1
|
Blanco-Moreno C, Wayman KA, Tomescu AMF. Exploring geography and evolutionary history as drivers of variation in floral scent chemistry in western sessile-flowered Trillium using parsimony-constrained phylogenetics. ANNALS OF BOTANY 2024; 134:843-862. [PMID: 39078941 PMCID: PMC11560366 DOI: 10.1093/aob/mcae120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/26/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND AIMS The sessile-flowered Trillium species from western North America have been challenging to distinguish morphologically owing to overlapping characters and intraspecific variation. Molecular phylogenetic analyses, currently inconclusive for this group, have not sampled multiple populations of the different species to account for this. Here, we query the diversity of floral volatile composition to understand its bearings on the taxonomy, distribution and evolution of this group. METHODS We explored taxonomic and geographical patterns in average floral volatile composition (105 different compounds) among 42 wild populations of four sessile-flowered Trillium species and the outgroup, Pseudotrillium, in California, Oregon and Washington, by means of parsimony-constrained phylogenetic analyses. To assess the influence of character construction, we coded compound abundance in three different ways for the phylogenetic analyses and compared the results with those of statistical analyses using the same dataset and previously published statistical analyses. KEY RESULTS Different codings of floral volatile composition generated different phylogenetic topologies with different levels of resolution. The different phylogenies provide similar answers to taxonomic questions but support different evolutionary histories. Monophyly of most populations of each taxon suggests that floral scent composition bears phylogenetic signal in the western sessile-flowered Trillium. Lack of correlation between the distribution of populations and their position in scent-based phylogenies does not support a geographical signal in floral scent composition. CONCLUSIONS Floral scent composition is a valuable data source for generating phylogenetic hypotheses. The way in which scent composition is coded into characters is important. The phylogenetic patterns supported by floral volatile compounds are incongruent with previously reported phylogenies of the western sessile-flowered Trillium obtained using molecular or morphological data. Combination of floral scent data with gene sequence data and detailed morphological data from multiple populations of each species in future studies is needed for understanding the evolutionary history of western sessile-flowered Trillium.
Collapse
Affiliation(s)
- Candela Blanco-Moreno
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Kjirsten A Wayman
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| |
Collapse
|
2
|
Losch F, Weigend M. Diurnal patterns of floral volatile emissions in three species of Narcissus. AMERICAN JOURNAL OF BOTANY 2024; 111:e16408. [PMID: 39305022 DOI: 10.1002/ajb2.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
PREMISE Plants generate a wide array of signals such as olfactory cues to attract and manipulate the response of pollinators. The present study addresses the temporal patterns of scent emission as an additional dimension to the scent composition. The expectation is that divergent floral function is reflected in divergent qualitative and temporal emission patterns. METHODS We used GC-ion mobility spectrometry with an integrated pre-concentration for automated acquisition of the temporal trends in floral volatile emissions for N. viridiflorus, N. papyraceus, and N. cantabricus subsp. foliosus. RESULTS We found a considerable increase in scent emissions and changes in scent composition for N. viridiflorus at night. This increase was particularly pronounced for aromatic substances such as benzyl acetate and p-cresol. We found no diurnal patterns in N. papyraceus, despite a similar qualitative composition of floral volatiles. Narcissus cantabricus subsp. foliosus showed no diurnal patterns either and differed considerably in floral scent composition. CONCLUSIONS Scent composition, circadian emission patterns, and floral morphology indicate divergent, but partially overlapping pollinator communities. However, the limited pollinator data from the field only permits a tentative correlation between emission patterns and flower visitors. Narcissus papyraceus and N. cantabricus show no clear diurnal patterns and thus no adjustment to the activity patterns of their diurnal pollinators. In N. viridiflorus, timing of scent emission indicates an adaptation to nocturnal flower visitors, contradicting Macroglossum as the only reported pollinator. We propose that the legitimate pollinators of N. viridiflorus are nocturnal and are still unidentified.
Collapse
Affiliation(s)
- Florian Losch
- Bonner Institut für Organismische Biologie (BIOB) Dept. Biodiversity of Plants, Mathematisch-Naturwissenschaftliche Fakultät, Rheinische Friedrich-Wilhelmsuniversität Bonn, Bonn, 53115, Germany
| | - Maximilian Weigend
- Bonner Institut für Organismische Biologie (BIOB) Dept. Biodiversity of Plants, Mathematisch-Naturwissenschaftliche Fakultät, Rheinische Friedrich-Wilhelmsuniversität Bonn, Bonn, 53115, Germany
| |
Collapse
|
3
|
Wayman KA, Reilly MJ, Petlewski AR. Taxonomic insights from floral scents of western North American sessile-flowered Trillium. AMERICAN JOURNAL OF BOTANY 2023; 110:e16255. [PMID: 37938811 DOI: 10.1002/ajb2.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PREMISE Chemical composition of floral volatiles can be an important complement to morphological characters in describing and identifying species. Four of the five species of western sessile-flowered Trillium are challenging to distinguish morphologically due to wide intraspecific variation and overlapping characters among taxa. Characterizing their floral volatile compositions could aid future taxonomic, ecological, and evolutionary studies of Trillium and related taxa. We addressed two major questions: How do western sessile Trillium taxa vary in floral chemistry? Can floral scent be used to distinguish species? METHODS We collected petals from 600 individuals at 42 wild populations of four sessile Trillium species across California, Oregon, and Washington. Volatile organic compounds from the petals were extracted using solid-phase microextraction, and the volatiles were identified and quantified by gas chromatography-mass spectrometry. The utility of floral scent composition in distinguishing species was tested using nonmetric multidimensional scaling and random forest analysis. RESULTS Floral volatiles of the white-petaled T. albidum were dominated by oxygenated monoterpenes and showed considerable geographic variation that paralleled morphological variation. The maroon-petaled T. angustipetalum and T. kurabayashii produced floral scents characterized by aliphatic esters, but each had a distinct chemical composition. Petal color of Trillium chloropetalum is highly variable, as were its scent compositions, which were blends of volatiles from both white-petaled and maroon-petaled congeneric taxa. CONCLUSIONS Differences in floral scent compositions are consistent with current taxonomy of the western sessile Trillium group. In cases where species delimitations are difficult based on morphology, floral scent composition provides taxonomic insight and suggests a potential hybrid origin for T. chloropetalum.
Collapse
Affiliation(s)
- Kjirsten A Wayman
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| | - Matthew J Reilly
- USDA Forest Service, Western Wildland Environmental Threat Assessment Center, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - Alaina R Petlewski
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| |
Collapse
|
4
|
Shibata A, Kudo G. Night and day: Contributions of diurnal and nocturnal visitors to pollen dispersal, paternity diversity, and fruit set in an early-blooming shrub, Daphne jezoensis. AMERICAN JOURNAL OF BOTANY 2023; 110:e16239. [PMID: 37668113 DOI: 10.1002/ajb2.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
PREMISE Under uncertain pollinator visit conditions, plants often exhibit long flowering periods and generalized pollination systems. Flowering of the gynodioecious shrub Daphne jezoensis occurs in early spring in cool temperate forests. Pollination by nocturnal moths is expected, given the species' tubular-shaped flowers with sweet fragrance and nectar. However, the effectiveness of nocturnal moths under cool conditions is unknown. We evaluated the relative importance of diurnal and nocturnal visitors as pollinators in early spring. METHODS We investigated flowering duration, flower visitors, and floral scents in a natural population. We experimentally exposed flowers to visitors only during daytime or nighttime using bagging treatments and evaluated the contributions of diurnal and nocturnal insects to fruit set, pollen dispersal distance, and paternity diversity using 16 microsatellite markers. RESULTS Female flowers lasted ~3 wk, which was ~8 d longer than the flowering period of hermaphrodites. Various insects, including Coleoptera, Diptera, Hymenoptera, and Lepidoptera, visited the flowers during both daytime and nighttime. Flowers emitted volatiles, such as lilac aldehyde isomers and β-ocimene, which are known to attract moths. Fruit-set rate in the night-open treatment was similar to or higher than that in the day-open treatment. However, pollen dispersal distance in the night-open treatment was shorter than that in the day-open treatment. Paternity diversity was similar in day-open and night-open treatments. CONCLUSIONS Early-blooming plants ensure pollen receipt and dispersal by having a long flowering period and using both diurnal and nocturnal flower visitors, suggesting the importance of a generalized pollination system under uncertain pollinator visit conditions.
Collapse
Affiliation(s)
- Akari Shibata
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
5
|
Shor E, Skaliter O, Sharon E, Kitsberg Y, Bednarczyk D, Kerzner S, Vainstein D, Tabach Y, Vainstein A. Developmental and temporal changes in petunia petal transcriptome reveal scent-repressing plant-specific RING-kinase-WD40 protein. FRONTIERS IN PLANT SCIENCE 2023; 14:1180899. [PMID: 37360732 PMCID: PMC10286513 DOI: 10.3389/fpls.2023.1180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
In moth-pollinated petunias, production of floral volatiles initiates when the flower opens and occurs rhythmically during the day, for optimal flower-pollinator interaction. To characterize the developmental transcriptomic response to time of day, we generated RNA-Seq databases for corollas of floral buds and mature flowers in the morning and in the evening. Around 70% of transcripts accumulating in petals demonstrated significant changes in expression levels in response to the flowers' transition from a 4.5-cm bud to a flower 1 day postanthesis (1DPA). Overall, 44% of the petal transcripts were differentially expressed in the morning vs. evening. Morning/evening changes were affected by flower developmental stage, with a 2.5-fold larger transcriptomic response to daytime in 1DPA flowers compared to buds. Analyzed genes known to encode enzymes in volatile organic compound biosynthesis were upregulated in 1DPA flowers vs. buds-in parallel with the activation of scent production. Based on analysis of global changes in the petal transcriptome, PhWD2 was identified as a putative scent-related factor. PhWD2 is a protein that is uniquely present in plants and has a three-domain structure: RING-kinase-WD40. Suppression of PhWD2 (termed UPPER - Unique Plant PhEnylpropanoid Regulator) resulted in a significant increase in the levels of volatiles emitted from and accumulated in internal pools, suggesting that it is a negative regulator of petunia floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaarit Kitsberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dominika Bednarczyk
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shane Kerzner
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Danny Vainstein
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tabach
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Shor E, Ravid J, Sharon E, Skaliter O, Masci T, Vainstein A. SCARECROW-like GRAS protein PES positively regulates petunia floral scent production. PLANT PHYSIOLOGY 2023; 192:409-425. [PMID: 36760164 PMCID: PMC10152688 DOI: 10.1093/plphys/kiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jasmin Ravid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
7
|
Floral scent divergence across an elevational hybrid zone with varying pollinators. Oecologia 2023; 201:45-57. [PMID: 36374316 DOI: 10.1007/s00442-022-05289-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Divergence in floral traits attractive to different pollinators can promote reproductive isolation in related species. When isolation is incomplete, hybridization may occur, which offers the opportunity to explore mechanisms underlying reproductive isolation. Recent work suggests that divergence in floral scent may frequently contribute to reproductive barriers, although such divergence has seldom been examined in species with generalized pollination. Here, we used two closely related Penstemon species, P. newberryi and P. davidsonii, and their natural hybrids from an elevational gradient with pollinator communities that are predicted to vary in their reliance on floral scent (i.e., primarily hummingbirds at low elevation vs. bees at high elevation). The species vary in a suite of floral traits, but scent is uncharacterized. To address whether scent varies along elevation and potentially contributes to reproductive isolation, we genetically characterized individuals collected at field and identified whether they were parental species or hybrids. We then characterized scent amount and composition. Although the parental species had similar total emissions, some scent characteristics (i.e., scent composition, aromatic emission) diverged between them and may contribute to their isolation. However, the species emitted similar compound sets which could explain hybridization in the contact area. Hybrids were similar to the parents for most scent traits, suggesting that their floral scent would not provide a strong barrier to backcrossing. Our study suggests floral scent may be a trait contributing to species boundaries even in plants with generalized pollination, and reinforces the idea that evolutionary pollinator transitions may involve changes in multiple floral traits.
Collapse
|
8
|
Opedal ØH, Gross K, Chapurlat E, Parachnowitsch A, Joffard N, Sletvold N, Ovaskainen O, Friberg M. Measuring, comparing and interpreting phenotypic selection on floral scent. J Evol Biol 2022; 35:1432-1441. [PMID: 36177776 PMCID: PMC9828191 DOI: 10.1111/jeb.14103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Natural selection on floral scent composition is a key element of the hypothesis that pollinators and other floral visitors drive scent evolution. The measure of such selection is complicated by the high-dimensional nature of floral scent data and uncertainty about the cognitive processes involved in scent-mediated communication. We use dimension reduction through reduced-rank regression to jointly estimate a scent composite trait under selection and the strength of selection acting on this trait. To assess and compare variation in selection on scent across species, time and space, we reanalyse 22 datasets on six species from four previous studies. The results agreed qualitatively with previous analyses in terms of identifying populations and scent compounds subject to stronger selection but also allowed us to evaluate and compare the strength of selection on scent across studies. Doing so revealed that selection on floral scent was highly variable, and overall about as common and as strong as selection on other phenotypic traits involved in pollinator attraction or pollen transfer. These results are consistent with an important role of floral scent in pollinator attraction. Our approach should be useful for further studies of plant-animal communication and for studies of selection on other high-dimensional phenotypes. In particular, our approach will be useful for studies of pollinator-mediated selection on complex scent blends comprising many volatiles, and when no prior information on the physiological responses of pollinators to scent compounds is available.
Collapse
Affiliation(s)
| | - Karin Gross
- Department of Environment & BiodiversityParis Lodron University of SalzburgSalzburgAustria
| | - Elodie Chapurlat
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Amy Parachnowitsch
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Nina Joffard
- University of Lille, UMR 8198 – Evo‐Eco‐PaleoLilleFrance
| | - Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Otso Ovaskainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland,Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Magne Friberg
- Biodiversity Unit, Department of BiologyLund UniversityLundSweden
| |
Collapse
|
9
|
Skogen KA, Jogesh T, Hilpman ET, Todd SL, Raguso RA. Extensive population-level sampling reveals clinal variation in (R)-(-)-linalool produced by the flowers of an endemic evening primrose, Oenothera harringtonii. PHYTOCHEMISTRY 2022; 200:113185. [PMID: 35436476 DOI: 10.1016/j.phytochem.2022.113185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The study of floral trait diversity has a long history due to its role in angiosperm diversification. While many studies have focused on visual traits including morphology and color, few have included floral scent despite its importance in pollination. Of the studies that have included floral scent, sampling has been limited and rarely explores variation at the population level. We studied geographic variation in the flowers of Oenothera harringtonii, a rare plant endemic to a vulnerable shortgrass prairie habitat, whose population structure and conservation status are well studied. The self-incompatible flowers of O. harringtonii open at dusk, produce nectar and a strong fragrance, and are pollinated by hawkmoths. We collected floral trait (morphology, scent chemistry and emission rates) data from 650 individuals from 19 wild populations to survey floral variation across the entire range of this species. Similarly, we collected floral data from 49 individuals grown in a greenhouse common garden, to assess whether variation observed in the field is consistent when environment factors (temperature, watering regime, soil) are standardized. We identified 35 floral volatiles representing 5 biosynthetic classes. Population differentiation was stronger for floral scent chemistry than floral morphology. (R)-(-)-linalool was the most important floral trait differentiating populations, exhibiting clinal variation across the distribution of O. harringtonii without any correlated shifts in floral morphology. Populations in the north and west produced (R)-(-)-linalool consistently, those in the east and south largely lacked it, and populations at the center of the distribution were polymorphic. Floral scent emissions in wild populations varied across four years but chemical composition was largely consistent over time. Similarly, volatile emission rates and chemical composition in greenhouse-grown plants were consistent with those of wild populations of origin. Our data set, which represents the most extensive population-level survey of floral scent to date, indicates that such sampling may be needed to capture potentially adaptive geographic variation in wild populations.
Collapse
Affiliation(s)
- Krissa A Skogen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA.
| | - Tania Jogesh
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA
| | - Evan T Hilpman
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Sadie L Todd
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA; Iowa Department of Agriculture and Land Stewardship, Ankeny, IA, 50023, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
10
|
D'Auria M, Lorenz R, Mecca M, Racioppi R, Romano VA, Viggiani L. Fragrance components of Gymnadenia conopsea and Gymnadenia odoratissima collected at several sites in Italy and Germany. Nat Prod Res 2022; 36:3435-3439. [PMID: 33249883 DOI: 10.1080/14786419.2020.1851227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
The SPME-GC-MS analysis of the aroma components of Gymnadenia conopsea subsp. conopsea, subsp. densiflora, var. alpina and Gymnadenia odoratissima var. odoratissima, var. idae were reported. The main components of in total 78 found in G. conopsea subsp. conopsea were elemicin, cis-9-hexadecenal, hexadecanal, isoelemicin and (Z)-11-hexadecen-1-ol acetate; in subsp. densiflora benzyl benzoate, eugenol and trans-isoeugenol; in var. alpina benzyl benzoate, methyleugenol and elemicin. In the scent of G. odoratissima var. odoratissima were found 2-phenylethyl acetate, eugenol and pentadecane, in var. idae mainly C15-C21 alkanes and C16, C18 carbonic acids and some isoprenoid-derivatives. As all tested Gymnadenia-taxa are allogamous, the differences in scent composition may play a role in pollinator attraction.
Collapse
Affiliation(s)
- Maurizio D'Auria
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - Richard Lorenz
- Arbeitskreis Heimische Orchideen Baden-Württemberg, Weinheim, Germany
| | - Marisabel Mecca
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - Rocco Racioppi
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | | | - Licia Viggiani
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| |
Collapse
|
11
|
Keefover-Ring K, Hetherington MC, Brunet J. Population-specific responses of floral volatiles to abiotic factors in changing environments. AMERICAN JOURNAL OF BOTANY 2022; 109:676-688. [PMID: 35435247 DOI: 10.1002/ajb2.1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Shifts in abiotic factors can affect many plant traits, including floral volatiles. This study examined the response of floral volatiles to water availability and whether phenotypic plasticity to water availability differs among populations. It also investigated genetic differentiation in floral volatiles, determined the effect of temperature on phenotypic plasticity to water availability, and assessed temporal variation in floral scent emission between day and evening, since pollinator visitation differs at those times. METHODS Rocky Mountain columbine plants (Aquilegia coerulea), started from seeds collected in three wild populations in Colorado, Utah, and Arizona, were grown under two water treatments in a greenhouse in Madison, Wisconsin, United States. One population was also grown under the two water treatments, at two temperatures. Air samples were collected from enclosed flowers using dynamic headspace methods and floral volatiles were identified and quantified by gas chromatography (GC) with mass spectrometry (MS). RESULTS Emission of three floral volatiles increased in the wetter environment, indicating phenotypic plasticity. The response of six floral volatiles to water availability differed among populations, suggesting genetic differentiation in phenotypic plasticity. Five floral volatiles varied among populations, and emission of most floral volatiles was greater during the day. CONCLUSIONS Phenotypic plasticity to water availability permits a quick response of floral volatiles in changing environments. The genetic differentiation in phenotypic plasticity suggests that phenotypic plasticity can evolve but complicates predictions of the effects of environmental changes on a plant and its pollinators.
Collapse
Affiliation(s)
- Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | | | - Johanne Brunet
- Vegetable Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Madison, 53706, WI, USA
| |
Collapse
|
12
|
Joffard N, Olofsson C, Friberg M, Sletvold N. Extensive pollinator sharing does not promote character displacement in two orchid congeners. Evolution 2022; 76:749-764. [PMID: 35188979 DOI: 10.1111/evo.14446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Pollinator sharing between close relatives can be costly and can promote pollination niche partitioning and floral divergence. This should be reflected by a higher species divergence in sympatry than in allopatry. We tested this hypothesis in two orchid congeners with overlapping distributions and flowering times. We characterized floral traits and pollination niches and quantified pollen limitation in 15 pure and mixed populations, and we measured phenotypic selection on floral traits and performed controlled crosses in one mixed site. Most floral traits differed between species, yet pollinator sharing was extensive. Only the timing of scent emission diverged more in mixed sites than in pure sites, and this was not mirrored by the timing of pollinator visitation. We did not detect divergent selection on floral traits. Seed production was pollen limited in most populations but not more severely in mixed sites than in pure sites. Interspecific crosses produced the same or a higher proportion of viable seeds than intraspecific crosses. The two orchid species attract the same pollinator species despite showing divergent floral traits. However, this does not promote character displacement, implying a low cost of pollinator sharing. Our results highlight the importance of characterizing both traits and ecological niches in character displacement studies.
Collapse
Affiliation(s)
- Nina Joffard
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden.,University of Lille, UMR 8198 - Evo-Eco-Paleo, Villeneuve d'Ascq, F-59655, France
| | - Caroliné Olofsson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Nina Sletvold
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| |
Collapse
|
13
|
Powers JM, Sakai AK, Weller SG, Campbell DR. Variation in floral volatiles across time, sexes, and populations of wind-pollinated Schiedea globosa. AMERICAN JOURNAL OF BOTANY 2022; 109:345-360. [PMID: 35192727 DOI: 10.1002/ajb2.1820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Floral scent is a key aspect of plant reproduction, but its intraspecific variation at multiple scales is poorly understood. Sexual dimorphism and temporal regulation of scent can be shaped by evolution, and interpopulation variation may be a bridge to species differences. We tested whether intraspecific chemical diversity in a wind-pollinated species where selection from biotic pollination is absent is associated with genetic divergence across the Hawaiian archipelago. METHODS Floral volatiles from females, males, and hermaphrodites of subdioecious Schiedea globosa grown in a common environment from 12 populations were sampled day and night and analyzed by gas chromatography-mass spectrometry. Variation among groups was analyzed by constrained ordination. We also examined the relationships of scent dissimilarity to geographic and genetic distance between populations. RESULTS Flowers increased total emissions at night through higher emissions of several ketones, oximes, and phenylacetaldehyde. Females emitted less total scent per flower at night but more of some aliphatic compounds than males, and males emitted more ketones and aldoximes. Scent differed among populations during day and night. Divergence in scent produced at night increased with geographic distance within 70-100 km and increased with genetic distance for males during the day and night, but not for females. CONCLUSIONS Schiedea globosa exhibits diel and sex-based variation in floral scent despite wind pollination and presumed loss of biotic pollination. In males, interpopulation scent differences are correlated with genetic differences, suggesting that scent evolved with dispersal within and across islands.
Collapse
Affiliation(s)
- John M Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Ann K Sakai
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Stephen G Weller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| |
Collapse
|
14
|
Manincor N, Andreu B, Buatois B, Lou Chao H, Hautekèete N, Massol F, Piquot Y, Schatz B, Schmitt E, Dufay M. Geographical variation of floral scents in generalist entomophilous species with variable pollinator communities. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Benjamin Andreu
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Bruno Buatois
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | | | | | - François Massol
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- Univ. Lille CNRS Inserm CHU Lille Institut Pasteur de Lille U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille Lille France
| | - Yves Piquot
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Bertrand Schatz
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Eric Schmitt
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Mathilde Dufay
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
15
|
Floral secondary metabolites in context of biotic and abiotic stress factors. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
van der Kooi CJ, Vallejo-Marín M, Leonhardt SD. Mutualisms and (A)symmetry in Plant-Pollinator Interactions. Curr Biol 2021; 31:R91-R99. [PMID: 33497641 DOI: 10.1016/j.cub.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The majority of flowering plants relies on animal pollinators for sexual reproduction and many animal pollinators rely on floral resources. However, interests of plants and pollinators are often not the same, resulting in an asymmetric relationship that ranges from mutualistic to parasitic interactions. Our understanding of the processes that underlie this asymmetry remains fragmentary. In this Review, we bring together evidence from evolutionary biology, plant chemistry, biomechanics, sensory ecology and behaviour to illustrate that the degree of symmetry often depends on the perspective taken. We also highlight variation in (a)symmetry within and between plant and pollinator species as well as between geographic locations. Through taking different perspectives from the plant and pollinator sides we provide new ground for studies on the maintenance and evolution of animal pollination and on the (a)symmetry in plant-pollinator interactions.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | | | - Sara D Leonhardt
- Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
17
|
Cna'ani A, Dener E, Ben-Zeev E, Günther J, Köllner TG, Tzin V, Seifan M. Phylogeny and abiotic conditions shape the diel floral emission patterns of desert Brassicaceae species. PLANT, CELL & ENVIRONMENT 2021; 44:2656-2671. [PMID: 33715174 DOI: 10.1111/pce.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
A key facet of floral scent is diel fluctuations in emission, often studied in the context of plant-pollinator interactions, while contributions of environment and phylogeny remain overlooked. Here, we ask if these factors are involved in shaping temporal variations in scent emission. To that end, we coupled light/dark floral emission measurements of 17 desert Brassicaceae species with environmental and phylogenetic data to explore the individual/combined impacts of these predictors on diel emission patterns. We further investigated these patterns by conducting high-resolution emission measurements in a subset of genetically distant species with contrasting temporal dynamics. While diel shifts in magnitude and richness of emission were strongly affected by genetic relatedness, they also reflect the environmental conditions under which the species grow. Specifically, light/dark emission ratios were negatively affected by an increase in winter temperatures, known to impact both plant physiology and insect locomotion, and sandy soil fractions, previously shown to exert stress that tempers with diel metabolic rhythms. Additionally, the biosynthetic origins of the compounds were associated with their corresponding production patterns, possibly to maximize emission efficacy. Using a multidisciplinary chemical/ecological approach, we uncover and differentiate the main factors shaping floral scent diel fluctuations, highlighting their consequences under changing global climate.
Collapse
Affiliation(s)
- Alon Cna'ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Dener
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Ben-Zeev
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Günther
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Section of Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| |
Collapse
|
18
|
Moré M, Soteras F, Ibañez AC, Dötterl S, Cocucci AA, Raguso RA. Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2021; 10:1512. [PMID: 34451557 PMCID: PMC8398055 DOI: 10.3390/plants10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a 'warm Lowland Subtropical nectar-rewarding clade' with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or sesquiterpenoid volatiles, and (ii) a 'cool-temperate brood-deceptive clade' of largely fly-pollinated species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including cresol, indole and sulfuric volatiles. The joint consideration of floral scent profiles, pollination mode, and geoclimatic context helped us to disentangle the factors that shaped floral scent evolution across "pollinator climates" (geographic differences in pollinator abundance or preference). Our findings suggest that the ability of plants in the genus Jaborosa to colonize newly formed habitats during Andean orogeny was associated with striking transitions in flower scent composition that trigger specific odor-driven behaviors in nocturnal hawkmoths and saprophilous fly pollinators.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria;
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Ohashi K, Jürgens A, Thomson JD. Trade-off mitigation: a conceptual framework for understanding floral adaptation in multispecies interactions. Biol Rev Camb Philos Soc 2021; 96:2258-2280. [PMID: 34096158 PMCID: PMC8518848 DOI: 10.1111/brv.12754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
Explanations of floral adaptation to diverse pollinator faunas have often invoked visitor‐mediated trade‐offs in which no intermediate, generalized floral phenotype is optimal for pollination success, i.e. fitness valleys are created. In such cases, plant species are expected to specialize on particular groups of flower visitors. Contrary to this expectation, it is commonly observed that flowers interact with various groups of visitors, while at the same time maintaining distinct phenotypes among ecotypes, subspecies, or congeners. This apparent paradox may be due to a gap in our understanding of how visitor‐mediated trade‐offs could affect floral adaptation. Here we provide a conceptual framework for analysing visitor‐mediated trade‐offs with the hope of stimulating empirical and theoretical studies to fill this gap. We propose two types of visitor‐mediated trade‐offs to address negative correlations among fitness contributions of different visitors: visitor‐mediated phenotypic trade‐offs (phenotypic trade‐offs) and visitor‐mediated opportunity trade‐offs (opportunity trade‐offs). Phenotypic trade‐offs occur when different groups of visitors impose conflicting selection pressures on a floral trait. By contrast, opportunity trade‐offs emerge only when some visitors’ actions (e.g. pollen collection) remove opportunities for fitness contribution by more beneficial visitors. Previous studies have observed disruptive selection due to phenotypic trade‐offs less often than expected. In addition to existing explanations, we propose that some flowers have achieved ‘adaptive generalization’ by evolving features to avoid or eliminate the fitness valleys that phenotypic trade‐offs tend to produce. The literature suggests a variety of pathways to such ‘trade‐off mitigation’. Trade‐off mitigation may also evolve as an adaptation to opportunity trade‐offs. We argue that active exclusion, or floral specialization, can be viewed as a trade‐off mitigation, occurring only when flowers cannot otherwise avoid strong opportunity trade‐offs. These considerations suggest that an evolutionary strategy for trade‐off mitigation is achieved often by acquiring novel combinations of traits. Thus, phenotypic diversification of flowers through convergent evolution of certain trait combinations may have been enhanced not only through adaptive specialization for particular visitors, but also through adaptive generalization for particular visitor communities. Explorations of how visitor‐mediated trade‐offs explain the recurrent patterns of floral phenotypes may help reconcile the long‐lasting controversy on the validity of pollination syndromes.
Collapse
Affiliation(s)
- Kazuharu Ohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Andreas Jürgens
- Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - James D Thomson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
20
|
Eisen KE, Geber MA, Raguso RA. Emission rates of species-specific volatiles vary across communities of Clarkia species: Evidence for multi-modal character displacement. Am Nat 2021; 199:824-840. [DOI: 10.1086/715501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Petrén H, Toräng P, Ågren J, Friberg M. Evolution of floral scent in relation to self-incompatibility and capacity for autonomous self-pollination in the perennial herb Arabis alpina. ANNALS OF BOTANY 2021; 127:737-747. [PMID: 33555338 PMCID: PMC8103803 DOI: 10.1093/aob/mcab007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic-alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer. METHODS In a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece. KEY RESULTS The self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories. CONCLUSIONS Our study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.
Collapse
Affiliation(s)
- Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
- SLU Swedish Species Information Centre, Box 7007, SE-750 07 Uppsala, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
22
|
Bateman RM. Phenotypic versus genotypic disparity in the Eurasian orchid genus Gymnadenia: exploring the limits of phylogeny reconstruction. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1877845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richard M. Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, Surrey, UK
| |
Collapse
|
23
|
Riffell JA. The neuroecology of insect-plant interactions: the importance of physiological state and sensory integration. CURRENT OPINION IN INSECT SCIENCE 2020; 42:118-124. [PMID: 33127509 PMCID: PMC7749044 DOI: 10.1016/j.cois.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Natural behaviorally important stimuli are combinations of cues that are integrated by the nervous system to elicit behavior. Nonetheless, these cues dynamically change in time and space. In turn, the animal's internal state can cause changes in the encoding and representation of these stimuli. Despite abundant behavioral examples, links between the neural bases of sensory integration and the internal state-dependency of these responses remains an active study area. Recent studies in different insect models have provided new insights into how plasticity and the insect's internal state may influence odor representation. These studies show that complex stimuli are represented in unique percepts that are different from their sensory channels and that the representations may be modulated by physiological state.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195-1800, United States.
| |
Collapse
|
24
|
Balducci MG, Van der Niet T, Johnson SD. Diel scent and nectar rhythms of an African orchid in relation to bimodal activity patterns of hawkmoth pollinators. ANNALS OF BOTANY 2020; 126:1155-1164. [PMID: 32674148 PMCID: PMC7684705 DOI: 10.1093/aob/mcaa132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The temporal dimensions of floral adaptation to pollinators are not yet well understood, partly because we lack accurate information on the diel rhythms of flower visitation for many pollinators. We investigated whether diel patterns of pollinator visitation to flowers of the African woodland orchid Bonatea polypodantha are synchronized with rhythms of floral anthesis, scent emission and nectar availability. METHODS Direct observations and motion-activated cameras were used to identify pollinators of B. polypodantha and to document their activity periods. The timing of pollinaria removal from flowers, emission of scent and availability of nectar was also measured. RESULTS We found that B. polypodantha is pollinated exclusively by short-tongued hawkmoths. Pollinaria of the orchid are affixed between the labial palps of the moths and brush over the protruding stigmatic arms. The flowers also receive visits by long-tongued hawkmoths, but these act as nectar thieves. Tracking of pollinaria removal from flowers confirmed that pollination occurs only at night. Camera footage revealed a striking crepuscular pattern of foraging by short-tongued hawkmoths with peaks of activity during the twilight periods at dusk and at dawn. In contrast, long-tongued hawkmoths were found to visit flowers throughout the night. Flowers of B. polypodantha exhibit unimodal peaks of anthesis, scent emission (dominated by nitrogenous aromatics) and nectar availability before or around dusk. CONCLUSIONS Flowers of B. polypodantha are pollinated exclusively by short-tongued hawkmoths, which show crepuscular foraging activity at dusk and dawn. Floral phenophases of the orchid are closely synchronized with the peak of pollinator activity at dusk.
Collapse
Affiliation(s)
- Marco G Balducci
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Timotheüs Van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| |
Collapse
|
25
|
Sources of floral scent variation in the food-deceptive orchid Orchis mascula. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2020.103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Powers JM, Seco R, Faiola CL, Sakai AK, Weller SG, Campbell DR, Guenther A. Floral Scent Composition and Fine-Scale Timing in Two Moth-Pollinated Hawaiian Schiedea (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:1116. [PMID: 32793267 PMCID: PMC7385411 DOI: 10.3389/fpls.2020.01116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Floral scent often intensifies during periods of pollinator activity, but the degree of this synchrony may vary among scent compounds depending on their function. Related plant species with the same pollinator may exhibit similar timing and composition of floral scent. We compared timing and composition of floral volatiles for two endemic Hawaiian plant species, Schiedea kaalae and S. hookeri (Caryophyllaceae). For S. kaalae, we also compared the daily timing of emission of floral volatiles to evening visits of their shared pollinator, an endemic Hawaiian moth (Pseudoschrankia brevipalpis; Erebidae). The identity and amount of floral volatiles were measured in the greenhouse during day and evening periods with dynamic headspace sampling and GC-MS (gas chromatography - mass spectrometry). The timing of emissions (daily rise, peak, and fall) was measured by sampling continuously for multiple days in a growth chamber with PTR-MS (proton transfer reaction mass spectrometry). Nearly all volatiles detected underwent strong daily cycles in emission. Timings of floral volatile emissions were similar for S. kaalae and S. hookeri, as expected for two species sharing the same pollinator. For S. kaalae, many volatiles known to attract moths, including several linalool oxides and 2-phenylacetaldehyde, peaked within 2 h of the peak visitation time of the moth which pollinates both species. Floral volatiles of both species that peaked in the evening were also emitted several hours before and after the brief window of pollinator activity. Few volatiles followed a daytime emission pattern, consistent with increased apparency to visitors only at night. The scent blends of the two species differed in their major components and were most distinct from each other in the evening. The qualitative difference in evening scent composition between the two Schiedea species may reflect their distinct evolutionary history and may indicate that the moth species uses several different floral cues to locate rewards.
Collapse
Affiliation(s)
- John M. Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Roger Seco
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Celia L. Faiola
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Ann K. Sakai
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Stephen G. Weller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Diane R. Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
27
|
Chapurlat E, Le Roncé I, Ågren J, Sletvold N. Divergent selection on flowering phenology but not on floral morphology between two closely related orchids. Ecol Evol 2020; 10:5737-5747. [PMID: 32607187 PMCID: PMC7319237 DOI: 10.1002/ece3.6312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022] Open
Abstract
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant-pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early-flowering G. conopsea s.s. and for later flowering in one population of the late-flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.
Collapse
Affiliation(s)
- Elodie Chapurlat
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Iris Le Roncé
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Master BioSciencesÉcole Normale Supérieure de LyonUniversité Claude Bernard Lyon 1Université de LyonLyonFrance
| | - Jon Ågren
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Nina Sletvold
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
28
|
Seasonal and diel variations in scent composition of ephemeral Murraya paniculata (Linn.) Jack flowers are contributed by separate volatile components. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wetzel WC, Whitehead SR. The many dimensions of phytochemical diversity: linking theory to practice. Ecol Lett 2019; 23:16-32. [PMID: 31724320 DOI: 10.1111/ele.13422] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Research on the ecological and evolutionary roles of phytochemicals has recently progressed from studying single compounds to examining chemical diversity itself. A key conceptual advance enabling this progression is the use of species diversity metrics for quantifying phytochemical diversity. In this perspective, we extend the theory developed for species diversity to further our understanding of what exactly phytochemical diversity is and how its many dimensions impact ecological and evolutionary processes. First, we discuss the major dimensions of phytochemical diversity - richness, evenness, functional diversity, and alpha, gamma and beta diversity. We describe their potential independent roles in biotic interactions and the practical challenges associated with their analysis. Second, we re-analyse the published and unpublished datasets to reveal that the phytochemical diversity experienced by an organism (or observed by a researcher) depends strongly on the scale of the interaction and the total amount of phytochemicals involved. We argue that we must account for these frames of reference to meaningfully understand diversity. Moving from a general notion of phytochemical diversity as a single measure to a precise definition of its multidimensional and multiscale nature yields overlooked testable predictions that will facilitate novel insights about the evolutionary ecology of plant biotic interactions.
Collapse
Affiliation(s)
- William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
30
|
Paul I, Chatterjee A, Maiti S, Bhadoria PBS, Mitra A. Dynamic trajectories of volatile and non-volatile specialised metabolites in 'overnight' fragrant flowers of Murraya paniculata. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:899-910. [PMID: 30866144 DOI: 10.1111/plb.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Ephemeral flowers, especially nocturnal ones, usually emit characteristic scent profiles within their post-anthesis lifespans of a few hours. Whether these flowers exhibit temporal variability in the composition and profile of volatile and non-volatile specialised metabolites has received little attention. Flowers of Murraya paniculata bloom in the evenings during the summer and monsoon, and their sweet, intense fragrance enhances the plant's value as an ornamental. We aimed to investigate profiles of both volatile and non-volatile endogenous specialised metabolites (ESM) in nocturnal ephemeral flowers of M. paniculata to examine whether any biochemically diverse groups of ESM follow distinct patterns of accumulation while maintaining synchrony with defensive physiological functions. Targeted ESM contents of M. paniculata flowers were profiled at ten time points at 2-h intervals, starting from late bud stage (afternoon) up to the start of petal senescence (mid-morning). Emitted volatiles were monitored continuously within the whole 20-h period using headspace sampling. The ESM contents were mapped by time point to obtain a highly dynamic and biochemically diverse profile. Relative temporal patterns of ESM accumulation indicated that the active fragrance-emitting period might be divided into 'early bloom', 'mid-bloom' and 'late bloom' phases. Early and late bloom phases were characterised by high free radical generation, with immediate enhancement of antioxidant enzymes and phenolic compounds. The mid-bloom phase was relatively stable and dedicated to maximum fragrance emission, with provision for strong terpenoid-mediated defence against herbivores. The late bloom phase merged into senescence with the start of daylight; however, even the senescent petals continued to emit fragrance to attract diurnal pollinators. Our study suggests that dynamic relations between the different ESM groups regulate the short-term requirements of floral advertisement and phytochemical defence in this ephemeral flower. This study also provided fundamental information on the temporal occurrence of emitted volatiles and internal pools of specialised metabolites in M. paniculata flowers, which could serve as an important model for pollination biology of Rutaceae, which includes many important fruit crops.
Collapse
Affiliation(s)
- I Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - A Chatterjee
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - S Maiti
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - P B S Bhadoria
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - A Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
31
|
Chapurlat E, Ågren J, Anderson J, Friberg M, Sletvold N. Conflicting selection on floral scent emission in the orchid Gymnadenia conopsea. THE NEW PHYTOLOGIST 2019; 222:2009-2022. [PMID: 30767233 DOI: 10.1111/nph.15747] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Floral scent is a crucial trait for pollinator attraction. Yet only a handful of studies have estimated selection on scent in natural populations and no study has quantified the relative importance of pollinators and other agents of selection. In the fragrant orchid Gymnadenia conopsea, we used electroantennographic data to identify floral scent compounds detected by local pollinators and quantified pollinator-mediated selection on emission rates of 10 target compounds as well as on flowering start, visual display and spur length. Nocturnal pollinators contributed more to reproductive success than diurnal pollinators, but there was significant pollinator-mediated selection on both diurnal and nocturnal scent emission. Pollinators selected for increased emission of two compounds and reduced emission of two other compounds, none of which were major constituents of the total bouquet. In three cases, pollinator-mediated selection was opposed by nonpollinator-mediated selection, leading to weaker or no detectable net selection. Our study demonstrates that minor scent compounds can be targets of selection, that pollinators do not necessarily favour stronger scent signalling, and that some scent compounds are subject to conflicting selection from pollinators and other agents of selection. Hence, including floral scent traits into selection analysis is important for understanding the mechanisms behind floral evolution.
Collapse
Affiliation(s)
- Elodie Chapurlat
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Joseph Anderson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Magne Friberg
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Nina Sletvold
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
32
|
Campbell DR, Sosenski P, Raguso RA. Phenotypic plasticity of floral volatiles in response to increasing drought stress. ANNALS OF BOTANY 2019; 123:601-610. [PMID: 30364929 PMCID: PMC6417471 DOI: 10.1093/aob/mcy193] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/04/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Flowers emit a wide range of volatile compounds which can be critically important to interactions with pollinators or herbivores. Yet most studies of how the environment influences plant volatiles focus on leaf emissions, with little known about abiotic sources of variation in floral volatiles. Understanding phenotypic plasticity in floral volatile emissions has become increasingly important with globally increasing temperatures and changes in drought frequency and severity. Here quantitative relationships of floral volatile emissions to soil water content were analysed. METHODS Plants of the sub-alpine herb Ipomopsis aggregata and hybrids with its closest congener were subjected to a progressive dry down, mimicking the range of soil moistures experienced in the field. Floral volatiles and leaf gas exchange were measured at four time points during the drought. KEY RESULTS As the soil dried, floral volatile emissions increased overall and changed in composition, from more 1,3-octadiene and benzyl alcohol to higher representation of some terpenes. Emissions of individual compounds were not linearly related to volumetric water content in the soil. The dominant compound, the monoterpene α-pinene, made up the highest percentage of the scent mixture when soil moisture was intermediate. In contrast, emission of the sesquiterpene (E,E)-α-farnesene accelerated as the drought became more intense. Changes in floral volatiles did not track the time course of changes in photosynthetic rate or stomatal conductance. CONCLUSIONS This study shows responses of specific floral volatile organic compounds to soil moisture. The non-linear responses furthermore suggest that extreme droughts may have impacts that are not predictable from milder droughts. Floral volatiles are likely to change seasonally with early summer droughts in the Rocky Mountains, as well as over years as snowmelt becomes progressively earlier. Changes in water availability may have impacts on plant-animal interactions that are mediated through non-linear changes in floral volatiles.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- For correspondence. E-mail
| | - Paula Sosenski
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- CONACYT – Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Zito P, Rosselli S, Bruno M, Maggio A, Sajeva M. Floral scent in a sexually deceptive Ophrys orchid: from headspace collections to solvent extractions. PLANT SIGNALING & BEHAVIOR 2018; 14:1552056. [PMID: 30507332 PMCID: PMC6351094 DOI: 10.1080/15592324.2018.1552056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Sexually deceptive orchid flowers use visual, tactile and olfactory cues of female insects in order to attract males of one or a few closely related species as pollinators. Ophrys L. is the most species-rich genus of sexually deceptive orchids in the Mediterranean Basin. Despite Ophrys pollinated by Andrena male bees use alkanes and mainly alkenes with specific double-bond positions as key signals that trigger pseudocopulatory behavior, some volatile organic compounds (VOCs) with low molecular weight were found as long-range attractants non-eliciting copulatory behavior. Since floral scents in Ophrys have been extensively studied by solvent extractions here we aimed to understand which floral volatiles are found when two different collection methods are used in Ophrys panormitana flowers. By knowing their chemical composition, we could better understand the scent chemistry of this Ophrys species without overlooking VOCs which could also have a function in its pollination biology. Scent samples collected by dynamic headspace and by solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The floral scent of O. panormitana is composed by a bouquet of VOCs with lower and higher molecular weights. The headspace samples contained VOCs with higher volatility (mainly one aliphatic alcohol and two aliphatic ketones) whereas the solvent extracts were composed by VOCs with lower volatility (exclusively long-chain alkanes and alkenes). Overlapping in VOCs between headspace and solvent samples were not found. For the first time Andrena nigroaenea was observed during the pseudocopulation and removing the pollinaria of a flower of O. panormitana. Abbreviations: VOCs, volatile organic compounds; GC/MS, gas chromatography-mass spectrometry; KRI, Kovats Retention Indices.
Collapse
Affiliation(s)
- Pietro Zito
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Sergio Rosselli
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Maurizio Sajeva
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|