1
|
Messa L, Testa C, Carelli S, Rey F, Jacchetti E, Cereda C, Raimondi MT, Ceri S, Pinoli P. Non-Negative Matrix Tri-Factorization for Representation Learning in Multi-Omics Datasets with Applications to Drug Repurposing and Selection. Int J Mol Sci 2024; 25:9576. [PMID: 39273521 PMCID: PMC11394968 DOI: 10.3390/ijms25179576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The vast corpus of heterogeneous biomedical data stored in databases, ontologies, and terminologies presents a unique opportunity for drug design. Integrating and fusing these sources is essential to develop data representations that can be analyzed using artificial intelligence methods to generate novel drug candidates or hypotheses. Here, we propose Non-Negative Matrix Tri-Factorization as an invaluable tool for integrating and fusing data, as well as for representation learning. Additionally, we demonstrate how representations learned by Non-Negative Matrix Tri-Factorization can effectively be utilized by traditional artificial intelligence methods. While this approach is domain-agnostic and applicable to any field with vast amounts of structured and semi-structured data, we apply it specifically to computational pharmacology and drug repurposing. This field is poised to benefit significantly from artificial intelligence, particularly in personalized medicine. We conducted extensive experiments to evaluate the performance of the proposed method, yielding exciting results, particularly compared to traditional methods. Novel drug-target predictions have also been validated in the literature, further confirming their validity. Additionally, we tested our method to predict drug synergism, where constructing a classical matrix dataset is challenging. The method demonstrated great flexibility, suggesting its applicability to a wide range of tasks in drug design and discovery.
Collapse
Affiliation(s)
- Letizia Messa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Carolina Testa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Stephana Carelli
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154 Milan, Italy
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Federica Rey
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Pinoli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Ming S, Zhang R, Kilicoglu H. Enhancing the coverage of SemRep using a relation classification approach. J Biomed Inform 2024; 155:104658. [PMID: 38782169 DOI: 10.1016/j.jbi.2024.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Relation extraction is an essential task in the field of biomedical literature mining and offers significant benefits for various downstream applications, including database curation, drug repurposing, and literature-based discovery. The broad-coverage natural language processing (NLP) tool SemRep has established a solid baseline for extracting subject-predicate-object triples from biomedical text and has served as the backbone of the Semantic MEDLINE Database (SemMedDB), a PubMed-scale repository of semantic triples. While SemRep achieves reasonable precision (0.69), its recall is relatively low (0.42). In this study, we aimed to enhance SemRep using a relation classification approach, in order to eventually increase the size and the utility of SemMedDB. METHODS We combined and extended existing SemRep evaluation datasets to generate training data. We leveraged the pre-trained PubMedBERT model, enhancing it through additional contrastive pre-training and fine-tuning. We experimented with three entity representations: mentions, semantic types, and semantic groups. We evaluated the model performance on a portion of the SemRep Gold Standard dataset and compared it to SemRep performance. We also assessed the effect of the model on a larger set of 12K randomly selected PubMed abstracts. RESULTS Our results show that the best model yields a precision of 0.62, recall of 0.81, and F1 score of 0.70. Assessment on 12K abstracts shows that the model could double the size of SemMedDB, when applied to entire PubMed. We also manually assessed the quality of 506 triples predicted by the model that SemRep had not previously identified, and found that 67% of these triples were correct. CONCLUSION These findings underscore the promise of our model in achieving a more comprehensive coverage of relationships mentioned in biomedical literature, thereby showing its potential in enhancing various downstream applications of biomedical literature mining. Data and code related to this study are available at https://github.com/Michelle-Mings/SemRep_RelationClassification.
Collapse
Affiliation(s)
- Shufan Ming
- School of Information Sciences, University of Illinois Urbana-Champaign, 501 E Daniel St., Champaign, 61820, IL, USA
| | - Rui Zhang
- Division of Computational Health Sciences, Department of Surgery, University of Minnesota, 516 Delaware St SE, Minneapolis, 55455, MN, USA
| | - Halil Kilicoglu
- School of Information Sciences, University of Illinois Urbana-Champaign, 501 E Daniel St., Champaign, 61820, IL, USA.
| |
Collapse
|
3
|
Xu M, Li W, He J, Wang Y, Lv J, He W, Chen L, Zhi H. DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm. Int J Mol Sci 2024; 25:5267. [PMID: 38791306 PMCID: PMC11121335 DOI: 10.3390/ijms25105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
Collapse
Affiliation(s)
- Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150000, China;
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
4
|
Israr J, Alam S, Kumar A. System biology approaches for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:221-245. [PMID: 38789180 DOI: 10.1016/bs.pmbts.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Drug repurposing, or drug repositioning, refers to the identification of alternative therapeutic applications for established medications that go beyond their initial indications. This strategy has becoming increasingly popular since it has the potential to significantly reduce the overall costs of drug development by around $300 million. System biology methodologies have been employed to facilitate medication repurposing, encompassing computational techniques such as signature matching and network-based strategies. These techniques utilize pre-existing drug-related data types and databases to find prospective repurposed medications that have minimal or acceptable harmful effects on patients. The primary benefit of medication repurposing in comparison to drug development lies in the fact that approved pharmaceuticals have already undergone multiple phases of clinical studies, thereby possessing well-established safety and pharmacokinetic properties. Utilizing system biology methodologies in medication repurposing offers the capacity to expedite the discovery of viable candidates for drug repurposing and offer novel perspectives for structure-based drug design.
Collapse
Affiliation(s)
- Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, India; Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Shabroz Alam
- Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
5
|
Amiri R, Razmara J, Parvizpour S, Izadkhah H. A novel efficient drug repurposing framework through drug-disease association data integration using convolutional neural networks. BMC Bioinformatics 2023; 24:442. [PMID: 37993777 PMCID: PMC10664633 DOI: 10.1186/s12859-023-05572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
Drug repurposing is an exciting field of research toward recognizing a new FDA-approved drug target for the treatment of a specific disease. It has received extensive attention regarding the tedious, time-consuming, and highly expensive procedure with a high risk of failure of new drug discovery. Data-driven approaches are an important class of methods that have been introduced for identifying a candidate drug against a target disease. In the present study, a model is proposed illustrating the integration of drug-disease association data for drug repurposing using a deep neural network. The model, so-called IDDI-DNN, primarily constructs similarity matrices for drug-related properties (three matrices), disease-related properties (two matrices), and drug-disease associations (one matrix). Then, these matrices are integrated into a unique matrix through a two-step procedure benefiting from the similarity network fusion method. The model uses a constructed matrix for the prediction of novel and unknown drug-disease associations through a convolutional neural network. The proposed model was evaluated comparatively using two different datasets including the gold standard dataset and DNdataset. Comparing the results of evaluations indicates that IDDI-DNN outperforms other state-of-the-art methods concerning prediction accuracy.
Collapse
Affiliation(s)
- Ramin Amiri
- Department of Computer Science, Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Tabriz, Iran.
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Izadkhah
- Department of Computer Science, Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Anti-Tuberculosis Mur Inhibitors: Structural Insights and the Way Ahead for Development of Novel Agents. Pharmaceuticals (Basel) 2023; 16:ph16030377. [PMID: 36986477 PMCID: PMC10058398 DOI: 10.3390/ph16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.
Collapse
|
7
|
Yang K, Yang Y, Fan S, Xia J, Zheng Q, Dong X, Liu J, Liu Q, Lei L, Zhang Y, Li B, Gao Z, Zhang R, Liu B, Wang Z, Zhou X. DRONet: effectiveness-driven drug repositioning framework using network embedding and ranking learning. Brief Bioinform 2023; 24:6958501. [PMID: 36562715 DOI: 10.1093/bib/bbac518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
As one of the most vital methods in drug development, drug repositioning emphasizes further analysis and research of approved drugs based on the existing large amount of clinical and experimental data to identify new indications of drugs. However, the existing drug repositioning methods didn't achieve enough prediction performance, and these methods do not consider the effectiveness information of drugs, which make it difficult to obtain reliable and valuable results. In this study, we proposed a drug repositioning framework termed DRONet, which make full use of effectiveness comparative relationships (ECR) among drugs as prior information by combining network embedding and ranking learning. We utilized network embedding methods to learn the deep features of drugs from a heterogeneous drug-disease network, and constructed a high-quality drug-indication data set including effectiveness-based drug contrast relationships. The embedding features and ECR of drugs are combined effectively through a designed ranking learning model to prioritize candidate drugs. Comprehensive experiments show that DRONet has higher prediction accuracy (improving 87.4% on Hit@1 and 37.9% on mean reciprocal rank) than state of the art. The case analysis also demonstrates high reliability of predicted results, which has potential to guide clinical drug development.
Collapse
Affiliation(s)
- Kuo Yang
- Institute of Medical Intelligence, Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | | | - Shuyue Fan
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Jianan Xia
- Institute of Medical Intelligence, Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Qiguang Zheng
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Xin Dong
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, China
| | - Lei Lei
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Chinese Medicine Cardiology, China
| | - Runshun Zhang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Baoyan Liu
- Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, China
| | - Xuezhong Zhou
- Institute of Medical Intelligence, Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| |
Collapse
|
8
|
Lang X, Liu J, Zhang G, Feng X, Dan W. Knowledge Mapping of Drug Repositioning's Theme and Development. Drug Des Devel Ther 2023; 17:1157-1174. [PMID: 37096060 PMCID: PMC10122475 DOI: 10.2147/dddt.s405906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
Background In recent years, the emergence of new diseases and resistance to known diseases have led to increasing demand for new drugs. By means of bibliometric analysis, this paper studied the relevant articles on drug repositioning in recent years and analyzed the current research foci and trends. Methodology The Web of Science database was searched to collect all relevant literature on drug repositioning from 2001 to 2022. These data were imported into CiteSpace and bibliometric online analysis platforms for bibliometric analysis. The processed data and visualized images predict the development trends in the research field. Results The quality and quantity of articles published after 2011 have improved significantly, with 45 of them cited more than 100 times. Articles posted by journals from different countries have high citation values. Authors from other institutions have also collaborated to analyze drug rediscovery. Keywords found in the literature include molecular docking (N=223), virtual screening (N=170), drug discovery (N=126), machine learning (N=125), and drug-target interaction (N=68); these words represent the core content of drug repositioning. Conclusion The key focus of drug research and development is related to the discovery of new indications for drugs. Researchers are starting to retarget drugs after analyzing online databases and clinical trials. More and more drugs are being targeted at other diseases to treat more patients, based on saving money and time. It is worth noting that researchers need more financial and technical support to complete drug development.
Collapse
Affiliation(s)
- Xiaona Lang
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Jinlei Liu
- Cardiology Department, Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, People’s Republic of China
| | - Guangzhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Feng
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Wenchao Dan
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Wenchao Dan, Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China, Tel +86 13652001152, Email
| |
Collapse
|
9
|
Sun G, Dong D, Dong Z, Zhang Q, Fang H, Wang C, Zhang S, Wu S, Dong Y, Wan Y. Drug repositioning: A bibliometric analysis. Front Pharmacol 2022; 13:974849. [PMID: 36225586 PMCID: PMC9549161 DOI: 10.3389/fphar.2022.974849] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/14/2022] Open
Abstract
Drug repurposing has become an effective approach to drug discovery, as it offers a new way to explore drugs. Based on the Science Citation Index Expanded (SCI-E) and Social Sciences Citation Index (SSCI) databases of the Web of Science core collection, this study presents a bibliometric analysis of drug repurposing publications from 2010 to 2020. Data were cleaned, mined, and visualized using Derwent Data Analyzer (DDA) software. An overview of the history and development trend of the number of publications, major journals, major countries, major institutions, author keywords, major contributors, and major research fields is provided. There were 2,978 publications included in the study. The findings show that the United States leads in this area of research, followed by China, the United Kingdom, and India. The Chinese Academy of Science published the most research studies, and NIH ranked first on the h-index. The Icahn School of Medicine at Mt Sinai leads in the average number of citations per study. Sci Rep, Drug Discov. Today, and Brief. Bioinform. are the three most productive journals evaluated from three separate perspectives, and pharmacology and pharmacy are unquestionably the most commonly used subject categories. Cheng, FX; Mucke, HAM; and Butte, AJ are the top 20 most prolific and influential authors. Keyword analysis shows that in recent years, most research has focused on drug discovery/drug development, COVID-19/SARS-CoV-2/coronavirus, molecular docking, virtual screening, cancer, and other research areas. The hotspots have changed in recent years, with COVID-19/SARS-CoV-2/coronavirus being the most popular topic for current drug repurposing research.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Shaoya Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Shuaijun Wu
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yichen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Literature-based drug-drug similarity for drug repurposing: impact of Medical Subject Headings term refinement and hierarchical clustering. Future Med Chem 2022; 14:1309-1323. [PMID: 36017692 DOI: 10.4155/fmc-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: We describe herein, an improved procedure for drug repurposing based on refined Medical Subject Headings (MeSH) terms and hierarchical clustering method. Materials & methods: In the present study, we have employed MeSH data from MEDLINE (2019), 1669 US FDA approved drugs from Open FDA and a refined set of MeSH terms. Refinement of MeSH terms was performed to include terms related to mechanistic information of drugs and diseases. Results and Conclusions: In-depth analysis of the results obtained, demonstrated greater efficiency of the proposed approach, based on refined MeSH terms and hierarchical clustering, in terms of number of selected drug candidates for repurposing. Further, analysis of misclustering and size of noise clusters suggest that the proposed approach is reliable and can be employed in drug repurposing.
Collapse
|
11
|
Leukes VN, Malherbe ST, Hiemstra A, Kotze LA, Roos K, Keyser A, De Swardt D, Gutschmidt A, Walzl G, du Plessis N. Sildenafil, a Type-5 Phosphodiesterase Inhibitor, Fails to Reverse Myeloid-Derived Suppressor Cell-Mediated T Cell Suppression in Cells Isolated From Tuberculosis Patients. Front Immunol 2022; 13:883886. [PMID: 35935981 PMCID: PMC9353143 DOI: 10.3389/fimmu.2022.883886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Successful TB treatment is hampered by increasing resistance to the two most effective first-line anti-TB drugs, namely isoniazid and rifampicin, thus innovative therapies focused on host processes, termed host-directed therapies (HDTs), are promising novel approaches for increasing treatment efficacy without inducing drug resistance. We assessed the ability of Sildenafil, a type-5 phosphodiesterase inhibitor, as a repurposed compound, to serve as HDT target, by counteracting the suppressive effects of myeloid-derived suppressor cells (MDSC) obtained from active TB cases on T-cell responsiveness. We confirm that MDSC suppress non-specific T-cell activation. We also show that Sildenafil treatment fails to reverse the MDSC-mediated suppression of T-cell functions measured here, namely activation and proliferation. The impact of Sildenafil treatment on improved immunity, using the concentration tested here, is likely to be minimal, but further identification and development of MDSC-targeting TB host-directed therapies are warranted.
Collapse
Affiliation(s)
- Vinzeigh N. Leukes
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T. Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andriette Hiemstra
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh A. Kotze
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kelly Roos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alana Keyser
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Dalene De Swardt
- Central Analytical Facility, Stellenbosch University, Cape Town, South Africa
| | - Andrea Gutschmidt
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Nelita du Plessis,
| |
Collapse
|
12
|
Truong TTT, Panizzutti B, Kim JH, Walder K. Repurposing Drugs via Network Analysis: Opportunities for Psychiatric Disorders. Pharmaceutics 2022; 14:1464. [PMID: 35890359 PMCID: PMC9319329 DOI: 10.3390/pharmaceutics14071464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Despite advances in pharmacology and neuroscience, the path to new medications for psychiatric disorders largely remains stagnated. Drug repurposing offers a more efficient pathway compared with de novo drug discovery with lower cost and less risk. Various computational approaches have been applied to mine the vast amount of biomedical data generated over recent decades. Among these methods, network-based drug repurposing stands out as a potent tool for the comprehension of multiple domains of knowledge considering the interactions or associations of various factors. Aligned well with the poly-pharmacology paradigm shift in drug discovery, network-based approaches offer great opportunities to discover repurposing candidates for complex psychiatric disorders. In this review, we present the potential of network-based drug repurposing in psychiatry focusing on the incentives for using network-centric repurposing, major network-based repurposing strategies and data resources, applications in psychiatry and challenges of network-based drug repurposing. This review aims to provide readers with an update on network-based drug repurposing in psychiatry. We expect the repurposing approach to become a pivotal tool in the coming years to battle debilitating psychiatric disorders.
Collapse
Affiliation(s)
- Trang T. T. Truong
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
| | - Bruna Panizzutti
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia; (T.T.T.T.); (B.P.); (J.H.K.)
| |
Collapse
|
13
|
Alshahrani M, Almansour A, Alkhaldi A, Thafar MA, Uludag M, Essack M, Hoehndorf R. Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications. PeerJ 2022; 10:e13061. [PMID: 35402106 PMCID: PMC8988936 DOI: 10.7717/peerj.13061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/13/2022] [Indexed: 01/11/2023] Open
Abstract
Biomedical knowledge is represented in structured databases and published in biomedical literature, and different computational approaches have been developed to exploit each type of information in predictive models. However, the information in structured databases and literature is often complementary. We developed a machine learning method that combines information from literature and databases to predict drug targets and indications. To effectively utilize information in published literature, we integrate knowledge graphs and published literature using named entity recognition and normalization before applying a machine learning model that utilizes the combination of graph and literature. We then use supervised machine learning to show the effects of combining features from biomedical knowledge and published literature on the prediction of drug targets and drug indications. We demonstrate that our approach using datasets for drug-target interactions and drug indications is scalable to large graphs and can be used to improve the ranking of targets and indications by exploiting features from either structure or unstructured information alone.
Collapse
Affiliation(s)
- Mona Alshahrani
- National Center for Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia
| | - Abdullah Almansour
- National Center for Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia
| | - Asma Alkhaldi
- National Center for Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia
| | - Maha A. Thafar
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia,Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Fisher JL, Jones EF, Flanary VL, Williams AS, Ramsey EJ, Lasseigne BN. Considerations and challenges for sex-aware drug repurposing. Biol Sex Differ 2022; 13:13. [PMID: 35337371 PMCID: PMC8949654 DOI: 10.1186/s13293-022-00420-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023] Open
Abstract
Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular disease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies considering sex differences in their study design has led to several policies. For example, the National Institute of Health's (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a disproportionate number of male and female samples are available to train computational methods [7]. However, there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular associations, and networks). Low-dimensional representations of molecular association and network approaches are also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias drug response, and how model organism study design choices influence drug repurposing validation.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Elizabeth J. Ramsey
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
15
|
Tan JS, Hu S, Guo TT, Hua L, Wang XJ. Text Mining-Based Drug Discovery for Connective Tissue Disease–Associated Pulmonary Arterial Hypertension. Front Pharmacol 2022; 13:743210. [PMID: 35370713 PMCID: PMC8971927 DOI: 10.3389/fphar.2022.743210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The current medical treatments for connective tissue disease–associated pulmonary arterial hypertension (CTD-PAH) do not show favorable efficiency for all patients, and identification of novel drugs is desired. Methods: Text mining was performed to obtain CTD- and PAH-related gene sets, and the intersection of the two gene sets was analyzed for functional enrichment through DAVID. The protein–protein interaction network of the overlapping genes and the significant gene modules were determined using STRING. The enriched candidate genes were further analyzed by Drug Gene Interaction database to identify drugs with potential therapeutic effects on CTD-PAH. Results: Based on text mining analysis, 179 genes related to CTD and PAH were identified. Through enrichment analysis of the genes, 20 genes representing six pathways were obtained. To further narrow the scope of potential existing drugs, we selected targeted drugs with a Query Score ≥5 and Interaction Score ≥1. Finally, 13 drugs targeting the six genes were selected as candidate drugs, which were divided into four drug–gene interaction types, and 12 of them had initial drug indications approved by the FDA. The potential gene targets of the drugs on this list are IL-6 (one drug) and IL-1β (two drugs), MMP9 (one drug), VEGFA (three drugs), TGFB1 (one drug), and EGFR (five drugs). These drugs might be used to treat CTD-PAH. Conclusion: We identified 13 drugs targeting six genes that may have potential therapeutic effects on CTD-PAH.
Collapse
Affiliation(s)
- Jiang-Shan Tan
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, Center for Respiratory and Pulmonary Vascular Diseases, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Hu
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, Center for Respiratory and Pulmonary Vascular Diseases, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting-Ting Guo
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, Center for Respiratory and Pulmonary Vascular Diseases, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Hua
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, Center for Respiratory and Pulmonary Vascular Diseases, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lu Hua, ; Xiao-Jian Wang,
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, Center for Respiratory and Pulmonary Vascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lu Hua, ; Xiao-Jian Wang,
| |
Collapse
|
16
|
Gurbuz O, Alanis-Lobato G, Picart-Armada S, Sun M, Haslinger C, Lawless N, Fernandez-Albert F. Knowledge Graphs for Indication Expansion: An Explainable Target-Disease Prediction Method. Front Genet 2022; 13:814093. [PMID: 35360842 PMCID: PMC8963915 DOI: 10.3389/fgene.2022.814093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Indication expansion aims to find new indications for existing targets in order to accelerate the process of launching a new drug for a disease on the market. The rapid increase in data types and data sources for computational drug discovery has fostered the use of semantic knowledge graphs (KGs) for indication expansion through target centric approaches, or in other words, target repositioning. Previously, we developed a novel method to construct a KG for indication expansion studies, with the aim of finding and justifying alternative indications for a target gene of interest. In contrast to other KGs, ours combines human-curated full-text literature and gene expression data from biomedical databases to encode relationships between genes, diseases, and tissues. Here, we assessed the suitability of our KG for explainable target-disease link prediction using a glass-box approach. To evaluate the predictive power of our KG, we applied shortest path with tissue information- and embedding-based prediction methods to a graph constructed with information published before or during 2010. We also obtained random baselines by applying the shortest path predictive methods to KGs with randomly shuffled node labels. Then, we evaluated the accuracy of the top predictions using gene-disease links reported after 2010. In addition, we investigated the contribution of the KG’s tissue expression entity to the prediction performance. Our experiments showed that shortest path-based methods significantly outperform the random baselines and embedding-based methods outperform the shortest path predictions. Importantly, removing the tissue expression entity from the KG severely impacts the quality of the predictions, especially those produced by the embedding approaches. Finally, since the interpretability of the predictions is crucial in indication expansion, we highlight the advantages of our glass-box model through the examination of example candidate target-disease predictions.
Collapse
Affiliation(s)
- Ozge Gurbuz
- Discovery Research Coordination Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- *Correspondence: Ozge Gurbuz, ; Francesc Fernandez-Albert,
| | - Gregorio Alanis-Lobato
- Global Computational Biology and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sergio Picart-Armada
- Global Computational Biology and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Miao Sun
- Global Computational Biology and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christian Haslinger
- Global Computational Biology and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Nathan Lawless
- Global Computational Biology and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Francesc Fernandez-Albert
- Global Computational Biology and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- *Correspondence: Ozge Gurbuz, ; Francesc Fernandez-Albert,
| |
Collapse
|
17
|
Chyr J, Gong H, Zhou X. DOTA: Deep Learning Optimal Transport Approach to Advance Drug Repositioning for Alzheimer's Disease. Biomolecules 2022; 12:196. [PMID: 35204697 PMCID: PMC8961573 DOI: 10.3390/biom12020196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States and incurring a substantial global healthcare cost. Unfortunately, current treatments are only palliative and do not cure AD. There is an urgent need to develop novel anti-AD therapies; however, drug discovery is a time-consuming, expensive, and high-risk process. Drug repositioning, on the other hand, is an attractive approach to identify drugs for AD treatment. Thus, we developed a novel deep learning method called DOTA (Drug repositioning approach using Optimal Transport for Alzheimer's disease) to repurpose effective FDA-approved drugs for AD. Specifically, DOTA consists of two major autoencoders: (1) a multi-modal autoencoder to integrate heterogeneous drug information and (2) a Wasserstein variational autoencoder to identify effective AD drugs. Using our approach, we predict that antipsychotic drugs with circadian effects, such as quetiapine, aripiprazole, risperidone, suvorexant, brexpiprazole, olanzapine, and trazadone, will have efficacious effects in AD patients. These drugs target important brain receptors involved in memory, learning, and cognition, including serotonin 5-HT2A, dopamine D2, and orexin receptors. In summary, DOTA repositions promising drugs that target important biological pathways and are predicted to improve patient cognition, circadian rhythms, and AD pathogenesis.
Collapse
Affiliation(s)
- Jacqueline Chyr
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Haoran Gong
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA;
| |
Collapse
|
18
|
Müller B, Castro LJ, Rebholz-Schuhmann D. Ontology-based identification and prioritization of candidate drugs for epilepsy from literature. J Biomed Semantics 2022; 13:3. [PMID: 35073996 PMCID: PMC8785029 DOI: 10.1186/s13326-021-00258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drug repurposing can improve the return of investment as it finds new uses for existing drugs. Literature-based analyses exploit factual knowledge on drugs and diseases, e.g. from databases, and combine it with information from scholarly publications. Here we report the use of the Open Discovery Process on scientific literature to identify non-explicit ties between a disease, namely epilepsy, and known drugs, making full use of available epilepsy-specific ontologies.
Results
We identified characteristics of epilepsy-specific ontologies to create subsets of documents from the literature; from these subsets we generated ranked lists of co-occurring neurological drug names with varying specificity. From these ranked lists, we observed a high intersection regarding reference lists of pharmaceutical compounds recommended for the treatment of epilepsy. Furthermore, we performed a drug set enrichment analysis, i.e. a novel scoring function using an adaptive tuning parameter and comparing top-k ranked lists taking into account the varying length and the current position in the list. We also provide an overview of the pharmaceutical space in the context of epilepsy, including a final combined ranked list of more than 70 drug names.
Conclusions
Biomedical ontologies are a rich resource that can be combined with text mining for the identification of drug names for drug repurposing in the domain of epilepsy. The ranking of the drug names related to epilepsy provides benefits to patients and to researchers as it enables a quick evaluation of statistical evidence hidden in the scientific literature, useful to validate approaches in the drug discovery process.
Collapse
|
19
|
Allahgholi M, Rahmani H, Javdani D, Sadeghi-Adl Z, Bender A, Módos D, Weiss G. DDREL: From drug-drug relationships to drug repurposing. INTELL DATA ANAL 2022. [DOI: 10.3233/ida-215745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analyzing the relationships among various drugs is an essential issue in the field of computational biology. Different kinds of informative knowledge, such as drug repurposing, can be extracted from drug-drug relationships. Scientific literature represents a rich source for the retrieval of knowledge about the relationships between biological concepts, mainly drug-drug, disease-disease, and drug-disease relationships. In this paper, we propose DDREL as a general-purpose method that applies deep learning on scientific literature to automatically extract the graph of syntactic and semantic relationships among drugs. DDREL remarkably outperforms the existing human drug network method and a random network respected to average similarities of drugs’ anatomical therapeutic chemical (ATC) codes. DDREL is able to shed light on the existing deficiency of the ATC codes in various drug groups. From the DDREL graph, the history of drug discovery became visible. In addition, drugs that had repurposing score 1 (diflunisal, pargyline, fenofibrate, guanfacine, chlorzoxazone, doxazosin, oxymetholone, azathioprine, drotaverine, demecarium, omifensine, yohimbine) were already used in additional indication. The proposed DDREL method justifies the predictive power of textual data in PubMed abstracts. DDREL shows that such data can be used to 1- Predict repurposing drugs with high accuracy, and 2- Reveal existing deficiencies of the ATC codes in various drug groups.
Collapse
Affiliation(s)
- Milad Allahgholi
- School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hossein Rahmani
- School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Delaram Javdani
- School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zahra Sadeghi-Adl
- School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dezsö Módos
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, UK
| | - Gerhard Weiss
- Department of Data Science and Knowledge Engineering (DKE), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Abstract
Drug repurposing refers to finding new indications for existing drugs. The paradigm shift from traditional drug discovery to drug repurposing is driven by the fact that new drug pipelines are getting dried up because of mounting Research & Development (R&D) costs, long timeline for new drug development, low success rate for new molecular entities, regulatory hurdles coupled with revenue loss from patent expiry and competition from generics. Anaemic drug pipelines along with increasing demand for newer effective, cheaper, safer drugs and unmet medical needs call for new strategies of drug discovery and, drug repurposing seems to be a promising avenue for such endeavours. Drug repurposing strategies have progressed over years from simple serendipitous observations to more complex computational methods in parallel with our ever-growing knowledge on drugs, diseases, protein targets and signalling pathways but still the knowledge is far from complete. Repurposed drugs too have to face many obstacles, although lesser than new drugs, before being successful.
Collapse
|
21
|
Abdulkadhar S, Natarajan J. A Text Mining Protocol for Mining Biological Pathways and Regulatory Networks from Biomedical Literature. Methods Mol Biol 2022; 2496:141-157. [PMID: 35713863 DOI: 10.1007/978-1-0716-2305-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A biological pathway or regulatory network is a collection of molecular regulators which can activate the changes in cellular processes leading to an assembly of new molecules by series of actions among the molecules. There are three important pathways in system biology studies namely signaling pathways, metabolic pathways, and genetic pathways (or) gene regulatory networks. Recently, biological pathway construction from scientific literature is given much attention as the scientific literature contains a rich set of linguistic features to extract biological associations between genes and proteins. These associations can be united to construct biological networks. Here, we present a brief overview about various biological pathways, biomedical text resources/corpora for network construction and state-of-the-art existing methods for network construction followed by our hybrid text mining protocol for extracting pathways and regulatory networks from biomedical literature.
Collapse
Affiliation(s)
- Sabenabanu Abdulkadhar
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India.
| |
Collapse
|
22
|
System and network biology-based computational approaches for drug repositioning. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300680 DOI: 10.1016/b978-0-323-91172-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in computational biology have not only fastened the drug discovery process but have also proven to be a powerful tool for the search of existing molecules of therapeutic value for drug repurposing. The system biology-based drug repurposing approaches shorten the time and reduced the cost of the whole process when compared to de novo drug discovery. In the present pandemic situation, these computational approaches have emerged as a boon to tackle the COVID-19 associated morbidities and mortalities. In this chapter, we present the overview of system biology-based network system approaches which can be exploited for the drug repurposing of disease. Besides, we have included information on relevant repurposed drugs which are currently used for the treatment of COVID-19.
Collapse
|
23
|
Liang Q, Liu M, Li J, Tong R, Hu Y, Bai L, Shi J. NAE modulators: A potential therapy for gastric carcinoma. Eur J Med Chem 2022; 231:114156. [DOI: 10.1016/j.ejmech.2022.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
24
|
Wu L, Wang Y, Wang X, Liao J, Dong H, Cai X, Wang Y, Gu HF. Evaluation of Colocasia esculenta Schott in anti-cancerous properties with proximity extension assays. Food Nutr Res 2021; 65:7549. [PMID: 34908921 PMCID: PMC8634378 DOI: 10.29219/fnr.v65.7549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background Colocasia esculenta Schott (called as Xiangshayu in Chinese) is an excellent local cultivar of the genus polymorpha in Jiangsu Province, China. Objective In the present study, we have performed a comparative study before and after dietary consumption with Colocasia esculenta Schott to evaluate its anti-cancerous properties. Design Forty-two healthy volunteers were recruited, and dietary consumption with 200 g of tap water cooked Colocasia esculenta Schott daily was conducted for 1 month. Plasma samples from the subjects before and after dietary consumption with Colocasia esculenta Schott were analyzed with proximity extension assays for the alteration of 92 proteins in relation with cancers, while blood samples were examined for physiological parameters with an automatic biochemical analyzer. Bioinformatic analyses were conducted using MalaCards and GEPIA. Results After taking dietary consumption with Colocasia esculenta Schott, circulating CYR61, ANXA1, and VIM protein levels in the subjects was found to be most significantly downregulated, while for ITGB5, EPHA2, and CEACAM1, it was upregulated. Alternation of these proteins was predicted to be associated with the development of tumors such as pancreatic adenocarcinoma and breast and prostate cancers. Conclusion The present study provides evidence that Colocasia esculenta Schott, as a healthy food, has anti-cancerous properties. Further investigation of phytochemistry in Colocasia esculenta Schott has been taken into our consideration.
Collapse
Affiliation(s)
- Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yuxuan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jun Liao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Dong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiyunyi Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yurong Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Madugula SS, John L, Nagamani S, Gaur AS, Poroikov VV, Sastry GN. Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing. Comput Biol Med 2021; 138:104856. [PMID: 34555571 DOI: 10.1016/j.compbiomed.2021.104856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022]
Abstract
Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lijo John
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Selvaraman Nagamani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Anamika Singh Gaur
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Vladimir V Poroikov
- Laboratory for Structure-Function Drug Design, Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - G Narahari Sastry
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India.
| |
Collapse
|
26
|
Mura C, Preissner S, Preissner R, Bourne PE. A Birds-Eye (Re)View of Acid-Suppression Drugs, COVID-19, and the Highly Variable Literature. Front Pharmacol 2021; 12:700703. [PMID: 34456726 PMCID: PMC8385362 DOI: 10.3389/fphar.2021.700703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
This Perspective examines a recent surge of information regarding the potential benefits of acid-suppression drugs in the context of COVID-19, with a particular eye on the great variability (and, thus, confusion) that has arisen across the reported findings, at least as regards the popular antacid famotidine. The degree of inconsistency and discordance reflects contradictory conclusions from independent, clinical-based studies that took roughly similar approaches, in terms of both experimental design (retrospective, observational, cohort-based, etc.) and statistical analysis workflows (propensity-score matching and stratification into sub-cohorts, etc.). The contradictions and potential confusion have ramifications for clinicians faced with choosing therapeutically optimal courses of intervention: e.g., do any potential benefits of famotidine suggest its use in a particular COVID-19 case? (If so, what administration route, dosage regimen, duration, etc. are likely optimal?) As succinctly put this March in Freedberg et al. (2021), "…several retrospective studies show relationships between famotidine and outcomes in COVID-19 and several do not." Beyond the pressing issue of possible therapeutic indications, the conflicting data and conclusions related to famotidine must be resolved before its inclusion/integration in ontological and knowledge graph (KG)-based frameworks, which in turn are useful for drug discovery and repurposing. As a broader methodological issue, note that reconciling inconsistencies would bolster the validity of meta-analyses which draw upon the relevant data-sources. And, perhaps most broadly, developing a system for treating inconsistencies would stand to improve the qualities of both 1) real world evidence-based studies (retrospective), on the one hand, and 2) placebo-controlled, randomized multi-center clinical trials (prospective), on the other hand. In other words, a systematic approach to reconciling the two types of studies would inherently improve the quality and utility of each type of study individually.
Collapse
Affiliation(s)
- Cameron Mura
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Saskia Preissner
- Department Oral and Maxillofacial Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip E. Bourne
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
27
|
Yan C, Feng L, Wang W, Wang J, Zhang G, Luo J. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures. Curr Mol Med 2021; 20:442-451. [PMID: 31729291 DOI: 10.2174/1566524019666191115103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Drug repositioning refers to discovering new indications for the existing drugs, which can improve the efficiency of drug research and development. METHODS In this work, a novel drug repositioning approach based on integrative multiple similarity measure, called DR_IMSM, is proposed. The process of integrative similarity measure contains three steps. First, a heterogeneous network can be constructed based on known drug-disease association, shared entities information for drug pairwise and diseases pairwise. Second, a deep learning method, DeepWalk, is used to capture the topology similarity for drug and disease. Third, a similarity integration and adjusting process is further conducted to obtain more comprehensive drug and disease similarity measure, respectively. RESULTS On this basis, a Bi-random walk algorithm is implemented in the constructed heterogeneous network to rank diseases for each drug. Compared with other approaches, the proposed DR_IMSM can achieve superior performance in terms of AUC on the gold standard datasets. Case studies further confirm the practical significance of DR_IMSM.
Collapse
Affiliation(s)
- Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Luping Feng
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Wenxiu Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
28
|
Asada M, Gunasekaran N, Miwa M, Sasaki Y. Representing a Heterogeneous Pharmaceutical Knowledge-Graph with Textual Information. Front Res Metr Anal 2021; 6:670206. [PMID: 34278204 PMCID: PMC8281808 DOI: 10.3389/frma.2021.670206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
We deal with a heterogeneous pharmaceutical knowledge-graph containing textual information built from several databases. The knowledge graph is a heterogeneous graph that includes a wide variety of concepts and attributes, some of which are provided in the form of textual pieces of information which have not been targeted in the conventional graph completion tasks. To investigate the utility of textual information for knowledge graph completion, we generate embeddings from textual descriptions given to heterogeneous items, such as drugs and proteins, while learning knowledge graph embeddings. We evaluate the obtained graph embeddings on the link prediction task for knowledge graph completion, which can be used for drug discovery and repurposing. We also compare the results with existing methods and discuss the utility of the textual information.
Collapse
Affiliation(s)
- Masaki Asada
- Computational Intelligence Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Nallappan Gunasekaran
- Computational Intelligence Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Makoto Miwa
- Computational Intelligence Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Yutaka Sasaki
- Computational Intelligence Laboratory, Toyota Technological Institute, Nagoya, Japan
| |
Collapse
|
29
|
Schcolnik-Cabrera A, Juárez-López D, Duenas-Gonzalez A. Perspectives on Drug Repurposing. Curr Med Chem 2021; 28:2085-2099. [PMID: 32867630 DOI: 10.2174/0929867327666200831141337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
Complex common diseases are a significant burden for our societies and demand not only preventive measures but also more effective, safer, and more affordable treatments. The whole process of the current model of drug discovery and development implies a high investment by the pharmaceutical industry, which ultimately impact in high drug prices. In this sense, drug repurposing would help meet the needs of patients to access useful and novel treatments. Unlike the traditional approach, drug repurposing enters both the preclinical evaluation and clinical trials of the compound of interest faster, budgeting research and development costs, and limiting potential biosafety risks. The participation of government, society, and private investors is needed to secure the funds for experimental design and clinical development of repurposing candidates to have affordable, effective, and safe repurposed drugs. Moreover, extensive advertising of repurposing as a concept in the health community, could reduce prescribing bias when enough clinical evidence exists, which will support the employment of cheaper and more accessible repurposed compounds for common conditions.
Collapse
Affiliation(s)
- Alejandro Schcolnik-Cabrera
- Departement de Biochimie et Medecine Moleculaire, Universite de Montreal, C.P. 6128, Succursale Centre- Ville, Montreal, QC, Canada
| | - Daniel Juárez-López
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico; Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Ciudad de Mexico, Mexico
| | - Alfonso Duenas-Gonzalez
- Division de Investigacion Basica, Instituto Nacional de Cancerologia, Ciudad de Mexico 14080, Mexico
| |
Collapse
|
30
|
Zhao S, Su C, Lu Z, Wang F. Recent advances in biomedical literature mining. Brief Bioinform 2021; 22:bbaa057. [PMID: 32422651 PMCID: PMC8138828 DOI: 10.1093/bib/bbaa057] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 01/26/2023] Open
Abstract
The recent years have witnessed a rapid increase in the number of scientific articles in biomedical domain. These literature are mostly available and readily accessible in electronic format. The domain knowledge hidden in them is critical for biomedical research and applications, which makes biomedical literature mining (BLM) techniques highly demanding. Numerous efforts have been made on this topic from both biomedical informatics (BMI) and computer science (CS) communities. The BMI community focuses more on the concrete application problems and thus prefer more interpretable and descriptive methods, while the CS community chases more on superior performance and generalization ability, thus more sophisticated and universal models are developed. The goal of this paper is to provide a review of the recent advances in BLM from both communities and inspire new research directions.
Collapse
Affiliation(s)
- Sendong Zhao
- Department of Healthcare Policy and Research, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Chang Su
- Division of Health Informatics, Department of Healthcare Policy and Research at Weill Cornell Medicine at Cornell University, New York, NY, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI) at National Library of Medicine, National Institute of Health, Bethesda, MD, USA
| | - Fei Wang
- Department of Healthcare Policy and Research, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
31
|
Khan F, Radovanovic A, Gojobori T, Kaur M. IBDDB: a manually curated and text-mining-enhanced database of genes involved in inflammatory bowel disease. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6260885. [PMID: 33929018 PMCID: PMC8086236 DOI: 10.1093/database/baab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022]
Abstract
To date, research on inflammatory bowel disease (IBD, encompassing Crohn's disease and ulcerative colitis), a chronic complex disorder, has generated a large amount of data scattered across published literature (1 06 333) listed in PubMed on 14 October 2020, and no dedicated database currently exists that catalogues information on genes associated with IBD. We aimed to manually curate 289 genes that are experimentally validated to be linked with IBD and its known phenotypes. Furthermore, we have developed an integrated platform providing information about different aspects of these genes by incorporating several resources and an extensive text-mined knowledgebase. The curated IBD database (IBDDB) allows the selective display of collated 34 subject-specific concepts (listed as columns) exportable through a user-friendly IBDDB portal. The information embedded in concepts was acquired via text-mining of PubMed (manually cleaned and curated), accompanied by data-mining from varied resources. The user can also explore different biomedical entities and their co-occurrence with other entities (about one million) from 11 curated dictionaries in the indexed PubMed records. This functionality permits the user to generate and cross-examine a new hypothesis that is otherwise not easy to comprehend by just reading the published abstracts and papers. Users can download required information using various file formats and can display information in the form of networks. To our knowledge, no curated database of IBD-related genes is available so far. IBDDB is free for academic users and can be accessed at https://www.cbrc.kaust.edu.sa/ibd/.
Collapse
Affiliation(s)
- Farhat Khan
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, Gauteng WITS-2050, South Africa
| | - Aleksandar Radovanovic
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, Gauteng WITS-2050, South Africa
| |
Collapse
|
32
|
|
33
|
Sadeghi SS, Keyvanpour MR. An Analytical Review of Computational Drug Repurposing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:472-488. [PMID: 31403439 DOI: 10.1109/tcbb.2019.2933825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug repurposing is a vital function in pharmaceutical fields and has gained popularity in recent years in both the pharmaceutical industry and research community. It refers to the process of discovering new uses and indications for existing or failed drugs. It is cost-effective and reliable in contrast to experimental drug discovery, which is a costly, time-consuming, and risky process and limited to a relatively small number of targets. Accordingly, a plethora of computational methodologies have been propounded to repurpose drugs on a large scale by utilizing available high throughput data. The available literature, however, lacks a contemporary and comprehensive analysis of the current computational drug repurposing methodologies. In this paper, we presented a systematic analysis of computational drug repurposing which consists of three main sections: Initially, we categorize the computational drug repurposing methods based on their technical approach and artificial intelligence perspective and discuss the strengths and weaknesses of various methods. Secondly, some general criteria are recommended to analyze our proposed categorization. In the third and final section, a qualitative comparison is made between each approach which is a guide to understanding their preference to one another. Further, this systematic analysis can help in the efficient selection and improvement of drug repurposing techniques based on the nature of computational methods implemented on biological resources.
Collapse
|
34
|
Roy S, Dhaneshwar S, Bhasin B. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery. Curr Drug Res Rev 2021; 13:101-119. [PMID: 33573567 DOI: 10.2174/2589977513666210211163711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning or repurposing is a revolutionary breakthrough in drug development that focuses on rediscovering new uses for old therapeutic agents. Drug repositioning can be defined more precisely as the process of exploring new indications for an already approved drug while drug repurposing includes overall re-development approaches grounded in the identical chemical structure of the active drug moiety as in the original product. The repositioning approach accelerates the drug development process, curtails the cost and risk inherent to drug development. The strategy focuses on the polypharmacology of drugs to unlocks novel opportunities for logically designing more efficient therapeutic agents for unmet medical disorders. Drug repositioning also expresses certain regulatory challenges that hamper its further utilization. The review outlines the eminent role of drug repositioning in new drug discovery, methods to predict the molecular targets of a drug molecule, advantages that the strategy offers to the pharmaceutical industries, explaining how the industrial collaborations with academics can assist in the discovering more repositioning opportunities. The focus of the review is to highlight the latest applications of drug repositioning in various disorders. The review also includes a comparison of old and new therapeutic uses of repurposed drugs, assessing their novel mechanisms of action and pharmacological effects in the management of various disorders. Various restrictions and challenges that repurposed drugs come across during their development and regulatory phases are also highlighted.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Bhavya Bhasin
- Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
35
|
Vanhaelen Q. Web-based Tools for Drug Repurposing: Successful Examples of Collaborative Research. Curr Med Chem 2021; 28:181-195. [PMID: 32003659 DOI: 10.2174/0929867327666200128111925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/23/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
Computational approaches have been proven to be complementary tools of interest in identifying potential candidates for drug repurposing. However, although the methods developed so far offer interesting opportunities and could contribute to solving issues faced by the pharmaceutical sector, they also come with their constraints. Indeed, specific challenges ranging from data access, standardization and integration to the implementation of reliable and coherent validation methods must be addressed to allow systematic use at a larger scale. In this mini-review, we cover computational tools recently developed for addressing some of these challenges. This includes specific databases providing accessibility to a large set of curated data with standardized annotations, web-based tools integrating flexible user interfaces to perform fast computational repurposing experiments and standardized datasets specifically annotated and balanced for validating new computational drug repurposing methods. Interestingly, these new databases combined with the increasing number of information about the outcomes of drug repurposing studies can be used to perform a meta-analysis to identify key properties associated with successful drug repurposing cases. This information could further be used to design estimation methods to compute a priori assessment of the repurposing possibilities.
Collapse
Affiliation(s)
- Quentin Vanhaelen
- Insilico Medicine, 307A, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| |
Collapse
|
36
|
Zanin M, Aitya NA, Basilio J, Baumbach J, Benis A, Behera CK, Bucholc M, Castiglione F, Chouvarda I, Comte B, Dao TT, Ding X, Pujos-Guillot E, Filipovic N, Finn DP, Glass DH, Harel N, Iesmantas T, Ivanoska I, Joshi A, Boudjeltia KZ, Kaoui B, Kaur D, Maguire LP, McClean PL, McCombe N, de Miranda JL, Moisescu MA, Pappalardo F, Polster A, Prasad G, Rozman D, Sacala I, Sanchez-Bornot JM, Schmid JA, Sharp T, Solé-Casals J, Spiwok V, Spyrou GM, Stalidzans E, Stres B, Sustersic T, Symeonidis I, Tieri P, Todd S, Van Steen K, Veneva M, Wang DH, Wang H, Wang H, Watterson S, Wong-Lin K, Yang S, Zou X, Schmidt HH. An Early Stage Researcher's Primer on Systems Medicine Terminology. NETWORK AND SYSTEMS MEDICINE 2021; 4:2-50. [PMID: 33659919 PMCID: PMC7919422 DOI: 10.1089/nsm.2020.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nadim A.A. Aitya
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - José Basilio
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Jan Baumbach
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arriel Benis
- Faculty of Technology Management, Holon Institute of Technology (HIT), Holon, Israel
| | - Chandan K. Behera
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Magda Bucholc
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics, and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Blandine Comte
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Tien-Tuan Dao
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Xuemei Ding
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland, Galway, Republic of Ireland
| | - David H. Glass
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Nissim Harel
- Faculty of Sciences, Holon Institute of Technology (HIT), Holon, Israel
| | - Tomas Iesmantas
- Department of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilinka Ivanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222), Medicine Faculty, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Badr Kaoui
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Daman Kaur
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Liam P. Maguire
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Paula L. McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Niamh McCombe
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - João Luís de Miranda
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Portalegre, Portalegre, Portugal
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Annikka Polster
- Centre for Molecular Medicine Norway (NCMM), Forskningparken, Oslo, Norway
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ioan Sacala
- Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
| | - Jose M. Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic–Central University of Catalonia, Vic, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - George M. Spyrou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Egils Stalidzans
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tijana Sustersic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - Ioannis Symeonidis
- Center for Research and Technology Hellas, Hellenic Institute of Transport, Thessaloniki, Greece
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Stephen Todd
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Altnagelvin, United Kingdom
| | - Kristel Van Steen
- BIO3-Systems Genetics, GIGA-R, University of Liege, Liege, Belgium
- BIO3-Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and School of Systems Science, Beijing Normal University, Beijing, China
| | - Haiying Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Hui Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Su Yang
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Xin Zou
- Shanghai Centre for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Harald H.H.W. Schmidt
- Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
37
|
Hernández-Lemus E, Martínez-García M. Pathway-Based Drug-Repurposing Schemes in Cancer: The Role of Translational Bioinformatics. Front Oncol 2021; 10:605680. [PMID: 33520715 PMCID: PMC7841291 DOI: 10.3389/fonc.2020.605680] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a set of complex pathologies that has been recognized as a major public health problem worldwide for decades. A myriad of therapeutic strategies is indeed available. However, the wide variability in tumor physiology, response to therapy, added to multi-drug resistance poses enormous challenges in clinical oncology. The last years have witnessed a fast-paced development of novel experimental and translational approaches to therapeutics, that supplemented with computational and theoretical advances are opening promising avenues to cope with cancer defiances. At the core of these advances, there is a strong conceptual shift from gene-centric emphasis on driver mutations in specific oncogenes and tumor suppressors-let us call that the silver bullet approach to cancer therapeutics-to a systemic, semi-mechanistic approach based on pathway perturbations and global molecular and physiological regulatory patterns-we will call this the shrapnel approach. The silver bullet approach is still the best one to follow when clonal mutations in driver genes are present in the patient, and when there are targeted therapies to tackle those. Unfortunately, due to the heterogeneous nature of tumors this is not the common case. The wide molecular variability in the mutational level often is reduced to a much smaller set of pathway-based dysfunctions as evidenced by the well-known hallmarks of cancer. In such cases "shrapnel gunshots" may become more effective than "silver bullets". Here, we will briefly present both approaches and will abound on the discussion on the state of the art of pathway-based therapeutic designs from a translational bioinformatics and computational oncology perspective. Further development of these approaches depends on building collaborative, multidisciplinary teams to resort to the expertise of clinical oncologists, oncological surgeons, and molecular oncologists, but also of cancer cell biologists and pharmacologists, as well as bioinformaticians, computational biologists and data scientists. These teams will be capable of engaging on a cycle of analyzing high-throughput experiments, mining databases, researching on clinical data, validating the findings, and improving clinical outcomes for the benefits of the oncological patients.
Collapse
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
38
|
Fang M, Richardson B, Cameron CM, Dazard JE, Cameron MJ. Drug perturbation gene set enrichment analysis (dpGSEA): a new transcriptomic drug screening approach. BMC Bioinformatics 2021; 22:22. [PMID: 33435872 PMCID: PMC7805197 DOI: 10.1186/s12859-020-03929-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022] Open
Abstract
Background In this study, we demonstrate that our modified Gene Set Enrichment Analysis (GSEA) method, drug perturbation GSEA (dpGSEA), can detect phenotypically relevant drug targets through a unique transcriptomic enrichment that emphasizes biological directionality of drug-derived gene sets. Results We detail our dpGSEA method and show its effectiveness in detecting specific perturbation of drugs in independent public datasets by confirming fluvastatin, paclitaxel, and rosiglitazone perturbation in gastroenteropancreatic neuroendocrine tumor cells. In drug discovery experiments, we found that dpGSEA was able to detect phenotypically relevant drug targets in previously published differentially expressed genes of CD4+T regulatory cells from immune responders and non-responders to antiviral therapy in HIV-infected individuals, such as those involved with virion replication, cell cycle dysfunction, and mitochondrial dysfunction. dpGSEA is publicly available at https://github.com/sxf296/drug_targeting. Conclusions dpGSEA is an approach that uniquely enriches on drug-defined gene sets while considering directionality of gene modulation. We recommend dpGSEA as an exploratory tool to screen for possible drug targeting molecules.
Collapse
Affiliation(s)
- Mike Fang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Wolstein Research Building, 2103 Cornell Road, Suite 1-314, Cleveland, OH, 44106-7295, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Wolstein Research Building, 2103 Cornell Road, Suite 1-314, Cleveland, OH, 44106-7295, USA.,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA
| | - Jean-Eudes Dazard
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA. .,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Wolstein Research Building, 2103 Cornell Road, Suite 1-314, Cleveland, OH, 44106-7295, USA. .,Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
39
|
Shi W, Chen X, Deng L. A Review of Recent Developments and Progress in Computational Drug Repositioning. Curr Pharm Des 2021; 26:3059-3068. [PMID: 31951162 DOI: 10.2174/1381612826666200116145559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Computational drug repositioning is an efficient approach towards discovering new indications for existing drugs. In recent years, with the accumulation of online health-related information and the extensive use of biomedical databases, computational drug repositioning approaches have achieved significant progress in drug discovery. In this review, we summarize recent advancements in drug repositioning. Firstly, we explicitly demonstrated the available data source information which is conducive to identifying novel indications. Furthermore, we provide a summary of the commonly used computing approaches. For each method, we briefly described techniques, case studies, and evaluation criteria. Finally, we discuss the limitations of the existing computing approaches.
Collapse
Affiliation(s)
- Wanwan Shi
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xuegong Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
40
|
|
41
|
Juárez-López D, Schcolnik-Cabrera A. Drug Repurposing: Considerations to Surpass While Re-directing Old Compounds for New Treatments. Arch Med Res 2020; 52:243-251. [PMID: 33190955 DOI: 10.1016/j.arcmed.2020.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Drug repurposing has increased in recent years as an attractive option for treating a number of diseases. Compared to those brought forward via traditional chemical development, drugs intended for repurposing can enter the market faster and with lower investment from pharmaceutical companies. However, a common trend is to focus on diseases that yield higher returns to the industry, such as cancer and common metabolic and inflammatory conditions, resulting in orphan illnesses and neglected tropical diseases having fewer repurposing options for affected patients. In addition, certain legal concerns, including limited patent coverage for the repurposed drugs and pharmacological challenges in performing clinical trials, reduce the likelihood of success. In this review, we discuss the most important concerns that affect the pathway of drug repurposing, with special emphasis on the economic revenues, government-industry associations, and legal considerations that together impact the pharmaceutical industry's decision-making on which compounds may be eligible for repurposing.
Collapse
Affiliation(s)
- Daniel Juárez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada; Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada.
| |
Collapse
|
42
|
Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020; 12:E1058. [PMID: 32972027 PMCID: PMC7551028 DOI: 10.3390/v12091058] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Traditionally, drug discovery utilises a de novo design approach, which requires high cost and many years of drug development before it reaches the market. Novel drug development does not always account for orphan diseases, which have low demand and hence low-profit margins for drug developers. Recently, drug repositioning has gained recognition as an alternative approach that explores new avenues for pre-existing commercially approved or rejected drugs to treat diseases aside from the intended ones. Drug repositioning results in lower overall developmental expenses and risk assessments, as the efficacy and safety of the original drug have already been well accessed and approved by regulatory authorities. The greatest advantage of drug repositioning is that it breathes new life into the novel, rare, orphan, and resistant diseases, such as Cushing's syndrome, HIV infection, and pandemic outbreaks such as COVID-19. Repositioning existing drugs such as Hydroxychloroquine, Remdesivir, Ivermectin and Baricitinib shows good potential for COVID-19 treatment. This can crucially aid in resolving outbreaks in urgent times of need. This review discusses the past success in drug repositioning, the current technological advancement in the field, drug repositioning for personalised medicine and the ongoing research on newly emerging drugs under consideration for the COVID-19 treatment.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (Z.Y.L.); (I.A.F.)
| | - Isra Ahmad Farouk
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (Z.Y.L.); (I.A.F.)
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (Z.Y.L.); (I.A.F.)
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
43
|
La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol 2020; 11:2107. [PMID: 33013888 PMCID: PMC7497315 DOI: 10.3389/fimmu.2020.02107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Even if the incidence of tuberculosis (TB) has been decreasing over the last years, the number of patients with TB is increasing worldwide. The emergence of multidrug-resistant and extensively drug-resistant TB is making control of TB more difficult. Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary TB in adults, and there is an urgent need for a vaccine that is also effective in patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed immunotherapies could offer therapeutic strategies for patients with drug-resistant TB or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after hematopoietic stem cell transplantation has emerged as a new strategy in the cure of hematologic malignancies in order to induce graft-versus leukemia and graft-versus-infection effects. Moreover, adoptive therapy has proven to be effective in controlling cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a heterogeneous group of T lymphocytes with limited diversity. One of their characteristics is that antigen recognition is not restricted by the classical major histocompatibility complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent, they are also termed “donor unrestricted” T cells. The combined features of low donor diversity and the lack of genetic restriction make these cells suitable candidates for T cell–based immunotherapy of TB.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
44
|
Gates LE, Hamed AA. The Anatomy of the SARS-CoV-2 Biomedical Literature: Introducing the CovidX Network Algorithm for Drug Repurposing Recommendation. J Med Internet Res 2020; 22:e21169. [PMID: 32735546 PMCID: PMC7474417 DOI: 10.2196/21169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Driven by the COVID-19 pandemic and the dire need to discover an antiviral drug, we explored the landscape of the SARS-CoV-2 biomedical publications to identify potential treatments. OBJECTIVE The aims of this study are to identify off-label drugs that may have benefits for the coronavirus disease pandemic, present a novel ranking algorithm called CovidX to recommend existing drugs for potential repurposing, and validate the literature-based outcome with drug knowledge available in clinical trials. METHODS To achieve such objectives, we applied natural language processing techniques to identify drugs and linked entities (eg, disease, gene, protein, chemical compounds). When such entities are linked, they form a map that can be further explored using network science tools. The CovidX algorithm was based upon a notion that we called "diversity." A diversity score for a given drug was calculated by measuring how "diverse" a drug is calculated using various biological entities (regardless of the cardinality of actual instances in each category). The algorithm validates the ranking and awards those drugs that are currently being investigated in open clinical trials. The rationale behind the open clinical trial is to provide a validating mechanism of the PubMed results. This ensures providing up to date evidence of the fast development of this disease. RESULTS From the analyzed biomedical literature, the algorithm identified 30 possible drug candidates for repurposing, ranked them accordingly, and validated the ranking outcomes against evidence from clinical trials. The top 10 candidates according to our algorithm are hydroxychloroquine, azithromycin, chloroquine, ritonavir, losartan, remdesivir, favipiravir, methylprednisolone, rapamycin, and tilorone dihydrochloride. CONCLUSIONS The ranking shows both consistency and promise in identifying drugs that can be repurposed. We believe, however, the full treatment to be a multifaceted, adjuvant approach where multiple drugs may need to be taken at the same time.
Collapse
Affiliation(s)
| | - Ahmed Abdeen Hamed
- School of Cybersecurity, Data Science, and Computing, Norwich University, Northfield, VT, United States
| |
Collapse
|
45
|
ADDI: Recommending alternatives for drug-drug interactions with negative health effects. Comput Biol Med 2020; 125:103969. [PMID: 32836102 DOI: 10.1016/j.compbiomed.2020.103969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022]
Abstract
Investigating the interactions among various drugs is an indispensable issue in the field of computational biology. Scientific literature represents a rich source for the retrieval of knowledge about the interactions between drugs. Predicting drug-drug interaction (DDI) types will help biologists to evade hazardous drug interactions and support them in discovering potential alternatives that increase therapeutic efficacy and reduce toxicity. In this paper, we propose a general-purpose method called ADDI (standing for Alternative Drug-Drug Interaction) that applies deep learning on PubMed abstracts to predict interaction types among drugs. As an application, ADDI recommends alternatives for drug-drug interactions (DDIs) which have Negative Health Effects Types (NHETs). ADDI clearly outperforms state-of-the-art methods, on average by 13%, with respect to accuracy by using only the textual content of the online PubMed papers. Additionally, manual evaluation of ADDI indicates high precision in recommending alternatives for DDIs with NHETs.
Collapse
|
46
|
Computational Drug Repositioning: Current Progress and Challenges. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel drug discovery is time-consuming, costly, and a high-investment process due to the high attrition rate. Therefore, many trials are conducted to reuse existing drugs to treat pressing conditions and diseases, since their safety profiles and pharmacokinetics are already available. Drug repositioning is a strategy to identify a new indication of existing or already approved drugs, beyond the scope of their original use. Various computational and experimental approaches to incorporate available resources have been suggested for gaining a better understanding of disease mechanisms and the identification of repurposed drug candidates for personalized pharmacotherapy. In this review, we introduce publicly available databases for drug repositioning and summarize the approaches taken for drug repositioning. We also highlight and compare their characteristics and challenges, which should be addressed for the future realization of drug repositioning.
Collapse
|
47
|
Zhu Y, Che C, Jin B, Zhang N, Su C, Wang F. Knowledge-driven drug repurposing using a comprehensive drug knowledge graph. Health Informatics J 2020; 26:2737-2750. [DOI: 10.1177/1460458220937101] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Due to the huge costs associated with new drug discovery and development, drug repurposing has become an important complement to the traditional de novo approach. With the increasing number of public databases and the rapid development of analytical methodologies, computational approaches have gained great momentum in the field of drug repurposing. In this study, we introduce an approach to knowledge-driven drug repurposing based on a comprehensive drug knowledge graph. We design and develop a drug knowledge graph by systematically integrating multiple drug knowledge bases. We describe path- and embedding-based data representation methods of transforming information in the drug knowledge graph into valuable inputs to allow machine learning models to predict drug repurposing candidates. The evaluation demonstrates that the knowledge-driven approach can produce high predictive results for known diabetes mellitus treatments by only using treatment information on other diseases. In addition, this approach supports exploratory investigation through the review of meta paths that connect drugs with diseases. This knowledge-driven approach is an effective drug repurposing strategy supporting large-scale prediction and the investigation of case studies.
Collapse
Affiliation(s)
| | | | - Bo Jin
- Dalian University of Technology, China
| | | | | | | |
Collapse
|
48
|
Current trends in cancer immunotherapy: a literature-mining analysis. Cancer Immunol Immunother 2020; 69:2425-2439. [PMID: 32556496 DOI: 10.1007/s00262-020-02630-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022]
Abstract
Cancer immunotherapy is a rapidly growing field that is completely transforming oncology care. Mining this knowledge base for biomedically important information is becoming increasingly challenging, due to the expanding number of scientific publications, and the dynamic evolution of this subject with time. In this study, we have employed a literature-mining approach that was used to analyze the cancer immunotherapy-related publications listed in PubMed and quantify emerging trends. A total of 93,033 publications published in 5055 journals have been retrieved, and 141 meaningful topics have been identified, which were further classified into eight distinct categories. Statistical analysis indicates a mean annual increase in the number of published papers of approximately 8% in the last 20 years. The research topics that exhibited the highest trends included "immune checkpoint inhibitors," "tumor microenvironment," "HPV vaccination," "CAR T-cells," and "gene mutations/tumor profiling." The top identified cancer types included "lung," "colorectal," and "breast cancer," and a shift in popularity from hematological to solid tumors was observed. As regards clinical research, a transition from early phase clinical trials to randomized control trials was recorded, indicating that the field is entering a more advanced phase of development. Overall, this mining approach provided an unbiased analysis of the cancer immunotherapy literature in a time-conserving and scale-efficient manner.
Collapse
|
49
|
Wu Y, Warner JL, Wang L, Jiang M, Xu J, Chen Q, Nian H, Dai Q, Du X, Yang P, Denny JC, Liu H, Xu H. Discovery of Noncancer Drug Effects on Survival in Electronic Health Records of Patients With Cancer: A New Paradigm for Drug Repurposing. JCO Clin Cancer Inform 2020; 3:1-9. [PMID: 31141421 PMCID: PMC6693869 DOI: 10.1200/cci.19.00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Drug development is becoming increasingly expensive and time consuming. Drug repurposing is one potential solution to accelerate drug discovery. However, limited research exists on the use of electronic health record (EHR) data for drug repurposing, and most published studies have been conducted in a hypothesis-driven manner that requires a predefined hypothesis about drugs and new indications. Whether EHRs can be used to detect drug repurposing signals is not clear. We want to demonstrate the feasibility of mining large, longitudinal EHRs for drug repurposing by detecting candidate noncancer drugs that can potentially be used for the treatment of cancer. PATIENTS AND METHODS By linking cancer registry data to EHRs, we identified 43,310 patients with cancer treated at Vanderbilt University Medical Center (VUMC) and 98,366 treated at the Mayo Clinic. We assessed the effect of 146 noncancer drugs on cancer survival using VUMC EHR data and sought to replicate significant associations (false discovery rate < .1) using the identical approach with Mayo Clinic EHR data. To evaluate replicated signals further, we reviewed the biomedical literature and clinical trials on cancers for corroborating evidence. RESULTS We identified 22 drugs from six drug classes (statins, proton pump inhibitors, angiotensin-converting enzyme inhibitors, β-blockers, nonsteroidal anti-inflammatory drugs, and α-1 blockers) associated with improved overall cancer survival (false discovery rate < .1) from VUMC; nine of the 22 drug associations were replicated at the Mayo Clinic. Literature and cancer clinical trial evaluations also showed very strong evidence to support the repurposing signals from EHRs. CONCLUSION Mining of EHRs for drug exposure–mediated survival signals is feasible and identifies potential candidates for antineoplastic repurposing. This study sets up a new model of mining EHRs for drug repurposing signals.
Collapse
Affiliation(s)
- Yonghui Wu
- The University of Texas Health Science Center at Houston, Houston, TX.,University of Florida, Gainesville, FL
| | | | | | - Min Jiang
- The University of Texas Health Science Center at Houston, Houston, TX
| | - Jun Xu
- The University of Texas Health Science Center at Houston, Houston, TX
| | - Qingxia Chen
- Vanderbilt University Medical Center, Nashville, TN
| | - Hui Nian
- Vanderbilt University Medical Center, Nashville, TN
| | - Qi Dai
- Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Xianglin Du
- The University of Texas Health Science Center at Houston, Houston, TX
| | | | | | | | - Hua Xu
- The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
50
|
Kilicoglu H, Rosemblat G, Fiszman M, Shin D. Broad-coverage biomedical relation extraction with SemRep. BMC Bioinformatics 2020; 21:188. [PMID: 32410573 PMCID: PMC7222583 DOI: 10.1186/s12859-020-3517-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the era of information overload, natural language processing (NLP) techniques are increasingly needed to support advanced biomedical information management and discovery applications. In this paper, we present an in-depth description of SemRep, an NLP system that extracts semantic relations from PubMed abstracts using linguistic principles and UMLS domain knowledge. We also evaluate SemRep on two datasets. In one evaluation, we use a manually annotated test collection and perform a comprehensive error analysis. In another evaluation, we assess SemRep's performance on the CDR dataset, a standard benchmark corpus annotated with causal chemical-disease relationships. RESULTS A strict evaluation of SemRep on our manually annotated dataset yields 0.55 precision, 0.34 recall, and 0.42 F 1 score. A relaxed evaluation, which more accurately characterizes SemRep performance, yields 0.69 precision, 0.42 recall, and 0.52 F 1 score. An error analysis reveals named entity recognition/normalization as the largest source of errors (26.9%), followed by argument identification (14%) and trigger detection errors (12.5%). The evaluation on the CDR corpus yields 0.90 precision, 0.24 recall, and 0.38 F 1 score. The recall and the F 1 score increase to 0.35 and 0.50, respectively, when the evaluation on this corpus is limited to sentence-bound relationships, which represents a fairer evaluation, as SemRep operates at the sentence level. CONCLUSIONS SemRep is a broad-coverage, interpretable, strong baseline system for extracting semantic relations from biomedical text. It also underpins SemMedDB, a literature-scale knowledge graph based on semantic relations. Through SemMedDB, SemRep has had significant impact in the scientific community, supporting a variety of clinical and translational applications, including clinical decision making, medical diagnosis, drug repurposing, literature-based discovery and hypothesis generation, and contributing to improved health outcomes. In ongoing development, we are redesigning SemRep to increase its modularity and flexibility, and addressing weaknesses identified in the error analysis.
Collapse
Affiliation(s)
- Halil Kilicoglu
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, 8600 Rockville Pike, Bethesda, 20894 MD USA
- University of Illinois at Urbana-Champaign, School of Information Sciences, 501 E Daniel Street, Champaign, 61820 IL USA
| | - Graciela Rosemblat
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, 8600 Rockville Pike, Bethesda, 20894 MD USA
| | | | - Dongwook Shin
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, 8600 Rockville Pike, Bethesda, 20894 MD USA
| |
Collapse
|