1
|
Réthoré E, Ali N, Pluchon S, Hosseini SA. Silicon Enhances Brassica napus Tolerance to Boron Deficiency by the Remobilisation of Boron and by Changing the Expression of Boron Transporters. PLANTS (BASEL, SWITZERLAND) 2023; 12:2574. [PMID: 37447134 DOI: 10.3390/plants12132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Boron (B) is an essential micronutrient for plants, and its deficiency is a widespread nutritional disorder, particularly in high-demanding crops like Brassica napus. Over the past few decades, silicon (Si) has been shown to mitigate plant nutrient deficiencies of different macro- and micro-nutrients. However, the work on B and Si cross-talk has mostly been focused on the alleviation of B toxicity by Si application. In the present study, we investigated the effect of Si application on rapeseed plants grown hydroponically under long-term B deficiency (20 days at 0.1 µM B). In addition, a B-uptake labelling experiment was conducted, and the expression of the genes involved in B uptake were monitored between 2 and 15 days of B shortage. The results showed that Si significantly improved rapeseed plant growth under B deficiency by 34% and 49% in shoots and roots, respectively. It also increased the expression level of BnaNIP5;1 and BOR1;2c in both young leaves and roots. The uptake labelling experiment showed the remobilization of previously fixed 11B from old leaves to new tissues. This study provides additional evidence of the beneficial effects of Si under conditions lacking B by changing the expression of the BnaNIP5;1 gene and by remobilizing 11B to young tissues.
Collapse
Affiliation(s)
- Elise Réthoré
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Nusrat Ali
- Phys-Chem and Bio-Analytics R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint-Malo, France
| | - Sylvain Pluchon
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| | - Seyed Abdollah Hosseini
- Plant Nutrition R&D Department, Centre Mondial de l'Innovation of Roullier Group, 35400 Saint Malo, France
| |
Collapse
|
2
|
Alves DMR, de Oliveira JN, de Mello Prado R, Ferreira PM. Silicon in the form of nanosilica mitigates P toxicity in scarlet eggplant. Sci Rep 2023; 13:9190. [PMID: 37280298 DOI: 10.1038/s41598-023-36412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023] Open
Abstract
Intensive fertilization of vegetables can promote phosphorus (P) toxicity. However, it can be reversed using silicon (Si), although there is a lack of research clarifying its mechanisms of action. This research aims to study the damage caused by P toxicity to scarlet eggplant plants and whether Si can mitigate this toxicity. We evaluated the nutritional and physiological aspects of plants. Treatments were arranged in a 2 × 2 factorial design of two nutritional levels of adequate P (2 mmol L-1 of P) and toxic/excess P (8 to 13 mmol L-1 of P) combined with the absence or presence of nanosilica (2 mmol L-1 Si) in a nutrient solution. There were six replications. The excess P in the nutrient solution caused damage to scarlet eggplant growth due to nutritional losses and oxidative stress. We found that P toxicity can be mitigated by supplying Si, which decreases P uptake by 13%, improves C:N homeostasis, and increases iron (Fe), copper (Cu), and zinc (Zn) use efficiency by 21%, 10%, and 12%, respectively. At the same time, it decreases oxidative stress and electrolyte leakage by 18% and increases antioxidant compounds (phenols and ascorbic acid by 13% and 50%, respectively), and decreases photosynthetic efficiency and plant growth by 12% (by increasing 23% and 25% of shoot and root dry mass, respectively). These findings allow us to explain the different Si mechanisms used to reverse the damage caused by P toxicity to plants.
Collapse
Affiliation(s)
- Deyvielen Maria Ramos Alves
- Department of Agricultural Production Sciences, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal-SP. Access Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| | - Jairo Neves de Oliveira
- Department of Agricultural Production Sciences, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal-SP. Access Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal-SP. Access Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Patrícia Messias Ferreira
- Department of Agricultural Production Sciences, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal-SP. Access Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
3
|
Labancová E, Vivodová Z, Šípošová K, Kollárová K. Silicon Actuates Poplar Calli Tolerance after Longer Exposure to Antimony. PLANTS (BASEL, SWITZERLAND) 2023; 12:689. [PMID: 36771773 PMCID: PMC9919072 DOI: 10.3390/plants12030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The presence of antimony (Sb) in high concentrations in the environment is recognized as an emerging problem worldwide. The toxicity of Sb in plant tissues is known; however, new methods of plant tolerance improvement must be addressed. Here, poplar callus (Populus alba L. var. pyramidallis) exposed to Sb(III) in 0.2 mM concentration and/or to silicon (Si) in 5 mM concentration was cultivated in vitro to determine the impact of Sb/Si interaction in the tissue. The Sb and Si uptake, growth, the activity of superoxide dismutase (SOD), catalase (CAT), guaiacol-peroxidase (G-POX), nutrient concentrations, and the concentrations of photosynthetic pigments were investigated. To elucidate the action of Si during the Sb-induced stress, the impact of short and long cultivations was determined. Silicon decreased the accumulation of Sb in the calli, regardless of the length of the cultivation (by approx. 34%). Antimony lowered the callus biomass (by approx. 37%) and decreased the concentrations of photosynthetic pigments (up to 78.5%) and nutrients in the tissue (up to 21.7%). Silicon supported the plant tolerance to Sb via the modification of antioxidant enzyme activity, which resulted in higher biomass production (increased by approx. 35%) and a higher uptake of nutrients from the media (increased by approx. 10%). Silicon aided the development of Sb-tolerance over the longer cultivation period. These results are key in understanding the action of Si-developed tolerance against metalloids.
Collapse
|
4
|
Nikolić D, Bosnić D, Samardžić J. Silicon in action: Between iron scarcity and excess copper. FRONTIERS IN PLANT SCIENCE 2023; 14:1039053. [PMID: 36818840 PMCID: PMC9935840 DOI: 10.3389/fpls.2023.1039053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.
Collapse
|
5
|
Shi Y, Guo S, Zhao X, Xu M, Xu J, Xing G, Zhang Y, Ahammed GJ. Comparative physiological and transcriptomics analysis revealed crucial mechanisms of silicon-mediated tolerance to iron deficiency in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1094451. [PMID: 36618612 PMCID: PMC9811145 DOI: 10.3389/fpls.2022.1094451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/07/2023]
Abstract
Iron (Fe) deficiency is a common abiotic stress in plants grown in alkaline soil that causes leaf chlorosis and affects root development due to low plant-available Fe concentration. Silicon (Si) is a beneficial element for plant growth and can also improve plant tolerance to abiotic stress. However, the effect of Si and regulatory mechanisms on tomato plant growth under Fe deficiency remain largely unclear. Here, we examined the effect of Si application on the photosynthetic capacity, antioxidant defense, sugar metabolism, and organic acid contents under Fe deficiency in tomato plants. The results showed that Si application promoted plant growth by increasing photosynthetic capacity, strengthening antioxidant defense, and reprogramming sugar metabolism. Transcriptomics analysis (RNA-seq) showed that Si application under Fe deficiency up-regulated the expression of genes related to antioxidant defense, carbohydrate metabolism and organic acid synthesis. In addition, Si application under Fe deficiency increased Fe distribution to leaves and roots. Combined with physiological assessment and molecular analysis, these findings suggest that Si application can effectively increase plant tolerance to low Fe stress and thus can be implicated in agronomic management of Fe deficiency for sustainable crop production. Moreover, these findings provide important information for further exploring the genes and underlying regulatory mechanisms of Si-mediated low Fe stress tolerance in crop plants.
Collapse
Affiliation(s)
- Yu Shi
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuxun Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xin Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mengzhu Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, Henan, China
| |
Collapse
|
6
|
Application of Exogenous Silicon for Alleviating Photosynthetic Inhibition in Tomato Seedlings under Low−Calcium Stress. Int J Mol Sci 2022; 23:ijms232113526. [DOI: 10.3390/ijms232113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
To address the low Ca−induced growth inhibition of tomato plants, the mitigation effect of exogenous Si on tomato seedlings under low−Ca stress was investigated using different application methods. We specifically analyzed the effects of root application or foliar spraying of 1 mM Si on growth conditions, leaf photosynthetic properties, stomatal status, chlorophyll content, chlorophyll fluorescence, ATP activity and content, Calvin cycle−related enzymatic activity, and gene expression in tomato seedlings under low vs. adequate calcium conditions. We found that the low−Ca environment significantly affected (reduced) these parameters, resulting in growth limitation. Surprisingly, the application of 1 mM Si significantly increased plant height, stem diameter, and biomass accumulation, protected photosynthetic pigments, improved gas exchange, promoted ATP production, enhanced the activity of Calvin cycle key enzymes and expression of related genes, and ensured efficient photosynthesis to occur in plants under low−Ca conditions. Interestingly, when the same amount of Si was applied, the beneficial effects of Si were more pronounced under low−Ca conditions that under adequate Ca. We speculate that Si might promote the absorption and transport of calcium in plants. The effects of Si also differed depending on the application method; foliar spraying was better in alleviating photosynthetic inhibition in plants under low−Ca stress, whereas root application of Si significantly promoted root growth and development. Enhancing the photosynthetic capacity by foliar Si application is an effective strategy for ameliorating the growth inhibition of plants under low−Ca stress.
Collapse
|
7
|
Oliveira KS, de Mello Prado R, Checchio MV, Gratão PL. Interaction of silicon and manganese in nutritional and physiological aspects of energy cane with high fiber content. BMC PLANT BIOLOGY 2022; 22:374. [PMID: 35902800 PMCID: PMC9335997 DOI: 10.1186/s12870-022-03766-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Silicon (Si) is a multiple stress attenuator element in plants, however more research is needed to elucidate the actions in the plants defense system with low nutrition of manganese (Mn) for a prolonged period, and the attenuation mechanisms involved in the effects of Mn deficiency on energy cane with high fiber content. Thus, the objective of this study was to evaluate whether Si reduces the oxidative stress of the energy cane grown in low Mn in nutrient solution, to mitigate the effects of Mn deficiency, improving enzymatic and non-enzymatic defense, uptake of Mn the plant growth. METHODS An experiment was carried out with pre-sprouted seedlings of Saccharum spontaneum L. in a 2 × 2 factorial scheme in five replications in which the plants were grown under sufficiency (20.5 μmol L-1) and deficiency (0.1 μmol L-1) of Mn combined with the absence and presence of Si (2.0 mmol L-1) for 160 days from the application of the treatments. The following parameters were evaluated: accumulation of Mn and Si, H2O2, MDA, activity of SOD and GPOX, total phenol content, pigments, and quantum efficiency of PSII. RESULTS Mn deficiency induced the oxidative stress for increase the H2O2 and MDA content in leaves of plants and reduce the activity of antioxidant enzymes and total phenols causing damage to quantum efficiency of photosystem II and pigment content. Si attenuated the effects of Mn deficiency even for a longer period of stress by reducing H2O2 (18%) and MDA (32%) content, and increased the Mn uptake efficiency (53%), SOD activity (23%), GPOX (76%), phenol contents, thus improving growth. CONCLUSIONS The supply of Si promoted great nutritional and physiological improvements in energy cane with high fiber content in Mn deficiency. The results of this study propose the supply of Si via fertirrigation as a new sustainable strategy for energy cane cultivation in low Mn environments.
Collapse
Affiliation(s)
- Kamilla Silva Oliveira
- Department of Agricultural Production Sciences, Sector of Soils and Fertilizers, Laboratory of Plant Nutrition, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, Sector of Soils and Fertilizers, Laboratory of Plant Nutrition, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Mirela Vantini Checchio
- Department of Biology Applied to Agriculture, Laboratory of Plant Physiology, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| | - Priscila Lupino Gratão
- Department of Biology Applied to Agriculture, Laboratory of Plant Physiology, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| |
Collapse
|
8
|
Basirat M, Mousavi SM. Effect of Foliar Application of Silicon and Salicylic Acid on Regulation of Yield and Nutritional Responses of Greenhouse Cucumber Under High Temperature. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:1978-1988. [PMID: 0 DOI: 10.1007/s00344-021-10562-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
|
9
|
Kovács S, Kutasy E, Csajbók J. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1223. [PMID: 35567224 PMCID: PMC9104186 DOI: 10.3390/plants11091223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.
Collapse
|
10
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Lozano-González JM, Valverde C, Hernández CD, Martin-Esquinas A, Hernández-Apaolaza L. Beneficial Effect of Root or Foliar Silicon Applied to Cucumber Plants under Different Zinc Nutritional Statuses. PLANTS (BASEL, SWITZERLAND) 2021; 10:2602. [PMID: 34961073 PMCID: PMC8703335 DOI: 10.3390/plants10122602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 05/14/2023]
Abstract
Zinc (Zn) is an essential micronutrient involved in a large variety of physiological processes, and its deficiency causes mainly growth and development disturbances, as well as oxidative stress, which results in the overproduction and accumulation of reactive oxygen species (ROS). A possible environmentally friendly solution is the application of silicon (Si), an element that has shown beneficial effects under abiotic and biotic stresses on many crops. Si could be applied through the roots or leaves. The aim of this work is to study the effect of Si applied to the root or shoot in cucumber plants under different Zn statuses (sufficiency, deficiency, and re-fertilization). Cucumber plants were grown in hydroponics, with 1.5 mM Si applied at the nutrient solution or sprayed on the leaves. During the different Zn statuses, SPAD index, fresh weight, ROS, and Si, Zn, P, Cu and B mineral concentration were determined. The results suggested that Si application had no effect during sufficiency and deficiency periods, however, during re-fertilization foliar application of Si, it showed faster improvement in SPAD index, better increment of fresh weight, and a decrease in ROS quantity, probably due to a memory effect promoted by Si previous application during the growing period. In summary, Si application to cucumber plants could be used to prepare plants to cope with a future stress situation, such as Zn deficiency, due to its prompt recovery after overcoming the stress period.
Collapse
Affiliation(s)
| | | | | | | | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (J.M.L.-G.); (C.V.); (C.D.H.); (A.M.-E.)
| |
Collapse
|
12
|
Genome-wide understanding of evolutionary and functional relationships of rice Yellow Stripe-Like (YSL) transporter family in comparison with other plant species. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00924-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Sales AC, Campos CNS, de Souza Junior JP, da Silva DL, Oliveira KS, de Mello Prado R, Teodoro LPR, Teodoro PE. Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.). Sci Rep 2021; 11:14665. [PMID: 34282251 PMCID: PMC8289834 DOI: 10.1038/s41598-021-94287-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Nutritional deficiency is common in several regions of quinoa cultivation. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on the effects of Si supply on quinoa plants are still scarce. Given this scenario, our objective was to evaluate the symptoms in terms of tissue, physiological and nutritional effects of quinoa plants submitted to nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) deficiencies under Si presence. The experiment consisted of a factorial scheme 6 × 2, using a complete solution (CS), -N, -P, -K, -Ca, -Mg combined with absence and presence of Si (1.5 mmol L-1). Symptomatic, physiological, nutritional and evaluation vegetative were performed in quinoa crop. The deficiencies of N, P, K, Ca and Mg in quinoa cultivation caused visual symptoms characteristic of the deficiency caused by respective nutrients, hence decreasing the plant dry mass. However, Si supply attenuated the deficiency effects by preserving the photosynthetic apparatus, increasing the chlorophyll production, increasing the membrane integrity, and decreasing the electrolyte leakage. Thus, the Si supply attenuated the visual effects provided by deficiency of all nutrients, but stood out for N and Ca, because it reflected in a higher dry mass production. This occurred because, the Si promoted higher synthesis and protection of chlorophylls, and lower electrolyte leakage under Ca restriction, as well as decreased electrolyte leakage under N restriction.
Collapse
Affiliation(s)
- Ana Carolina Sales
- Universidade Federal do Mato Grosso do Sul, Campus de Chapadão do Sul - UFMS/CPCS, Chapadão do Sul, MS, Brazil
| | - Cid Naudi Silva Campos
- Universidade Federal do Mato Grosso do Sul, Campus de Chapadão do Sul - UFMS/CPCS, Chapadão do Sul, MS, Brazil
| | - Jonas Pereira de Souza Junior
- Faculdade de Ciências Agrárias e Veterinárias - UNESP/FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Dalila Lopes da Silva
- Faculdade de Ciências Agrárias e Veterinárias - UNESP/FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Kamilla Silva Oliveira
- Faculdade de Ciências Agrárias e Veterinárias - UNESP/FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Renato de Mello Prado
- Faculdade de Ciências Agrárias e Veterinárias - UNESP/FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | | | - Paulo Eduardo Teodoro
- Universidade Federal do Mato Grosso do Sul, Campus de Chapadão do Sul - UFMS/CPCS, Chapadão do Sul, MS, Brazil.
| |
Collapse
|
14
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:697592. [PMID: 34249069 PMCID: PMC8261142 DOI: 10.3389/fpls.2021.697592] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ernest A. Kirkby
- Faculty of Biological Sciences, Leeds University, Leeds, United Kingdom
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Ali M, Afzal S, Parveen A, Kamran M, Javed MR, Abbasi GH, Malik Z, Riaz M, Ahmad S, Chattha MS, Ali M, Ali Q, Uddin MZ, Rizwan M, Ali S. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na + uptake in maize (Zea mays L.) cultivars exposed to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:208-218. [PMID: 33281032 DOI: 10.1016/j.plaphy.2020.10.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/29/2020] [Indexed: 05/04/2023]
Abstract
Silicon (Si), a major contributing constituent for plant resistance against abiotic stresses. In spite of this, the detailed mechanisms underlying the potential of Si in mitigating salt toxicity in maize (Zea mays L.) are still poorly understood. The present study deals with the response of Si application on growth, gaseous exchange, ion homeostasis and antioxidant enzyme activities in two maize cultivars (P1574 and Hycorn 11) grown under saline conditions. Salt stress remarkably reduced the plant tissue (roots and shoots) biomass, relative water contents (RWC), membrane stability index (MSI), gaseous exchange characteristics, and antioxidant enzymatic activities i.e., superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT). However, salt-induced phytotoxicity increased the plant tissue concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), Na+/K+ ionic ratio, Na+ translocation (root to shoot), and its uptake. The detrimental effects were more prominent in Hycorn 11 cultivar than the P1574 cultivar at higher salinity level (S2; 160 mM NaCl). The addition of Si alleviated salt toxicity, which was more obvious in P1574 relative to Hycorn 11 as demonstrated by an increasing trend in RWC, MSI, and activities of SOD, POD, APX and CAT. Besides, Si-induced mitigation of salt stress was due to the depreciation in Na+/K+ ratio, Na+ ion uptake at the surface of maize roots, translocation in plant tissues and thereby significantly reduced Na+ ion accumulation. The findings showed a new dimension regarding the beneficial role of Si in maize plants grown under salt toxicity.
Collapse
Affiliation(s)
- Muhammad Ali
- Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan; Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Sobia Afzal
- Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aasma Parveen
- Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Kamran
- Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, PR China.
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Ghulam Hassan Abbasi
- Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zaffar Malik
- Soil Salinity Laboratory (SSL), Department of Soil Science, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Salman Ahmad
- Department of Agronomy, Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Agriculture (Extension) Department, Punjab Markaz Chounawala, Bahawalpur, 63100, Pakistan
| | - Muhammad Sohaib Chattha
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qurban Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Muhammad Zahir Uddin
- National Institute of Genomics and Advanced Biotechnology (NIGAB). PARC Institute of Advanced Studies in Agriculture (PIASA), National Agriculture Research Centre (NARC), Islamabad, 44000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
16
|
The Regulatory Role of Silicon in Mitigating Plant Nutritional Stresses. PLANTS 2020; 9:plants9121779. [PMID: 33333938 PMCID: PMC7765459 DOI: 10.3390/plants9121779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
It has been long recognized that silicon (Si) plays important roles in plant productivity by improving mineral nutrition deficiencies. Despite the fact that Si is considered as ‘quasi–essential’, the positive effect of Si has mostly been described in resistance to biotic and tolerance to abiotic stresses. During the last decade, much effort has been aimed at linking the positive effects of Si under nutrient deficiency or heavy metal toxicity (HM). These studies highlight the positive effect of Si on biomass production, by maintaining photosynthetic machinery, decreasing transpiration rate and stomatal conductance, and regulating uptake and root to shoot translocation of nutrients as well as reducing oxidative stress. The mechanisms of these inputs and the processes driving the alterations in plant adaptation to nutritional stress are, however, largely unknown. In this review, we focus on the interaction of Si and macronutrient (MaN) deficiencies or micro-nutrient (MiN) deficiency, summarizing the current knowledge in numerous research fields that can improve our understanding of the mechanisms underpinning this cross-talk. To this end, we discuss the gap in Si nutrition and propose a working model to explain the responses of individual MaN or MiN disorders and their mutual responses to Si supplementation.
Collapse
|
17
|
Hernández-Apaolaza L, Escribano L, Zamarreño ÁM, García-Mina JM, Cano C, Carrasco-Gil S. Root Silicon Addition Induces Fe Deficiency in Cucumber Plants, but Facilitates Their Recovery After Fe Resupply. A Comparison With Si Foliar Sprays. FRONTIERS IN PLANT SCIENCE 2020; 11:580552. [PMID: 33424881 PMCID: PMC7793930 DOI: 10.3389/fpls.2020.580552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/02/2020] [Indexed: 05/27/2023]
Abstract
Silicon has not been cataloged as an essential element for higher plants. However, it has shown beneficial effects on many crops, especially under abiotic and biotic stresses. Silicon fertilization was evaluated for the first time on plants exposed to fluctuations in an Fe regime (Fe sufficiency followed by Fe deficiency and, in turn, by Fe resupply). Root and foliar Si applications were compared using cucumber plants that were hydroponically grown in a growth chamber under different Fe nutritional statuses and Si applied either to the roots or to the shoots. The SPAD index, Fe, and Mn concentration, ROS, total phenolic compounds, MDA concentration, phytohormone balance, and cell cycle were determined. The results obtained showed that the addition of Si to the roots induced an Fe shortage in plants grown under optimal or deficient Fe nutritional conditions, but this was not observed when Si was applied to the leaves. Plant recovery following Fe resupply was more effective in the Si-treated plants than in the untreated plants. A relationship between the ROS concentration, hormonal balance, and cell cycle under different Fe regimes and in the presence or absence of Si was also studied. The contribution of Si to this signaling pathway appears to be related more to the induction of Fe deficiency, than to any direct biochemical or metabolic processes. However, these roles could not be completely ruled out because several hormone differences could only be explained by the addition of Si.
Collapse
Affiliation(s)
| | - Laura Escribano
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel Mª Zamarreño
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona, Spain
| | - José Mª García-Mina
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona, Spain
| | - Carlos Cano
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Carrasco-Gil
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Silicon Regulates Source to Sink Metabolic Homeostasis and Promotes Growth of Rice Plants Under Sulfur Deficiency. Int J Mol Sci 2020; 21:ijms21103677. [PMID: 32456188 PMCID: PMC7279143 DOI: 10.3390/ijms21103677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/01/2022] Open
Abstract
Being an essential macroelement, sulfur (S) is pivotal for plant growth and development, and acute deficiency in this element leads to yield penalty. Since the last decade, strong evidence has reported the regulatory function of silicon (Si) in mitigating plant nutrient deficiency due to its significant diverse benefits on plant growth. However, the role of Si application in alleviating the negative impact of S deficiency is still obscure. In the present study, an attempt was undertaken to decipher the role of Si application on the metabolism of rice plants under S deficiency. The results showed a distinct transcriptomic and metabolic regulation in rice plants treated with Si under both short and long-term S deficiencies. The expression of Si transporters OsLsi1 and OsLsi2 was reduced under long-term deficiency, and the decrease was more pronounced when Si was provided. The expression of OsLsi6, which is involved in xylem loading of Si to shoots, was decreased under short-term S stress and remained unchanged in response to long-term stress. Moreover, the expression of S transporters OsSULTR tended to decrease by Si supply under short-term S deficiency but not under prolonged S stress. Si supply also reduced the level of almost all the metabolites in shoots of S-deficient plants, while it increased their level in the roots. The levels of stress-responsive hormones ABA, SA, and JA-lle were also decreased in shoots by Si application. Overall, our finding reveals the regulatory role of Si in modulating the metabolic homeostasis under S-deficient condition.
Collapse
|
19
|
Bosnić D, Bosnić P, Nikolić D, Nikolić M, Samardžić J. Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E554. [PMID: 31795296 PMCID: PMC6963465 DOI: 10.3390/plants8120554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022]
Abstract
Copper (Cu) toxicity in plants may lead to iron (Fe), zinc (Zn) and manganese (Mn) deficiencies. Here, we investigated the effect of Si and Fe supply on the concentrations of micronutrients and metal-chelating amino acids nicotianamine (NA) and histidine (His) in leaves of cucumber plants exposed to Cu in excess. Cucumber (Cucumis sativus L.) was treated with 10 µM Cu, and additional 100 µM Fe or/and 1.5 mM Si for five days. High Cu and decreased Zn, Fe and Mn concentrations were found in Cu treatment. Additional Fe supply had a more pronounced effect in decreasing Cu accumulation and improving the molar ratio between micronutrients as compared to the Si supply. However, the simultaneous supply of Fe and Si was the most effective treatment in alleviation of Cu-induced deficiency of Fe, Zn and Mn. Additional Fe supply increased the His but not NA concentration, while Si supply significantly increased both NA and His whereby the NA:Cu and His:Cu molar ratios exceeded the control values indicating that Si recruits Cu-chelation to achieve Cu tolerance. In conclusion, Si-mediated alleviation of Cu toxicity was directed toward Cu tolerance while Fe-alleviative effect was due to a dramatic decrease in Cu accumulation.
Collapse
Affiliation(s)
- Dragana Bosnić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (D.B.); (D.N.)
| | - Predrag Bosnić
- Department of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (P.B.); (M.N.)
| | - Dragana Nikolić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (D.B.); (D.N.)
| | - Miroslav Nikolić
- Department of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (P.B.); (M.N.)
| | - Jelena Samardžić
- Department of Plant Nutrition, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia; (P.B.); (M.N.)
| |
Collapse
|
20
|
Nikolic DB, Nesic S, Bosnic D, Kostic L, Nikolic M, Samardzic JT. Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. FRONTIERS IN PLANT SCIENCE 2019; 10:416. [PMID: 31024590 PMCID: PMC6460936 DOI: 10.3389/fpls.2019.00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.
Collapse
Affiliation(s)
- Dragana B. Nikolic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- *Correspondence: Dragana B. Nikolic,
| | - Sofija Nesic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Bosnic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jelena T. Samardzic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR. The controversies of silicon's role in plant biology. THE NEW PHYTOLOGIST 2019; 221:67-85. [PMID: 30007071 DOI: 10.1111/nph.15343] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/05/2018] [Indexed: 05/21/2023]
Abstract
Contents Summary 67 I. Introduction 68 II. Silicon transport in plants: to absorb or not to absorb 69 III. The role of silicon in plants: not just a matter of semantics 71 IV. Silicon and biotic stress: beyond mechanical barriers and defense priming 76 V. Silicon and abiotic stress: a proliferation of proposed mechanisms 78 VI. The apoplastic obstruction hypothesis: a working model 79 VII. Perspectives and conclusions 80 Acknowledgements 81 References 81 SUMMARY: Silicon (Si) is not classified as an essential plant nutrient, and yet numerous reports have shown its beneficial effects in a variety of species and environmental circumstances. This has created much confusion in the scientific community with respect to its biological roles. Here, we link molecular and phenotypic data to better classify Si transport, and critically summarize the current state of understanding of the roles of Si in higher plants. We argue that much of the empirical evidence, in particular that derived from recent functional genomics, is at odds with many of the mechanistic assertions surrounding Si's role. In essence, these data do not support reports that Si affects a wide range of molecular-genetic, biochemical and physiological processes. A major reinterpretation of Si's role is therefore needed, which is critical to guide future studies and inform agricultural practice. We propose a working model, which we term the 'apoplastic obstruction hypothesis', which attempts to unify the various observations on Si's beneficial influences on plant growth and yield. This model argues for a fundamental role of Si as an extracellular prophylactic agent against biotic and abiotic stresses (as opposed to an active cellular agent), with important cascading effects on plant form and function.
Collapse
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Rupesh Deshmukh
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Humira Sonah
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - James G Menzies
- Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Olivia Reynolds
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2650, Australia
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Richard R Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
22
|
Bityutskii NP, Yakkonen KL, Petrova AI, Lukina KA, Shavarda AL. Silicon ameliorates iron deficiency of cucumber in a pH-dependent manner. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:364-373. [PMID: 30388676 DOI: 10.1016/j.jplph.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Strategy I plants may respond to iron (Fe) deficiency by rhizosphere acidification. Here, the role of medium pH-values in silicon (Si)-induced mitigation Fe deficiency in Strategy I plants (Cucumis sativus) was investigated, particularly the metabolites regulated by a lack of Fe, using a target metabolomics approach. Plants were grown hydroponically, either with (+Fe) or in Fe-free (-Fe) nutrient solution, with (+Si) or without (-Si) a Si supply. The nutrient solution was adjusted to pH 5.0 or 6.0 and checked daily. Leaf metabolites potentially involved in Fe transport were determined. The typical Fe responses of cucumber (e.g., decrease in leaf chlorophyll, Fe imbalance) were more pronounced when plants were grown at pH 6.0 than 5.0, during long-term Fe deficiency (15 days). Major metabolites up-regulated by Fe deficiency and found in young leaf were succinic, citric and glutamic acids, respectively; their maximal concentrations occurred in Fe-starved plants grown at pH 6.0 without Si supply. Silicon (Si)-induced effects accompanied with alleviation chlorosis symptoms, were most distinct in plants grown at pH 6.0 for an extended period without Fe. Changes in abundance of metabolites specifically up-regulated by a lack of Fe may be manifested before any Si-induced changes in plant Fe content were apparent, suggesting that metabolite responses are highly sensitive to a Fe-dependent signal altered by Si treatments under Fe deficiency. The results indicate that Si supply was more evident when plants were more stressed by an increase in nutrient solution pH under Fe-limited conditions.
Collapse
Affiliation(s)
- Nikolai P Bityutskii
- Department of Agricultural Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Kirill L Yakkonen
- Department of Agricultural Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasiya I Petrova
- Department of Agricultural Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Kseniia A Lukina
- Department of Agricultural Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexey L Shavarda
- Research Park, Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russia; Komarov Botanical Institute, Prof. Popov str., 2, Saint Petersburg, 197376, Russia
| |
Collapse
|
23
|
Frew A, Weston LA, Reynolds OL, Gurr GM. The role of silicon in plant biology: a paradigm shift in research approach. ANNALS OF BOTANY 2018; 121:1265-1273. [PMID: 29438453 PMCID: PMC6007437 DOI: 10.1093/aob/mcy009] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and regulatory processes, thereby allowing greater unification and focus of current research across disciplines. SCOPE AND CONCLUSIONS Silicon is often regarded as a plant nutritional 'non-entity'. A suite of factors associated with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting the need for a unifying research framework targeting common underlying mechanisms. The traditional approach of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies will pave the way for unification of the field and a deeper understanding of the role of Si in plants.
Collapse
Affiliation(s)
- Adam Frew
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- For correspondence. E-mail
| | - Leslie A Weston
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
| | - Olivia L Reynolds
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- Biosecurity and Food Safety, New South Wales Department of Primary Industries, Narellan, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Greger M, Landberg T, Vaculík M. Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. PLANTS 2018; 7:plants7020041. [PMID: 29783754 PMCID: PMC6027514 DOI: 10.3390/plants7020041] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
Abstract
Silicon (Si) effects on mineral nutrient status in plants are not well investigated. It is known that Si has a beneficial effect on plants under stressed conditions. The aim was to make a state of the art investigation of the Si influence: (1) on nutrient availability in four different soil types, namely clayish, sandy, alum shale and submerged soil; and (2) on accumulation of various nutrients in maize, lettuce, pea, carrot and wheat growing in hydroponics. Soil was treated with K₂SiO₃ corresponding to 80 and 1000 kg Si ha-1 and the nutrient medium with 100, 500, 1000 and 5000 μM Si. In general, Si effects were similar in all analyzed plant species and in all soil types tested. Results showed that, in soil, Si increased the availability of Ca, P, S, Mn, Zn, Cu and Mo and that of Cl and Fe tended to increase. The availability of K and Mg was not much affected by Si. Uptake from solution of S, Mg, Ca, B, Fe, and Mn increased; N, Cu, Zn and K decreased; P decreased/increased; and Cl and Mo was not influenced. Translocation to shoot of Mg, Ca, S, Mn, and Mo increased; Fe, Cu and Zn decreased; and K, P, N, Cl and B was not affected. It was concluded that, if plants had been cultivated in soil, Si-maintained increased availability of nutrients in the soil solution would probably compensate for the decrease in tissue concentration of those nutrient elements. The study shows that Si also influences the nutrient uptake in non-stressed plants.
Collapse
Affiliation(s)
- Maria Greger
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 106 91 Stockholm, Sweden.
| | - Tommy Landberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 106 91 Stockholm, Sweden.
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, SK 842 15 Bratislava, Slovakia.
| |
Collapse
|
25
|
Carrasco-Gil S, Rodríguez-Menéndez S, Fernández B, Pereiro R, de la Fuente V, Hernandez-Apaolaza L. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:153-163. [PMID: 29453092 DOI: 10.1016/j.plaphy.2018.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 05/07/2023]
Abstract
A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root.
Collapse
Affiliation(s)
- Sandra Carrasco-Gil
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| | - Sara Rodríguez-Menéndez
- Department of Physical and Analytical Chemistry, Facultad de Química, Universidad de Oviedo, Julian Clavería, 8, E-33006 Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, Facultad de Química, Universidad de Oviedo, Julian Clavería, 8, E-33006 Oviedo, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, Facultad de Química, Universidad de Oviedo, Julian Clavería, 8, E-33006 Oviedo, Spain
| | - Vicenta de la Fuente
- Department of Biology, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain
| | - Lourdes Hernandez-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| |
Collapse
|
26
|
Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties. Int J Mol Sci 2018; 19:ijms19030899. [PMID: 29562647 PMCID: PMC5877760 DOI: 10.3390/ijms19030899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/03/2022] Open
Abstract
Mineral nutrient homeostasis is essential for plant growth and development. Recent research has demonstrated that the occurrence of interactions among the mechanisms regulating the homeostasis of different nutrients in plants is a general rule rather than an exception. Therefore, it is important to understand how plants regulate the homeostasis of these elements and how multiple mineral nutrient signals are wired to influence plant growth. Silicon (Si) is not directly involved in plant metabolism but it is an essential element for a high and sustainable production of crops, especially rice, because of its high content in the total shoot dry weight. Although some mechanisms underlying the role of Si in plants responses to both abiotic and biotic stresses have been proposed, the involvement of Si in regulating plant growth in conditions where the availability of essential macro- and micronutrients changes remains poorly investigated. In this study, the existence of an interaction between Si, phosphate (Pi), and iron (Fe) availability was examined in lowland (Suphanburi 1, SPR1) and upland (Kum Hom Chiang Mai University, KH CMU) rice varieties. The effect of Si and/or Fe deficiency on plant growth, Pi accumulation, Pi transporter expression (OsPHO1;2), and Pi root-to-shoot translocation in these two rice varieties grown under individual or combinatorial nutrient stress conditions were determined. The phenotypic, physiological, and molecular data of this study revealed an interesting tripartite Pi-Fe-Si homeostasis interaction that influences plant growth in contrasting manners in the two rice varieties. These results not only reveal the involvement of Si in modulating rice growth through an interaction with essential micro- and macronutrients, but, more importantly, they opens new research avenues to uncover the molecular basis of Pi-Fe-Si signaling crosstalk in plants.
Collapse
|
27
|
Proteomic and genomic responses of plants to nutritional stress. Biometals 2018; 31:161-187. [PMID: 29453655 DOI: 10.1007/s10534-018-0083-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/10/2018] [Indexed: 12/17/2022]
Abstract
Minerals or trace elements in small amount are essential nutrients for every plant, but when the internal concentration exceeds the threshold, these essential elements do create phytotoxicity. Plant responses to elemental stresses are very common due to different anthropogenic activities; however it is a complex phenomenon with individual characteristics for various species. To cope up with the situation, a plant produces a group of strategies both in proteomic and genomic level to overcome it. Controlling the metal stress is known to activate a multigene response resulting in the changes in various proteins, which directly affects almost all biological processes in a living cell. Therefore, proteomic and genomic approaches can be useful for elucidating the molecular responses under metal stress. For this, it is tried to provide the latest knowledge and techniques used in proteomic and genomic study during nutritional stress and is represented here in review form.
Collapse
|
28
|
Moradtalab N, Weinmann M, Walker F, Höglinger B, Ludewig U, Neumann G. Silicon Improves Chilling Tolerance During Early Growth of Maize by Effects on Micronutrient Homeostasis and Hormonal Balances. FRONTIERS IN PLANT SCIENCE 2018; 9:420. [PMID: 29755482 PMCID: PMC5935009 DOI: 10.3389/fpls.2018.00420] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 05/18/2023]
Abstract
Low soil temperature in spring is a major constraint for the cultivation of tropical and subtropical crops in temperate climates, associated with inhibition of root growth and activity, affecting early growth and frequently plant performance and final yield. This study was initiated to investigate the physiological base of cold-protective effects induced by supplementation with silicon (Si), widely recommended as a stress-protective mineral nutrient. Maize was used as a cold-sensitive model plant, exposed to chilling stress and low root-zone temperature (RZT) during early growth in a lab to field approach. In a pot experiment, 2-weeks exposure of maize seedlings to low RZT of 12-14°C, induced leaf chlorosis and necrosis, inhibition of shoot and root growth and micronutrient limitation (particularly Zn and Mn). These phenotypes were mitigated by seed treatments with the respective micronutrients, but surprisingly, also by Si application. Both, silicon and micronutrient treatments were associated with increased activity of superoxide dismutase in shoot and roots (as a key enzyme for detoxification of reactive oxygen species, depending on Zn and Mn as cofactors), increased tissue concentrations of phenolics, proline, and antioxidants, but reduced levels of H2O2. These findings suggest that mitigation of oxidative stress is a major effect of Zn, Mn, and Si applied as cold stress protectants. In a soil-free culture system without external nutrient supply, Si significantly reduced large leaching losses of Zn and Mn from germinating seeds exposed to low-temperature stress. Silicon also increased the translocation of micronutrient seed reserves to the growing seedling, especially the Zn shoot translocation. In later stages of seedling development (10 days after sowing), cold stress reduced the root and shoot contents of important hormonal growth regulators (indole acetic acid, gibberellic acid, zeatin). Silicon restored the hormonal balances to a level comparable with non-stressed plants and stimulated the production of hormones involved in stress adaptation (abscisic, salicylic, and jasmonic acids). Beneficial effects of Si seed treatments on seedling establishment and the nutritional status of Zn and Mn were also measured for a field-grown silage maize, exposed to chilling stress by early sowing. This translated into increased final biomass yield.
Collapse
Affiliation(s)
- Narges Moradtalab
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
- *Correspondence: Narges Moradtalab
| | - Markus Weinmann
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Frank Walker
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Birgit Höglinger
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Guenter Neumann
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
29
|
Ali N, Schwarzenberg A, Yvin JC, Hosseini SA. Regulatory Role of Silicon in Mediating Differential Stress Tolerance Responses in Two Contrasting Tomato Genotypes Under Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1475. [PMID: 30349552 PMCID: PMC6187069 DOI: 10.3389/fpls.2018.01475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 05/03/2023]
Abstract
Previous studies have shown the role of silicon (Si) in mitigating the adverse effect of drought stress in different crop species. However, data are lacking on a comparison of drought tolerant and drought sensitive crop cultivars in response to Si nutrition. Therefore, the aim of this study was to elucidate the mechanism (s) by which two contrasting tomato genotypes respond to Si nutrition under osmotic stress condition. Two tomato lines contrasting in their response to drought stress were hydroponically grown under polyethylene glycol (PEG, 6000) and two regimes of Si (0 and 1.5 mM). Metabolite profiling was performed in two lines. Growth and relevant physiological parameters, and expression levels of selected genes were also measured. Si application resulted in improved osmotic stress tolerance in both drought tolerant line LA0147 and drought sensitive line FERUM. In the drought tolerant line, Si enhanced uptake of sulfur (S) and ammonium ( NH 4 + ) which led to a significantly higher production of amino acids arginine, methionine, serine, and glycine. While in the drought sensitive line, Si significantly increased production of amino acids proline and GABA which further lowered the level of GSSG to GSH ratio and thus balanced the redox homeostasis under osmotic stress. The higher significant production of amino acids arginine, methionine, GABA, and proline enhanced production of free polyamines putrescine and spermidine and improved osmotic stress tolerance. Therefore, we conclude that Si distinctively regulated osmotic stress tolerance in two contrasting tomato genotypes by differential accumulation of relevant amino acids which eventually led to enhanced polyamine metabolism.
Collapse
|