoring studies yield results that are still quite difficult to compare. CAVIAR-an R package specifically dedicated to the verification, visualization and manipulation of wood-formation-monitoring data-can help to improve this situation. Initially, CAVIAR was built to provide efficient algorithms to compute critical dates of wood formation phenology for conifers growing in temperate and cold environments. Recently, we developed it further to check, display and process wood-formation-monitoring data. Thanks to new and upgraded functions, raw data can now be consistently verified, standardized and modelled (using logistic regressions and Gompertz functions), in order to describe wood phenology and intra-annual dynamics of tree-ring formation. We believe that CAVIAR will help strengthening the science of wood formation dynamics by effectively contributing to the standardization of its concepts and methods, making thereby possible the comparison between data and results from different studies.
Collapse
Affiliation(s)
| | | | - Henri E Cuny
- IGN, Direction Inter-Régionale Nord-Est, Champigneulles, France
| |
Collapse
|
27
|
Huang JG, Guo X, Rossi S, Zhai L, Yu B, Zhang S, Zhang M. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. TREE PHYSIOLOGY 2018; 38:1225-1236. [PMID: 29757427 DOI: 10.1093/treephys/tpy046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
China's subtropical forests play a vital role in sequestering global carbon; therefore, it is critical to conduct a precise investigation of intra-annual wood formation in these ecosystems to clarify the mechanisms behind this. Two field experiments were established in Chinese subtropical forests to monitor weekly the intra-annual xylem formation of Pinus massoniana Lamb. from January to December 2015, using the recently developed micro-sampling approach. The effects of climate on wood formation were also assessed using linear or mixed models. Results indicate that there is an inactive period that might be semi-dormancy in subtropical pine ecosystems in January compared with the complete dormancy in temperate and boreal ecosystems and the fully active or short-term dormancy in tropical ecosystems. The duration of xylem formation of Chinese red pine in subtropical China in 2015 was 4-6 months longer than temperate and boreal forests. Moreover, trees were found to grow better during the dry season than the wet season, indicating that the Chinese red pine ecosystem is more strongly regulated by net energy than by environmental factors. Our findings indicate that China's subtropical pine forests may benefit from the expected longer dry seasons, possibly leading to better forest growth and improved carbon sequestration under continued climate warming.
Collapse
Affiliation(s)
- Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiali Guo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sergio Rossi
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi (QC), Canada
| | - Lihong Zhai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Biyun Yu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingfang Zhang
- University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
28
|
Zhang J, Gou X, Pederson N, Zhang F, Niu H, Zhao S, Wang F. Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. TREE PHYSIOLOGY 2018; 38:840-852. [PMID: 29401316 DOI: 10.1093/treephys/tpx160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/16/2018] [Indexed: 05/12/2023]
Abstract
Knowing more precisely the cambial phenology and wood formation dynamics of trees can lead to a better understanding on how trees react to short-term changes in environmental conditions. Such an understanding could also shed light on the physiological foundation of climate-growth interactions at a regional scale. Although it has been documented that temperature is an important factor determining the cambial phenology in cold and humid climates, there is less agreement on the driver(s) that trigger the onset and end of wood formation in cold and arid climates. Here, the phenological traits of cambial activity and xylem formation were analyzed biweekly along an altitudinal transect ranging from 3580 to 3980 m above sea level, a transect that covers the distribution of Qilian juniper (Juniperus przewalskii Kom.) along a slope of the Tibetan Plateau. Cambial phenology and the duration and rate of wood formation were assessed from anatomical observations during the growing season of the developing xylem obtained from microcores collected from the stem of 10 trees total in 2012 (five at two altitudes each) and 25 trees (five at five altitudes each) in 2013. We found that the onset of wood formation was significantly correlated with altitude in 2013, with onset beginning 8.2 days earlier with every 100 m decrease in elevation. The change in onset with elevation corresponds to a change of 14.1 days °C-1 when adjusted for the monitored altitudinal lapse rate of -0.58 °C per 100 m. The duration of wood formation lasted from mid-May to mid-August, with the length of the 2013 growing season decreasing from 97 to 65 days from low to high elevation. Although the end of growing season appeared minimally related to altitude during both growing seasons, differences in end of wood production and wood formation between the two growing seasons were significant. It appears that summer drought conditions constricted the end of growing season across all elevations along our transect in 2013. Sensitivity analysis found xylem growth was positively correlated with rate and duration of wood production, with the former explaining most variability in growth. Our findings provide new data on the timing and duration of wood formation and help quantify the potential impacts of global warming on tree growth and productivity in cold and arid regions.
Collapse
Affiliation(s)
- Junzhou Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA
| | - Xiaohua Gou
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Neil Pederson
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA
| | - Fen Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoge Niu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shoudong Zhao
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Fang Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Liu S, Li X, Rossi S, Wang L, Li W, Liang E, Leavitt SW. Differences in xylogenesis between dominant and suppressed trees. AMERICAN JOURNAL OF BOTANY 2018; 105:950-956. [PMID: 29874391 DOI: 10.1002/ajb2.1089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Most dendroecological studies focus on dominant trees, but little is known about the growing season of trees belonging to different size classes and their sensitivity to biotic factors. The objective of this study was to compare the dynamics of xylem formation between dominant and suppressed trees of Abies fabri of similar age growing in the Gongga Mountains, southeastern Tibetan Plateau, and to identify the association between xylem growth and climate. METHODS The timing and duration of xylogenesis in histological sections were investigated weekly during the 2013-2015 growing seasons. KEY RESULTS Our investigation found that timing and duration of xylogenesis varied with canopy position and its associated tree size. Xylogenesis started 6-14 days earlier, and ended 5-11 days later in dominant trees than in suppressed trees, resulting in a significantly longer growing season. Dominant trees also exhibited higher temperature sensitivity of tracheid production rate than suppressed trees. CONCLUSIONS The observed differences in xylogenesis among trees suggested that competition affects tree growth by reducing the growing period in suppressed trees. Representative climate-growth relationships should involve trees of all size classes when evaluating the effects of the environment on forest dynamics.
Collapse
Affiliation(s)
- Shushan Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sergio Rossi
- Département des Sciences Fundamentals, Laboratoirs d'Écologie Végétale, University of Quebec in Chicoutimi, 555, Boulevard de I' Université, Chicoutimi, (QC), G7H2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lily Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Steven W Leavitt
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
30
|
Ziaco E, Truettner C, Biondi F, Bullock S. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. PLANT, CELL & ENVIRONMENT 2018; 41:823-836. [PMID: 29361193 DOI: 10.1111/pce.13152] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 05/29/2023]
Abstract
Future seasonal dynamics of wood formation in hyperarid environments are still unclear. Although temperature-driven extension of the growing season and increased forest productivity are expected for boreal and temperate biomes under global warming, a similar trend remains questionable in water-limited regions. We monitored cambial activity in a montane stand of ponderosa pine (Pinus ponderosa) from the Mojave Desert for 2 consecutive years (2015-2016) showing opposite-sign anomalies between warm- and cold-season precipitation. After the wet winter/spring of 2016, xylogenesis started 2 months earlier compared to 2015, characterized by abundant monsoonal (July-August) rainfall and hyperarid spring. Tree size did not influence the onset and ending of wood formation, highlighting a predominant climatic control over xylem phenological processes. Moisture conditions in the previous month, in particular soil water content and dew point, were the main drivers of cambial phenology. Latewood formation started roughly at the same time in both years; however, monsoonal precipitation triggered the formation of more false rings and density fluctuations in 2015. Because of uncertainties in future precipitation patterns simulated by global change models for the Southwestern United States, the dependency of P. ponderosa on seasonal moisture implies a greater conservation challenge than for species that respond mostly to temperature conditions.
Collapse
Affiliation(s)
- Emanuele Ziaco
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, 89557, USA
| | - Charles Truettner
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, 89557, USA
| | - Franco Biondi
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, 89557, USA
| | - Sarah Bullock
- Desert National Wildlife Refuge, Las Vegas, NV, 89124, USA
| |
Collapse
|
31
|
Relationships between Wood Formation and Cambium Phenology on the Tibetan Plateau during 1960–2014. FORESTS 2018. [DOI: 10.3390/f9020086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Zeng Q, Rossi S, Yang B. Effects of Age and Size on Xylem Phenology in Two Conifers of Northwestern China. FRONTIERS IN PLANT SCIENCE 2018; 8:2264. [PMID: 29379517 PMCID: PMC5771374 DOI: 10.3389/fpls.2017.02264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 12/27/2017] [Indexed: 05/31/2023]
Abstract
The climatic signals that directly affect the trees can be registered by xylem during its growth. If the timings and duration of xylem formation change, xylogenesis can occur under different environmental conditions and subsequently be subject to different climatic signals. An experimental design was applied in the field to disentangle the effects of age and size on xylem phenology, and it challenges the hypothesis that the timings and dynamics of xylem growth are size-dependent. Intra-annual dynamics of xylem formation were monitored weekly during the growing seasons 2013 and 2014 in Chinese pine (Pinus tabulaeformis) and Qilian juniper (Juniperus przewalskii) with different sizes and ages in a semi-arid region of northwestern China. Cell differentiation started 3 weeks earlier in 2013 and terminated 1 week later in 2014 in small-young pines than in big-old pines. However, differences in the timings of growth reactivation disappeared when comparing the junipers with different sizes but similar age. Overall, 77 days were required for xylem differentiation to take place, but timings were shorter for older trees, which also exhibited smaller cell production. Results from this study suggest that tree age does play an important role in timings and duration of growth. The effect of age should also be considered to perform reliable responses of trees to climate.
Collapse
Affiliation(s)
- Qiao Zeng
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
33
|
Lemay A, Krause C, Rossi S, Achim A. Xylogenesis in stems and roots after thinning in the boreal forest of Quebec, Canada. TREE PHYSIOLOGY 2017; 37:1554-1563. [PMID: 28985379 DOI: 10.1093/treephys/tpx082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/06/2017] [Indexed: 05/28/2023]
Abstract
The reduction of competition through thinning increases radial growth in the stem and roots of many conifer species. However, not much is known about the effect of thinning on the dynamics of wood formation and intra-annual development of the growth ring, especially in the roots, which are an essential part of the tree for stability and resource acquisition. The aim of this study was to evaluate the effect of an experimental thinning on the dynamics and phenology of xylogenesis in the stem and roots of black spruce and balsam fir. Experimental and control trees were selected in two mature even-aged stands, one black spruce (Picea mariana (Mill.) BSP) and one balsam fir (Abies balsamea (L.) Mill.). Wood microcores were collected weekly in the stem and roots from May to October for a period of 4 years. The onset and ending of each cell differentiation phase were computed, as well as growth rate and total cell production. Results show that thinning increased the cell production rate of stem and roots of black spruce and balsam fir. This higher daily growth rate caused an increase in the total number of cells produced by the cambium. The intensity of the treatment was sufficient to significantly increase light availability for residual trees, but insufficient to modify soil temperature and water content to a point at which a significant change in the timing or duration of xylogenesis would be induced. Thus, thinning increased cell production rate and total number of cells produced in both stem and roots, but did not result in a change in the phenology of wood formation that could lead to increased risks of frost damage in the spring or autumn.
Collapse
Affiliation(s)
- Audrey Lemay
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - Cornelia Krause
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - Sergio Rossi
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Alexis Achim
- Département des sciences du bois et de la forêt, Université Laval, 2405 rue de la Terrasse, Québec (Québec) G1V 0A6, Canada
| |
Collapse
|
34
|
Kabeya D, Inagaki Y, Noguchi K, Han Q. Growth rate reduction causes a decline in the annual incremental trunk growth in masting Fagus crenata trees. TREE PHYSIOLOGY 2017; 37:1444-1452. [PMID: 28985431 DOI: 10.1093/treephys/tpx081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Tree trunk annual increments are markedly reduced in mast years. There are two hypotheses that could explain the mechanism for this phenomenon: (1) a reduction in the duration of growth due to switching the resource allocation from somatic growth to seed production; (2) reduction of growth rate due to resources being shared between somatic growth and reproduction simultaneously. In this study, we aimed to test these hypotheses in Fagus crenata Blume from the point of view of resource allocation. The radial growth patterns in F. crenata during a year without reproduction (2014) and a masting year (2015) were monitored using a digital dendrometer. At the same time, shoot growth patterns were monitored by sampling branches from the top of the canopy. Data obtained using the digital dendrometer were fitted to a sigmoidal function, and the parameters of the function were evaluated with a hierarchal Bayesian approach; estimated parameters were used to represent the properties of trunk growth phenology. Trunk growth started synchronously just after leaf unfurling in both mass-fruiting (F15) and limited-fruiting (NF15) trees in 2014 and 2015. Reproduction reduced the growth rate in 2015. This was due to the resources being allocated for the development of cupules and for formation of relatively thick branches, both of which occurred simultaneously with trunk growth. There was no clear difference in the duration of radial growth between F15 and NF15 trees in the 2 years, although seed maturation started after trunk growth ceased. As a result, the annual trunk radius increment was reduced in the F15 trees in 2015. These results suggested that reduction of radial growth rate (Hypothesis 2) caused the reduction in annual trunk increment of reproducing trees of this species.
Collapse
Affiliation(s)
- Daisuke Kabeya
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Yoshiyuki Inagaki
- Department of Forest Soils, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
- Shikoku Research Center, FFPRI, 2-915 Asakuranishi, Kochi 780-8077, Japan
| | - Kyotaro Noguchi
- Department of Forest Soils, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
35
|
Li X, Liang E, Gričar J, Rossi S, Čufar K, Ellison AM. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Sci Bull (Beijing) 2017; 62:804-812. [PMID: 36659277 DOI: 10.1016/j.scib.2017.04.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023]
Abstract
Physiological and ecological mechanisms that define treelines are still debated. It has been suggested that the absence of trees above the treeline is caused by low temperatures that limit growth. Thus, we hypothesized that there is a critical minimum temperature (CTmin) preventing xylogenesis at treeline. We tested this hypothesis by examining weekly xylogenesis across three and four growing seasons in two natural Smith fir (Abies georgei var. smithii) treeline sites on the southeastern Tibetan Plateau. Despite differences in the timing of cell differentiation among years, minimum air temperature was the dominant climatic variable associated with xylem growth; the critical minimum temperature (CTmin) for the onset and end of xylogenesis occurred at 0.7±0.4°C. A process-based modelling chronology of tree-ring formation using this CTmin was consistent with actual tree-ring data. This extremely low CTmin permits Smith fir growing at treeline to complete annual xylem production and maturation and provides both support and a mechanism for treeline formation.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Alpine Ecology and Biodiversity, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology and Biodiversity, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China.
| | - Jozica Gričar
- Slovenian Forestry Institute, Department of Yield and Silviculture, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Sergio Rossi
- University of Quebec in Chicoutimi, Département des Sciences Fondamentales, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Katarina Čufar
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Aaron M Ellison
- Harvard Forest, Harvard University, 324 North Main St., Petersham, MA 01366, USA
| |
Collapse
|
36
|
Castagneri D, Fonti P, von Arx G, Carrer M. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. ANNALS OF BOTANY 2017; 119:1011-1020. [PMID: 28130220 PMCID: PMC5604563 DOI: 10.1093/aob/mcw274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. METHODS Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. KEY RESULTS Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. CONCLUSIONS Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions.
Collapse
Affiliation(s)
- Daniele Castagneri
- Università degli Studi di Padova, Dept. TeSAF, Viale dell’Università 16, 35020 Legnaro (PD), Italy
- For correspondence. E-mail
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf (ZH), Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf (ZH), Switzerland
| | - Marco Carrer
- Università degli Studi di Padova, Dept. TeSAF, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
37
|
Oberhuber W. Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought. TREES (BERLIN, GERMANY : WEST) 2017; 31:467-478. [PMID: 28381902 PMCID: PMC5375970 DOI: 10.1007/s00468-016-1468-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/22/2016] [Indexed: 06/02/2023]
Abstract
High-resolution time series of stem radius variations (SRVs) record fluctuations in tree water status and temporal dynamics of radial growth. The focus of this study was to evaluate the influence of tree size (i.e., saplings vs. mature trees) and soil water availability on SRVs. Dendrometers were installed on Pinus sylvestris at an open xeric site and on Picea abies at a dry-mesic site, and the SRVs of co-occurring saplings and mature trees were analyzed during two consecutive years. The results revealed that irrespective of tree size, radial growth in P. sylvestris occurred in April-May, whereas the main growing period of P. abies was April-June (saplings) and May-June (mature trees). Linear relationships between growth-detrended SRVs (SSRVs) of mature trees vs. saplings and climate-SSRV relationships revealed greater use of water reserves by mature P. abies compared with saplings. This suggests that the strikingly depressed growth of saplings compared with mature P. abies was caused by source limitation, i.e., restricted photosynthesis beneath the dense canopy. In contrast, a tree size effect on the annual increment, SSRV, and climate-SSRV relationships was less obvious in P. sylvestris, indicating comparable water status in mature trees and saplings under an open canopy. The results of this study provided evidence that water availability and a canopy atmosphere can explain differences in temporal dynamics of radial growth and use of stem water reserves among mature trees and saplings.
Collapse
Affiliation(s)
- Walter Oberhuber
- Institute of Botany, Leopold-Franzens-University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
Pérez‐de‐Lis G, Olano JM, Rozas V, Rossi S, Vázquez‐Ruiz RA, García‐González I. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12789] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gonzalo Pérez‐de‐Lis
- Departamento de Botánica Universidade de Santiago de Compostela EPS 27002 Lugo Spain
- CFE– Centro de Ecologia Funcional Departamento de Ciências da Vida Faculdade de Ciências e Tecnologia Universidade de Coimbra 3000‐456 Coimbra Portugal
| | - José Miguel Olano
- Área de Botánica EUI Agrarias Universidad de Valladolid 42004 Soria Spain
| | - Vicente Rozas
- Área de Botánica EUI Agrarias Universidad de Valladolid 42004 Soria Spain
| | - Sergio Rossi
- Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi QCG7H 2B1 Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou510650 China
| | - Rosa Ana Vázquez‐Ruiz
- Departamento de Botánica Universidade de Santiago de Compostela EPS 27002 Lugo Spain
| | | |
Collapse
|
39
|
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang E, Mäkinen H, Morin H, Nöjd P, Oberhuber W, Prislan P, Rathgeber CBK, Saracino A, Swidrak I, Treml V. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2016; 22:3804-3813. [PMID: 27082838 DOI: 10.1111/gcb.13317] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 05/17/2023]
Abstract
The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C-1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere.
Collapse
Affiliation(s)
- Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Tommaso Anfodillo
- Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro, 2-35122, PD, Italy
| | - Katarina Čufar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, 1000, Slovenia
| | - Henri E Cuny
- LERFoB, INRA, AgroParisTech, F-54000, Nancy, France
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
| | - David Frank
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Oeschger Centre for Climate Change Research, Bern, CH-3012, Switzerland
| | - Jožica Gričar
- Slovenian Forestry Institute, Vecna pot 2, Ljubljana, 1000, Slovenia
| | - Andreas Gruber
- Institute of Botany, Leopold-Franzens-University of Innsbruck, Sternwartestrasse 15, Innsbruck 6020, Austria
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
- Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
| | - Tuula Jyske
- Natural Resources Institute Finland, PO Box 18, Vantaa, 01301, Finland
| | - Jakub Kašpar
- Department of Physical Geography and Geoecology, Charles University in Prague, Ovocný trh 3-5, Prague, 116 36, Czech Republic
| | - Gregory King
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
- Oeschger Centre for Climate Change Research, Bern, CH-3012, Switzerland
| | - Cornelia Krause
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology and Biodiversity, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Harri Mäkinen
- Natural Resources Institute Finland, PO Box 18, Vantaa, 01301, Finland
| | - Hubert Morin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
| | - Pekka Nöjd
- Natural Resources Institute Finland, PO Box 18, Vantaa, 01301, Finland
| | - Walter Oberhuber
- Institute of Botany, Leopold-Franzens-University of Innsbruck, Sternwartestrasse 15, Innsbruck 6020, Austria
| | - Peter Prislan
- Slovenian Forestry Institute, Vecna pot 2, Ljubljana, 1000, Slovenia
| | | | - Antonio Saracino
- Department of Agricultural Sciences, University of Naples Federico II, Corso Umberto I, Napoli, 80138, Italy
| | - Irene Swidrak
- Institute of Botany, Leopold-Franzens-University of Innsbruck, Sternwartestrasse 15, Innsbruck 6020, Austria
| | - Václav Treml
- Department of Physical Geography and Geoecology, Charles University in Prague, Ovocný trh 3-5, Prague, 116 36, Czech Republic
| |
Collapse
|
40
|
Rodríguez‐Catón M, Villalba R, Morales M, Srur A. Influence of droughts on
Nothofagus pumilio
forest decline across northern Patagonia, Argentina. Ecosphere 2016. [DOI: 10.1002/ecs2.1390] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Milagros Rodríguez‐Catón
- Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA–CONICET) Mendoza 5500 Argentina
| | - Ricardo Villalba
- Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA–CONICET) Mendoza 5500 Argentina
| | - Mariano Morales
- Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA–CONICET) Mendoza 5500 Argentina
| | - Ana Srur
- Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA–CONICET) Mendoza 5500 Argentina
| |
Collapse
|
41
|
Martinez del Castillo E, Longares LA, Gričar J, Prislan P, Gil-Pelegrín E, Čufar K, de Luis M. Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:370. [PMID: 27047534 PMCID: PMC4803741 DOI: 10.3389/fpls.2016.00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/10/2016] [Indexed: 05/23/2023]
Abstract
Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e., in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48-75 days. In contrast, the growing season for P. sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for P. sylvestris.
Collapse
Affiliation(s)
| | - Luis A. Longares
- Department of Geography and Spatial Management, University of ZaragozaZaragoza, Spain
| | - Jožica Gričar
- Department of Yield and Silviculture, Department of Forest Techniques and Economics, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Peter Prislan
- Department of Yield and Silviculture, Department of Forest Techniques and Economics, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Eustaquio Gil-Pelegrín
- Agrifood Research and Technology Centre of Aragon, Instituto Agroalimentario de Aragón (IA2), Unidad de Recursos ForestalesZaragoza, Spain
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Martin de Luis
- Department of Geography and Spatial Management, University of ZaragozaZaragoza, Spain
| |
Collapse
|
42
|
Zhao X. Spatial variation of vessel grouping in the xylem of Betula platyphylla Roth. JOURNAL OF PLANT RESEARCH 2016; 129:29-37. [PMID: 26603539 DOI: 10.1007/s10265-015-0768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
Vessel grouping in angiosperms may improve hydraulic integration and increase the spread of cavitations through redundancy pathways. Although disputed, it is increasingly attracting research interest as a potentially significant hydraulic trait. However, the variation of vessel grouping in a tree is poorly understood. I measured the number of solitary and grouped vessels in the xylem of Betula platyphylla Roth. from the pith to the bark along the water flow path. The vessel grouping parameters included the mean number of vessels per vessel group (VG), percentage of solitary vessels (SVP), percentage of radial multiple vessels (MVP), and percentage of cluster vessels (CVP). The effects of cambial age (CA) and flow path-length (PL) on the vessel grouping were analyzed using a linear mixed model.VG and CVP increased nonlinearly, SVP decreased nonlinearly with PL. In trunks and branches, VG and CVP decreased nonlinearly, and SVP increased nonlinearly with CA. In roots, the parameters had no change with CA. MVP was almost constant with PL or CA. The results suggest that vessel grouping has a nonrandom variation pattern, which is affected deeply by cambial age and water flow path.
Collapse
Affiliation(s)
- Xiping Zhao
- Forestry College, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| |
Collapse
|
43
|
Prislan P, Gričar J, de Luis M, Novak K, Martinez del Castillo E, Schmitt U, Koch G, Štrus J, Mrak P, Žnidarič MT, Čufar K. Annual Cambial Rhythm in Pinus halepensis and Pinus sylvestris as Indicator for Climate Adaptation. FRONTIERS IN PLANT SCIENCE 2016; 7:1923. [PMID: 28082994 PMCID: PMC5183617 DOI: 10.3389/fpls.2016.01923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/05/2016] [Indexed: 05/08/2023]
Abstract
To understand better the adaptation strategies of intra-annual radial growth in Pinus halepensis and Pinus sylvestris to local environmental conditions, we examined the seasonal rhythm of cambial activity and cell differentiation at tissue and cellular levels. Two contrasting sites differing in temperature and amount of precipitation were selected for each species, one typical for their growth and the other represented border climatic conditions, where the two species coexisted. Mature P. halepensis trees from Mediterranean (Spain) and sub-Mediterranean (Slovenia) sites, and P. sylvestris from sub-Mediterranean (Slovenia) and temperate (Slovenia) sites were selected. Repeated sampling was performed throughout the year and samples were prepared for examination with light and transmission electron microscopes. We hypothesized that cambial rhythm in trees growing at the sub-Mediterranean site where the two species co-exist will be similar as at typical sites for their growth. Cambium in P. halepensis at the Mediterranean site was active throughout the year and was never truly dormant, whereas at the sub-Mediterranean site it appeared to be dormant during the winter months. In contrast, cambium in P. sylvestris was clearly dormant at both sub-Mediterranean and temperate sites, although the dormant period seemed to be significantly longer at the temperate site. Thus, the hypothesis was only partly confirmed. Different cambial and cell differentiation rhythms of the two species at the site where both species co-exist and typical sites for their growth indicate their high but different adaptation strategies in terms of adjustment of radial growth to environmental heterogeneity, crucial for long-term tree performance and survival.
Collapse
Affiliation(s)
- Peter Prislan
- Slovenian Forestry Institute, University of LjubljanaLjubljana, Slovenia
- *Correspondence: Peter Prislan,
| | - Jožica Gričar
- Slovenian Forestry Institute, University of LjubljanaLjubljana, Slovenia
| | - Martin de Luis
- Department of Geography and Regional Planning, University of ZaragozaZaragoza, Spain
| | - Klemen Novak
- Department of Geography and Regional Planning, University of ZaragozaZaragoza, Spain
- Department of Ecology, University of AlicanteAlicante, Spain
| | | | - Uwe Schmitt
- Johann Heinrich von Thünen Institute – Thünen Institute of Wood ResearchHamburg, Germany
| | - Gerald Koch
- Johann Heinrich von Thünen Institute – Thünen Institute of Wood ResearchHamburg, Germany
| | - Jasna Štrus
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Polona Mrak
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Magda T. Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, University of LjubljanaLjubljana, Slovenia
| | - Katarina. Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
44
|
Intra-Annual Xylem Growth of Larix principis-rupprechtii at Its Upper and Lower Distribution Limits on the Luyashan Mountain in North-Central China. FORESTS 2015. [DOI: 10.3390/f6113809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Vieira J, Campelo F, Rossi S, Carvalho A, Freitas H, Nabais C. Adjustment capacity of maritime pine cambial activity in drought-prone environments. PLoS One 2015; 10:e0126223. [PMID: 25961843 PMCID: PMC4427410 DOI: 10.1371/journal.pone.0126223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
Intra-annual density fluctuations (IADFs) are anatomical features formed in response to changes in the environmental conditions within the growing season. These anatomical features are commonly observed in Mediterranean pines, being more frequent in younger and wider tree rings. However, the process behind IADF formation is still unknown. Weekly monitoring of cambial activity and wood formation would fill this void. Although studies describing cambial activity and wood formation have become frequent, this knowledge is still fragmentary in the Mediterranean region. Here we present data from the monitoring of cambial activity and wood formation in two diameter classes of maritime pine (Pinus pinaster Ait.), over two years, in order to test: (i) whether the differences in stem diameter in an even-aged stand were due to timings and/or rates of xylogenesis; (ii) if IADFs were more common in large trees; and (iii) if their formation is triggered by cambial resumption after the summer drought. Larger trees showed higher rates of cell production and longer growing seasons, due to an earlier start and later end of xylogenesis. When a drier winter occurs, larger trees were more affected, probably limiting xylogenesis in the summer months. In both diameter classes a latewood IADF was formed in 2012 in response to late-September precipitation, confirming that the timing of the precipitation event after the summer drought is crucial in determining the resumption of cambial activity and whether or not an IADF is formed. It was the first time that the formation of a latewood IADF was monitored at a weekly time scale in maritime pine. The capacity of maritime pine to adjust cambial activity to the current environmental conditions represents a valuable strategy under the future climate change conditions.
Collapse
Affiliation(s)
- Joana Vieira
- CFE – Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| | - Filipe Campelo
- CFE – Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Provincial Key Laboratory of Applied Botany South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ana Carvalho
- CFE – Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Helena Freitas
- CFE – Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Cristina Nabais
- CFE – Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Ren P, Rossi S, Gricar J, Liang E, Cufar K. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? ANNALS OF BOTANY 2015; 115:629-39. [PMID: 25725006 PMCID: PMC4343293 DOI: 10.1093/aob/mcu259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/03/2014] [Accepted: 11/25/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS A series of studies have shown that temperature triggers the onset of xylogenesis of trees after winter dormancy. However, little is known about whether and how moisture availability influences xylogenesis in spring in drought-prone areas. METHODS Xylogenesis was monitored in five mature Qilian junipers (Juniperus przewalskii) by microcore sampling from 2009 to 2011 in a semi-arid area of the north-eastern Tibetan Plateau. A simple physical model of xylem cell production was developed and its sensitivity was analysed. The relationship between climate and growth was then evaluated, using weekly wood production data and climatic data from the study site. KEY RESULTS Delayed onset of xylogenesis in 2010 corresponded to a negative standardized precipitation evapotranspiration index (SPEI) value and a continuous period without rainfall in early May. The main period of wood formation was in June and July, and drier conditions from May to July led to a smaller number of xylem cells. Dry conditions in July could cause early cessation of xylem differentiation. The final number of xylem cells was mainly determined by the average production rate rather than the duration of new cell production. Xylem growth showed a positive and significant response to precipitation, but not to temperature. CONCLUSIONS Precipitation in late spring and summer can play a critical role in the onset of xylogenesis and xylem cell production. The delay in the initiation of xylogenesis under extremely dry conditions seems to be a stress-avoidance strategy against hydraulic failure. These findings could thus demonstrate an evolutionary adaptation of Qilian juniper to the extremely dry conditions of the north-eastern Tibetan Plateau.
Collapse
Affiliation(s)
- Ping Ren
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada, Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia and Biotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada, Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia and Biotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1
| | - Sergio Rossi
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada, Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia and Biotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Jozica Gricar
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada, Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia and Biotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Eryuan Liang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada, Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia and Biotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada, Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia and Biotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Katarina Cufar
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China, Département des Sciences Fondamentales, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (QC) G7H2B1, Canada, Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia and Biotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Brunel G, Borianne P, Subsol G, Jaeger M, Caraglio Y. Automatic identification and characterization of radial files in light microscopy images of wood. ANNALS OF BOTANY 2014; 114:829-40. [PMID: 24989783 PMCID: PMC4156126 DOI: 10.1093/aob/mcu119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/31/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Analysis of anatomical sections of wood provides important information for understanding the secondary growth and development of plants. This study reports on a new method for the automatic detection and characterization of cell files in wood images obtained by light microscopy. To facilitate interpretation of the results, reliability coefficients have been determined, which characterize the files, their cells and their respective measurements. METHODS Histological sections and blocks of the gymnosperms Pinus canariensis, P. nigra and Abies alba were used, together with histological sections of the angiosperm mahogany (Swietenia spp.). Samples were scanned microscopically and mosaic images were built up. After initial processing to reduce noise and enhance contrast, cells were identified using a 'watershed' algorithm and then cell files were built up by the successive aggregation of cells taken from progressively enlarged neighbouring regions. Cell characteristics such as thickness and size were calculated, and a method was developed to determine the reliability of the measurements relative to manual methods. KEY RESULTS Image analysis using this method can be performed in less than 20 s, which compares with a time of approx. 40 min to produce the same results manually. The results are accompanied by a reliability indicator that can highlight specific configurations of cells and also potentially erroneous data. CONCLUSIONS The method provides a fast, economical and reliable tool for the identification of cell files. The reliability indicator characterizing the files permits quick filtering of data for statistical analysis while also highlighting particular biological configurations present in the wood sections.
Collapse
Affiliation(s)
- Guilhem Brunel
- CIRAD – UMR A51 AMAP, France
- University of Montpellier 2, France
- For correspondence. E-mail
| | | | | | | | | |
Collapse
|
48
|
Rossi S, Girard MJ, Morin H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. GLOBAL CHANGE BIOLOGY 2014; 20:2261-71. [PMID: 24259354 DOI: 10.1111/gcb.12470] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 05/21/2023]
Abstract
In cold climates, the expected global warming will lead to earlier cambial resumptions in spring, with a resultant lengthening of the growing season but unknown consequences on forest productivity. The phenological traits of cambium activity and xylem formation were analyzed at a short time scale along a thermal gradient represented by an alti-latitudinal range from the 48th to 53rd parallels and covering the whole closed black-spruce [Picea mariana (Mill.) BSP] forest in Quebec, Canada. A hypothesis was tested that warmer temperatures influence cambium phenology, allowing longer duration and higher intensity of growth, and resulting in proportionally increased xylem production. From April to October 2012, cell division in cambium and post-cambial differentiation of xylem were observed on anatomical sections obtained from microcores collected weekly from the stem of fifty trees. The southern and warmer site was characterized by the highest radial growth, which corresponded to both the highest rates and longest durations of cell production. The differences in terms of xylem phenology and growth were marginal between the other sites. Xylem growth was positively correlated with rate and duration of cell production, with the latter explaining most variability in growth. Within the range analyzed, the relationship between temperature and most phenological phases of xylogenesis was linear. On the contrary, temperature was related with cell production according to an exponential pattern. Periods of xylogenesis of 14 days longer (+13.1%) corresponded to a massive increase in cell production (33 cells, +109%). This disproportionate change occurred at a May-September average temperature of ca. 14 °C and a snow-free period of 210-235 days. At the lower boundary of the distribution of black spruce, small environmental changes allowing marginal lengthening of the period of cell division could potentially lead to disproportionate increases in xylem cell production, with substantial consequences for the productivity of this boreal species.
Collapse
Affiliation(s)
- Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | | | | |
Collapse
|
49
|
Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer. Oecologia 2014; 176:273-83. [PMID: 24958369 DOI: 10.1007/s00442-014-2989-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
In order to understand the impact of drought and intrinsic water-use efficiency (iWUE) on tree growth, we evaluated the relative importance of direct and indirect effects of water availability on secondary growth and xylem anatomy of Juniperus thurifera, a Mediterranean anisohydric conifer. Dendrochronological techniques, quantitative xylem anatomy, and (13)C/(12)C isotopic ratio were combined to develop standardized chronologies for iWUE, BAI (basal area increment), and anatomical variables on a 40-year-long annually resolved series for 20 trees. We tested the relationship between iWUE and secondary growth at short-term (annual) and long-term (decadal) temporal scales to evaluate whether gains in iWUE may lead to increases in secondary growth. We obtained a positive long-term correlation between iWUE and BAI, simultaneously with a negative short-term correlation between them. Furthermore, BAI and iWUE were correlated with anatomical traits related to carbon sink or storage (tracheid wall thickness and ray parenchyma amount), but no significant correlation with conductive traits (tracheid lumen) was found. Water availability during the growing season significantly modulated tree growth at the xylem level, where growth rates and wood anatomical traits were affected by June precipitation. Our results are consistent with a drought-induced limitation of tree growth response to rising CO2, despite the trend of rising iWUE being maintained. We also remark the usefulness of exploring this relationship at different temporal scales to fully understand the actual links between iWUE and secondary growth dynamics.
Collapse
|
50
|
Wood Density-Climate Relationships Are Mediated by Dominance Class in Black Spruce (Picea mariana (Mill.) B.S.P.). FORESTS 2014. [DOI: 10.3390/f5061163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|