1
|
Arifuzzaman M, Mamidi S, Sanz-Saez A, Zakeri H, Scaboo A, Fritschi FB. Identification of loci associated with water use efficiency and symbiotic nitrogen fixation in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1271849. [PMID: 38034552 PMCID: PMC10687445 DOI: 10.3389/fpls.2023.1271849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Soybean (Glycine max) production is greatly affected by persistent and/or intermittent droughts in rainfed soybean-growing regions worldwide. Symbiotic N2 fixation (SNF) in soybean can also be significantly hampered even under moderate drought stress. The objective of this study was to identify genomic regions associated with shoot carbon isotope ratio (δ13C) as a surrogate measure for water use efficiency (WUE), nitrogen isotope ratio (δ15N) to assess relative SNF, N concentration ([N]), and carbon/nitrogen ratio (C/N). Genome-wide association mapping was performed with 105 genotypes and approximately 4 million single-nucleotide polymorphism markers derived from whole-genome resequencing information. A total of 11, 21, 22, and 22 genomic loci associated with δ13C, δ15N, [N], and C/N, respectively, were identified in two environments. Nine of these 76 loci were stable across environments, as they were detected in both environments. In addition to the 62 novel loci identified, 14 loci aligned with previously reported quantitative trait loci for different C and N traits related to drought, WUE, and N2 fixation in soybean. A total of 58 Glyma gene models encoding for different genes related to the four traits were identified in the vicinity of the genomic loci.
Collapse
Affiliation(s)
- Muhammad Arifuzzaman
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Sujan Mamidi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hossein Zakeri
- College of Agriculture, California State University-Chico, Chico, CA, United States
| | - Andrew Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Felix B. Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
López CM, Alseekh S, Torralbo F, Martínez Rivas FJ, Fernie AR, Amil-Ruiz F, Alamillo JM. Transcriptomic and metabolomic analysis reveals that symbiotic nitrogen fixation enhances drought resistance in common bean. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3203-3219. [PMID: 36883579 DOI: 10.1093/jxb/erad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 05/21/2023]
Abstract
Common bean (Phaseolus vulgaris L.), one of the most important legume crops, uses atmospheric nitrogen through symbiosis with soil rhizobia, reducing the need for nitrogen fertilization. However, this legume is particularly sensitive to drought conditions, prevalent in arid regions where this crop is cultured. Therefore, studying the response to drought is important to sustain crop productivity. We have used integrated transcriptomic and metabolomic analysis to understand the molecular responses to water deficit in a marker-class common bean accession cultivated under N2 fixation or fertilized with nitrate (NO3-). RNA-seq revealed more transcriptional changes in the plants fertilized with NO3- than in the N2-fixing plants. However, changes in N2-fixing plants were more associated with drought tolerance than in those fertilized with NO3-. N2-fixing plants accumulated more ureides in response to drought, and GC/MS and LC/MS analysis of primary and secondary metabolite profiles revealed that N2-fixing plants also had higher levels of abscisic acid, proline, raffinose, amino acids, sphingolipids, and triacylglycerols than those fertilized with NO3-. Moreover, plants grown under nitrogen fixation recovered from drought better than plants fertilized with NO3-. Altogether we show that common bean plants grown under symbiotic nitrogen fixation were more protected against drought than the plants fertilized with nitrate.
Collapse
Affiliation(s)
- Cristina Mª López
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fernando Torralbo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Francisco Amil-Ruiz
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Bioinformática, Campus de Rabanales, Córdoba, Spain
| | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
3
|
Chowrasia S, Nishad J, Mahato R, Kiran K, Rajkumari N, Panda AK, Rawal HC, Barman M, Mondal TK. Allantoin improves salinity tolerance in Arabidopsis and rice through synergid activation of abscisic acid and brassinosteroid biosynthesis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01350-8. [PMID: 37184674 DOI: 10.1007/s11103-023-01350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/02/2023] [Indexed: 05/16/2023]
Abstract
Soil salinity stress is one of the major bottlenecks for crop production. Although, allantoin is known to be involved in nitrogen metabolism in plants, yet several reports in recent time indicate its involvement in various abiotic stress responses including salinity stress. However, the detail mechanism of allantoin involvement in salinity stress tolerance in plants is not studied well. Moreover, we demonstrated the role of exogenous application of allantoin as well as increased concentration of endogenous allantoin in rendering salinity tolerance in rice and Arabidopsis respectively, via., induction of abscisic acid (ABA) and brassinosteroid (BR) biosynthesis pathways. Exogenous application of allantoin (10 µM) provides salt-tolerance to salt-sensitive rice genotype (IR-29). Transcriptomic data after exogenous supplementation of allantoin under salinity stress showed induction of ABA (OsNCED1) and BR (Oscytochrome P450) biosynthesis genes in IR-29. Further, the key gene of allantoin biosynthesis pathway i.e., urate oxidase of the halophytic species Oryza coarctata was also found to induce ABA and BR biosynthesis genes when over-expressed in transgenic Arabidopsis. Thus, indicating that ABA and BR biosynthesis pathways were involved in allantoin mediated salinity tolerance in both rice and Arabidopsis. Additionally, it has been found that several physio-chemical parameters such as biomass, Na+/K+ ratio, MDA, soluble sugar, proline, allantoin and chlorophyll contents were also associated with the allantoin-mediated salinity tolerance in urate oxidase overexpressed lines of Arabidopsis. These findings depicted the functional conservation of allantoin for salinity tolerance in both plant clades.
Collapse
Affiliation(s)
- Soni Chowrasia
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Jyoti Nishad
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Rekha Mahato
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kanti Kiran
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Nitasana Rajkumari
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Alok Kumar Panda
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Hukam C Rawal
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Mandira Barman
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- LBS Centre, ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
4
|
Mikami K, Takahashi M. Life cycle and reproduction dynamics of Bangiales in response to environmental stresses. Semin Cell Dev Biol 2023; 134:14-26. [PMID: 35428563 DOI: 10.1016/j.semcdb.2022.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Red algae of the order Bangiales are notable for exhibiting flexible promotion of sexual and asexual reproductive processes by environmental stresses. This flexibility indicates that a trade-off between vegetative growth and reproduction occurs in response to environmental stresses that influence the timing of phase transition within the life cycle. Despite their high phylogenetic divergence, both filamentous and foliose red alga in the order Bangiales exhibit a haploid-diploid life cycle, with a haploid leafy or filamentous gametophyte (thallus) and a diploid filamentous sporophyte (conchocelis). Unlike haploid-diploid life cycles in other orders, the gametophyte in Bangiales is generated independently of meiosis; the regulation of this generation transition is not fully understood. Based on transcriptome and gene expression analyses, the originally proposed biphasic model for alternation of generations in Bangiales was recently updated to include a third stage. Along with the haploid gametophyte and diploid sporophyte, the triphasic framework recognizes a diploid conchosporophyte-a conchosporangium generated on the conchocelis-phase and previously considered to be part of the sporophyte. In addition to this sexual life cycle, some Bangiales species have an asexual life cycle in which vegetative cells of the thallus develop into haploid asexual spores, which are then released from the thallus to produce clonal thalli. Here, we summarize the current knowledge of the triphasic life cycle and life cycle trade-off in Neopyropia yezoensis and 'Bangia' sp. as model organisms for the Bangiales.
Collapse
Affiliation(s)
- Koji Mikami
- Department of Integrative Studies of Plant and Animal Production, School of Food Industrial Sciences, Miyagi University, Sendai, Japan.
| | - Megumu Takahashi
- Department of Ocean and Fisheries Sciences, Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Japan
| |
Collapse
|
5
|
Kahilainen A, Oostra V, Somervuo P, Minard G, Saastamoinen M. Alternative developmental and transcriptomic responses to host plant water limitation in a butterfly metapopulation. Mol Ecol 2022; 31:5666-5683. [PMID: 34516691 DOI: 10.1111/mec.16178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 01/13/2023]
Abstract
Predicting how climate change affects biotic interactions poses a challenge. Plant-insect herbivore interactions are particularly sensitive to climate change, as climate-induced changes in plant quality cascade into the performance of insect herbivores. Whereas the immediate survival of herbivore individuals depends on plastic responses to climate change-induced nutritional stress, long-term population persistence via evolutionary adaptation requires genetic variation for these responses. To assess the prospects for population persistence under climate change, it is therefore crucial to characterize response mechanisms to climate change-induced stressors, and quantify their variability in natural populations. Here, we test developmental and transcriptomic responses to water limitation-induced host plant quality change in a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We combine nuclear magnetic resonance spectroscopy on the plant metabolome, larval developmental assays and an RNA sequencing analysis of the larval transcriptome. We observed that responses to feeding on water-limited plants, in which amino acids and aromatic compounds are enriched, showed marked variation within the metapopulation, with individuals of some families performing better on control and others on water-limited plants. The transcriptomic responses were concordant with the developmental responses: families exhibiting opposite developmental responses also produced opposite transcriptomic responses (e.g. in growth-associated transcripts). The divergent responses in both larval development and transcriptome are associated with differences between families in amino acid catabolism and storage protein production. The results reveal intrapopulation variability in plasticity, suggesting that the Finnish M. cinxia metapopulation harbours potential for buffering against drought-induced changes in host plant quality.
Collapse
Affiliation(s)
- Aapo Kahilainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Vicencio Oostra
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.,Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Finland
| |
Collapse
|
6
|
Exogenous Caffeine (1,3,7-Trimethylxanthine) Application Diminishes Cadmium Toxicity by Modulating Physio-Biochemical Attributes and Improving the Growth of Spinach (Spinacia oleracea L.). SUSTAINABILITY 2022. [DOI: 10.3390/su14052806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leafy vegetables usually absorb and retain heavy metals more readily than most of the other crop plants, and thus contribute ≥70% of the total cadmium (Cd) intake of humans. Caffeine mediates plant growth and has proved to be beneficial against pathogens and insects. Therefore, it was hypothesized that foliar applications of caffeine could alter metabolism and reduce Cd toxicity in spinach (Spinacia oleracea L.). Seven-day old spinach seedlings were provided with Cd (0, 50, and 100 µM) stress. Caffeine (0, 5, or 10 mM) foliar spray was given twice at after 20 days of seeds germination with an interval of one week. In results, Cd stress reduced photosynthetic pigments biosynthesis, increased oxidative stress, imbalanced nutrient retention, and inhibited plant growth. On the other hand, the caffeine-treated spinach plants showed better growth owing to the enhanced biosynthesis of chlorophylls, better oxidative defense systems, and lower accumulation and transport of Cd within the plant tissues. Furthermore, caffeine application enhanced the accumulation of the proline and ascorbic acid, but reduced MDA and H2O2 contents and Cd in plant leaves, and ultimately improved mineral nutrition of spinach plants exposed to different Cd regimes. In conclusion, exogenous application of caffeine significantly diminishes Cd stress by modulating physiological, biochemical, and growth attributes of spinach (Spinacia oleracea L.)
Collapse
|
7
|
Saleem A, Aper J, Muylle H, Borra-Serrano I, Quataert P, Lootens P, De Swaef T, Roldán-Ruiz I. Response of a Diverse European Soybean Collection to "Short Duration" and "Long Duration" Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:818766. [PMID: 35251088 PMCID: PMC8891225 DOI: 10.3389/fpls.2022.818766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Drought causes significant damage to a high value crop of soybean. Europe has an increasing demand for soybean and its own production is insufficient. Selection and breeding of cultivars adapted to European growth conditions is therefore urgently needed. These new cultivars must have a shorter growing cycle (specifically for adaptation to North-West Europe), high yield potential under European growing conditions, and sufficient drought resistance. We have evaluated the performance of a diverse collection of 359 soybean accessions under drought stress using rain-out shelters for 2 years. The contrasting weather conditions between years and correspondingly the varying plant responses demonstrated that the consequences of drought for an individual accession can vary strongly depending on the characteristics (e.g., duration and intensity) of the drought period. Short duration drought stress, for a period of four to 7 weeks, caused an average reduction of 11% in maximum canopy height (CH), a reduction of 17% in seed number per plant (SN) and a reduction of 16% in seed weight per plant (SW). Long duration drought stress caused an average reduction of 29% in CH, a reduction of 38% in SN and a reduction of 43% in SW. Drought accelerated plant development and caused an earlier cessation of flowering and pod formation. This seemed to help some accessions to better protect the seed yield, under short duration drought stress. Drought resistance for yield-related traits was associated with the maintenance of growth under long duration drought stress. The collection displayed a broad range of variation for canopy wilting and leaf senescence but a very narrow range of variation for crop water stress index (CWSI; derived from canopy temperature data). To the best of our knowledge this is the first study reporting a detailed investigation of the response to drought within a diverse soybean collection relevant for breeding in Europe.
Collapse
Affiliation(s)
- Aamir Saleem
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jonas Aper
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Irene Borra-Serrano
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Paul Quataert
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Peter Lootens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tom De Swaef
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Sá C, Matos D, Pires A, Cardoso P, Figueira E. Effects of volatile sulfur compounds on growth and oxidative stress of Rhizobium leguminosarum E20-8 exposed to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149478. [PMID: 34391142 DOI: 10.1016/j.scitotenv.2021.149478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/27/2023]
Abstract
Volatile sulfur compounds (VSCs) have been reported to be produced by many bacterial species. Depending on the compound, they can negatively influence some organisms (fungi, nematodes and insects) or promote plant growth. Some of these compounds have also been hypothesized to play a role in bacterial response to cadmium (Cd) induced stress. This study aimed to assess the potential effects of four VSCs (dimethyl sulfide - DMS, dimethyl disulfide - DMDS, dimethyl trisulfide - DMTS and methyl thioacetate - MTA) on the growth and oxidative status of Rhizobium sp. strain E20-8 via airborne exposure, in order to test the hypothesis that these volatile compounds can influence growth and tolerance to cadmium. Our results show that, overall, the tested compounds triggered similar antioxidant mechanisms in Rhizobium in the presence of Cd. The protective effect at the membrane level by DMDS and DMTS particularly demonstrates the antioxidant effect of these volatiles, with reductions of up to 50% (DMS) and 80% (DMTS) in lipid peroxidation levels. Due to the volatile nature of these compounds, the low concentrations tested (1 nM to 100 mM), and considering that they are released by bacteria and other organisms such as plants, it is possible that these effects also occur in the soil ecosystem.
Collapse
Affiliation(s)
- Carina Sá
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Matos
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Adília Pires
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cardoso
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
9
|
Bosse MA, Silva MBD, Oliveira NGRMD, Araujo MAD, Rodrigues C, Azevedo JPD, Reis ARD. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:512-521. [PMID: 34171572 DOI: 10.1016/j.plaphy.2021.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 05/20/2023]
Abstract
Legume plants from Fabaceae family (phylogenetic group composed by three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae) can fix atmospheric nitrogen (N2) into ammonia (NH3) by the symbiotic relationship with rhizobia bacteria. These bacteria respond chemotactically to certain compounds released by plants such as sugars, amino acids and organic acids. Root secretion of isoflavonoids acts as inducers for nod genes in rhizobia and ABC transporters and ICHG (isoflavone conjugates hydrolyzing beta-glucosidase) at apoplast are related to the exudation of genistein and daidzein in soybean roots. Biological nitrogen fixation (BNF) occurs inside the nodule by the action of nitrogenase enzyme, which fixes N2 into NH3, which is converted into ureides (allantoin and allantoic acid). In this review, we bring together the latest findings on flavonoids biosynthesis and ureide metabolism in several legume plant species. We emphasize how flavonoids induce nod genes in rhizobia, affecting chemotaxis, nodulation, ureide production, growth and yield of legume plants. Mainly, isoflavonoids daidzein and genistein are responsible for nod genes activation in the rhizobia bacteria. Flavonoids also play an important role during nodule organogenesis by acting as auxin transporter inhibitors in root cells, especially in indeterminate nodules. The ureides are the main N transport form in tropical legumes and they are catabolized in leaves and other sink tissues to produce amino acids and proteins needed for plant growth and yield.
Collapse
Affiliation(s)
- Marco Antônio Bosse
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, Postal Code 14884-900, Brazil
| | | | | | | | - Cleverson Rodrigues
- São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | | | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, Postal Code 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
10
|
Dawood MFA, Tahjib-Ul-Arif M, Sohag AAM, Abdel Latef AAH, Ragaey MM. Mechanistic Insight of Allantoin in Protecting Tomato Plants Against Ultraviolet C Stress. PLANTS (BASEL, SWITZERLAND) 2020; 10:E11. [PMID: 33374845 PMCID: PMC7824269 DOI: 10.3390/plants10010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Allantoin ((AT) a purine metabolite)-mediated ultraviolet C (UVC) stress mitigation has not been studied to date. Here, we reported the physicochemical mechanisms of UVC-induced stress in tomato (Solanum lycopersicum L.) plants, including an AT-directed mitigation strategy. UVC stress reduced plant growth and photosynthetic pigments. Heatmap and principal component analysis (PCA) revealed that these toxic impacts were triggered by the greater oxidative damage and disruption of osmolyte homeostasis. However, pre-treatment of AT noticeably ameliorated the stress-induced toxicity as evident by enhanced chlorophyll, soluble protein, and soluble carbohydrate contents in AT-pretreated UVC-stressed plants relative to only stressed plants leading to the improvement of the plant growth and biomass. Moreover, AT pre-treatment enhanced endogenous AT and allantoate content, phenylalanine ammonia-lyase, non-enzymatic antioxidants, and the enzymatic antioxidants leading to reduced oxidative stress markers compared with only stressed plants, indicating the protective effect of AT against oxidative damage. Moreover, PCA displayed that the protective roles of AT strongly associate with the improved antioxidants. On the other hand, post-treatment of AT showed less efficacy in UVC stress mitigation relative to pre-treatment of AT. Overall, this finding illustrated that AT pre-treatment could be an effective way to counteract the UVC stress in tomato, and perhaps in other crop plants.
Collapse
Affiliation(s)
- Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.-U.-A.); (A.A.M.S.)
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.-U.-A.); (A.A.M.S.)
| | - Arafat Abdel Hamed Abdel Latef
- Department of Biology, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Marwa M. Ragaey
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja 72511, Egypt;
| |
Collapse
|
11
|
López CM, Pineda M, Alamillo JM. Differential Regulation of Drought Responses in Two Phaseolus vulgaris Genotypes. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121815. [PMID: 33371446 PMCID: PMC7768404 DOI: 10.3390/plants9121815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 05/29/2023]
Abstract
Drought is probably the most harmful stress affecting common bean crops. Domestication, worldwide spread and local farming practices has entailed the development of a wide variety of common bean genotypes with different degrees of resistance to water stress. In this work, physiological and molecular responses to water stress have been compared in two common bean accessions, PHA-0683 and PMB-0220, previously identified as highly and moderately resistant to water stress, respectively. Our hypothesis was that only quantitative differences in the expression patterns of key genes should be found if molecular mechanisms regulating drought resistance are similar in the two accessions. However, results presented here indicate that the resistance to drought in PMB-0220 and PHA-0683 common bean accessions is regulated by different molecular mechanisms. Differential regulation of ABA synthesis and ABA signaling related genes among the two genotypes, and the control of the drought-induced senescence have a relevant contribution to the higher resistance level of PHA-0683 accession. Our results also suggest that expression patterns of key senescence-related transcription factors could be considered in the screening for drought resistance in common bean germplasm collections.
Collapse
|
12
|
Plett DC, Ranathunge K, Melino VJ, Kuya N, Uga Y, Kronzucker HJ. The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4452-4468. [PMID: 32026944 PMCID: PMC7382376 DOI: 10.1093/jxb/eraa049] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/05/2020] [Indexed: 05/19/2023]
Abstract
Water and nitrogen availability limit crop productivity globally more than most other environmental factors. Plant availability of macronutrients such as nitrate is, to a large extent, regulated by the amount of water available in the soil, and, during drought episodes, crops can become simultaneously water and nitrogen limited. In this review, we explore the intricate relationship between water and nitrogen transport in plants, from transpiration-driven mass flow in the soil to uptake by roots via membrane transporters and channels and transport to aerial organs. We discuss the roles of root architecture and of suberized hydrophobic root barriers governing apoplastic water and nitrogen movement into the vascular system. We also highlight the need to identify the signalling cascades regulating water and nitrogen transport, as well as the need for targeted physiological analyses of plant traits influencing water and nitrogen uptake. We further advocate for incorporation of new phenotyping technologies, breeding strategies, and agronomic practices to improve crop yield in water- and nitrogen-limited production systems.
Collapse
Affiliation(s)
- Darren C Plett
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, University of Western Australia, Crawley, Perth, Australia
| | - Vanessa J Melino
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Noriyuki Kuya
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Herbert J Kronzucker
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Furlan AL, Bianucci E, Giordano W, Castro S, Becker DF. Proline metabolic dynamics and implications in drought tolerance of peanut plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:566-578. [PMID: 32320942 DOI: 10.1016/j.plaphy.2020.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 05/25/2023]
Abstract
Proline accumulation and metabolism are associated with mechanisms of abiotic stress avoidance in plants. Proline accumulation generally improves osmotic stress tolerance whereas proline metabolism can have varying effects from ATP generation to the formation of reactive oxygen species. To further understand the roles of proline in stress protection, two peanut cultivars with contrasting tolerance to drought were examined by transcriptional and biochemical analyses during water stress. Plants exposed to polyethylene glycol had diminished relative water content and increased proline content; while, only the drought sensitive plants, cultivar Granoleico, showed lipid oxidative damage (measured as thiobarbituric acid reactive substances). The expression of proline biosynthesis genes (P5CS1, P5CS2a, P5CS2b, P5CR) was increased in both cultivars upon exposure to water stress. However, the relative expression of proline catabolism genes (ProDH1, ProDH2) was increased only in the sensitive cultivar during stress. Exogenous addition of proline and the proline analogue thiazolidine-4-carboxylic acid (T4C), both substrates of proline dehydrogenase, was also used to exacerbate and identify plant responses. Pretreatment of plants with T4C induced unique changes in the drought tolerant EC-98 cultivar such as higher mRNA levels of proline biosynthetic and catabolic ProDH genes, even in the absence of water stress. The increased levels of ProDH gene expression, potentially associated with higher T4C conversion to cysteine, may contribute to the tolerant phenotype.
Collapse
Affiliation(s)
- Ana Laura Furlan
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina; Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Eliana Bianucci
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
14
|
Sá C, Matos D, Pires A, Cardoso P, Figueira E. Airborne exposure of Rhizobium leguminosarum strain E20-8 to volatile monoterpenes: Effects on cells challenged by cadmium. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121783. [PMID: 31836364 DOI: 10.1016/j.jhazmat.2019.121783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) are produced by plants, fungi, bacteria and animals. These compounds are metabolites originated mainly in catabolic reactions and can be involved in biological processes. In this study, the airborne effects of five monoterpenes (α-pinene, limonene, eucalyptol, linalool, and menthol) on the growth and oxidative status of the rhizobial strain Rhizobium leguminosarum E20-8 were studied, testing the hypothesis that these VOCs could influence Rhizobium growth and tolerance to cadmium. The tested monoterpenes were reported to have diverse effects, such as antibacterial activity (linalool, limonene, α-pinene, eucalyptol), modulation of antioxidant response or antioxidant properties (α-pinene and menthol). Our results showed that non-stressed cells of Rhizobium E20-8 have different responses (growth, cell damage and biochemistry) to monoterpenes, with α-pinene and eucalyptol increasing colonies growth. In stressed cells the majority of monoterpenes failed to minimize the detrimental effects of Cd and increased damage, decreased growth and altered cell biochemistry were observed. However, limonene (1 and 100 mM) and eucalyptol (100 nM) were able to increase the growth of Cd-stressed cells. Our study evidences the influence at-a-distance that organisms able to produce monoterpenes may have on the growth and tolerance of bacterial cells challenged by different environmental conditions.
Collapse
Affiliation(s)
- Carina Sá
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Matos
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Adília Pires
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
15
|
López CM, Pineda M, Alamillo JM. Transcriptomic Response to Water Deficit Reveals a Crucial Role of Phosphate Acquisition in a Drought-Tolerant Common Bean Landrace. PLANTS (BASEL, SWITZERLAND) 2020; 9:E445. [PMID: 32252433 PMCID: PMC7238123 DOI: 10.3390/plants9040445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Drought is one of the most critical factors limiting legume crop productivity. Understanding the molecular mechanisms of drought tolerance in the common bean is required to improve the yields of this important crop under adverse conditions. In this work, RNA-seq analysis was performed to compare the transcriptome profiles of drought-stressed and well-irrigated plants of a previously characterized drought-tolerant common bean landrace. The analysis revealed responses related with the abscisic acid signaling, including downregulation of a phosphatase 2C (PP2C) and an abscisic acid-8' hydroxylase, and upregulation of several key transcription factors and genes involved in cell wall remodeling, synthesis of osmoprotectants, protection of photosynthetic apparatus, and downregulation of genes involved in cell expansion. The results also highlighted a significant proportion of differentially expressed genes related to phosphate starvation response. In addition, the moderate detrimental effects of drought in the biomass of these tolerant plants were abolished by the addition of phosphate, thus indicating that, besides the ABA-mediated response, acquisition of phosphate could be crucial for the drought tolerance of this common bean genotype. These results provided information about the mechanisms involved in drought response of common bean response that could be useful for enhancing the drought tolerance of this important crop legume.
Collapse
Affiliation(s)
| | | | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 1407 Córdoba, Spain; (C.M.L.); (M.P.)
| |
Collapse
|
16
|
Coleto I, Pineda M, Alamillo JM. Molecular and biochemical analysis of XDH from Phaseolus vulgaris suggest that uric acid protects the enzyme against the inhibitory effects of nitric oxide in nodules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:364-374. [PMID: 31542638 DOI: 10.1016/j.plaphy.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Xanthine dehydrogenase (XDH) is essential for the assimilation of symbiotically fixed nitrogen in ureidic legumes. Uric acid, produced in the reaction catalyzed by XDH, is the precursor of the ureides, allantoin and allantoate, which are the main N-transporting molecules in these plants. XDH and uric acid have been reported to be involved in the response to stress, both in plants and animals. However, the physiological role of XDH under stressful conditions in ureidic legumes remains largely unexplored. In vitro assays showed that Phaseolus vulgaris XDH (PvXDH) can behave as a dehydrogenase or as an oxidase. Therefore, it could potentially protect against oxidative radicals or, in contrast, it could increase their production. In silico analysis of the upstream genomic region of XDH coding gene from P. vulgaris revealed the presence of several stress-related cis-regulatory elements. PvXDH mRNA and enzymatic activity in plants treated with stress-related phytohormones or subjected to dehydration and stressful temperatures showed several fold induction. However, PvXDH activity was in vivo and in vitro inhibited by nitric oxide in leaves but not in nodules. In extracts from RNAi PvXDH silenced nodules, with lower levels of uric acid, XDH activity was inhibited by SNP which indicates that uric acid produced by XDH in the nodules of this ureidic legume could help to protect XDH against the inhibitory effects of nitric oxide.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain.
| |
Collapse
|
17
|
Quiles FA, Galvez-Valdivieso G, Guerrero-Casado J, Pineda M, Piedras P. Relationship between ureidic/amidic metabolism and antioxidant enzymatic activities in legume seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:1-8. [PMID: 30825724 DOI: 10.1016/j.plaphy.2019.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Ureides are nitrogenous compounds with a special function in some legume under nitrogen fixing conditions, the ureidic legumes. In this group, ureides are the predominant nitrogen transport molecule from nodules to the upper part, whereas amidic legumes use amides as nitrogen transport compounds. In this study, the ureide levels have been analysed in seedlings from four ureidic and four amidic legume plants. It has been found that the differentiation among ureide and amide plants already exists in seedlings during early seedling development, with high levels of ureide and allantoinase activity in cotyledons and embryonic axes from ureide plants. Since ureides have been implicated in the response of plant to several stress, total hydrosoluble antioxidant capacity and the levels of several antioxidant activities have been determined and compared among these two legume groups. The total antioxidant capacity did not follow any differential pattern in cotyledons or embryonic axes for the analysed plants. The levels of superoxide dismutase, guaiacol peroxidase and ascorbate peroxidase in both embryonic axes and cotyledons are statistical different between amide and ureide seedlings, whereas the catalase activity was similar among these groups of plants. We discuss than amides and ureides could follow different strategies to protect against oxidation.
Collapse
Affiliation(s)
- Francisco A Quiles
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Galvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Jose Guerrero-Casado
- Facultad de Ciencias Veterinarias. Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif, Severo Ochoa, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
18
|
Hanaka A, Nowak A, Plak A, Dresler S, Ozimek E, Jaroszuk-Ściseł J, Wójciak-Kosior M, Sowa I. Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of Phaseolus coccineus in Control Conditions and under Exogenous Application of Methyl Jasmonate and Copper Excess. Int J Mol Sci 2019; 20:E1909. [PMID: 30999692 PMCID: PMC6514558 DOI: 10.3390/ijms20081909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to demonstrate the potential of the promotion and regulation of plant physiology and growth under control and copper stress conditions, and the impact of the exogenous application of methyl jasmonate on this potential. Runner bean plants were treated with methyl jasmonate (1 or 10 µM) (J; J1 or J10) and Cu (50 µM), and inoculated with a bacterial isolate (S17) originating from Spitsbergen soil, and identified as Pseudomonas luteola using the analytical profile index (API) test. Above- and under-ground plant parts were analyzed. The growth parameters; the concentration of the photosynthetic pigments, elements, flavonoids (FLAVO), phenolics (TPC), allantoin (ALLA), and low molecular weight organic acids (LMWOAs); the activity of antioxidant enzymes and enzymes of resistance induction pathways (e.g., superoxide dismutase (SOD), catalase (CAT), ascorbate (APX) and guaiacol (GPX) peroxidase, glucanase (GLU), and phenylalanine (PAL) and tyrosine ammonia-lyase (TAL)), and the antioxidant capacity (AC) were studied. The leaves exhibited substantially higher ALLA and LMWOA concentrations as well as PAL and TAL activities, whereas the roots mostly had higher activities for a majority of the enzymes tested (i.e., SOD, CAT, APX, GPX, and GLU). The inoculation with S17 mitigated the effect of the Cu stress. Under the Cu stress and in the presence of J10, isolate S17 caused an elevation of the shoot fresh weight, K concentration, and TAL activity in the leaves, and APX and GPX (also at J1) activities in the roots. In the absence of Cu, isolate S17 increased the root length and the shoot-to-root ratio, but without statistical significance. In these conditions, S17 contributed to a 236% and 34% enhancement of P and Mn, respectively, in the roots, and a 19% rise of N in the leaves. Under the Cu stress, S17 caused a significant increase in FLAVO and TPC in the leaves. Similarly, the levels of FLAVO, TPC, and AC were enhanced after inoculation with Cu and J1. Regardless of the presence of J, inoculation at Cu excess caused a reduction of SOD and CAT activities, and an elevation of GPX. The effects of inoculation were associated with the application of Cu and J, which modified plant response mainly in a concentration-dependent manner (e.g., PAL, TAL, and LMWOA levels). The conducted studies demonstrated the potential for isolate S17 in the promotion of plant growth.
Collapse
Affiliation(s)
- Agnieszka Hanaka
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Artur Nowak
- Department of Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Andrzej Plak
- Department of Geology and Soil Science, Maria Curie-Skłodowska University, Kraśnicka Ave. 2cd, 20-718 Lublin, Poland.
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Ewa Ozimek
- Department of Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
19
|
Casartelli A, Melino VJ, Baumann U, Riboni M, Suchecki R, Jayasinghe NS, Mendis H, Watanabe M, Erban A, Zuther E, Hoefgen R, Roessner U, Okamoto M, Heuer S. Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread wheat. PLANT MOLECULAR BIOLOGY 2019; 99:477-497. [PMID: 30721380 DOI: 10.1007/s11103-019-00831-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/24/2019] [Indexed: 05/06/2023]
Abstract
Degradation of nitrogen-rich purines is tightly and oppositely regulated under drought and low nitrogen supply in bread wheat. Allantoin is a key target metabolite for improving nitrogen homeostasis under stress. The metabolite allantoin is an intermediate of the catabolism of purines (components of nucleotides) and is known for its housekeeping role in nitrogen (N) recycling and also for its function in N transport and storage in nodulated legumes. Allantoin was also shown to differentially accumulate upon abiotic stress in a range of plant species but little is known about its role in cereals. To address this, purine catabolic pathway genes were identified in hexaploid bread wheat and their chromosomal location was experimentally validated. A comparative study of two Australian bread wheat genotypes revealed a highly significant increase of allantoin (up to 29-fold) under drought. In contrast, allantoin significantly decreased (up to 22-fold) in response to N deficiency. The observed changes were accompanied by transcriptional adjustment of key purine catabolic genes, suggesting that the recycling of purine-derived N is tightly regulated under stress. We propose opposite fates of allantoin in plants under stress: the accumulation of allantoin under drought circumvents its degradation to ammonium (NH4+) thereby preventing N losses. On the other hand, under N deficiency, increasing the NH4+ liberated via allantoin catabolism contributes towards the maintenance of N homeostasis.
Collapse
Affiliation(s)
- Alberto Casartelli
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Strube Research GmbH & Co. KG, 38387, Söllingen, Germany
| | - Vanessa J Melino
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matteo Riboni
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Radoslaw Suchecki
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Nirupama S Jayasinghe
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Himasha Mendis
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mutsumi Watanabe
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Alexander Erban
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Ellen Zuther
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Rainer Hoefgen
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Ute Roessner
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mamoru Okamoto
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sigrid Heuer
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia.
- Rothamsted Research, Plant Science Department, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
20
|
De Ron AM, Bebeli PJ, Negri V, Vaz Patto MC, Revilla P. Warm Season Grain Legume Landraces From the South of Europe for Germplasm Conservation and Genetic Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:1524. [PMID: 30405662 PMCID: PMC6204433 DOI: 10.3389/fpls.2018.01524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/28/2018] [Indexed: 05/27/2023]
Abstract
Currently, there is a high concern from consumers regarding food quality, with emphasis on the origin of food sources. We here review the current situation of beans (Phaseolus spp.) and cowpea (Vigna unguiculata (L.) Walp.) landraces in the South of Europe focusing on morpho-agronomic and genetic diversity and physiological adaptation to the different agrosystems, including the symbiotic association with rhizobia. Despite the reduction in the production and consumption of grain legumes in Southern Europe, the variability of common bean, runner bean and cowpea landraces in this region is adequately preserved ex situ in germplasm banks and in breeder collections in Portugal, Spain, Italy and Greece; however, on-farm (in situ) conservation in isolated areas mainly in gardens and small fields for farmers own consumption and local markets is not guaranteed. This variability can be used for the genetic improvement of varieties, which will result in environmental-friendly improved legumes for a sustainable production in the South of Europe as well as in other regions of the World.
Collapse
Affiliation(s)
- Antonio M. De Ron
- Department of Genetics and Plant Breeding, Misión Biológica de Galicia, National Spanish Research Council (CSIC), Pontevedra, Spain
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Valeria Negri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro Revilla
- Department of Genetics and Plant Breeding, Misión Biológica de Galicia, National Spanish Research Council (CSIC), Pontevedra, Spain
| |
Collapse
|
21
|
Adams MA, Buchmann N, Sprent J, Buckley TN, Turnbull TL. Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally? TRENDS IN PLANT SCIENCE 2018; 23:539-550. [PMID: 29559299 DOI: 10.1016/j.tplants.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF.
Collapse
Affiliation(s)
- Mark A Adams
- Swinburne University, PO Box 218, Hawthorn, VIC 3122, Australia; Centre for Carbon Water and Food, The University of Sydney, 380 Werombi Road, Camden, NSW 2480, Australia.
| | - Nina Buchmann
- ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Janet Sprent
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tarryn L Turnbull
- Centre for Carbon Water and Food, The University of Sydney, 380 Werombi Road, Camden, NSW 2480, Australia
| |
Collapse
|
22
|
Barbosa N, Portilla E, Buendia HF, Raatz B, Beebe S, Rao I. Genotypic differences in symbiotic nitrogen fixation ability and seed yield of climbing bean. PLANT AND SOIL 2018; 428:223-239. [PMID: 30996486 PMCID: PMC6435206 DOI: 10.1007/s11104-018-3665-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/20/2018] [Indexed: 05/26/2023]
Abstract
AIMS Symbiotic nitrogen fixation (SNF) contributes to improve grain yield under nitrogen (N) deficiency. Climbing beans are known to be superior to bush beans in their potential for SNF. The main objectives of this study were to: (i) quantify genotypic differences in SNF ability of climbing beans using 15N natural abundance method; (ii) identify climbing bean genotypes that combine high SNF ability with high yield potential that could serve as parents in the breeding program; and (iii) test whether δ15N in seed can be used instead of δ15N in shoot for estimating SNF ability. METHODS 98 Climbing bean genotypes were evaluated for SNF ability in terms of nitrogen derived from the atmosphere (%Ndfa). Field trials were conducted at two locations in Colombia. RESULTS Significant genotypic differences were observed in SNF ability. Good yielding lines with 4.6 t ha-1 fixed as much as 60% of their N (up to 92 kg of N fixed ha-1) without application of N fertilizer to soil. CONCLUSIONS Based on evaluations from both locations, seven climbing bean lines (ENF 235, ENF 234, ENF 28, ENF 21, MAC 27, CGA 10 and PO07AT49) were identified as promising genotypes. Seed samples can be used to determine SNF ability, to select for genotypes with superior SNF ability.
Collapse
Affiliation(s)
- Norma Barbosa
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Elizabeth Portilla
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Hector Fabio Buendia
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Bodo Raatz
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Stephen Beebe
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Idupulapati Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
- Present Address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604 USA
| |
Collapse
|
23
|
Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba. PLoS One 2017; 12:e0190284. [PMID: 29281721 PMCID: PMC5744999 DOI: 10.1371/journal.pone.0190284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/11/2017] [Indexed: 01/24/2023] Open
Abstract
Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d'Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.
Collapse
|
24
|
Jemo M, Sulieman S, Bekkaoui F, Olomide OAK, Hashem A, Abd_Allah EF, Alqarawi AA, Tran LSP. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:2111. [PMID: 29312379 PMCID: PMC5742256 DOI: 10.3389/fpls.2017.02111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led to significant reductions of water-deficit damage on dry biomass, plant-N and -P contents, and BNF potential of cowpea varieties. This finding suggests that integrated nutrient management strategies that allow farmers to access to Pi-based fertilizers may help reduce the damage of adverse water deficit and Pi deficiency caused to cowpea crop in the regions, where soils are predominantly Pi-deficient and drought-prone.
Collapse
Affiliation(s)
- Martin Jemo
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Office Chérifien des Phosphates (OCP)-Africa, Casablanca, Morocco
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Faouzi Bekkaoui
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Signalling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
25
|
Nourimand M, Todd CD. Allantoin contributes to the stress response in cadmium-treated Arabidopsis roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:103-109. [PMID: 28858669 DOI: 10.1016/j.plaphy.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 05/21/2023]
Abstract
Ureides are nitrogen-rich compounds, derived from purine catabolism. A dual role for ureides, and for allantoin in particular, in both nitrogen recycling and the abiotic stress response has been recently identified. Previous work on the effect of allantoin on cadmium (Cd)-exposed Arabidopsis revealed that high concentration of allantoin in allantoinase-negative mutant (aln-3) leaves alleviates Cd toxicity via inducing antioxidant mechanisms in these plants. In the present study, we evaluate whether allantoin has a similar protective role in roots. Both wild type and aln-3 roots contain higher amounts of internal Cd compared to leaves. Likewise, aln-3 roots are more resistant to Cd, reflected in fresh and dry weight, and stimulated antioxidant enzyme activity, including superoxide dismutase (SOD) and catalase (CAT), resulting in lower reactive oxygen species concentration. In contrast with wild-type leaves, high levels of Cd in Col-0 roots reduces transcript abundance of uricase, leading to a significant decline in allantoin level of treated roots at 1000 and 1500 μM CdCl2. This metabolite change is also accompanied by decreasing the activity of antioxidant enzymes (SOD and CAT). Additionally, contrary to wild-type leaves, root genotype has a significant effect on CAT activity under Cd treatment, suggesting the possible different sources of damage and oxidative stress response in these two tissues.
Collapse
Affiliation(s)
- Maryam Nourimand
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada.
| |
Collapse
|
26
|
Furlan AL, Bianucci E, Castro S, Dietz KJ. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:12-22. [PMID: 28818367 DOI: 10.1016/j.plantsci.2017.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/04/2023]
Abstract
Legumes belong to the most important crops worldwide. They increase soil fertility due their ability to establish symbiotic associations with soil microorganisms, known as rhizobia, capable of fixing nitrogen from the atmosphere. However, they are frequently exposed to abiotic stress conditions in particular drought. Such adverse conditions impair the biological nitrogen fixation (BNF) and depend largely on the legume. Therefore, two peanut cultivars with contrasting tolerance to drought, namely the more tolerant EC-98 and the sensitive Granoleico, were investigated to elucidate the relative contribution of BNF to the tolerance to drought. The tolerant cultivar EC-98 sustained growth and BNF similar to the control condition despite the reduced water potential and photosynthesis, suggesting the functioning of distinct metabolic pathways that contributed to enhance the tolerance. The biochemical and metabolomics approaches revealed that nodules from the tolerant cultivar accumulated trehalose, proline and gamma-aminobutyric acid (GABA), metabolites with known function in protecting against drought stress. The amide metabolism was severely affected in nodules from the sensitive cultivar Granoleico as revealed by the low content of asparagine and glutamine in the drought stressed plants. The sensitive cultivar upon rehydration was unable to re-establish a metabolism similar to well-watered plants. This was evidenced by the low level of metabolites and, transcripts and specific activities of enzymes from the carbon (sucrose synthase) and nitrogen (glutamine synthetase) metabolism which decreased below the values of control plants. Therefore, the increased content of metabolites with protective functions under drought stress likely is crucial for the full restoration upon rehydration. Smaller changes of drought stress-related metabolites in nodule are another trait that contributes to the effective control of BNF in the tolerant peanut cultivar (EC-98).
Collapse
Affiliation(s)
- Ana Laura Furlan
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina; Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany.
| | - Eliana Bianucci
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany
| |
Collapse
|
27
|
Nourimand M, Todd CD. Allantoin Increases Cadmium Tolerance in Arabidopsis via Activation of Antioxidant Mechanisms. PLANT & CELL PHYSIOLOGY 2016; 57:2485-2496. [PMID: 27742885 DOI: 10.1093/pcp/pcw162] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 05/19/2023]
Abstract
Plants apply various molecular, physiological and morphological strategies in response to undesirable environmental conditions. One of the possible responses which may contribute to surviving stressful conditions is the accumulation of ureides. Ureides are recognized as important nitrogen-rich compounds involved in recycling nitrogen in plants to support growth and reproduction. Amongst them, allantoin not only serves as a transportable nitrogen-rich compound, but has also been suggested to protect plants from abiotic stresses via minimizing oxidative damage. This work focuses on the effect of cadmium (Cd) on ureide metabolism in Arabidopsis, in order to clarify the potential role of allantoin in plant tolerance to heavy metals. In response to Cd treatment, allantoin levels increase in Arabidopsis thaliana, ecotype Col-0, due to reduced allantoinase (ALN) gene expression and enzyme activity. This coincides with increases in uricase (UO) transcripts. UO and ALN encode the enzymes for the production and degradation of allantoin, respectively. ALN-negative aln-3 Arabidopsis mutants with elevated allantoin levels demonstrate resistance to soil-applied CdCl2, up to 1,500 μM. Although aln-3 mutants take up and store more Cd within their leaf tissue, they contain less damaging superoxide radicals. The protective mechanism of aln-3 mutants appears to involve enhancing the activity of antioxidant enzymes such as superoxide dismutase and ascorbate peroxidase.
Collapse
Affiliation(s)
- Maryam Nourimand
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
28
|
Irani S, Todd CD. Ureide metabolism under abiotic stress in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:87-95. [PMID: 27302009 DOI: 10.1016/j.jplph.2016.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 05/21/2023]
Abstract
Ureides are nitrogenous compounds derived from purine catabolism which contribute to nitrogen recycling in plants. Accumulation of ureide compounds has been reported in a number of plant species under stress conditions, suggesting their involvement in plants' response to stress. In this research a biochemical and molecular approach was applied to address the ureide accumulation under abiotic stress conditions in Arabidopsis thaliana. Ureide concentration and changes in expression of ureide metabolic genes were examined in response to drought, NaCl and mannitol treatments. Additionally, an Arabidopsis allantoinase (ALN) mutant with constitutive accumulation of a ureide compound, allantoin, was used to investigate the impact of high levels of this compound on drought and NaCl stress responses. In the leaf tissue of adult plants allantoin accumulated in response to soil drying. Transcription of urate oxidase (UO), involved in allantoin production, was highly up-regulated under the same conditions. Allantoin and allantoate also accumulated in seedlings following treatment with NaCl or mannitol. aln mutants with enhanced levels of allantoin exhibited higher tolerance to drought and NaCl. Hydrogen peroxide and superoxide did not accumulate in the aln mutant leaves to the same degree in response to drought when compared to the wild-type. Our results suggest that ureide metabolism and accumulation contribute to the abiotic stress response which is regulated, at least in part, at the transcriptional level. Higher concentrations of allantoin in the mutant elevates abiotic stress tolerance, possibly by reducing oxidative damage.
Collapse
Affiliation(s)
- Solmaz Irani
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
29
|
Li J, Qin RY, Li H, Xu RF, Yang YC, Ni DH, Ma H, Li L, Wei PC, Yang JB. Low-Temperature-Induced Expression of Rice Ureidoglycolate Amidohydrolase is Mediated by a C-Repeat/Dehydration-Responsive Element that Specifically Interacts with Rice C-Repeat-Binding Factor 3. FRONTIERS IN PLANT SCIENCE 2015; 6:1011. [PMID: 26617632 PMCID: PMC4643140 DOI: 10.3389/fpls.2015.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 05/30/2023]
Abstract
Nitrogen recycling and redistribution are important for the environmental stress response of plants. In non-nitrogen-fixing plants, ureide metabolism is crucial to nitrogen recycling from organic sources. Various studies have suggested that the rate-limiting components of ureide metabolism respond to environmental stresses. However, the underlying regulation mechanism is not well understood. In this report, rice ureidoglycolate amidohydrolase (OsUAH), which is a recently identified enzyme catalyzing the final step of ureide degradation, was identified as low-temperature- (LT) but not abscisic acid- (ABA) regulated. To elucidate the LT regulatory mechanism at the transcriptional level, we isolated and characterized the promoter region of OsUAH (P OsUAH ). Series deletions revealed that a minimal region between -522 and -420 relative to the transcriptional start site was sufficient for the cold induction of P OsUAH . Detailed analyses of this 103-bp fragment indicated that a C-repeat/dehydration-responsive (CRT/DRE) element localized at position -434 was essential for LT-responsive expression. A rice C-repeat-binding factors/DRE-binding proteins 1 (CBFs/DREB1s) subfamily member, OsCBF3, was screened to specifically bind to the CRT/DRE element in the minimal region both in yeast one-hybrid assays and in in vitro gel-shift analysis. Moreover, the promoter could be exclusively trans-activated by the interaction between the CRT/DRE element and OsCBF3 in vivo. These findings may help to elucidate the regulation mechanism of stress-responsive ureide metabolism genes and provide an example of the member-specific manipulation of the CBF/DREB1 subfamily.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian-Bo Yang
- *Correspondence: Peng-Cheng Wei, ; jian-Bo Yang,
| |
Collapse
|
30
|
Ray JD, Dhanapal AP, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Boykin D, Cregan PB, Song Q, Fritschi FB. Genome-Wide Association Study of Ureide Concentration in Diverse Maturity Group IV Soybean [Glycine max (L.) Merr.] Accessions. G3 (BETHESDA, MD.) 2015; 5:2391-403. [PMID: 26374596 PMCID: PMC4632059 DOI: 10.1534/g3.115.021774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/08/2015] [Indexed: 01/13/2023]
Abstract
Ureides are the N-rich products of N-fixation that are transported from soybean nodules to the shoot. Ureides are known to accumulate in leaves in response to water-deficit stress, and this has been used to identify genotypes with reduced N-fixation sensitivity to drought. Our objectives in this research were to determine shoot ureide concentrations in 374 Maturity Group IV soybean accessions and to identify genomic regions associated with shoot ureide concentration. The accessions were grown at two locations (Columbia, MO, and Stuttgart, AR) in 2 yr (2009 and 2010) and characterized for ureide concentration at beginning flowering to full bloom. Average shoot ureide concentrations across all four environments (two locations and two years) and 374 accessions ranged from 12.4 to 33.1 µmol g(-1) and were comparable to previously reported values. SNP-ureide associations within and across the four environments were assessed using 33,957 SNPs with a MAF ≥0.03. In total, 53 putative loci on 18 chromosomes were identified as associated with ureide concentration. Two of the putative loci were located near previously reported QTL associated with ureide concentration and 30 loci were located near genes associated with ureide metabolism. The remaining putative loci were not near chromosomal regions previously associated with shoot ureide concentration and may mark new genes involved in ureide metabolism. Ultimately, confirmation of these putative loci will provide new sources of variation for use in soybean breeding programs.
Collapse
Affiliation(s)
- Jeffery D Ray
- Crop Genetics Research Unit, USDA-ARS, Stoneville, Mississippi 38776
| | | | - Shardendu K Singh
- Crop Systems and Global Change Lab, USDA-ARS, Beltsville, Maryland 20705
| | - Valerio Hoyos-Villegas
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - James R Smith
- Crop Genetics Research Unit, USDA-ARS, Stoneville, Mississippi 38776
| | - Larry C Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704
| | - C Andy King
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704
| | - Debbie Boykin
- Southeast Area Statistics, USDA-ARS, Stoneville, Mississippi 38776
| | - Perry B Cregan
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, Maryland 20705
| | - Qijian Song
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, Maryland 20705
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|