1
|
Knorr N, Auth P, Kruppert S, Stahl CA, Lücking KM, Tauber F, Speck T. Speaking valve with integrated biomimetic overpressure release and acoustic warning signal. Sci Rep 2024; 14:26655. [PMID: 39496769 PMCID: PMC11535527 DOI: 10.1038/s41598-024-77595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Speaking valves enable tracheostomy patients to speak naturally. However, improper use may cause dangerous overpressure, leading to severe complications or even patient's death. We address this life-threatening issue by creating a biomimetic speaking valve, which incorporates an integrated overpressure valve that automatically opens when reaching critical pressure levels. To enhance safety, we integrated a whistle module to provide an audible alert for medical staff. Fundamental research on the Utricularia vulgaris trapdoor inspired our abstracted valve form. Through a comprehensive analysis using generalized linear mixed-effect models, we examined various membrane parameter effects on the function of the biomimetic overpressure valve. This enabled us to adjust the valve's opening pressure to cater to patient's unique requirements, thus potentially saving lives by applying a solution from nature.
Collapse
Affiliation(s)
- N Knorr
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Wood Sciences, Biomimetics based on lignocelluloses, University Hamburg, Hamburg, Germany
| | - P Auth
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - S Kruppert
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - C A Stahl
- Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - K M Lücking
- Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Tauber
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
| | - T Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Zhao J, Li X, Ji D, Bae J. Extrusion-based 3D printing of soft active materials. Chem Commun (Camb) 2024; 60:7414-7426. [PMID: 38894652 DOI: 10.1039/d4cc01889c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (i.e., synthetic) and living systems. It highlights emerging ink formulations and architectural designs that enable programmable properties, with a focus on complex shape morphing and controllable light-emitting patterns. The article also spotlights strategies for engineering living materials that can produce genetically encoded material responses and react to a variety of environmental stimuli. Lastly, it discusses the challenges and prospects for advancements in both synthetic and living composite materials from the perspectives of chemistry, modeling, and integration.
Collapse
Affiliation(s)
- Jiayu Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Xiao Li
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Donghwan Ji
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Płachno BJ, Kapusta M, Stolarczyk P, Feldo M, Świątek P. Do Arabinogalactan Proteins Occur in the Transfer Cells of Utricularia dichotoma? Int J Mol Sci 2024; 25:6623. [PMID: 38928328 PMCID: PMC11204157 DOI: 10.3390/ijms25126623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Species in the genus Utricularia are carnivorous plants that prey on invertebrates using traps of leaf origin. The traps are equipped with numerous different glandular trichomes. Trichomes (quadrifids) produce digestive enzymes and absorb the products of prey digestion. The main aim of this study was to determine whether arabinogalactan proteins (AGPs) occur in the cell wall ingrowths in the quadrifid cells. Antibodies (JIM8, JIM13, JIM14, MAC207, and JIM4) that act against various groups of AGPs were used. AGP localization was determined using immunohistochemistry techniques and immunogold labeling. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of the pedestal cell, which may be related to the fact that AGPs regulate the formation of wall ingrowths but also, due to the patterning of the cell wall structure, affect symplastic transport. The presence of AGPs in the cell wall of terminal cells may be related to the presence of wall ingrowths, but processes also involve vesicle trafficking and membrane recycling, in which these proteins participate.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
4
|
Płachno BJ, Kapusta M. The Localization of Cell Wall Components in the Quadrifids of Whole-Mount Immunolabeled Utricularia dichotoma Traps. Int J Mol Sci 2023; 25:56. [PMID: 38203227 PMCID: PMC10778831 DOI: 10.3390/ijms25010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Utricularia (bladderworts) are carnivorous plants. They produce small hollow vesicles, which function as suction traps that work underwater and capture fine organisms. Inside the traps, there are numerous glandular trichomes (quadrifids), which take part in the secretion of digestive enzymes, the resorption of released nutrients, and likely the pumping out of water. Due to the extreme specialization of quadrifids, they are an interesting model for studying the cell walls. This aim of the study was to fill in the gap in the literature concerning the immunocytochemistry of quadrifids in the major cell wall polysaccharides and glycoproteins. To do this, the localization of the cell wall components in the quadrifids was performed using whole-mount immunolabeled Utricularia traps. It was observed that only parts (arms) of the terminal cells had enough discontinuous cuticle to be permeable to antibodies. There were different patterns of the cell wall components in the arms of the terminal cells of the quadrifids. The cell walls of the arms were especially rich in low-methyl-esterified homogalacturonan. Moreover, various arabinogalactan proteins also occurred. Cell walls in glandular cells of quadrifids were rich in low-methyl-esterified homogalacturonan; in contrast, in the aquatic carnivorous plant Aldrovanda vesiculosa, cell walls in the glandular cells of digestive glands were poor in low-methyl-esterified homogalacturonan. Arabinogalactan proteins were found in the cell walls of trap gland cells in all studied carnivorous plants: Utricularia, and members of Droseraceae and Drosophyllaceae.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Małgorzata Kapusta
- Laboratory of Bioimaging, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| |
Collapse
|
5
|
Gunathilaka N, Perera R, Amerasinghe D, Udayanga L. Laboratory scale evaluation of the feasibility of locally found bladderworts as biological agents to control dengue vector, Aedes aegypti in Sri Lanka. BMC PLANT BIOLOGY 2023; 23:461. [PMID: 37789290 PMCID: PMC10548707 DOI: 10.1186/s12870-023-04454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND The carnivorous genus Utricularia also includes aquatic species that have the potential to trap a wide range of prey, leading its death due to anoxia. However, the effectiveness of such an approach with carnivorous plants for vector control has not been evaluated in Sri Lanka. METHODS Early instar (i & ii) and late instar (iii & iv) larvae of Aedes aegypti were exposed to locally found bladderwort (U. aurea Lour and Utricularia sp.). The experimental design was set with 10 larvae (both early and late instars separately) in 250 mL of water with bladderworts containing approximately 100 bladders in plant segments of both species, separately. Each treatment and control were repeated 50 times. The survival status of larvae was recorded daily until death or adult emergence. The larvae found whole or partially inside the bladders were attributed to direct predation. The Cox-regression model and Mantel-Cox log rank test were carried out to assess the survival probabilities of larvae in the presence of two bladderworts separately. RESULTS The highest predation was observed when using early instar larvae in both U. aurea (97.8%) and Utricularia sp. (83.8%). The mortality caused due to predation by U. aurea was observed to be significantly higher according to the Mantel-Cox log-rank test (HR = 60.71, CI; 5.69-999.25, P = 0.004). The mortality rates of late instar stages of Ae. aegypti were observed to be lower in both U. aurea (82.6%) and Utricularia sp. (74.8%). Overall, the highest predation efficacy was detected from U. aurea (HR = 45.02; CI: 5.96-850.51, P = 0.017) even in late instar stages. The results suggested the cumulative predation in both plants on Ae. aegypti larvae was > 72%. CONCLUSIONS Utricularia aurea is a competent predator of Ae. aegypti larvae. Further, it is recommended to evaluate the feasibility of this plant to be used in the field as a control intervention in integrated vector management programmes.
Collapse
Affiliation(s)
- Nayana Gunathilaka
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
| | - Ravina Perera
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Deepika Amerasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Lahiru Udayanga
- Department of Biosystems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makadura, Sri Lanka
| |
Collapse
|
6
|
Castaldi V, Bellino A, Baldantoni D. The ecology of bladderworts: The unique hunting-gathering-farming strategy in plants. FOOD WEBS 2023. [DOI: 10.1016/j.fooweb.2023.e00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Silva SR, Miranda VFO, Michael TP, Płachno BJ, Matos RG, Adamec L, Pond SLK, Lucaci AG, Pinheiro DG, Varani AM. The phylogenomics and evolutionary dynamics of the organellar genomes in carnivorous Utricularia and Genlisea species (Lentibulariaceae). Mol Phylogenet Evol 2023; 181:107711. [PMID: 36693533 DOI: 10.1016/j.ympev.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Utricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits. All PT genomes maintain similar gene content, showing minor variation across the genes located between the PT junctions. One exception is a major variation related to different patterns in the presence and absence of ndh genes in the small single copy region, which appears to follow the phylogenetic history of the species rather than their lifestyle. All MT genomes exhibit similar gene content, with most differences related to a lineage-specific pseudogenes. We find evidence for episodic positive diversifying selection in PT and for most of the Utricularia MT genes that may be related to the current hypothesis that bladderworts' nuclear DNA is under constant ROS oxidative DNA damage and unusual DNA repair mechanisms, or even low fidelity polymerase that bypass lesions which could also be affecting the organellar genomes. Finally, both PT and MT phylogenetic trees were well resolved and highly supported, providing a congruent phylogenomic hypothesis for Utricularia and Genlisea clade given the study sampling.
Collapse
Affiliation(s)
- Saura R Silva
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Vitor F O Miranda
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland.
| | - Ramon G Matos
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Lubomir Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Dukelská 135, CZ-379 01 Třeboň, Czech Republic.
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Daniel G Pinheiro
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Alessandro M Varani
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| |
Collapse
|
8
|
Meder F, Baytekin B, Del Dottore E, Meroz Y, Tauber F, Walker I, Mazzolai B. A perspective on plant robotics: from bioinspiration to hybrid systems. BIOINSPIRATION & BIOMIMETICS 2022; 18:015006. [PMID: 36351300 DOI: 10.1088/1748-3190/aca198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
As miscellaneous as the Plant Kingdom is, correspondingly diverse are the opportunities for taking inspiration from plants for innovations in science and engineering. Especially in robotics, properties like growth, adaptation to environments, ingenious materials, sustainability, and energy-effectiveness of plants provide an extremely rich source of inspiration to develop new technologies-and many of them are still in the beginning of being discovered. In the last decade, researchers have begun to reproduce complex plant functions leading to functionality that goes far beyond conventional robotics and this includes sustainability, resource saving, and eco-friendliness. This perspective drawn by specialists in different related disciplines provides a snapshot from the last decade of research in the field and draws conclusions on the current challenges, unanswered questions on plant functions, plant-inspired robots, bioinspired materials, and plant-hybrid systems looking ahead to the future of these research fields.
Collapse
Affiliation(s)
- Fabian Meder
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Bilge Baytekin
- Department of Chemistry and UNAM National Nanotechnology Research Center, Bilkent University, Ankara, Turkey
| | | | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Falk Tauber
- Plant Biomechanics Group (PBG) Freiburg, Botanic Garden of the University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Ian Walker
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, United States of America
| | - Barbara Mazzolai
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
9
|
Kruppert S, Horstmann M, Weiss LC, Konopka E, Kubitza N, Poppinga S, Westermeier AS, Speck T, Tollrian R. Facing the Green Threat: A Water Flea's Defenses against a Carnivorous Plant. Int J Mol Sci 2022; 23:6474. [PMID: 35742915 PMCID: PMC9223663 DOI: 10.3390/ijms23126474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Every ecosystem shows multiple levels of species interactions, which are often difficult to isolate and to classify regarding their specific nature. For most of the observed interactions, it comes down to either competition or consumption. The modes of consumption are various and defined by the nature of the consumed organism, e.g., carnivory, herbivory, as well as the extent of the consumption, e.g., grazing, parasitism. While the majority of consumers are animals, carnivorous plants can also pose a threat to arthropods. Water fleas of the family Daphniidae are keystone species in many lentic ecosystems. As most abundant filter feeders, they link the primary production to higher trophic levels. As a response to the high predatory pressures, water fleas have evolved various inducible defenses against animal predators. Here we show the first example, to our knowledge, in Ceriodaphnia dubia of such inducible defenses of an animal against a coexisting plant predator, i.e., the carnivorous bladderwort (Utricularia x neglecta Lehm, Lentibulariaceae). When the bladderwort is present, C. dubia shows changes in morphology, life history and behavior. While the morphological and behavioral adaptations improve C. dubia's survival rate in the presence of this predator, the life-history parameters likely reflect trade-offs for the defense.
Collapse
Affiliation(s)
- Sebastian Kruppert
- Department of Animal Ecology, Evolution & Biodiversity, Ruhr-University Bochum, 44780 Bochum, Germany; (M.H.); (L.C.W.); (E.K.); (N.K.); (R.T.)
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (S.P.); (A.S.W.); (T.S.)
| | - Martin Horstmann
- Department of Animal Ecology, Evolution & Biodiversity, Ruhr-University Bochum, 44780 Bochum, Germany; (M.H.); (L.C.W.); (E.K.); (N.K.); (R.T.)
| | - Linda C. Weiss
- Department of Animal Ecology, Evolution & Biodiversity, Ruhr-University Bochum, 44780 Bochum, Germany; (M.H.); (L.C.W.); (E.K.); (N.K.); (R.T.)
| | - Elena Konopka
- Department of Animal Ecology, Evolution & Biodiversity, Ruhr-University Bochum, 44780 Bochum, Germany; (M.H.); (L.C.W.); (E.K.); (N.K.); (R.T.)
| | - Nadja Kubitza
- Department of Animal Ecology, Evolution & Biodiversity, Ruhr-University Bochum, 44780 Bochum, Germany; (M.H.); (L.C.W.); (E.K.); (N.K.); (R.T.)
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (S.P.); (A.S.W.); (T.S.)
- Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Botanical Garden, Department of Biology, Schnittspahnstraße 2, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anna S. Westermeier
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (S.P.); (A.S.W.); (T.S.)
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (S.P.); (A.S.W.); (T.S.)
- Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution & Biodiversity, Ruhr-University Bochum, 44780 Bochum, Germany; (M.H.); (L.C.W.); (E.K.); (N.K.); (R.T.)
| |
Collapse
|
10
|
Płachno BJ, Kapusta M, Stolarczyk P, Bogucka-Kocka A. Spatiotemporal Distribution of Homogalacturonans and Hemicelluloses in the Placentas, Ovules and Female Gametophytes of Utricularia nelumbifolia during Pollination. Cells 2022; 11:cells11030475. [PMID: 35159284 PMCID: PMC8834615 DOI: 10.3390/cells11030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Utricularia nelumbifolia is a large carnivorous plant that is endemic to Brazil. It forms an extra-ovular female gametophyte, which surpasses the entire micropylar canal and extends beyond the limit of the integument and invades the placenta tissues. Due to the atypical behavior of the female gametophyte, it is interesting to determine the interaction between the gametophyte and sporophytic tissue. Therefore, the aim of this study was to evaluate the role of the placenta, the ovular tissues, the hypertrophied central cell and the integument in guiding the pollen tube in Utricularia nelumbifolia Gardner by studying the distribution of homogalacturonans and hemicelluloses. It was also determined whether the distribution of the homogalacturonans (HG) and hemicelluloses in Utricularia are dependent on pollination. The antibodies directed against the wall components (anti-pectin: JIM5, JIM7, LM19, LM20 and the anti-hemicelluloses: LM25, LM11, LM15, LM20, LM21) were used. Because both low- and high-esterified HG and xyloglucan were observed in the placenta, ovule (integument, chalaza) and female gametophyte of both pollinated and unpollinated flowers, the occurrence of these cell-wall components was not dependent on pollination. After fertilization, low methyl-esterified HGs were still observed in the cell walls of somatic cells and female gametophyte. However, in the case of high-esterified HG, the signal was weak and occurred only in the cell walls of the somatic cells. Because xyloglucans were observed in the cell walls of the synergids and egg cells, this suggests that they play a role in sexual reproduction. Utricularia nelumbifolia with an extra ovule-female gametophyte is presented as an attractive model for studying the male-female dialogue in plants.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
- Correspondence: ; Tel.: +48-12-664-6039
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
11
|
Dančák M, Majeský Ľ, Čermák V, Golos MR, Płachno BJ, Tjiasmanto W. First record of functional underground traps in a pitcher plant: Nepenthespudica (Nepenthaceae), a new species from North Kalimantan, Borneo. PHYTOKEYS 2022; 201:77-97. [PMID: 36762309 PMCID: PMC9848998 DOI: 10.3897/phytokeys.201.82872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/08/2022] [Indexed: 05/14/2023]
Abstract
Nepenthespudica, a new species from North Kalimantan, Indonesia, is described and illustrated. The species belongs to the N.hirsuta group (sensu Cheek and Jebb 1999) but exhibits some characters that are unique within the group or even within the genus. Above all, it produces underground, achlorophyllous shoots with well-developed, ventricose lower pitchers that form in soil cavities or directly in the soil. No lower pitchers are formed above ground. The main part of its prey are ants, besides other litter- and soil-inhabiting species of invertebrates. A number of infaunal species were found in both aerial and underground pitchers, mainly Diptera and nematodes. Nepenthespudica is known only from a few neighbouring localities in the Mentarang Hulu district of North Kalimantan, where it grows on ridgetops at an elevation of 1100-1300 m. Its discovery underlines the natural richness of Borneo's rainforest and the necessity to preserve this important ecosystem with its enormous and still undiscovered biodiversity.
Collapse
Affiliation(s)
- Martin Dančák
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ľuboš Majeský
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Václav Čermák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Michal R. Golos
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Bartosz J. Płachno
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Wewin Tjiasmanto
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
12
|
Miranda VFO, Silva SR, Reut MS, Dolsan H, Stolarczyk P, Rutishauser R, Płachno BJ. A Historical Perspective of Bladderworts ( Utricularia): Traps, Carnivory and Body Architecture. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122656. [PMID: 34961127 PMCID: PMC8707321 DOI: 10.3390/plants10122656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 05/14/2023]
Abstract
The genus Utricularia includes around 250 species of carnivorous plants, commonly known as bladderworts. The generic name Utricularia was coined by Carolus Linnaeus in reference to the carnivorous organs (Utriculus in Latin) present in all species of the genus. Since the formal proposition by Linnaeus, many species of Utricularia were described, but only scarce information about the biology for most species is known. All Utricularia species are herbs with vegetative organs that do not follow traditional models of morphological classification. Since the formal description of Utricularia in the 18th century, the trap function has intrigued naturalists. Historically, the traps were regarded as floating organs, a common hypothesis that was maintained by different botanists. However, Charles Darwin was most likely the first naturalist to refute this idea, since even with the removal of all traps, the plants continued to float. More recently, due mainly to methodological advances, detailed studies on the trap function and mechanisms could be investigated. This review shows a historical perspective on Utricularia studies which focuses on the traps and body organization.
Collapse
Affiliation(s)
- Vitor F. O. Miranda
- Laboratory of Plant Systematics, Department of Applied Biology, School of Agricultural and Veterinarian Sciences, Campus Jaboticabal, UNESP—São Paulo State University, Jaboticabal CEP 14884-900, Brazil; (S.R.S.); (H.D.)
- Correspondence:
| | - Saura R. Silva
- Laboratory of Plant Systematics, Department of Applied Biology, School of Agricultural and Veterinarian Sciences, Campus Jaboticabal, UNESP—São Paulo State University, Jaboticabal CEP 14884-900, Brazil; (S.R.S.); (H.D.)
| | - Markus S. Reut
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Kraków, Poland; (M.S.R.); (B.J.P.)
| | - Hugo Dolsan
- Laboratory of Plant Systematics, Department of Applied Biology, School of Agricultural and Veterinarian Sciences, Campus Jaboticabal, UNESP—São Paulo State University, Jaboticabal CEP 14884-900, Brazil; (S.R.S.); (H.D.)
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425 Kraków, Poland;
| | - Rolf Rutishauser
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland;
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Kraków, Poland; (M.S.R.); (B.J.P.)
| |
Collapse
|
13
|
Kim Y, van den Berg J, Crosby AJ. Autonomous snapping and jumping polymer gels. NATURE MATERIALS 2021; 20:1695-1701. [PMID: 33526877 DOI: 10.1038/s41563-020-00909-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/11/2020] [Indexed: 05/12/2023]
Abstract
Snap-through buckling is commonly used in nature for power-amplified movements. While natural examples such as Utricularia and Dionaea muscipula can autonomously reset their snapping structures, bio-inspired analogues require external mediation for sequential snap events. Here we report the design principles for self-repeating, snap-based polymer jumping devices. Transient shape changes during the drying of a polymer gel are exploited to generate mechanical constraint and an internal driving force for snap-through buckling. Snap-induced shape changes alter environmental interactions to realize multiple, self-repeating snap events. The underlying mechanisms are understood through controlled experiments and numerical modelling. Using these lessons, we create snap-induced jumping devices with power density outputs (specific power ≈ 312 W kg-1) that are similar to high-performing jumping organisms and engineered robots. These results provide the demonstration of an autonomous, self-repeating, high-speed movement, marking an important advance in the development of environmental energy harvesting, high-power motion that is important for microscale robots and actuated devices.
Collapse
Affiliation(s)
- Yongjin Kim
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA, USA
| | - Jay van den Berg
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Alfred J Crosby
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
14
|
Jakšová J, Adamec L, Petřík I, Novák O, Šebela M, Pavlovič A. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:459-465. [PMID: 34166972 DOI: 10.1016/j.plaphy.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial carnivorous plants of genera Drosera, Dionaea and Nepenthes within the order Caryophyllales employ jasmonates for the induction of digestive processes in their traps. Here, we focused on two aquatic carnivorous plant genera with different trapping mechanism from distinct families and orders: Aldrovanda (Droseraceae, Caryophyllales) with snap-traps and Utricularia (Lentibulariaceae, Lamiales) with suction traps. Using phytohormone analyses and simple biotest, we asked whether the jasmonates are involved in the activation of carnivorous response similar to that known in traps of terrestrial genera of Droseraceae (Drosera, Dionaea). The results showed that Utricularia, in contrast with Aldrovanda, does not use jasmonates for activation of carnivorous response and is the second genus in Lamiales, which has not co-opted jasmonate signalling for botanical carnivory. On the other hand, the nLC-MS/MS analyses revealed that both genera secreted digestive fluid containing cysteine protease homologous to dionain although the mode of its regulation may differ. Whereas in Utricularia the cysteine protease is present constitutively in digestive fluid, it is induced by prey and exogenous application of jasmonic acid in Aldrovanda.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Department of Experimental and Functional Morphology, Dukelská135, CZ-379 82, Třeboň, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, and Centre of the Region Haná for Biotechnological and Agricultural Research, CATRIN, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Bauer U, Müller UK, Poppinga S. Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps. Proc Biol Sci 2021; 288:20210771. [PMID: 34036802 PMCID: PMC8150269 DOI: 10.1098/rspb.2021.0771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Similar to animals, plants have evolved mechanisms for elastic energy storage and release to power and control rapid motion, yet both groups have been largely studied in isolation. This is exacerbated by the lack of consistent terminology and conceptual frameworks describing elastically powered motion in both groups. Iconic examples of fast movements can be found in carnivorous plants, which have become important models to study biomechanics, developmental processes, evolution and ecology. Trapping structures and processes vary considerably between different carnivorous plant groups. Using snap traps, suction traps and springboard-pitfall traps as examples, we illustrate how traps mix and match various mechanisms to power, trigger and actuate motions that contribute to prey capture, retention and digestion. We highlight a fundamental trade-off between energetic investment and movement control and discuss it in a functional-ecological context.
Collapse
Affiliation(s)
- Ulrike Bauer
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Płachno BJ, Kapusta M, Świątek P, Banaś K, Miranda VFO, Bogucka-Kocka A. Spatio-Temporal Distribution of Cell Wall Components in the Placentas, Ovules and Female Gametophytes of Utricularia during Pollination. Int J Mol Sci 2021; 22:ijms22115622. [PMID: 34070693 PMCID: PMC8199428 DOI: 10.3390/ijms22115622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses the entire micropylar canal and extends beyond the limit of the integument. The female gametophyte then invades the placenta and a part of the central cell has direct contact with the ovary chamber. To date, information about the role of the placenta and integument in pollen tube guidance in Utricularia, which have extra-ovular female gametophytes, has been lacking. The aim of this study was to evaluate the role of the placenta, central cell and integument in pollen tube pollen tube guidance in Utricularia nelumbifolia Gardner and Utricularia humboldtii R.H. Schomb. by studying the production of arabinogalactan proteins. It was also determined whether the production of the arabinogalactan proteins is dependent on pollination in Utricularia. In both of the examined species, arabinogalactan proteins (AGPs) were observed in the placenta (epidermis and nutritive tissue), ovule (integument, chalaza), and female gametophyte of both pollinated and unpollinated flowers, which means that the production of AGPs is independent of pollination; however, the production of some AGPs was lower after fertilization. There were some differences in the production of AGPs between the examined species. The occurrence of AGPs in the placental epidermis and nutritive tissue suggests that they function as an obturator. The production of some AGPs in the ovular tissues (nucellus, integument) was independent of the presence of a mature embryo sac.
Collapse
Affiliation(s)
- Bartosz Jan Płachno
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
- Correspondence:
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Świątek
- Faculty of Natural Sciences, Biotechnology and Environmental Protection, Institute of Biology, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Krzysztof Banaś
- Department of Plant Ecology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Vitor F. O. Miranda
- Laboratory of Plant Systematics, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal CEP 14884-900, SP, Brazil;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
17
|
Abstract
Temperature influences many physiological processes that govern life as a result of the thermal sensitivity of chemical reactions. The repeated evolution of endothermy and widespread behavioral thermoregulation in animals highlight the importance of elevating tissue temperature to increase the rate of chemical processes. Yet, movement performance that is robust to changes in body temperature has been observed in numerous species. This thermally robust performance appears exceptional in light of the well-documented effects of temperature on muscle contractile properties, including shortening velocity, force, power and work. Here, we propose that the thermal robustness of movements in which mechanical processes replace or augment chemical processes is a general feature of any organismal system, spanning kingdoms. The use of recoiling elastic structures to power movement in place of direct muscle shortening is one of the most thoroughly studied mechanical processes; using these studies as a basis, we outline an analytical framework for detecting thermal robustness, relying on the comparison of temperature coefficients (Q 10 values) between chemical and mechanical processes. We then highlight other biomechanical systems in which thermally robust performance that arises from mechanical processes may be identified using this framework. Studying diverse movements in the context of temperature will both reveal mechanisms underlying performance and allow the prediction of changes in performance in response to a changing thermal environment, thus deepening our understanding of the thermal ecology of many organisms.
Collapse
Affiliation(s)
- Jeffrey P Olberding
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, USA
| |
Collapse
|
18
|
Mano H, Hasebe M. Rapid movements in plants. JOURNAL OF PLANT RESEARCH 2021; 134:3-17. [PMID: 33415544 PMCID: PMC7817606 DOI: 10.1007/s10265-020-01243-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 05/21/2023]
Abstract
Plant movements are generally slow, but some plant species have evolved the ability to move very rapidly at speeds comparable to those of animals. Whereas movement in animals relies on the contraction machinery of muscles, many plant movements use turgor pressure as the primary driving force together with secondarily generated elastic forces. The movement of stomata is the best-characterized model system for studying turgor-driven movement, and many gene products responsible for this movement, especially those related to ion transport, have been identified. Similar gene products were recently shown to function in the daily sleep movements of pulvini, the motor organs for macroscopic leaf movements. However, it is difficult to explain the mechanisms behind rapid multicellular movements as a simple extension of the mechanisms used for unicellular or slow movements. For example, water transport through plant tissues imposes a limit on the speed of plant movements, which becomes more severe as the size of the moving part increases. Rapidly moving traps in carnivorous plants overcome this limitation with the aid of the mechanical behaviors of their three-dimensional structures. In addition to a mechanism for rapid deformation, rapid multicellular movements also require a molecular system for rapid cell-cell communication, along with a mechanosensing system that initiates the response. Electrical activities similar to animal action potentials are found in many plant species, representing promising candidates for the rapid cell-cell signaling behind rapid movements, but the molecular entities of these electrical signals remain obscure. Here we review the current understanding of rapid plant movements with the aim of encouraging further biological studies into this fascinating, challenging topic.
Collapse
Affiliation(s)
- Hiroaki Mano
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- School of Life Science, Graduate University for Advanced Studies, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- JST, PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan.
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- School of Life Science, Graduate University for Advanced Studies, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
19
|
Müller UK, Berg O, Schwaner JM, Brown MD, Li G, Voesenek CJ, van Leeuwen JL. Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey. THE NEW PHYTOLOGIST 2020; 228:586-595. [PMID: 32506423 DOI: 10.1111/nph.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/02/2023]
Abstract
Aquatic bladderworts (Utricularia gibba and U. australis) capture zooplankton in mechanically triggered underwater traps. With characteristic dimensions less than 1 mm, the trapping structures are among the smallest known to capture prey by suction, a mechanism that is not effective in the creeping-flow regime where viscous forces prevent the generation of fast and energy-efficient suction flows. To understand what makes suction feeding possible on the small scale of bladderwort traps, we characterised their suction flows experimentally (using particle image velocimetry) and mathematically (using computational fluid dynamics and analytical mathematical models). We show that bladderwort traps avoid the adverse effects of creeping flow by generating strong, fast-onset suction pressures. Our findings suggest that traps use three morphological adaptations: the trap walls' fast release of elastic energy ensures strong and constant suction pressure; the trap door's fast opening ensures effectively instantaneous onset of suction; the short channel leading into the trap ensures undeveloped flow, which maintains a wide effective channel diameter. Bladderwort traps generate much stronger suction flows than larval fish with similar gape sizes because of the traps' considerably stronger suction pressures. However, bladderworts' ability to generate strong suction flows comes at considerable energetic expense.
Collapse
Affiliation(s)
- Ulrike K Müller
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Otto Berg
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Janneke M Schwaner
- Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Matthew D Brown
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Showa-machi, Kanazawa-ku, Yokohama-city, Kanagawa, 3173-25, 236-0001, Japan
| | - Cees J Voesenek
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| |
Collapse
|
20
|
Structural Features of Carnivorous Plant ( Genlisea, Utricularia) Tubers as Abiotic Stress Resistance Organs. Int J Mol Sci 2020; 21:ijms21145143. [PMID: 32708125 PMCID: PMC7403982 DOI: 10.3390/ijms21145143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/24/2023] Open
Abstract
Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utriculariamenziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U.menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments.
Collapse
|
21
|
Deban SM, Holzman R, Müller UK. Suction Feeding by Small Organisms: Performance Limits in Larval Vertebrates and Carnivorous Plants. Integr Comp Biol 2020; 60:852-863. [PMID: 32658970 DOI: 10.1093/icb/icaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Suction feeding has evolved independently in two highly disparate animal and plant systems, aquatic vertebrates and carnivorous bladderworts. We review the suction performance of animal and plant suction feeders to explore biomechanical performance limits for aquatic feeders based on morphology and kinematics, in the context of current knowledge of suction feeding. While vertebrates have the greatest diversity and size range of suction feeders, bladderworts are the smallest and fastest known suction feeders. Body size has profound effects on aquatic organismal function, including suction feeding, particularly in the intermediate flow regime that tiny organisms can experience. A minority of tiny organisms suction feed, consistent with model predictions that generating effective suction flow is less energetically efficient and also requires more flow-rate specific power at small size. Although the speed of suction flows generally increases with body and gape size, some specialized tiny plant and animal predators generate suction flows greater than those of suction feeders 100 times larger. Bladderworts generate rapid flow via high-energy and high-power elastic recoil and suction feed for nutrients (relying on photosynthesis for energy). Small animals may be limited by available muscle energy and power, although mouth protrusion can offset the performance cost of not generating high suction pressure. We hypothesize that both the high energetic costs and high power requirements of generating rapid suction flow shape the biomechanics of small suction feeders, and that plants and animals have arrived at different solutions due in part to their different energy budgets.
Collapse
Affiliation(s)
- Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, SCA 110, Tampa, FL 33620, USA
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,The Inter-University for Marine Sciences in Eilat, Israel
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA 93740, USA
| |
Collapse
|
22
|
Poppinga S, Correa D, Bruchmann B, Menges A, Speck T. Plant Movements as Concept Generators for the Development of Biomimetic Compliant Mechanisms. Integr Comp Biol 2020; 60:886-895. [PMID: 32396604 DOI: 10.1093/icb/icaa028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant movements are of increasing interest for biomimetic approaches where hinge-free compliant mechanisms (flexible structures) for applications, for example, in architecture, soft robotics, and medicine are developed. In this article, we first concisely summarize the knowledge on plant movement principles and show how the different modes of actuation, that is, the driving forces of motion, can be used in biomimetic approaches for the development of motile technical systems. We then emphasize on current developments and breakthroughs in the field, that is, the technical implementation of plant movement principles through additive manufacturing, the development of structures capable of tracking movements (tropisms), and the development of structures that can perform multiple movement steps. Regarding the additive manufacturing section, we present original results on the successful transfer of several plant movement principles into 3D printed hygroscopic shape-changing structures ("4D printing"). The resulting systems include edge growth-driven actuation (as known from the petals of the lily flower), bending scale-like structures with functional bilayer setups (inspired from pinecones), modular aperture architectures (as can be similarly seen in moss peristomes), snap-through elastic instability actuation (as known from Venus flytrap snap-traps), and origami-like curved-folding kinematic amplification (inspired by the carnivorous waterwheel plant). Our novel biomimetic compliant mechanisms highlight the feasibility of modern printing techniques for designing and developing versatile tailored motion responses for technical applications. We then focus on persisting challenges in the field, that is, how to speed-boost intrinsically slow hydraulically actuated structures and how to achieve functional resilience and robustness, before we propose the establishment of a motion design catalog in the conclusion.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - David Correa
- Institute for Computational Design and Construction (ICD), University of Stuttgart, Stuttgart, Germany.,School of Architecture, University of Waterloo, Cambridge, ON, Canada
| | - Bernd Bruchmann
- BASF SE Advanced Materials and Systems Research, Ludwigshafen, Germany
| | - Achim Menges
- School of Architecture, University of Waterloo, Cambridge, ON, Canada
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany.,Cluster of Excellence livMatS @ Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
Couret J, Notarangelo M, Veera S, LeClaire-Conway N, Ginsberg HS, LeBrun RL. Biological control of Aedes mosquito larvae with carnivorous aquatic plant, Utricularia macrorhiza. Parasit Vectors 2020; 13:208. [PMID: 32317006 PMCID: PMC7175535 DOI: 10.1186/s13071-020-04084-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Biological controls with predators of larval mosquito vectors have historically focused almost exclusively on insectivorous animals, with few studies examining predatory plants as potential larvacidal agents. In this study, we experimentally evaluate a generalist plant predator of North America, Utricularia macrorhiza, the common bladderwort, and evaluate its larvacidal efficiency for the mosquito vectors Aedes aegypti and Aedes albopictus in no-choice, laboratory experiments. We sought to determine first, whether U. macrorhiza is a competent predator of container-breeding mosquitoes, and secondly, its predation efficiency for early and late instar larvae of each mosquito species. METHODS Newly hatched, first-instar Ae. albopictus and Ae. aegypti larvae were separately exposed in cohorts of 10 to field-collected U. macrorhiza cuttings. Data on development time and larval survival were collected on a daily basis to ascertain the effectiveness of U. macrorhiza as a larval predator. Survival models were used to assess differences in larval survival between cohorts that were exposed to U. macrorhiza and those that were not. A permutation analysis was used to investigate whether storing U. macrorhiza in laboratory conditions for extended periods of time (1 month vs 6 months) affected its predation efficiency. RESULTS Our results indicated a 100% and 95% reduction of survival of Ae. aegypti and Ae. albopictus larvae, respectively, in the presence of U. macrorhiza relative to controls within five days, with peak larvacidal efficiency in plant cuttings from ponds collected in August. Utricularia macrorhiza cuttings, which were prey-deprived, and maintained in laboratory conditions for 6 months were more effective larval predators than cuttings, which were maintained prey-free for 1 month. CONCLUSIONS Due to the combination of high predation efficiency and the unique biological feature of facultative predation, we suggest that U. macrorhiza warrants further development as a method for larval mosquito control.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biological Sciences, University of Rhode Island, Woodward Hall, 9 East Alumni Ave, Kingston, USA
| | - Marco Notarangelo
- Department of Biological Sciences, University of Rhode Island, Woodward Hall, 9 East Alumni Ave, Kingston, USA
| | - Sarashwathy Veera
- Department of Biological Sciences, University of Rhode Island, Woodward Hall, 9 East Alumni Ave, Kingston, USA
| | - Noah LeClaire-Conway
- Department of Biological Sciences, University of Rhode Island, Woodward Hall, 9 East Alumni Ave, Kingston, USA
| | - Howard S. Ginsberg
- U.S. Geological Survey Patuxent Wildlife Coastal Field Station, Kingston, USA
| | - Roger L. LeBrun
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, USA
| |
Collapse
|
24
|
Berg O, Singh K, Hall MR, Schwaner MJ, Müller UK. Thermodynamics of the Bladderwort Feeding Strike-Suction Power from Elastic Energy Storage. Integr Comp Biol 2020; 59:1597-1608. [PMID: 31406979 DOI: 10.1093/icb/icz144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carnivorous plant bladderwort exemplifies the use of accumulated elastic energy to power motion: respiration-driven pumps slowly load the walls of its suction traps with elastic energy (∼1 h). During a feeding strike, this energy is released suddenly to accelerate water (∼1 ms). However, due to the traps' small size and concomitant low Reynolds number, a significant fraction of the stored energy may be dissipated as viscous friction. Such losses and the mechanical reversibility of Stokes flow are thought to degrade the feeding success of other suction feeders in this size range, such as larval fish. In contrast, triggered bladderwort traps are generally successful. By mapping the energy budget of a bladderwort feeding strike, we illustrate how this smallest of suction feeders can perform like an adult fish.
Collapse
Affiliation(s)
- Otto Berg
- Department of Chemistry, California State University Fresno, Fresno, CA, USA
| | - Krizma Singh
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | - Maxwell R Hall
- Department of Biology, California State University Fresno, Fresno, CA, USA
| | | | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| |
Collapse
|
25
|
Suction Flows Generated by the Carnivorous Bladderwort Utricularia—Comparing Experiments with Mechanical and Mathematical Models. FLUIDS 2020. [DOI: 10.3390/fluids5010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Suction feeding is a well-understood feeding mode among macroscopic aquatic organisms. The little we know about small suction feeders from larval fish suggests that small suction feeders are not effective. Yet bladderworts, an aquatic carnivorous plant with microscopic underwater traps, have strong suction performances despite having the same mouth size as that of fish larvae. Previous experimental studies of bladderwort suction feeding have focused on the solid mechanics of the trap door’s opening mechanism rather than the mechanics of fluid flow. As flows are difficult to study in small suction feeders due to their small size and brief event durations, we combine flow visualization on bladderwort traps with measurements on a mechanical, dynamically scaled model of a suction feeder. We find that bladderwort traps generate flows that are more similar to the inertia-dominated flows of adult fish than the viscosity-dominated flows of larval fish. Our data further suggest that axial flow transects through suction flow fields, often used in biological studies to characterize suction flows, are less diagnostic of the relative contribution of inertia versus viscosity than transverse transects.
Collapse
|
26
|
Reut MS, Płachno BJ. Unusual developmental morphology and anatomy of vegetative organs in Utricularia dichotoma-leaf, shoot and root dynamics. PROTOPLASMA 2020; 257:371-390. [PMID: 31659470 PMCID: PMC7039851 DOI: 10.1007/s00709-019-01443-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 05/05/2023]
Abstract
The terrestrial carnivorous species Utricularia dichotoma is known for a great phenotypic plasticity and unusual vegetative organs. Our investigation on 22 sources/populations revealed that after initiation of a leaf and two bladders on a stolon, a bud was formed in the proximal axil of the leaf, developing into a rosette with up to seven organs. The first two primordia of the bud grew into almost every possible combination of organs, but often into two anchor stolons. The patterns were generally not population specific. The interchangeability of organs increased with increasing rank in the succession of organs on stolon nodes. A high potential of switching developmental programs may be successful in a fluctuating environment. In this respect, we were able to show that bladders developed from anchor stolons experimentally when raising the water table. Anatomical structures were simple, lacunate and largely homogenous throughout all organs. They showed similarities with many hydrophytes, reflecting the plant's adaptation to (temporarily) submerged conditions. The principal component analysis was used in the context of dynamic morphology to illustrate correlations between organ types in the morphospace of U. dichotoma, revealing an organ specific patchwork of developmental processes for typical leaves and shoots, and less pronounced for a typical root. The concept and methods we applied may prove beneficial for future studies on the evolution of Lentibulariaceae, and on developmental morphology and genetics of unusual structures in plants.
Collapse
Affiliation(s)
- Markus S Reut
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland
| |
Collapse
|
27
|
Hepler NK, Bowman A, Carey RE, Cosgrove DJ. Expansin gene loss is a common occurrence during adaptation to an aquatic environment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:666-680. [PMID: 31627246 DOI: 10.1111/tpj.14572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 05/15/2023]
Abstract
Expansins comprise a superfamily of plant cell wall loosening proteins that can be divided into four individual families (EXPA, EXPB, EXLA and EXLB). Aside from inferred roles in a variety of plant growth and developmental traits, little is known regarding the function of specific expansin clades, for which there are at least 16 in flowering plants (angiosperms); however, there is evidence to suggest that some expansins have cell-specific functions, in root hair and pollen tube development, for example. Recently, two duckweed genomes have been sequenced (Spirodela polyrhiza strains 7498 and 9509), revealing significantly reduced superfamily sizes. We hypothesized that there would be a correlation between expansin loss and morphological reductions seen among highly adapted aquatic species. In order to provide an answer to this question, we characterized the expansin superfamilies of the greater duckweed Spirodela, the marine eelgrass Zostera marina and the bladderwort Utricularia gibba. We discovered rampant expansin gene and clade loss among the three, including a complete absence of the EXLB family and EXPA-VII. The most convincing correlation between morphological reduction and expansin loss was seen for Utricularia and Spirodela, which both lack root hairs and the root hair expansin clade EXPA-X. Contrary to the pattern observed in other species, four Utricularia expansins failed to branch within any clade, suggesting that they may be the result of neofunctionalization. Last, an expansin clade previously discovered only in eudicots was identified in Spirodela, allowing us to conclude that the last common ancestor of monocots and eudicots contained a minimum of 17 expansins.
Collapse
Affiliation(s)
- Nathan K Hepler
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexa Bowman
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Daniel J Cosgrove
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
28
|
Lustofin K, Świątek P, Miranda VFO, Płachno BJ. Flower nectar trichome structure of carnivorous plants from the genus butterworts Pinguicula L. (Lentibulariaceae). PROTOPLASMA 2020; 257:245-259. [PMID: 31428856 PMCID: PMC6982637 DOI: 10.1007/s00709-019-01433-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/07/2019] [Indexed: 05/22/2023]
Abstract
Pinguicula (Lentibulariaceae) is a genus comprising around 96 species of herbaceous, carnivorous plants, which are extremely diverse in flower size, colour and spur length and structure as well as pollination strategy. In Pinguicula, nectar is formed in the flower spur; however, there is a gap in the knowledge about the nectary trichome structure in this genus. Our aim was to compare the nectary trichome structure of various Pinguicula species in order to determine whether there are any differences among the species in this genus. The taxa that were sampled were Pinguicula moctezumae, P. moranensis, P. rectifolia, P. emarginata and P. esseriana. We used light microscopy, histochemistry, scanning and transmission electron microscopy to address those aims. We show a conservative nectary trichome structure and spur anatomy in various Mexican Pinguicula species. The gross structural similarities between the examined species were the spur anatomy, the occurrence of papillae, the architecture of the nectary trichomes and the ultrastructure characters of the trichome cells. However, there were some differences in the spur length, the size of spur trichomes, the occurrence of starch grains in the spur parenchyma and the occurrence of cell wall ingrowths in the terminal cells of the nectary trichomes. Similar nectary capitate trichomes, as are described here, were recorded in the spurs of species from other Lentibulariaceae genera. There are many ultrastructural similarities between the cells of nectary trichomes in Pinguicula and Utricularia.
Collapse
Affiliation(s)
- Krzysztof Lustofin
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St, 30-387, Kraków, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, 9 Bankowa St, 40-007, Katowice, Poland
| | - Vitor F O Miranda
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St, 30-387, Kraków, Poland.
| |
Collapse
|
29
|
Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E. Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol 2019; 17:e3000427. [PMID: 31600203 PMCID: PMC6786542 DOI: 10.1371/journal.pbio.3000427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Leaves display a remarkable range of forms, from flat sheets with simple outlines to cup-shaped traps. Although much progress has been made in understanding the mechanisms of planar leaf development, it is unclear whether similar or distinctive mechanisms underlie shape transformations during development of more complex curved forms. Here, we use 3D imaging and cellular and clonal analysis, combined with computational modelling, to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. We show that the transformation from a near-spherical form at early developmental stages to an oblate spheroid with a straightened ventral midline in the mature form can be accounted for by spatial variations in rates and orientations of growth. Different hypotheses regarding spatiotemporal control predict distinct patterns of cell shape and size, which were tested experimentally by quantifying cellular and clonal anisotropy. We propose that orientations of growth are specified by a proximodistal polarity field, similar to that hypothesised to account for Arabidopsis leaf development, except that in Utricularia, the field propagates through a highly curved tissue sheet. Independent evidence for the polarity field is provided by the orientation of glandular hairs on the inner surface of the trap. Taken together, our results show that morphogenesis of complex 3D leaf shapes can be accounted for by similar mechanisms to those for planar leaves, suggesting that simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies. Many plant and animal organs derive from tissue sheets, but how are they shaped to create the diversity of forms observed in nature? This study uses a combination of imaging and mathematical modelling to show how carnivorous plant traps shape themselves in 3D by a growth framework oriented by tissue polarity, similar to that found in planar leaves.
Collapse
Affiliation(s)
- Karen J. I. Lee
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Claire Bushell
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohei Koide
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - John A. Fozard
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Chunlan Piao
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
| | - Man Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jacob Newman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Christopher Whitewoods
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jerome Avondo
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Athanasius F. M. Marée
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Minlong Cui
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
- * E-mail: (EC); (MC)
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (EC); (MC)
| |
Collapse
|
30
|
Berg O, Brown MD, Schwaner MJ, Hall MR, Müller UK. Hydrodynamics of the bladderwort feeding strike. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:29-37. [PMID: 31545010 DOI: 10.1002/jez.2318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/12/2019] [Accepted: 08/11/2019] [Indexed: 11/08/2022]
Abstract
The aquatic bladderwort Utricularia gibba captures zooplankton in mechanically triggered underwater traps. With characteristic dimensions <1 mm, the trapping structures are among the smallest known that work by suction-a mechanism that would not be effective in the creeping-flow regime. To understand the adaptations that make suction feeding possible on this small scale, we have measured internal flow speeds during artificially triggered feeding strikes in the absence of prey. These data are compared with complementary analytical models of the suction event: an inviscid model of the jet development in time and a steady-state model incorporating friction. The initial dynamics are well described by a time-dependent Bernoulli equation in which the action of the trap door is represented by a step increase in driving pressure. According to this model, the observed maximum flow speed (5.2 m/s) depends only on the pressure difference, whereas the initial acceleration (3 × 104 m/s2 ) is determined by pressure difference and channel length. Because the terminal speed is achieved quickly (~0.2 ms) and the channel is short, the remainder of the suction event (~2.0 ms) is effectively an undeveloped viscous steady state. The steady-state model predicts that only 17% of power is lost to friction. The energy efficiency and steady-state fluid speed decrease rapidly with decreasing channel diameter, setting a lower limit on practical bladderwort size.
Collapse
Affiliation(s)
- Otto Berg
- Department of Chemistry, California State University, Fresno, California
| | - Matthew D Brown
- Department of Biology, California State University, Fresno, California
| | | | - Maxwell R Hall
- Department of Biology, California State University, Fresno, California
| | - Ulrike K Müller
- Department of Biology, California State University, Fresno, California
| |
Collapse
|
31
|
Fruleux A, Verger S, Boudaoud A. Feeling Stressed or Strained? A Biophysical Model for Cell Wall Mechanosensing in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:757. [PMID: 31244875 PMCID: PMC6581727 DOI: 10.3389/fpls.2019.00757] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/24/2019] [Indexed: 05/21/2023]
Abstract
Mechanical signals have recently emerged as a major cue in plant morphogenesis, notably influencing cytoskeleton organization, gene expression, protein polarity, or cell division. Although many putative mechanosensing proteins have been identified, it is unclear what mechanical cue they might sense and how this would occur. Here we briefly explain the notions of mechanical stress and strain. We present the challenges to understand their sensing by plants, focusing on the cell wall and the plasma membrane, and we review putative mechanosensing structures. We propose minimal biophysical models of mechanosensing, revealing the modes of mechanosensing according to mechanosensor lifetime, threshold force for mechanosensor dissociation, and type of association between the mechanosensor and the cell wall, as the sensor may be associated to a major load-bearing structure such as cellulose or to a minor load-bearing structure such as pectins or the plasma membrane. Permanent strain, permanent expansion, and relatively slow variations thereof are sensed in all cases; variations of stress are sensed in all cases; permanent stress is sensed only in the following specific cases: sensors associated to minor load-bearing structures slowly relaxing in a growing wall, long-lived sensors with high dissociation force and associated to major-load-bearing structures, and sensors with low dissociation force associated to major-load-baring structures behaving elastically. We also find that all sensors respond to variations in the composition or the mechanical properties of the cell wall. The level of sensing is modulated by the properties of all of mechanosensor, cell wall components, and plasma membrane. Although our models are minimal and not fully realistic, our results yield a framework to start investigating the possible functions of putative mechanosensors.
Collapse
Affiliation(s)
- Antoine Fruleux
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, Lyon, France
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, Lyon, France
| |
Collapse
|
32
|
Płachno BJ, Świątek P, Adamec L, Carvalho S, Miranda VFO. The Trap Architecture of Utricularia multifida and Utricularia westonii (subg. Polypompholyx). FRONTIERS IN PLANT SCIENCE 2019; 10:336. [PMID: 30972086 PMCID: PMC6445064 DOI: 10.3389/fpls.2019.00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/04/2019] [Indexed: 05/11/2023]
Abstract
Utricularia are carnivorous plants which have small hollow vesicles as suction traps that work underwater by means of negative pressure and watertightness of the entrance for capturing small animal prey. Utricularia multifida and U. westonii have specific thick-walled traps, which are triangular in a transverse section but their functioning is unclear. Some authors suggest that the trap door in U. multifida acts as a simple valve without a suction trapping mechanism. Our main aim was to check the anatomical trap characters that are responsible for possible water outflow and maintaining negative pressure as main functional parts of the active trap suction mechanism in both species. Using different microscopic techniques, we investigated the ultrastructure of external trap glands, quadrifids, glands near the entrance (bifids, monofids), and also pavement epithelium. Quadrifids of both species have a similar structure to those known in other species from the genus, which possess the suction trap mechanism. Glands near the entrance in U. multifida and U. westonii, which are responsible for water pumping in other species, are typically developed as in other species in the genus and have pedestal cells which are transfer cells. The transfer cells also occur in glands of the pavement epithelium, which is again typically developed as in other species in the genus. Simple biophysical tests did not confirm reliably neither the negative underpressure formation in the traps nor the watertightness of the entrance in both species. Our anatomical results indirectly support the hypothesis that both species have suction traps like all other Utricularia species, but the biophysical data rather suggest a passive valve mechanism.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Kraków, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Třeboň, Czechia
| | - Samanta Carvalho
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP – São Paulo State University, São Paulo, Brazil
| | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP – São Paulo State University, São Paulo, Brazil
| |
Collapse
|
33
|
Horstmann M, Heier L, Kruppert S, Weiss LC, Tollrian R, Adamec L, Westermeier A, Speck T, Poppinga S. Comparative Prey Spectra Analyses on the Endangered Aquatic Carnivorous Waterwheel Plant ( Aldrovanda vesiculosa, Droseraceae) at Several Naturalized Microsites in the Czech Republic and Germany. Integr Org Biol 2019; 1:oby012. [PMID: 33793692 PMCID: PMC7671111 DOI: 10.1093/iob/oby012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The critically endangered carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) possesses underwater snap traps for capturing small aquatic animals, but knowledge on the exact prey species is limited. Such information would be essential for continuing ecological research, drawing conclusions regarding trapping efficiency and trap evolution, and eventually, for conservation. Therefore, we performed comparative trap size measurements and snapshot prey analyses at seven Czech and one German naturalized microsites on plants originating from at least two different populations. One Czech site was sampled twice during 2017. We recorded seven main prey taxonomic groups, that is, Cladocera, Copepoda, Ostracoda, Ephemeroptera, Nematocera, Hydrachnidia, and Pulmonata. In total, we recorded 43 different prey taxa in 445 prey-filled traps, containing in sum 461 prey items. With one exception, prey spectra did not correlate with site conditions (e.g. water depth) or trap size. Our data indicate that A. vesiculosa shows no prey specificity but catches opportunistically, independent of prey species, prey mobility mode (swimming or substrate-bound), and speed of movement. Even in cases where the prey size exceeded trap size, successful capture was accomplished by clamping the animal between the traps' lobes. As we found a wide prey range that was attracted, it appears unlikely that the capture is enhanced by specialized chemical- or mimicry-based attraction mechanisms. However, for animals seeking shelter, a place to rest, or a substrate to graze on, A. vesiculosa may indirectly attract prey organisms in the vicinity, whereas other prey capture events (like that of comparably large notonectids) may also be purely coincidental.
Collapse
Affiliation(s)
- M Horstmann
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - L Heier
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - S Kruppert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
- Friday Harbor Laboratories, University of Washington, 620 University Road, WA 98250, USA
| | - L C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - R Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - L Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| | - A Westermeier
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| | - T Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, D-79110, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany
| | - S Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany
| |
Collapse
|
34
|
Płachno BJ, Świątek P, Miranda VFO, Stolarczyk P. The Structure and Occurrence of a Velum in Utricularia Traps ( Lentibulariaceae). FRONTIERS IN PLANT SCIENCE 2019; 10:302. [PMID: 31001290 PMCID: PMC6454230 DOI: 10.3389/fpls.2019.00302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/25/2019] [Indexed: 05/25/2023]
Abstract
Bladderworts (Utricularia, Lentibulariaceae, Lamiales) are carnivorous plants that form small suction traps (bladders) for catching invertebrates. The velum is a cuticle structure that is produced by specialized trichomes of the threshold pavement epithelium. It is believed that the velum together with the mucilage seals the free edge of the trap door and that it is necessary for correct functioning of the trap. However, recently, some authors have questioned the occurrence of a velum in the traps of the Utricularia from the various sections. The main aim of this study was to confirm whether velum occurs in the traps of the Utricularia species from the subgenera Polypompholyx, Bivalvaria, and Utricularia. The 15 species were examined from subg. Polypompholyx, subg. Bivalvaria, and subg. Utricularia. A velum was found in all examined Utricularia species. In the traps of the members of section Pleiochasia, there was an outer velum (forming a complete ring) and an inner velum. In the traps of Utricularia uniflora (Lasiocaules), there was only an inner velum. In these species, the formation of the velum was accompanied by intensive mucilage production, and as a result, when door was closed (set position), the mucilage and the velum touched the surface of the door. In members of both sections of Pleiochasia and Lasiocaules, the pavement epithelium had a more complicated structure (four to five zones) than in the members of the subgenera Bivalvaria and Utricularia in which three distinct zones occurred (an outer with a velum, a middle and an internal with the mucilage trichomes). Even in U. purpurea, where the threshold was a reduced pavement epithelium, it consisted of three functional zones and the presence of a velum. Two main types of velum have been proposed. A velum was present in Utricularia traps regardless of the trap type or the habitat (aquatic, epiphytic, and terrestrial species). We proposed broad definition of velum as cuticle membranes covered by mucilage; from a functional point of view, this definition is more useful and more reflects complexity of this structure.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Cracow, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Vitor F. O. Miranda
- Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, UNESP–Universidade Estadual Paulista, São Paulo, Brazil
| | - Piotr Stolarczyk
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, University of Agriculture in Kraków, Cracow, Poland
| |
Collapse
|
35
|
Silva SR, Gibson R, Adamec L, Domínguez Y, Miranda VF. Molecular phylogeny of bladderworts: A wide approach of Utricularia (Lentibulariaceae) species relationships based on six plastidial and nuclear DNA sequences. Mol Phylogenet Evol 2018; 118:244-264. [DOI: 10.1016/j.ympev.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
36
|
Gomes Rodrigues F, Franco Marulanda N, Silva SR, Płachno BJ, Adamec L, Miranda VFO. Phylogeny of the 'orchid-like' bladderworts (gen. Utricularia sect. Orchidioides and Iperua: Lentibulariaceae) with remarks on the stolon-tuber system. ANNALS OF BOTANY 2017; 120:709-723. [PMID: 28673037 PMCID: PMC5691873 DOI: 10.1093/aob/mcx056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 05/11/2023]
Abstract
Background and Aims The 'orchid-like' bladderworts ( Utricularia ) comprise 15 species separated into two sections: Orchidioides and Iperua . These robust and mostly epiphytic species were originally grouped within the section Orchidioides by the first taxonomical systems. These species were later split into two sections when sect. Iperua was proposed. Due to the lack of strong evidence based on a robust phylogenetic perspective, this study presents a phylogenetic proposal based on four different DNA sequences (plastid and nuclear) and morphology to test the monophyly of the two sections. Methods In comparison with all previous phylogenetic studies, the largest number of species across the sections was covered: 11 species from sections Orchidioides and Iperua with 14 species as an external group. Maximum likelihood and Bayesian inferences were applied to DNA sequences of rps16 , trnL-F , matK , the internal transcribed spacer (ITS) and three morphological characters: (1) the crest of the corolla; (2) the primary organs in the embryo; and (3) tubers. Additionally, a histochemical analysis of the stolons and tubers is presented from an evolutionary perspective. Key Results The analyses showed the paraphyly of sect. Iperua , since Utricularia humboldtii is more related to the clade of sect. Orchidioides . Utricularia cornigera is grouped in the sect. Iperua clade based on chloroplast DNA sequences, but it is nested to sect. Orchidioides according to ITS dataset. Morphological characters do not support the breaking up of the 'orchid-like' species into two sections, either. Moreover, the stolon-tuber systems of both sections serve exclusively for water storage, according to histological analyses. Conclusions This study provides strong evidence, based on DNA sequences from two genomic compartments (plastid and nucleus) and morphology to group the Utricularia sect. Orchidioides into the sect. Iperua . The tubers are important adaptations for water storage and have been derived from stolons at least twice in the phylogenetic history of 'orchid-like' bladderworts.
Collapse
Affiliation(s)
- Fernanda Gomes Rodrigues
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, São Paulo, Brazil
| | - Néstor Franco Marulanda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, São Paulo, Brazil
| | - Saura R Silva
- Universidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatu, São Paulo, Brazil
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Vitor F O Miranda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, São Paulo, Brazil
| |
Collapse
|
37
|
Westermeier AS, Fleischmann A, Müller K, Schäferhoff B, Rubach C, Speck T, Poppinga S. Trap diversity and character evolution in carnivorous bladderworts (Utricularia, Lentibulariaceae). Sci Rep 2017; 7:12052. [PMID: 28935893 PMCID: PMC5608911 DOI: 10.1038/s41598-017-12324-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/07/2017] [Indexed: 01/12/2023] Open
Abstract
Bladderworts (Utricularia, Lentibulariaceae, Lamiales) constitute the largest genus of carnivorous plants but only aquatic species (about one fifth of the genus) have so far been thoroughly studied as to their suction trap functioning. In this study, we comparatively investigated trap biomechanics in 19 Utricularia species to examine correlations between life-forms, trapping mechanisms, and functional-morphological traits. Our investigations show the existence of two functional trap principles (passive trap in U. multifida vs. active suction traps), and - in active suction traps - three main trapdoor movement types (with several subtypes). The trapdoor movement types and their corresponding functional-morphological features most presumably represent adaptations to the respective habitat. We furthermore give insights into fluid dynamics during suction in three representatives of the main types of trapdoor movement. The results on functional morphology and trapdoor movement were mapped onto a new phylogenetic reconstruction of the genus, derived from the rapidly evolving chloroplast regions trnK, rps16 and trnQ-rps16 and a sampling of 105 Utricularia species in total. We discuss potential scenarios of trap character evolution and species radiation, highlighting possible key innovations that enable such a unique carnivorous lifestyle in different habitats.
Collapse
Affiliation(s)
- Anna Sofia Westermeier
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| | - Andreas Fleischmann
- Botanische Staatssammlung München, Menzinger Straße 67, D-80638, München, Germany
- GeoBio-Center LMU, Center of Geobiology and Biodiversity Research, Ludwig-Maximilians-University, München, Germany
| | - Kai Müller
- Westfälische Wilhelms-Universität Münster, Institut für Evolution und Biodiversität, AG Evolution und Biodiversität der Pflanzen, Hüfferstraße 1, D-48149, Münster, Germany
| | - Bastian Schäferhoff
- Westfälische Wilhelms-Universität Münster, Institut für Evolution und Biodiversität, AG Evolution und Biodiversität der Pflanzen, Hüfferstraße 1, D-48149, Münster, Germany
- PAN Institut für Endokrinologie und Reproduktionsmedizin, Zeppelinstraße 1, D-50667, Köln, Germany
| | - Carmen Rubach
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany.
| |
Collapse
|
38
|
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
39
|
Hamant O, Haswell ES. Life behind the wall: sensing mechanical cues in plants. BMC Biol 2017. [PMID: 28697754 DOI: 10.1186/s12915-017-0403-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
40
|
Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc Natl Acad Sci U S A 2017; 114:E4435-E4441. [PMID: 28507139 DOI: 10.1073/pnas.1702072114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome.
Collapse
|
41
|
Poppinga S, Daber LE, Westermeier AS, Kruppert S, Horstmann M, Tollrian R, Speck T. Biomechanical analysis of prey capture in the carnivorous Southern bladderwort (Utricularia australis). Sci Rep 2017; 7:1776. [PMID: 28496168 PMCID: PMC5431978 DOI: 10.1038/s41598-017-01954-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/04/2017] [Indexed: 11/08/2022] Open
Abstract
We recorded capture events (CEs) of the daphniid Ceriodaphnia dubia by the carnivorous Southern bladderwort with suction traps (Utricularia australis). Independent to orientation and behavior during trap triggering, the animals were successfully captured within 9 ms on average and sucked in with velocities of up to 4 m/s and accelerations of up to 2800 g. Phases of very high acceleration during onsets of suction were immediately followed by phases of similarly high deceleration (max.: -1900 g) inside the bladders, leading to immobilization of the prey which then dies. We found that traps perform a 'forward strike' during suction and that almost completely air-filled traps are still able to perform suction. The trigger hairs on the trapdoors can undergo strong bending deformation, which we interpret to be a safety feature to prevent fracture. Our results highlight the elaborate nature of the Utricularia suction traps which are functionally resilient and leave prey animals virtually no chance to escape.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany.
| | - Lars Erik Daber
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
| | - Anna Sofia Westermeier
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Koehler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| | - Sebastian Kruppert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Martin Horstmann
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Koehler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| |
Collapse
|