1
|
Ding J, Wang K, Pandey S, Perales M, Allona I, Khan MRI, Busov VB, Bhalerao RP. Molecular advances in bud dormancy in trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6063-6075. [PMID: 38650362 PMCID: PMC11582002 DOI: 10.1093/jxb/erae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Seasonal bud dormancy in perennial woody plants is a crucial and intricate process that is vital for the survival and development of plants. Over the past few decades, significant advancements have been made in understanding many features of bud dormancy, particularly in model species, where certain molecular mechanisms underlying this process have been elucidated. We provide an overview of recent molecular progress in understanding bud dormancy in trees, with a specific emphasis on the integration of common signaling and molecular mechanisms identified across different tree species. Additionally, we address some challenges that have emerged from our current understanding of bud dormancy and offer insights for future studies.
Collapse
Affiliation(s)
- Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Kejing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shashank Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Md Rezaul Islam Khan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Victor B Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
2
|
Considine MJ, Foyer CH. Redox regulation of meristem quiescence: outside/in. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6037-6046. [PMID: 38676562 PMCID: PMC11480653 DOI: 10.1093/jxb/erae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 04/29/2024]
Abstract
Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimizing DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (O2·-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest that ROS are a critical component of the feedback loops that control stem cell identity and fate, and suggest that the ROS/hypoxia interface is an important 'outside/in' positional cue for plant cells, particularly in meristems.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, and the School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- The Department of Primary Industries and Regional Development, Perth, Western Australia 6000, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
3
|
Eljebbawi A, Dolata A, Strotmann VI, Stahl Y. Stem cell quiescence and dormancy in plant meristems. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6022-6036. [PMID: 38721716 PMCID: PMC11480668 DOI: 10.1093/jxb/erae201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
Plants exhibit opportunistic developmental patterns, alternating between growth and dormancy in response to external cues. Moreover, quiescence plays a critical role in proper plant growth and development, particularly within the root apical meristem and the shoot apical meristem. In these meristematic tissues, cells with relatively slower mitotic activity are present in the quiescent center and the central zone, respectively. These centers form long-term reservoirs of stem cells maintaining the meristematic stem cell niche, and thus sustaining continuous plant development and adaptation to changing environments. This review explores early observations, structural characteristics, functions, and gene regulatory networks of the root and shoot apical meristems. It also highlights the intricate mechanism of dormancy within the shoot apical meristem. The aim is to contribute to a holistic understanding of quiescence in plants, which is fundamental for the proper growth and environmental response of plants.
Collapse
Affiliation(s)
| | | | - Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
4
|
Pucciariello C, Perata P. Plant quiescence strategy and seed dormancy under hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6047-6055. [PMID: 38622943 DOI: 10.1093/jxb/erae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, leading to metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene-responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth.
Collapse
Affiliation(s)
- Chiara Pucciariello
- Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- NanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
5
|
Penfield S. Beyond floral initiation: the role of flower bud dormancy in flowering time control of annual plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6056-6062. [PMID: 38795335 PMCID: PMC11480682 DOI: 10.1093/jxb/erae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024]
Abstract
The phenology of temperate perennials, including the timing of vegetative growth and flowering, is well known to be controlled by seasonal dormancy cycles. Dormant structures are known as buds and have specialized covering structures, symplastic isolation from the plant, and often autonomous stores of carbon and nitrogen reserves. In contrast, in annual plants, our current understanding of the control of the timing of flowering focuses on the mechanisms affecting floral initiation, the transition from a vegetative apical meristem to a inflorescence meristem producing flower primordia in place of leaves. Recently we revealed that annual crops in Brassicaceae exhibit chilling-responsive growth control in a manner closely resembling bud dormancy breakage in perennial species. Here I discuss evidence that vernalization in autumn is widespread and further discuss its role in inducing flower bud set prior to winter. I also review evidence that flower bud dormancy has a more widespread role in annual plant flowering time control than previously appreciated.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Lee LR, Guillotin B, Rahni R, Hutchison C, Desvoyes B, Gutierrez C, Birnbaum KD. Glutathione accelerates the cell cycle and cellular reprogramming in plant regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569014. [PMID: 38168452 PMCID: PMC10760015 DOI: 10.1101/2023.11.28.569014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The plasticity of plant cells underlies their wide capacity to regenerate, with increasing evidence in plants and animals implicating cell cycle dynamics in cellular reprogramming. To investigate the cell cycle during cellular reprogramming, we developed a comprehensive set of cell cycle phase markers in the Arabidopsis root. Using single-cell RNA-seq profiles and live imaging during regeneration, we found that a subset of cells near an ablation injury dramatically increases division rate by truncating G1. Cells in G1 undergo a transient nuclear peak of glutathione (GSH) prior to coordinated entry into S phase followed by rapid divisions and cellular reprogramming. A symplastic block of the ground tissue impairs regeneration, which is rescued by exogenous GSH. We propose a model in which GSH from the outer tissues is released upon injury licensing an exit from G1 near the wound to induce rapid cell division and reprogramming.
Collapse
Affiliation(s)
- Laura R Lee
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Bruno Guillotin
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Ramin Rahni
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Chanel Hutchison
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | | | | | - Kenneth D Birnbaum
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| |
Collapse
|
7
|
Zhang Y, Niu D, Yuan Y, Liu F, Wang Z, Gao L, Liu C, Zhou G, Gai S. PsSOC1 is involved in the gibberellin pathway to trigger cell proliferation and budburst during endodormancy release in tree peony. THE NEW PHYTOLOGIST 2024; 243:1017-1033. [PMID: 38877710 DOI: 10.1111/nph.19893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Tree peony (Paeonia suffruticosa) undergoes bud endodormancy, and gibberellin (GA) pathway plays a crucial role in dormancy regulation. Recently, a key DELLA protein PsRGL1 has been identified as a negative regulator of bud dormancy release. However, the mechanism of GA signal to break bud dormancy remains unknown. In this study, yeast two-hybrid screened PsSOC1 interacting with PsRGL1 through its MADS domain, and interaction was identified using pull-down and luciferase complementation imaging assays Transformation in tree peony and hybrid poplar confirmed that PsSOC1 facilitated bud dormancy release. Transcriptome analysis of PsSOC1-overexpressed buds indicated PsCYCD3.3 and PsEBB3 were its potential downstream targets combining with promoter survey, and they also accelerated bud dormancy release verified by genetic analysis. Yeast one-hybrid, electrophoretic mobility shifts assays, chromatin immunoprecipitation quantitative PCR, and dual luciferase assays confirmed that PsSOC1 could directly bind to the CArG motif of PsCYCD3.3 and PsEBB3 promoters via its MADS domain. PsRGL1-PsSOC1 interaction inhibited the DNA-binding activity of PsSOC1. Additionally, PsCYCD3.3 promoted bud dormancy release by rebooting cell proliferation. These findings elucidated a novel GA pathway, GA-PsRGL1-PsSOC1-PsCYCDs, which expanded our understanding of the GA pathway in bud dormancy release.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Demei Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Fang Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Zhiwei Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Linqiang Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Gongke Zhou
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| |
Collapse
|
8
|
Goeckeritz CZ, Grabb C, Grumet R, Iezzoni AF, Hollender CA. Genetic factors acting prior to dormancy in sour cherry influence bloom time the following spring. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4428-4452. [PMID: 38602443 PMCID: PMC11263489 DOI: 10.1093/jxb/erae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Understanding the process of Prunus species floral development is crucial for developing strategies to manipulate bloom time and prevent crop loss due to climate change. Here, we present a detailed examination of flower development from initiation until bloom for early- and late-blooming sour cherries (Prunus cerasus) from a population segregating for a major bloom time QTL on chromosome 4. Using a new staging system, we show floral buds from early-blooming trees were persistently more advanced than those from late-blooming siblings. A genomic DNA coverage analysis revealed the late-blooming haplotype of this QTL, k, is located on a subgenome originating from the late-blooming P. fruticosa progenitor. Transcriptome analyses identified many genes within this QTL as differentially expressed between early- and late-blooming trees during the vegetative-to-floral transition. From these, we identified candidate genes for the late bloom phenotype, including multiple transcription factors homologous to Reproductive Meristem B3 domain-containing proteins. Additionally, we determined that the basis of k in sour cherry is likely separate from candidate genes found in sweet cherry-suggesting several major regulators of bloom time are located on Prunus chromosome 4.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Chloe Grabb
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Walde MG, Wenden B, Chuine I, Gessler A, Saurer M, Vitasse Y. Stable water isotopes reveal the onset of bud dormancy in temperate trees, whereas water content is a better proxy for dormancy release. TREE PHYSIOLOGY 2024; 44:tpae028. [PMID: 38417929 PMCID: PMC11016847 DOI: 10.1093/treephys/tpae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Earlier spring growth onset in temperate forests is a visible effect of global warming that alters global water and carbon cycling. Consequently, it becomes crucial to accurately predict the future spring phenological shifts in vegetation under different climate warming scenarios. However, current phenological models suffer from a lack of physiological insights of tree dormancy and are rarely experimentally validated. Here, we sampled twig cuttings of five deciduous tree species at two climatically different locations (270 and 750 m a.s.l., ~ 2.3 °C difference) throughout the winter of 2019-20. Twig budburst success, thermal time to budburst, bud water content and short-term 2H-labelled water uptake into buds were quantified to link bud dormancy status with vascular water transport efficacy, with the objective of establishing connections between the dormancy status of buds and their effectiveness in vascular water transport. We found large differences in the dormancy status between species throughout the entire investigation period, likely reflecting species-specific environmental requirements to initiate and release dormancy, whereas only small differences in the dormancy status were found between the two studied sites. We found strong 2H-labelled water uptake into buds during leaf senescence, followed by a sharp decrease, which we ascribed to the initiation of endodormancy. However, surprisingly, we did not find a progressive increase in 2H-labelled water uptake into buds as winter advanced. Nonetheless, all examined tree species exhibited a consistent relationship between bud water content and dormancy status. Our results suggest that short-term 2H-labelled water uptake may not be a robust indicator of dormancy release, yet it holds promise as a method for tracking the induction of dormancy in deciduous trees. By contrast, bud water content emerges as a cost-effective and more reliable indicator of dormancy release.
Collapse
Affiliation(s)
- Manuel G Walde
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Bénédicte Wenden
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, 71 av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34293 Montpellier, France
| | - Arthur Gessler
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Matthias Saurer
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Yann Vitasse
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
10
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
11
|
Jiang Z, Wang X, Zhou Z, Peng L, Lin X, Luo X, Song Y, Ning H, Gan C, He X, Zhu C, Ouyang L, Zhou D, Cai Y, Xu J, He H, Liu Y. Functional characterization of D-type cyclins involved in cell division in rice. BMC PLANT BIOLOGY 2024; 24:157. [PMID: 38424498 PMCID: PMC10905880 DOI: 10.1186/s12870-024-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.
Collapse
Affiliation(s)
- Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xin Wang
- Jiangxi Province Forest Resources Protection Center, Nanchang, 330008, Jiangxi, China
| | - Zhiwei Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Limei Peng
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaowei Luo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yongping Song
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huaying Ning
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Gan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yantong Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
12
|
Singh T, Bisht N, Ansari MM, Chauhan PS. The hidden harmony: Exploring ROS-phytohormone nexus for shaping plant root architecture in response to environmental cues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108273. [PMID: 38103339 DOI: 10.1016/j.plaphy.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Root system architecture, encompassing lateral roots and root hairs, plays a vital in overall plant growth and stress tolerance. Reactive oxygen species (ROS) and plant hormones intricately regulate root growth and development, serving as signaling molecules that govern processes such as cell proliferation and differentiation. Manipulating the interplay between ROS and hormones has the potential to enhance nutrient absorption, stress tolerance, and agricultural productivity. In this review, we delve into how studying these processes provides insights into how plants respond to environmental changes and optimize growth patterns to better control cellular processes and stress responses in crops. We discuss various factors and complex signaling networks that may exist among ROS and phytohormones during root development. Additionally, the review highlights possible role of reactive nitrogen species (RNS) in ROS-phytohormone interactions and in shaping root system architecture according to environmental cues.
Collapse
Affiliation(s)
- Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
13
|
Soni N, Bacete L. The interplay between cell wall integrity and cell cycle progression in plants. PLANT MOLECULAR BIOLOGY 2023; 113:367-382. [PMID: 38091166 PMCID: PMC10730644 DOI: 10.1007/s11103-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Plant cell walls are dynamic structures that play crucial roles in growth, development, and stress responses. Despite our growing understanding of cell wall biology, the connections between cell wall integrity (CWI) and cell cycle progression in plants remain poorly understood. This review aims to explore the intricate relationship between CWI and cell cycle progression in plants, drawing insights from studies in yeast and mammals. We provide an overview of the plant cell cycle, highlight the role of endoreplication in cell wall composition, and discuss recent findings on the molecular mechanisms linking CWI perception to cell wall biosynthesis and gene expression regulation. Furthermore, we address future perspectives and unanswered questions in the field, such as the identification of specific CWI sensing mechanisms and the role of CWI maintenance in the growth-defense trade-off. Elucidating these connections could have significant implications for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Nancy Soni
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Laura Bacete
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
14
|
Madison I, Gillan L, Peace J, Gabrieli F, Van den Broeck L, Jones JL, Sozzani R. Phosphate starvation: response mechanisms and solutions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6417-6430. [PMID: 37611151 DOI: 10.1093/jxb/erad326] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Phosphorus is essential to plant growth and agricultural crop yields, yet the challenges associated with phosphorus fertilization in agriculture, such as aquatic runoff pollution and poor phosphorus bioavailability, are increasingly difficult to manage. Comprehensively understanding the dynamics of phosphorus uptake and signaling mechanisms will inform the development of strategies to address these issues. This review describes regulatory mechanisms used by specific tissues in the root apical meristem to sense and take up phosphate from the rhizosphere. The major regulatory mechanisms and related hormone crosstalk underpinning phosphate starvation responses, cellular phosphate homeostasis, and plant adaptations to phosphate starvation are also discussed, along with an overview of the major mechanism of plant systemic phosphate starvation responses. Finally, this review discusses recent promising genetic engineering strategies for improving crop phosphorus use and computational approaches that may help further design strategies for improved plant phosphate acquisition. The mechanisms and approaches presented include a wide variety of species including not only Arabidopsis but also crop species such as Oryza sativa (rice), Glycine max (soybean), and Triticum aestivum (wheat) to address both general and species-specific mechanisms and strategies. The aspects of phosphorus deficiency responses and recently employed strategies of improving phosphate acquisition that are detailed in this review may provide insights into the mechanisms or phenotypes that may be targeted in efforts to improve crop phosphorus content and plant growth in low phosphorus soils.
Collapse
Affiliation(s)
- Imani Madison
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jasmine Peace
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Flavio Gabrieli
- Dipartimento di Ingegneria Industriale (DII), Università degli studi di Padova, Padova, Italy
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Jacob L Jones
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Velappan Y, de Simone A, Signorelli S, Considine JA, Foyer CH, Considine MJ. Hydrogen Cyanamide Causes Reversible G2/M Cell Cycle Arrest Accompanied by Oxidation of the Nucleus and Cytosol. Antioxidants (Basel) 2023; 12:1330. [PMID: 37507870 PMCID: PMC10376265 DOI: 10.3390/antiox12071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hydrogen cyanamide (HC) has been widely used in horticulture to trigger bud burst following dormancy. Its use has been banned in some countries due to human health concerns, however the search for effective safe alternatives is delayed by lack of knowledge of the mechanism of HC action. Earlier studies demonstrate that HC stimulates the production of reactive oxygen species (ROS) and alters the rate of cell division. However, the relationships between HC effects on ROS, redox (reduction/oxidation) homeostasis and cell division are unknown. This study used Arabidopsis thaliana ((L.) Heynh.) seedlings expressing the redox reporter roGFP2 to measure the oxidation states of the nuclei and cytosol in response to HC treatment. The Cytrap dual cell cycle phase marker system and flow cytometry were used to study associated changes in cell proliferation. HC (1.5 mM) reversibly inhibited root growth during a 24 h treatment. Higher concentrations were not reversible. HC did not synchronise the cell cycle, in contrast to hydroxyurea. Rather, HC caused a gradual accumulation of cells in the G2/M phase and decline of G1/S phase cells, 16 to 24 h post-treatment. This was accompanied by increased oxidation of both the nuclei and cytosol. Taken together, these findings show that HC impairs proliferation of embryonic root meristem cells in a reversible manner through restriction of G2/M transition accompanied by increased cellular oxidation.
Collapse
Affiliation(s)
- Yazhini Velappan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Ambra de Simone
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Santiago Signorelli
- Food and Plant Biology Group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP 12900, Uruguay
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Horticulture and Irrigated Agriculture, Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| |
Collapse
|
16
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
17
|
Xia Q, Chen C, Dopman EB, Hahn DA. Divergence in cell cycle progression is associated with shifted phenology in a multivoltine moth: the European corn borer, Ostrinia nubilalis. J Exp Biol 2023; 226:jeb245244. [PMID: 37293992 PMCID: PMC10281267 DOI: 10.1242/jeb.245244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Evolutionary change in diapause timing can be an adaptive response to changing seasonality, and even result in ecological speciation. However, the molecular and cellular mechanisms regulating shifts in diapause timing remain poorly understood. One of the hallmarks of diapause is a massive slowdown in the cell cycle of target organs such as the brain and primordial imaginal structures, and resumption of cell cycle proliferation is an indication of diapause termination and resumption of development. Characterizing cell cycle parameters between lineages differing in diapause life history timing may help identify molecular mechanisms associated with alterations of diapause timing. We tested the extent to which progression of the cell cycle differs across diapause between two genetically distinct European corn borer strains that differ in their seasonal diapause timing. We show the cell cycle slows down during larval diapause with a significant decrease in the proportion of cells in S phase. Brain-subesophageal complex cells slow primarily in G0/G1 phase whereas most wing disc cells are in G2 phase. Diapausing larvae of the earlier emerging, bivoltine E-strain (BE) suppressed cell cycle progression less than the later emerging, univoltine Z-strain (UZ) individuals, with a greater proportion of cells in S phase across both tissues during diapause. Additionally, resumption of cell cycle proliferation occurred earlier in the BE strain than in the UZ strain after exposure to diapause-terminating conditions. We propose that regulation of cell cycle progression rates ultimately drives differences in larval diapause termination, and adult emergence timing, between early- and late-emerging European corn borer strains.
Collapse
Affiliation(s)
- Qinwen Xia
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Chao Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Daniel A. Hahn
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Wiecek AJ, Cutty SJ, Kornai D, Parreno-Centeno M, Gourmet LE, Tagliazucchi GM, Jacobson DH, Zhang P, Xiong L, Bond GL, Barr AR, Secrier M. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol 2023; 24:128. [PMID: 37221612 PMCID: PMC10204193 DOI: 10.1186/s13059-023-02963-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/07/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state.
Collapse
Affiliation(s)
- Anna J. Wiecek
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Stephen J. Cutty
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel Kornai
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mario Parreno-Centeno
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lucie E. Gourmet
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - Daniel H. Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lingyun Xiong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gareth L. Bond
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Cell Cycle Control Team, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
19
|
Volaire F, Barkaoui K, Grémillet D, Charrier G, Dangles O, Lamarque LJ, Martin-StPaul N, Chuine I. Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants? ANNALS OF BOTANY 2023; 131:245-254. [PMID: 36567631 PMCID: PMC9992932 DOI: 10.1093/aob/mcac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plants have adapted to survive seasonal life-threatening frost and drought. However, the timing and frequency of such events are impacted by climate change, jeopardizing plant survival. Understanding better the strategies of survival to dehydration stress is therefore timely and can be enhanced by the cross-fertilization of research between disciplines (ecology, physiology), models (woody, herbaceous species) and types of stress (drought, frost). SCOPE We build upon the 'growth-stress survival' trade-off, which underpins the identification of global plant strategies across environments along a 'fast-slow' economics spectrum. Although phenological adaptations such as dormancy are crucial to survive stress, plant global strategies along the fast-slow economic spectrum rarely integrate growth variations across seasons. We argue that the growth-stress survival trade-off can be a useful framework to identify convergent plant ecophysiological strategies to survive both frost and drought. We review evidence that reduced physiological activity, embolism resistance and dehydration tolerance of meristematic tissues are interdependent strategies that determine thresholds of mortality among plants under severe frost and drought. We show that complete dormancy, i.e. programmed growth cessation, before stress occurrence, minimizes water flows and maximizes dehydration tolerance during seasonal life-threatening stresses. We propose that incomplete dormancy, i.e. the programmed reduction of growth potential during the harshest seasons, could be an overlooked but major adaptation across plants. Quantifying stress survival in a range of non-dormant versus winter- or summer-dormant plants, should reveal to what extent incomplete to complete dormancy could represent a proxy for dehydration tolerance and stress survival. CONCLUSIONS Our review of the strategies involved in dehydration stress survival suggests that winter and summer dormancy are insufficiently acknowledged as plant ecological strategies. Incorporating a seasonal fast-slow economics spectrum into global plant strategies improves our understanding of plant resilience to seasonal stress and refines our prevision of plant adaptation to extreme climatic events.
Collapse
Affiliation(s)
- Florence Volaire
- CEFE, Université Montpellier, INRAE, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Université F-34060 Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Grémillet
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont Ferrand, France
| | - Olivier Dangles
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Laurent J Lamarque
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Nicolas Martin-StPaul
- INRAE, URFM, Domaine Saint Paul, Centre de recherche PACA, 228 route de l’Aérodrome, CS 40509, Domaine Saint-Paul, Site Agroparc, France
| | - Isabelle Chuine
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| |
Collapse
|
20
|
Tarkowski ŁP, Signorelli S, Considine MJ, Montrichard F. Integration of reactive oxygen species and nutrient signalling to shape root system architecture. PLANT, CELL & ENVIRONMENT 2023; 46:379-390. [PMID: 36479711 PMCID: PMC10107350 DOI: 10.1111/pce.14504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Yield losses due to nutrient deficiency are estimated as the primary cause of the yield gap worldwide. Understanding how plant roots perceive external nutrient status and elaborate morphological adaptations in response to it is necessary to develop reliable strategies to increase crop yield. In the last decade, reactive oxygen species (ROS) were shown to be key players of the mechanisms underlying root responses to nutrient limitation. ROS contribute in multiple ways to shape the root system in response to nutritional cues, both as direct effectors acting on cell wall architecture and as second messengers in signalling pathways. Here, we review the mutual interconnections existing between perception and signalling of the most common forms of the major macronutrients (nitrogen, phosphorus and potassium), and ROS in shaping plant root system architecture. We discuss recent advances in dissecting the integration of these elements and their impact on morphological traits of the root system, highlighting the functional ductility of ROS and enzymes implied in ROS metabolism, such as class III peroxidases.
Collapse
Affiliation(s)
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
| | - Michael J. Considine
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentPerthWestern AustraliaAustralia
| | | |
Collapse
|
21
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
22
|
Keroack CD, Duraisingh MT. Molecular mechanisms of cellular quiescence in apicomplexan parasites. Curr Opin Microbiol 2022; 70:102223. [PMID: 36274498 DOI: 10.1016/j.mib.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture. These mechanisms have been extensively studied in model organisms, and a growing number of studies have identified conserved mechanisms in apicomplexan parasites. Quiescence in the context of a parasitic infection has significant clinical impact: quiescent forms may underlie treatment failures, relapsing infections, and stress tolerance. Here, we review the latest understanding of quiescence in apicomplexa, synthesizing these studies to highlight conserved mechanisms, and identifying technologies to assist in further characterization of quiescence. Understanding conserved mechanisms of quiescence in apicomplexans will provide avenues for transmission prevention and radical cure of infections.
Collapse
|
23
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
24
|
Fall Applications of Ethephon Modulates Gene Networks Controlling Bud Development during Dormancy in Peach ( Prunus Persica). Int J Mol Sci 2022; 23:ijms23126801. [PMID: 35743242 PMCID: PMC9224305 DOI: 10.3390/ijms23126801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
Ethephon (ET) is an ethylene-releasing plant growth regulator (PGR) that can delay the bloom time in Prunus, thus reducing the risk of spring frost, which is exacerbated by global climate change. However, the adoption of ET is hindered by its detrimental effects on tree health. Little knowledge is available regarding the mechanism of how ET shifts dormancy and flowering phenology in peach. This study aimed to further characterize the dormancy regulation network at the transcriptional level by profiling the gene expression of dormant peach buds from ET-treated and untreated trees using RNA-Seq data. The results revealed that ET triggered stress responses during endodormancy, delaying biological processes related to cell division and intercellular transportation, which are essential for the floral organ development. During ecodormancy, ET mainly impeded pathways related to antioxidants and cell wall formation, both of which are closely associated with dormancy release and budburst. In contrast, the expression of dormancy-associated MADS (DAM) genes remained relatively unaffected by ET, suggesting their conserved nature. The findings of this study signify the importance of floral organogenesis during dormancy and shed light on several key processes that are subject to the influence of ET, therefore opening up new avenues for the development of effective strategies to mitigate frost risks.
Collapse
|
25
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Velappan Y, Chabikwa TG, Considine JA, Agudelo-Romero P, Foyer CH, Signorelli S, Considine MJ. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2061-2076. [PMID: 35022731 PMCID: PMC8982382 DOI: 10.1093/jxb/erac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/10/2022] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera L.) displays wide plasticity to climate; however, the physiology of dormancy along a seasonal continuum is poorly understood. Here we investigated the apparent disconnect between dormancy and the underlying respiratory physiology and transcriptome of grapevine buds, from bud set in summer to bud burst in spring. The establishment of dormancy in summer was pronounced and reproducible; however, this was coupled with little or no change in physiology, indicated by respiration, hydration, and tissue oxygen tension. The release of dormancy was biphasic; the depth of dormancy declined substantially by mid-autumn, while the subsequent decline towards spring was moderate. Observed changes in physiology failed to explain the first phase of dormancy decline, in particular. Transcriptome data contrasting development from summer through to spring also indicated that dormancy was poorly reflected by metabolic quiescence during summer and autumn. Gene Ontology and enrichment data revealed the prevailing influence of abscisic acid (ABA)-related gene expression during the transition from summer to autumn, and promoter motif analysis suggested that photoperiod may play an important role in regulating ABA functions during the establishment of dormancy. Transcriptomic data from later transitions reinforced the importance of oxidation and hypoxia as physiological cues to regulate the maintenance of quiescence and resumption of growth. Collectively these data reveal a novel disconnect between growth and metabolic quiescence in grapevine following bud set, which requires further experimentation to explain the phenology and dormancy relationships.
Collapse
Affiliation(s)
- Yazhini Velappan
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Tinashe G Chabikwa
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - John A Considine
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Santiago Signorelli
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
27
|
Li L, Xia T, Li B, Yang H. Hormone and carbohydrate metabolism associated genes play important roles in rhizome bud full-year germination of Cephalostachyum pingbianense. PHYSIOLOGIA PLANTARUM 2022; 174:e13674. [PMID: 35306669 DOI: 10.1111/ppl.13674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cephalostachyum pingbianense is the only woody bamboo species that can produce bamboo shoots in four seasons under natural conditions. So far, the regulatory mechanism of shoot bud differentiation and development is unknown. In the present study, indole-3-acetic acid (IAA), zeatin riboside (ZR), gibberellin A3 (GA3 ) and abscisic acid (ABA) contents determination, RNA sequencing and differentially expressed gene analysis were performed on dormant rhizome bud (DR), growing rhizome bud (GR), and germinative bud (GB) in each season. The results showed that the contents of IAA and ZR increased while ABA content decreased, and GA3 content was stable during bud transition from dormancy to germination in each season. Moreover, rhizome bud germination was cooperatively regulated by multiple pathways such as carbohydrate metabolism, hormone signal transduction, cell wall biogenesis, temperature response, and water transport. The inferred hub genes among these candidates were identified by protein-protein interaction network analyses, most of which were involved in hormone and carbohydrate metabolism, such as HK and BGLU4 in spring, IDH and GH3 in winter, GPI and talA/talB in summer and autumn. It is speculated that dynamic phytohormone changes and differential expression of these genes promote the release of rhizome bud dormancy and contribute to the phenological characteristics of full-year shooting. Moreover, the rhizome buds of C. pingbianense may not suffer from ecodormancy in winter. These findings would help accumulate knowledge on shooting mechanisms in woody bamboos and provide a physiological insight into germplasm conservation and forest management of C. pingbianense.
Collapse
Affiliation(s)
- Lushuang Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Tize Xia
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Bin Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
28
|
Wang F, Yu Z, Zhang M, Wang M, Lu X, Liu X, Li Y, Zhang X, Tan B, Li C, Ding Z. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:526-537. [PMID: 34687251 PMCID: PMC8882779 DOI: 10.1111/pbi.13734] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 05/12/2023]
Abstract
Maize height is determined by the number of nodes and the length of internodes. Node number is driven by intercalary meristem formation and internode length by intercalary cell elongation, respectively. However, mechanisms regulating establishment of nodes and internode growth are unclear. We screened EMS-induced maize mutants and identified a dwarf mutant zm66, linked to a single base change in TERMINAL EAR 1 (ZmTE1). Detailed phenotypic analysis revealed that zm66 (zmte1-2) has shorter internodes and increased node numbers, caused by decreased cell elongation and disordered intercalary meristem formation, respectively. Transcriptome analysis showed that auxin signalling genes are also dysregulated in zmte1-2, as are cell elongation and cell cycle-related genes. This argues that ZmTE1 regulates auxin signalling, cell division, and cell elongation. We found that the ZmWEE1 kinase phosphorylates ZmTE1, thus confining it to the nucleus and probably reducing cell division. In contrast, the ZmPP2Ac-2 phosphatase promotes dephosphorylation and cytoplasmic localization of ZmTE1, as well as cell division. Taken together, ZmTE1, a key regulator of plant height, is responsible for maintaining organized formation of internode meristems and rapid cell elongation. ZmWEE1 and ZmPP2Ac-2 might balance ZmTE1 activity, controlling cell division and elongation to maintain normal maize growth.
Collapse
Affiliation(s)
- Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Maolin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Mengli Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Xiaoduo Lu
- School of Life ScienceAnhui Agricultural UniversityHefeiAnhuiChina
| | - Xia Liu
- Maize Research InstituteShandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow‐huai River PlainMinistry of AgricultureJinanChina
| | - Yubin Li
- College of AgronomyQingdao Agricultural UniversityQingdaoChina
| | - Xiansheng Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Bao‐cai Tan
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationCollege of Life SciencesShandong UniversityQingdaoShandongChina
| |
Collapse
|
29
|
Hermawaty D, Considine JA, Considine MJ. An Evaluation of Nuclei Preparation of the Dormant Axillary Bud of Grapevine for Cell Cycle Analysis by Flow Cytometry. FRONTIERS IN PLANT SCIENCE 2022; 13:834977. [PMID: 35283905 PMCID: PMC8913039 DOI: 10.3389/fpls.2022.834977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Whether the division of cells of a dormant meristem may be arrested, e.g., in the G1 phase, has proven to be an extremely difficult hypothesis to test. This is particularly so for woody perennial buds, where dormant and quiescent states are diffuse, and the organ may remain visibly unchanged for 6-9 months of the year. Flow cytometry (FCM) has been widely applied in plant studies to determine the genome size and endopolyploidy. In this study, we present the application of FCM to measure the cell cycle status in mature dormant buds of grapevine (Vitis vinifera cv. Cabernet Sauvignon), which represent a technically recalcitrant structure. This protocol illustrates the optimisation and validation of FCM data analysis to calculate the cell cycle status, or mitotic index, of dormant grapevine buds. We have shown how contamination with debris can be experimentally managed and give reference to the more malleable tomato leaves. We have also given a clear illustration of the primary pitfalls of data analysis to avoid artefacts or false results. Data acquisition and analysis strategies are detailed and can be readily applied to analyse FCM data from other recalcitrant plant samples.
Collapse
Affiliation(s)
- Dina Hermawaty
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - John A. Considine
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael J. Considine
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
30
|
Argüello-Miranda O, Marchand AJ, Kennedy T, Russo MAX, Noh J. Cell cycle-independent integration of stress signals by Xbp1 promotes Non-G1/G0 quiescence entry. J Cell Biol 2022; 221:212720. [PMID: 34694336 PMCID: PMC8548912 DOI: 10.1083/jcb.202103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular quiescence is a nonproliferative state required for cell survival under stress and during development. In most quiescent cells, proliferation is stopped in a reversible state of low Cdk1 kinase activity; in many organisms, however, quiescent states with high-Cdk1 activity can also be established through still uncharacterized stress or developmental mechanisms. Here, we used a microfluidics approach coupled to phenotypic classification by machine learning to identify stress pathways associated with starvation-triggered high-Cdk1 quiescent states in Saccharomyces cerevisiae. We found that low- and high-Cdk1 quiescent states shared a core of stress-associated processes, such as autophagy, protein aggregation, and mitochondrial up-regulation, but differed in the nuclear accumulation of the stress transcription factors Xbp1, Gln3, and Sfp1. The decision between low- or high-Cdk1 quiescence was controlled by cell cycle-independent accumulation of Xbp1, which acted as a time-delayed integrator of the duration of stress stimuli. Our results show how cell cycle-independent stress-activated factors promote cellular quiescence outside G1/G0.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashley J Marchand
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Taylor Kennedy
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX.,School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX
| | - Marielle A X Russo
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
31
|
Chaban IA, Gulevich AA, Smirnova EA, Baranova EN. Morphological and Ultrastructural Features of Formation of the Skin of Wheat ( Triticum aestivum L.) Kernel. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112538. [PMID: 34834901 PMCID: PMC8624426 DOI: 10.3390/plants10112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
The integumentary tissues of plant seeds protect the embryo (new sporophyte) forming in them from unfavorable external conditions; therefore, comprehensive knowledge about the structural and functional specificity of seed covers in various plants may be of both theoretical and practical interest. As a result of our study, additional data were obtained on the morphological and ultrastructural features of the formation of a multilayer skin of wheat (Triticum aestivum L.) kernel (caryopsis). The ultrastructure research analysis showed that differentiation of the pericarp and inner integument of the ovule leads to the formation of functionally different layers of the skin of mature wheat grain. Thus, the differentiation of exocarp and endocarp cells is accompanied by a significant thickening of the cell walls, which reliably protect the ovule from adverse external conditions. The cells of the two-layer inner integument of the ovule differentiate into cuticular and phenolic layers, which are critical for protecting daughter tissues from various pathogens. The epidermis of the nucellus turns into a layer of mucilage, which apparently helps to maintain the water balance of the seed. Morphological and ultrastructural data showed that the formation of the kernel's skin occurs in coordination with the development of the embryo and endosperm up to the full maturity of the kernel. This is evidenced by the structure of the cytoplasm and nucleus, characteristic of metabolically active protoplasts of cells, which is observed in most integumentary layers at the late stages of maturation. This activity can also be confirmed by a significant increase in the thickness of the cell walls in the cells of two layers of the exocarp and in cross cells in comparison with the earlier stages. Based on these results, we came to the conclusion that the cells of a majority in the covering tissues of the wheat kernel during its ontogenesis are transformed into specialized layers of the skin by terminal differentiation.
Collapse
Affiliation(s)
- Inna A. Chaban
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
- Correspondence: (I.A.C.); (E.N.B.); Tel.: +7-(903)-6245971 (E.N.B.)
| | - Alexander A. Gulevich
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
| | - Elena A. Smirnova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Building 12, 119991 Moscow, Russia
| | - Ekaterina N. Baranova
- Plant Cell Biology Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
- Plant Protection Laboratory, N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
- Correspondence: (I.A.C.); (E.N.B.); Tel.: +7-(903)-6245971 (E.N.B.)
| |
Collapse
|
32
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
33
|
Tapia G, González M, Burgos J, Vega MV, Méndez J, Inostroza L. Early transcriptional responses in Solanum peruvianum and Solanum lycopersicum account for different acclimation processes during water scarcity events. Sci Rep 2021; 11:15961. [PMID: 34354211 PMCID: PMC8342453 DOI: 10.1038/s41598-021-95622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Cultivated tomato Solanum lycopersicum (Slyc) is sensitive to water shortages, while its wild relative Solanum peruvianum L. (Sper), an herbaceous perennial small shrub, can grow under water scarcity and soil salinity environments. Plastic Sper modifies the plant architecture when suffering from drought, which is mediated by the replacement of leaf organs, among other changes. The early events that trigger acclimation and improve these morphological traits are unknown. In this study, a physiological and transcriptomic approach was used to understand the processes that differentiate the response in Slyc and Sper in the context of acclimation to stress and future consequences for plant architecture. In this regard, moderate (MD) and severe drought (SD) were imposed, mediating PEG treatments. The results showed a reduction in water and osmotic potential during stress, which correlated with the upregulation of sugar and proline metabolism-related genes. Additionally, the senescence-related genes FTSH6 protease and asparagine synthase were highly induced in both species. However, GO categories such as "protein ubiquitination" or "endopeptidase inhibitor activity" were differentially enriched in Sper and Slyc, respectively. Genes related to polyamine biosynthesis were induced, while several cyclins and kinetin were downregulated in Sper under drought treatments. Repression of photosynthesis-related genes was correlated with a higher reduction in the electron transport rate in Slyc than in Sper. Additionally, transcription factors from the ERF, WRKY and NAC families were commonly induced in Sper. Although some similar responses were induced in both species under drought stress, many important changes were detected to be differentially induced. This suggests that different pathways dictate the strategies to address the early response to drought and the consequent episodes in the acclimation process in both tomato species.
Collapse
Affiliation(s)
- G Tapia
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile.
| | - M González
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile
| | - J Burgos
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| | - M V Vega
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| | - J Méndez
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| | - L Inostroza
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| |
Collapse
|
34
|
Saidi A, Hajibarat Z. Phytohormones: plant switchers in developmental and growth stages in potato. J Genet Eng Biotechnol 2021; 19:89. [PMID: 34142228 PMCID: PMC8211815 DOI: 10.1186/s43141-021-00192-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Potato is one of the most important food crops worldwide, contributing key nutrients to the human diet. Plant hormones act as vital switchers in the regulation of various aspects of developmental and growth stages in potato. Due to the broad impacts of hormones on many developmental processes, their role in potato growth and developmental stages has been investigated. This review presents a description of hormonal basic pathways, various interconnections between hormonal network and reciprocal relationships, and clarification of molecular events underlying potato growth. In the last decade, new findings have emerged regarding their function during sprout development, vegetative growth, tuber initiation, tuber development, and maturation in potato. Hormones can control the regulation of various aspects of growth and development in potato, either individually or in combination with other hormones. The molecular characterization of interplay between cytokinins (CKs), abscisic acid (ABA), and auxin and/or gibberellins (GAs) during tuber formation requires further undertaking. Recently, new evidences regarding the relative functions of hormones during various stages and an intricate network of several hormones controlling potato tuber formation are emerging. Although some aspects of their functions are widely covered, remarkable breaks in our knowledge and insights yet exist in the regulation of hormonal networks and their interactions during different stages of growth and various aspects of tuber formation. SHORT CONCLUSION The present review focuses on the relative roles of hormones during various developmental stages with a view to recognize their mechanisms of function in potato tuber development. For better insight, relevant evidences available on hormonal interaction during tuber development in other species are also described. We predict that the present review highlights some of the conceptual developments in the interplay of hormones and their associated downstream events influencing tuber formation.
Collapse
Affiliation(s)
- Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
35
|
Moghaddam SM, Oladzad A, Koh C, Ramsay L, Hart JP, Mamidi S, Hoopes G, Sreedasyam A, Wiersma A, Zhao D, Grimwood J, Hamilton JP, Jenkins J, Vaillancourt B, Wood JC, Schmutz J, Kagale S, Porch T, Bett KE, Buell CR, McClean PE. The tepary bean genome provides insight into evolution and domestication under heat stress. Nat Commun 2021; 12:2638. [PMID: 33976152 PMCID: PMC8113540 DOI: 10.1038/s41467-021-22858-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 01/07/2021] [Indexed: 02/03/2023] Open
Abstract
Tepary bean (Phaseolus acutifolis A. Gray), native to the Sonoran Desert, is highly adapted to heat and drought. It is a sister species of common bean (Phaseolus vulgaris L.), the most important legume protein source for direct human consumption, and whose production is threatened by climate change. Here, we report on the tepary genome including exploration of possible mechanisms for resilience to moderate heat stress and a reduced disease resistance gene repertoire, consistent with adaptation to arid and hot environments. Extensive collinearity and shared gene content among these Phaseolus species will facilitate engineering climate adaptation in common bean, a key food security crop, and accelerate tepary bean improvement.
Collapse
Affiliation(s)
- Samira Mafi Moghaddam
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Atena Oladzad
- Department of Plant Sciences and Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - Chushin Koh
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Hart
- USDA-ARS-Tropical Agriculture Research Station, Mayaguez, PR, USA
| | - Sujan Mamidi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Genevieve Hoopes
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | | - Andrew Wiersma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Dongyan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Joshua C Wood
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Timothy Porch
- USDA-ARS-Tropical Agriculture Research Station, Mayaguez, PR, USA.
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Michigan State University AgBioResearch, East Lansing, MI, USA.
| | - Phillip E McClean
- Department of Plant Sciences and Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
36
|
Rasool Mir H, Kumar Yadav S, Ercisli S, Al-Huqail AA, Soliman DA, Siddiqui MH, Alansi S, Yadav S. Association of DNA biosynthesis with planting value enhancement in hydroprimed maize seeds. Saudi J Biol Sci 2021; 28:2634-2640. [PMID: 34025147 PMCID: PMC8117246 DOI: 10.1016/j.sjbs.2021.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Inadequate plant stand establishment due to insufficient germination is an important bottleneck in achieving the potential yields, specifically under uncertain growing conditions. Hydropriming has been publicized as a useful tool to alleviate the stress-induced consequences. Association of DNA biosynthesis in hydroprimed seeds of maize; hybrid, PEHM 5 and its parental lines (CM150 and CM151) was studied. Seeds were hydroprimed at 25 °C for 30 h and half of them were surface dried while the other half were redried back to the original moisture contents. The treated and untreated seeds were evaluated for; germination test, mean germination time, vigour index and DNA levels in embryos of fully matured seeds. Both the treatment strategies significantly enhanced the planting value of maize seeds. Vigour index I revealed significant correlation with G2/G1 ratio whereas significant negative correlation between G2/G1 ratio and mean germination time was observed. Large amounts of 2C DNA signals in flow cytometric analysis divulged that most cells might had arrested in the cell cycle at the pre synthetic G1 phase of nuclear division. Augmentation of 4C signal in the embryonic region was noticed after imbibition that could be ascribed to cells entering the synthetic phase of nuclear division. The embryonic cells showed increased 4C:2C ratios after 30 h of imbibition. Apparently, DNA synthesis preceded germination. In dry seeds, DNA histograms revealed both a 2C signal and a considerable 4C peak. A priming period of 30 h in distilled water considerably enhanced the rate and uniformity of germination in both surface dried and redried treatment strategies. Upon priming, the ratio of 4C:2C increased during the 30 h priming period, though the level in case of redried seeds did not reach the level obtained after hydration in water without drying back. However, the 4C: 2C ratio was constant after redrying the seeds to the original moisture content, indicating that the chromosomal material in the embryonic cells had stably ceased cell cycle activity at the G2 phase. The present results indicate that the beneficial effects of priming on seedling performance could be associated with the action of replicative DNA synthesis processes prior to germination.
Collapse
Affiliation(s)
- Heena Rasool Mir
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shiv Kumar Yadav
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sezai Ercisli
- Department of Horticulture, Ataturk University, Erzurum 25240, Turkey
| | - Asma A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dina A Soliman
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Alansi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sangita Yadav
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
37
|
Zhao X, Han X, Wang Q, Wang X, Chen X, Li L, Fu X, Gao D. EARLY BUD BREAK 1 triggers bud break in peach trees by regulating hormone metabolism, the cell cycle, and cell wall modifications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3512-3523. [PMID: 32507879 PMCID: PMC7475240 DOI: 10.1093/jxb/eraa119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
In a previous study we identified EARLY BUD BREAK 1 (EBB1), an ERF transcription factor, in peach (Prunus persica var. nectarina cultivar Zhongyou 4); however, little is known of how PpEBB1 may regulate bud break. To verify the function of PpEBB1 in bud break, PpEBB1 was transiently transformed into peach buds, resulting in early bud break. Bud break occurred earlier in PpEBB1-oe poplar (Populus trichocarpa) obtained by heterologous transformation than in wild type (WT), consistent with the peach bud results, indicating that PpEBB1 can promote bud break. To explore how PpEBB1 affects bud break, differentially expressed genes (DEGs) between WT and PpEBB1-oe poplar plants were identified by RNA-sequencing. The expression of DEGs associated with hormone metabolism, cell cycle, and cell wall modifications changed substantially according to qRT-PCR. Auxin, ABA, and total trans-zeatin-type cytokinin levels were higher in the PpEBB1-oe plants than in WT plants, while the total N6-(Δ 2-isopentenyl)-adenine-type cytokinins was lower. Yeast two-hybrid and bimolecular fluorescence complementation assays verified that a cell wall modification-related protein (PpEXBL1) interacted with PpEBB1 suggesting that PpEBB1 could interact with these cell wall modification proteins directly. Overall, our study proposed a multifaceted explanation for how PpEBB1 regulates bud break and showed that PpEBB1 promotes bud break by regulating hormone metabolism, the cell cycle, and cell wall modifications.
Collapse
Affiliation(s)
- Xuehui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xiaolun Han
- Laiyang City Bureau of Natural Resources and Planning, Yantai, Shangdong, China
| | - Qingjie Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xuxu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
- Correspondence: or
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
- Correspondence: or
| |
Collapse
|
38
|
Pasternak T, Lystvan K, Betekhtin A, Hasterok R. From Single Cell to Plants: Mesophyll Protoplasts as a Versatile System for Investigating Plant Cell Reprogramming. Int J Mol Sci 2020; 21:E4195. [PMID: 32545519 PMCID: PMC7348876 DOI: 10.3390/ijms21124195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/24/2023] Open
Abstract
Plants are sessile organisms that have a remarkable developmental plasticity, which ensures their optimal adaptation to environmental stresses. Plant cell totipotency is an extreme example of such plasticity, whereby somatic cells have the potential to form plants via direct shoot organogenesis or somatic embryogenesis in response to various exogenous and/or endogenous signals. Protoplasts provide one of the most suitable systems for investigating molecular mechanisms of totipotency, because they are effectively single cell populations. In this review, we consider the current state of knowledge of the mechanisms that induce cell proliferation from individual, differentiated somatic plant cells. We highlight initial explant metabolic status, ploidy level and isolation procedure as determinants of successful cell reprogramming. We also discuss the importance of auxin signalling and its interaction with stress-regulated pathways in governing cell cycle induction and further stages of plant cell totipotency.
Collapse
Affiliation(s)
- Taras Pasternak
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies University of Freiburg, 79104 Freiburg, Germany
| | - Kateryna Lystvan
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
| | - Alexander Betekhtin
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| |
Collapse
|
39
|
Buschmann H. A method for studying cell division in Nicotiana benthamiana pavement cells based on Agrobacterium infiltration. THE NEW PHYTOLOGIST 2020; 226:950-952. [PMID: 32243603 DOI: 10.1111/nph.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article is a Commentary on Xu et al., 226: 1213–1221.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botany Department, Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany
| |
Collapse
|
40
|
Hoshino R, Yoshida Y, Tsukaya H. Multiple steps of leaf thickening during sun-leaf formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:738-753. [PMID: 31350790 PMCID: PMC6900135 DOI: 10.1111/tpj.14467] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Plant morphological and physiological traits exhibit plasticity in response to light intensity. Leaf thickness is enhanced under high light (HL) conditions compared with low light (LL) conditions through increases in both cell number and size in the dorsoventral direction; however, the regulation of such phenotypic plasticity in leaf thickness (namely, sun- or shade-leaf formation) during the developmental process remains largely unclear. By modifying observation techniques for tiny leaf primordia in Arabidopsis thaliana, we analysed sun- and shade-leaf development in a time-course manner and found that the process of leaf thickening can be divided into early and late phases. In the early phase, anisotropic cell elongation and periclinal cell division on the adaxial side of mesophyll tissue occurred under the HL conditions used, which resulted in the dorsoventral growth of sun leaves. Anisotropic cell elongation in the palisade tissue is triggered by blue-light irradiation. We discovered that anisotropic cell elongation processes before or after periclinal cell division were differentially regulated independent of or dependent upon signalling through blue-light receptors. In contrast, during the late phase, isotropic cell expansion associated with the endocycle, which determined the final leaf thickness, occurred irrespective of the light conditions. Sucrose production was high under HL conditions, and we found that sucrose promoted isotropic cell expansion and the endocycle even under LL conditions. Our analyses based on this method of time-course observation addressed the developmental framework of sun- and shade-leaf formation.
Collapse
Affiliation(s)
- Rina Hoshino
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Yuki Yoshida
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Hirokazu Tsukaya
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
- Exploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazakiAichi444‐8787Japan
| |
Collapse
|
41
|
Zhang W, Cochet F, Ponnaiah M, Lebreton S, Matheron L, Pionneau C, Boudsocq M, Resentini F, Huguet S, Blázquez MÁ, Bailly C, Puyaubert J, Baudouin E. The MPK8-TCP14 pathway promotes seed germination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:677-692. [PMID: 31325184 DOI: 10.1111/tpj.14461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 05/25/2023]
Abstract
The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8). Mpk8 seeds presented a deeper dormancy than wild-type (WT) at harvest that was less efficiently alleviated by after-ripening and gibberellic acid treatment. We identified Teosinte Branched1/Cycloidea/Proliferating cell factor 14 (TCP14), a transcription factor regulating germination, as a partner of MPK8. Mpk8 tcp14 double-mutant seeds presented a deeper dormancy at harvest than WT and mpk8, but similar to that of tcp14 seeds. MPK8 interacted with TCP14 in the nucleus in vivo and phosphorylated TCP14 in vitro. Furthermore, MPK8 enhanced TCP14 transcriptional activity when co-expressed in tobacco leaves. Nevertheless, the stimulation of TCP14 transcriptional activity by MPK8 could occur independently of TCP14 phosphorylation. The comparison of WT, mpk8 and tcp14 transcriptomes evidenced that whereas no effect was observed in dry seeds, mpk8 and tcp14 mutants presented dramatic transcriptomic alterations after imbibition with a sustained expression of genes related to seed maturation. Moreover, both mutants exhibited repression of genes involved in cell wall remodeling and cell cycle G1/S transition. As a whole, this study unraveled a role for MPK8 in promoting seed germination, and suggested that its interaction with TCP14 was critical for regulating key processes required for germination completion.
Collapse
Affiliation(s)
- Wei Zhang
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Françoise Cochet
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Maharajah Ponnaiah
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, 75005, France
| | - Lucrèce Matheron
- Sorbonne Université, Institut de Biologie Paris-Seine, Paris, 75005, France
| | - Cédric Pionneau
- Sorbonne Université, INSERM, UMS 37 PASS, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013, Paris, France
| | - Marie Boudsocq
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Université Paris-Saclay, Univ Paris-Diderot, Sorbonne Paris-Cite, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Francesca Resentini
- Instituto de Biología Molecular y Celular de Plantas, CSIC-U Politécnica de Valencia, 46022, Valencia, Spain
| | - Stéphanie Huguet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Université Paris-Saclay, Univ Paris-Diderot, Sorbonne Paris-Cite, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Miguel Á Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-U Politécnica de Valencia, 46022, Valencia, Spain
| | - Christophe Bailly
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Juliette Puyaubert
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Emmanuel Baudouin
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| |
Collapse
|
42
|
Waterworth WM, Bray CM, West CE. Seeds and the Art of Genome Maintenance. FRONTIERS IN PLANT SCIENCE 2019; 10:706. [PMID: 31214224 PMCID: PMC6554324 DOI: 10.3389/fpls.2019.00706] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Successful germination represents a crucial developmental transition in the plant lifecycle and is important both for crop yields and plant survival in natural ecosystems. However, germination potential decreases during storage and seed longevity is a key determinant of crop production. Decline in germination vigor is initially manifest as an increasing delay to radicle emergence and the completion of germination and eventually culminating in loss of seed viability. The molecular mechanisms that determine seed germination vigor and viability remain obscure, although deterioration in seed quality is associated with the accumulation of damage to cellular structures and macromolecules including lipids, protein, and nucleic acids. In desiccation tolerant seeds, desiccation/rehydration cycles and prolonged periods in the dry quiescent state are associated with remarkable levels of stress to the embryo genome which can result in mutagenesis of the genetic material, inhibition of transcription and replication and delayed growth and development. An increasing number of studies are revealing DNA damage accumulated in the embryo genome, and the repair capacity of the seed to reverse this damage, as major factors that determine seed vigor and viability. Recent findings are now establishing important roles for the DNA damage response in regulating germination, imposing a delay to germination in aged seed to minimize the deleterious consequences of DNA damage accumulated in the dry quiescent state. Understanding the mechanistic basis of seed longevity will underpin the directed improvement of crop varieties and support preservation of plant genetic resources in seed banks.
Collapse
|
43
|
Pacini E, Dolferus R. Pollen Developmental Arrest: Maintaining Pollen Fertility in a World With a Changing Climate. FRONTIERS IN PLANT SCIENCE 2019; 10:679. [PMID: 31178886 PMCID: PMC6544056 DOI: 10.3389/fpls.2019.00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/06/2019] [Indexed: 05/07/2023]
Abstract
During evolution of land plants, the haploid gametophytic stage has been strongly reduced in size and the diploid sporophytic phase has become the dominant growth form. Both male and female gametophytes are parasitic to the sporophyte and reside in separate parts of the flower located either on the same plant or on different plants. For fertilization to occur, bi-cellular or tri-cellular male gametophytes (pollen grains) have to travel to the immobile female gametophyte in the ovary. To survive exposure to a hostile atmosphere, pollen grains are thought to enter a state of complete or partial developmental arrest (DA). DA in pollen is strongly associated with acquisition of desiccation tolerance (DT) to extend pollen viability during air travel, but occurrence of DA in pollen is both species-dependent and at the same time strongly dependent on the reigning environmental conditions at the time of dispersal. Several environmental stresses (heat, drought, cold, humidity) are known to affect pollen production and viability. Climate change is also posing a serious threat to plant reproductive behavior and crop productivity. It is therefore timely to gain a better understanding of how DA and pollen viability are controlled in plants and how pollen viability can be protected to secure crop yields in a changing environment. Here, we provide an overview of how DA and pollen viability are controlled and how the environment affects them. We make emphasis on what is known and areas where a deeper understanding is needed.
Collapse
Affiliation(s)
- Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rudy Dolferus
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
44
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
45
|
Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC. Linking Autophagy to Abiotic and Biotic Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:413-430. [PMID: 30824355 PMCID: PMC6475611 DOI: 10.1016/j.tplants.2019.02.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium; Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay.
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
46
|
Strigolactones Promote Leaf Elongation in Tall Fescue through Upregulation of Cell Cycle Genes and Downregulation of Auxin Transport Genes in Tall Fescue under Different Temperature Regimes. Int J Mol Sci 2019; 20:ijms20081836. [PMID: 31013928 PMCID: PMC6515303 DOI: 10.3390/ijms20081836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Strigolactones (SLs) have recently been shown to play roles in modulating plant architecture and improving plant tolerance to multiple stresses, but the underlying mechanisms for SLs regulating leaf elongation and the influence by air temperature are still unknown. This study aimed to investigate the effects of SLs on leaf elongation in tall fescue (Festuca arundinacea, cv. ‘Kentucky-31’) under different temperature regimes, and to determine the interactions of SLs and auxin in the regulation of leaf growth. Tall fescue plants were treated with GR24 (synthetic analog of SLs), naphthaleneacetic acid (NAA, synthetic analog), or N-1-naphthylphthalamic acid (NPA, auxin transport inhibitor) (individually and combined) under normal temperature (22/18 °C) and high-temperature conditions (35/30 °C) in controlled-environment growth chambers. Exogenous application of GR24 stimulated leaf elongation and mitigated the heat inhibition of leaf growth in tall fescue. GR24-induced leaf elongation was associated with an increase in cell numbers, upregulated expression of cell-cycle-related genes, and downregulated expression of auxin transport-related genes in elongating leaves. The results suggest that SLs enhance leaf elongation by stimulating cell division and interference with auxin transport in tall fescue.
Collapse
|
47
|
Sagot I, Laporte D. Quiescence, an individual journey. Curr Genet 2019; 65:695-699. [PMID: 30649583 DOI: 10.1007/s00294-018-00928-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
Quiescence is operationally characterized as a temporary and reversible proliferation arrest. There are many preconceived ideas about quiescence, quiescent cells being generally viewed as insignificant sleeping G1 cells. In fact, quiescence is central for organism physiology and its dysregulation involved in many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. This diversity challenges not only quiescence uniformity but also the universality of the molecular mechanisms beyond quiescence regulation. In this mini-perspective, we discuss recent advances in the concept of quiescence, and illustrate that this multifaceted cellular state is gaining increasing attention in many fields of biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Université de Bordeaux, CS61390, Bordeaux Cedex, 33077, France.
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Université de Bordeaux, CS61390, Bordeaux Cedex, 33077, France
| |
Collapse
|
48
|
Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci 2019; 132:132/1/jcs213025. [DOI: 10.1242/jcs.213025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Most cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| |
Collapse
|
49
|
Conde D, Perales M, Sreedasyam A, Tuskan GA, Lloret A, Badenes ML, González-Melendi P, Ríos G, Allona I. Engineering Tree Seasonal Cycles of Growth Through Chromatin Modification. FRONTIERS IN PLANT SCIENCE 2019; 10:412. [PMID: 31024588 PMCID: PMC6459980 DOI: 10.3389/fpls.2019.00412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
In temperate and boreal regions, perennial trees arrest cell division in their meristematic tissues during winter dormancy until environmental conditions become appropriate for their renewed growth. Release from the dormant state requires exposure to a period of chilling temperatures similar to the vernalization required for flowering in Arabidopsis. Over the past decade, genomic DNA (gDNA) methylation and transcriptome studies have revealed signatures of chromatin regulation during active growth and winter dormancy. To date, only a few chromatin modification genes, as candidate regulators of these developmental stages, have been functionally characterized in trees. In this work, we summarize the major findings of the chromatin-remodeling role during growth-dormancy cycles and we explore the transcriptional profiling of vegetative apical bud and stem tissues during dormancy. Finally, we discuss genetic strategies designed to improve the growth and quality of forest trees.
Collapse
Affiliation(s)
- Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - María L. Badenes
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Isabel Allona, orcid.org/0000-0002-7012-2850
| |
Collapse
|
50
|
Abstract
With the origin of pollination in ancient seed plants, the male gametophyte ("pollen") began to evolve a new and unique life history stage, the progamic phase, a post-pollination period in which pollen sexual maturation occurs in interaction with sporophyte-derived tissues. Pollen performance traits mediate the timing of the fertilization process, often in competition with other pollen, via the speed of pollen germination, sperm development, and pollen tube growth. Studies of pollen development rarely address the issue of performance or its evolution, which involves linking variation in developmental rates to relative fitness within populations or to adaptations on a macroevolutionary scale. Modifications to the pollen tube pathway and changes in the intensity of pollen competition affect the direction and strength of selection on pollen performance. Hence, pollen developmental evolution is always contextual-it involves both the population biology of pollen reaching stigmas and the co-evolution of sporophytic traits, such as the pollen tube pathway and mating system. For most species, performance evolution generally reflects a wandering history of periods of directional selection and relaxed selection, channeled by developmental limitations, a pattern that favors the accumulation of diversity and redundancy in developmental mechanisms and the genetic machinery. Developmental biologists are focused on finding universal mechanisms that underlie pollen function, and these are largely mechanisms that have evolved through their effects on performance. Here, we suggest ways in which studies of pollen performance or function could progress by cross-fertilization between the "evo" and "devo" fields.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|