1
|
Zhao L, Zhang M, Li Q, Wang X, Lu J, Han Y, Cai Y. Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases. Neural Regen Res 2025; 20:2373-2381. [PMID: 39359094 DOI: 10.4103/nrr.nrr-d-23-01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00027/figure1/v/2024-09-30T120553Z/r/image-tiff Several promising plasma biomarker proteins, such as amyloid-β (Aβ), tau, neurofilament light chain, and glial fibrillary acidic protein, are widely used for the diagnosis of neurodegenerative diseases. However, little is known about the long-term stability of these biomarker proteins in plasma samples stored at -80°C. We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort. Plasma samples from 229 cognitively unimpaired individuals, encompassing healthy controls and those experiencing subjective cognitive decline, as well as 99 patients with cognitive impairment, comprising those with mild cognitive impairment and dementia, were acquired from the Sino Longitudinal Study on Cognitive Decline project. These samples were stored at -80°C for up to 6 years before being used in this study. Our results showed that plasma levels of Aβ42, Aβ40, neurofilament light chain, and glial fibrillary acidic protein were not significantly correlated with sample storage time. However, the level of total tau showed a negative correlation with sample storage time. Notably, in individuals without cognitive impairment, plasma levels of total protein and tau phosphorylated protein threonine 181 (p-tau181)also showed a negative correlation with sample storage time. This was not observed in individuals with cognitive impairment. Consequently, we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time. Therefore, caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases, such as Alzheimer's disease. Furthermore, in cohort studies, it is important to consider the impact of storage time on the overall results.
Collapse
Affiliation(s)
- Lifang Zhao
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Mingkai Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qimeng Li
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xuemin Wang
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative diseases, Ministry of Education, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan Province, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Gaoke Innovation Center, Shenzhen, Guangdong Province, China
| | - Yanning Cai
- Department of Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory of Neurodegenerative diseases, Ministry of Education, Beijing, China
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Spitz G, Hicks AJ, McDonald SJ, Dore V, Krishnadas N, O’Brien TJ, O’Brien WT, Vivash L, Law M, Ponsford JL, Rowe C, Shultz SR. Plasma biomarkers in chronic single moderate-severe traumatic brain injury. Brain 2024; 147:3690-3701. [PMID: 39315931 PMCID: PMC11531850 DOI: 10.1093/brain/awae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-β (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
| | - Vincent Dore
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha Krishnadas
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Terence J O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William T O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Rowe
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- The Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
3
|
Feizpour A, Doecke JD, Doré V, Krishnadas N, Huang K, Bourgeat P, Laws SM, Fowler C, Robertson J, Mackintosh L, Ayton S, Martins R, Rainey-Smith SR, Taddei K, Ward L, Stage E, Bannon AW, Masters CL, Fripp J, Villemagne VL, Rowe CC. Detection and staging of Alzheimer's disease by plasma pTau217 on a high throughput immunoassay platform. EBioMedicine 2024; 109:105405. [PMID: 39437657 PMCID: PMC11536028 DOI: 10.1016/j.ebiom.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Plasma phospho-tau 217 (pTau217) assays can accurately detect Alzheimer's disease (AD) pathology, but clinical application is limited by the need for specialised equipment. This study tests the performance of a plasma pTau217 assay performed on the Lumipulse-G® platform, that is in widespread clinical use, for selecting patients for therapy based on β-amyloid (Aβ) status and tau staging. METHODS Participants included 388 individuals with 18F-NAV4694 Aβ-PET and 18F-MK6240 tau-PET. Association of pTau217 with PET was examined using Spearman's correlation. Discriminative performance for Aβ and tau PET status as well as tau staging was assessed using Receiver Operating Characteristic analysis. FINDINGS Plasma pTau217 had a high correlation with both Aβ Centiloid (r = 0.76) and tau SUVRmeta-temporal (r = 0.78). Area under curve (AUC) was 0.93 for Aβ- vs Aβ+ and 0.94 for tau- vs tau+. Applying one threshold (Youden's index), pTau217 was 87% accurate in classification of participants to Aβ- vs Aβ+. Applying two thresholds to classify participants into Low, Indeterminate, and High zones, 17.8% had Indeterminate results and among Low/High zone participants, 92% were correctly classified as Aβ- or Aβ+. The assay accurately discriminated moderate/high neocortical tau from no tau or tau limited to mesial-temporal lobe (AUC 0.97) and high neocortical tau from all others (AUC 0.94). INTERPRETATION Plasma pTau217, measured by the widely-available, fully-automated Lumipulse®, was a strong predictor of both Aβ and tau PET status and demonstrated strong predictive power in identifying individuals likely to benefit the most from anti-Aβ treatments. FUNDING NHMRC grants 1132604, 1140853, 1152623 and AbbVie.
Collapse
Affiliation(s)
- Azadeh Feizpour
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
| | - James David Doecke
- The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia; The Australian e-Health Research Centre, CSIRO, Melbourne, Victoria, Australia
| | - Natasha Krishnadas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Kun Huang
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Simon Matthew Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia; Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Joanne Robertson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucy Mackintosh
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ralph Martins
- Australian Alzheimer's Research Foundation, Nedlands, Perth, Australia
| | - Stephanie Ruth Rainey-Smith
- Australian Alzheimer's Research Foundation, Nedlands, Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Kevin Taddei
- Australian Alzheimer's Research Foundation, Nedlands, Perth, Australia
| | - Larry Ward
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Colin Louis Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Victor Luis Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher Cleon Rowe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Lehmann S, Schraen-Maschke S, Vidal JS, Delaby C, Buee L, Blanc F, Paquet C, Allinquant B, Bombois S, Gabelle A, Hanon O. Clinical value of plasma ALZpath pTau217 immunoassay for assessing mild cognitive impairment. J Neurol Neurosurg Psychiatry 2024; 95:1046-1053. [PMID: 38658136 PMCID: PMC11503049 DOI: 10.1136/jnnp-2024-333467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Among plasma biomarkers for Alzheimer's disease (AD), pTau181 and pTau217 are the most promising. However, transition from research to routine clinical use will require confirmation of clinical performance in prospective cohorts and evaluation of cofounding factors. METHOD pTau181 and pTau217 were quantified using, Quanterix and ALZpath, SIMOA assays in the well-characterised prospective multicentre BALTAZAR (Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk) cohort of participants with mild cognitive impairment (MCI). RESULTS Among participants with MCI, 55% were Aβ+ and 29% developed dementia due to AD. pTau181 and pTau217 were higher in the Aβ+ population with fold change of 1.5 and 2.7, respectively. MCI that converted to AD also had higher levels than non-converters, with HRs of 1.38 (1.26 to 1.51) for pTau181 compared with 8.22 (5.45 to 12.39) for pTau217. The area under the curve for predicting Aβ+ was 0.783 (95% CI 0.721 to 0.836; cut-point 2.75 pg/mL) for pTau181 and 0.914 (95% CI 0.868 to 0.948; cut-point 0.44 pg/mL) for pTau217. The high predictive power of pTau217 was not improved by adding age, sex and apolipoprotein E ε4 (APOEε4) status, in a logistic model. Age, APOEε4 and renal dysfunction were associated with pTau levels, but the clinical performance of pTau217 was only marginally altered by these factors. Using a two cut-point approach, a 95% positive predictive value for Aβ+ corresponded to pTau217 >0.8 pg/mL and a 95% negative predictive value at <0.23 pg/mL. At these two cut-points, the percentages of MCI conversion were 56.8% and 9.7%, respectively, while the annual rates of decline in Mini-Mental State Examination were -2.32 versus -0.65. CONCLUSIONS Plasma pTau217 and pTau181 both correlate with AD, but the fold change in pTau217 makes it better to diagnose cerebral amyloidosis, and predict cognitive decline and conversion to AD dementia.
Collapse
Affiliation(s)
- Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Susanna Schraen-Maschke
- Université Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000, Lille, France
| | - Jean-Sébastien Vidal
- Université Paris Cité, EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, F-75013, Paris, Île-de-France, France
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luc Buee
- Université Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000, Lille, France
| | - Frédéric Blanc
- Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Memory Resource and Research Centre of Strasbourg/Colmar, French National Centre for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS)/Neurocrypto, F-67000, Strasbourg, France
| | - Claire Paquet
- Université Paris Cité, GHU APHP Nord Lariboisière Fernand Widal, Centre de Neurologie Cognitive, F-75010, Paris, France
| | - Bernadette Allinquant
- UMR-S1266, Université Paris Cité, Institute of Psychiatry and Neuroscience, Inserm, Paris, France
| | - Stéphanie Bombois
- Université Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000, Lille, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, Paris, France
| | - Audrey Gabelle
- Université de Montpellier, Memory Research and Resources center, department of Neurology, Inserm INM NeuroPEPs team, F-34000, Montpellier, France
| | - Olivier Hanon
- Université Paris Cité, EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, F-75013, Paris, Île-de-France, France
| |
Collapse
|
5
|
Lu Y, Pike JR, Chen J, Walker KA, Sullivan KJ, Thyagarajan B, Mielke MM, Lutsey PL, Knopman D, Gottesman RF, Sharrett AR, Coresh J, Mosley TH, Palta P. Changes in Alzheimer Disease Blood Biomarkers and Associations With Incident All-Cause Dementia. JAMA 2024; 332:1258-1269. [PMID: 39068543 PMCID: PMC11284635 DOI: 10.1001/jama.2024.6619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/29/2024] [Indexed: 07/30/2024]
Abstract
Importance Plasma biomarkers show promise for identifying Alzheimer disease (AD) neuropathology and neurodegeneration, but additional examination among diverse populations and throughout the life course is needed. Objective To assess temporal plasma biomarker changes and their association with all-cause dementia, overall and among subgroups of community-dwelling adults. Design, Setting, and Participants In 1525 participants from the US-based Atherosclerosis Risk in Communities (ARIC) study, plasma biomarkers were measured using stored specimens collected in midlife (1993-1995, mean age 58.3 years) and late life (2011-2013, mean age 76.0 years; followed up to 2016-2019, mean age 80.7 years). Midlife risk factors (hypertension, diabetes, lipids, coronary heart disease, cigarette use, and physical activity) were assessed for their associations with change in plasma biomarkers over time. The associations of biomarkers with incident all-cause dementia were evaluated in a subpopulation (n = 1339) who were dementia-free in 2011-2013 and had biomarker measurements in 1993-1995 and 2011-2013. Exposure Plasma biomarkers of amyloid-β 42 to amyloid-β 40 (Aβ42:Aβ40) ratio, phosphorylated tau at threonine 181 (p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) were measured using the Quanterix Simoa platform. Main Outcomes and Measures Incident all-cause dementia was ascertained from January 1, 2012, through December 31, 2019, from neuropsychological assessments, semiannual participant or informant contact, and medical record surveillance. Results Among 1525 participants (mean age, 58.3 [SD, 5.1] years), 914 participants (59.9%) were women, and 394 participants (25.8%) were Black. A total of 252 participants (16.5%) developed dementia. Decreasing Aβ42:Aβ40 ratio and increasing p-tau181, NfL, and GFAP were observed from midlife to late life, with more rapid biomarker changes among participants carrying the apolipoprotein E epsilon 4 (APOEε4) allele. Midlife hypertension was associated with a 0.15-SD faster NfL increase and a 0.08-SD faster GFAP increase per decade; estimates for midlife diabetes were a 0.11-SD faster for NfL and 0.15-SD faster for GFAP. Only AD-specific biomarkers in midlife demonstrated long-term associations with late-life dementia (hazard ratio per SD lower Aβ42:Aβ40 ratio, 1.11; 95% CI, 1.02-1.21; per SD higher p-tau181, 1.15; 95% CI, 1.06-1.25). All plasma biomarkers in late life had statistically significant associations with late-life dementia, with NfL demonstrating the largest association (1.92; 95% CI, 1.72-2.14). Conclusions and Relevance Plasma biomarkers of AD neuropathology, neuronal injury, and astrogliosis increase with age and are associated with known dementia risk factors. AD-specific biomarkers' association with dementia starts in midlife whereas late-life measures of AD, neuronal injury, and astrogliosis biomarkers are all associated with dementia.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - James Russell Pike
- Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York
- Optimal Aging Institute, New York University Grossman School of Medicine, New York
| | - Jinyu Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, Maryland
| | - Kevin J. Sullivan
- Department of Medicine, MIND Center, University of Mississippi Medical Center, Jackson
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Michelle M. Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, Maryland
| | - A. Richey Sharrett
- Department of Medicine, MIND Center, University of Mississippi Medical Center, Jackson
| | - Josef Coresh
- Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York
- Optimal Aging Institute, New York University Grossman School of Medicine, New York
| | - Thomas H. Mosley
- Department of Medicine, MIND Center, University of Mississippi Medical Center, Jackson
| | - Priya Palta
- Department of Neurology, University of North Carolina at Chapel Hill
| |
Collapse
|
6
|
Mielke MM, Anderson M, Ashford JW, Jeromin A, Lin PJ, Rosen A, Tyrone J, VandeVrede L, Willis D, Hansson O, Khachaturian AS, Schindler SE, Weiss J, Batrla R, Bozeat S, Dwyer JR, Holzapfel D, Jones DR, Murray JF, Partrick KA, Scholler E, Vradenburg G, Young D, Braunstein JB, Burnham SC, de Oliveira FF, Hu YH, Mattke S, Merali Z, Monane M, Sabbagh MN, Shobin E, Weiner MW, Udeh-Momoh CT. Considerations for widespread implementation of blood-based biomarkers of Alzheimer's disease. Alzheimers Dement 2024. [PMID: 39369283 DOI: 10.1002/alz.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 10/07/2024]
Abstract
Diagnosing Alzheimer's disease (AD) poses significant challenges to health care, often resulting in delayed or inadequate patient care. The clinical integration of blood-based biomarkers (BBMs) for AD holds promise in enabling early detection of pathology and timely intervention. However, several critical considerations, such as the lack of consistent guidelines for assessing cognition, limited understanding of BBM test characteristics, insufficient evidence on BBM performance across diverse populations, and the ethical management of test results, must be addressed for widespread clinical implementation of BBMs in the United States. The Global CEO Initiative on Alzheimer's Disease BBM Workgroup convened to address these challenges and provide recommendations that underscore the importance of evidence-based guidelines, improved training for health-care professionals, patient empowerment through informed decision making, and the necessity of community-based studies to understand BBM performance in real-world populations. Multi-stakeholder engagement is essential to implement these recommendations and ensure credible guidance and education are accessible to all stakeholders.
Collapse
Affiliation(s)
- Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, California, USA
| | | | - Pei-Jung Lin
- Center for the Evaluation of Value and Risk in Health Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
| | - Allyson Rosen
- Palo Alto Veterans Affairs Medical Center, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Deanna Willis
- Department of Family Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Suzanne E Schindler
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joan Weiss
- US Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Workforce, Rockville, Maryland, USA
| | | | | | - John R Dwyer
- Global Alzheimer's Platform Foundation, Washington, District of Columbia, USA
| | - Drew Holzapfel
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, Pennsylvania, USA
- Davos Alzheimer's Collaborative, Philadelphia, Pennsylvania, USA
| | | | - James F Murray
- Davos Alzheimer's Collaborative, Philadelphia, Pennsylvania, USA
| | - Katherine A Partrick
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, Pennsylvania, USA
| | - Emily Scholler
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, Pennsylvania, USA
- Davos Alzheimer's Collaborative, Philadelphia, Pennsylvania, USA
| | - George Vradenburg
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, Pennsylvania, USA
- Davos Alzheimer's Collaborative, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Soeren Mattke
- The USC Brain Health Observatory, University of Southern California, Los Angeles, California, USA
| | - Zul Merali
- Brain and Mind Institute, Aga Khan University, Nairobi, Kenya
| | | | | | | | - Michael W Weiner
- Departments of Radiology and Biomedical Imaging, Medicine, Psychiatry, and Neurology, University of California, San Francisco, California, USA
| | - Chinedu T Udeh-Momoh
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Brain and Mind Institute, Aga Khan University, Nairobi, Kenya
| |
Collapse
|
7
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
8
|
Della Monica C, Revell V, Atzori G, Laban R, Skene SS, Heslegrave A, Hassanin H, Nilforooshan R, Zetterberg H, Dijk DJ. P-tau217 and other blood biomarkers of dementia: variation with time of day. Transl Psychiatry 2024; 14:373. [PMID: 39271655 PMCID: PMC11399374 DOI: 10.1038/s41398-024-03084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Plasma biomarkers of dementia, including phosphorylated tau (p-tau217), offer promise as tools for diagnosis, stratification for clinical trials, monitoring disease progression, and assessing the success of interventions in those living with Alzheimer's disease. However, currently, it is unknown whether these dementia biomarker levels vary with the time of day, which could have implications for their clinical value. In two protocols, we studied 38 participants (70.8 ± 7.6 years; mean ± SD) in a 27-h laboratory protocol with either two samples taken 12 h apart or 3-hourly blood sampling for 24 h in the presence of a sleep-wake cycle. The study population comprised people living with mild Alzheimer's disease (PLWA, n = 8), partners/caregivers of PLWA (n = 6) and cognitively intact older adults (n = 24). Single-molecule array technology was used to measure phosphorylated tau (p-tau217) (ALZpath), amyloid-beta 40 (Aβ40), amyloid-beta 42 (Aβ42), glial fibrillary acidic protein, and neurofilament light (NfL) (Neuro 4-Plex E). Analysis with a linear mixed model (SAS, PROC MIXED) revealed a significant effect of time of day for p-tau217, Aβ40, Aβ42, and NfL, and a significant effect of participant group for p-tau217. For p-tau217, the lowest levels were observed in the morning upon waking and the highest values in the afternoon/early evening. The magnitude of the diurnal variation for p-tau217 was similar to the reported increase in p-tau217 over one year in amyloid-β-positive mild cognitively impaired people. Currently, the factors driving this diurnal variation are unknown and could be related to sleep, circadian mechanisms, activity, posture, or meals. Overall, this work implies that the time of day of sample collection may be relevant in the implementation and interpretation of plasma biomarkers in dementia research and care.
Collapse
Affiliation(s)
- Ciro Della Monica
- Surrey Sleep Research Centre, University of Surrey, Surrey, UK
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London and University of Surrey, Surrey, UK
| | - Victoria Revell
- Surrey Sleep Research Centre, University of Surrey, Surrey, UK
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London and University of Surrey, Surrey, UK
| | - Giuseppe Atzori
- Surrey Sleep Research Centre, University of Surrey, Surrey, UK
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London and University of Surrey, Surrey, UK
| | | | - Simon S Skene
- Surrey Clinical Trials Unit, University of Surrey, Surrey, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Hana Hassanin
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London and University of Surrey, Surrey, UK
- Surrey Clinical Research Facility, University of Surrey, Surrey, UK
- NIHR Royal Surrey CRF, Guildford, UK
| | - Ramin Nilforooshan
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London and University of Surrey, Surrey, UK
- Surrey and Borders Partnership NHS Foundation Trust Surrey, Surrey, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Surrey, UK.
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London and University of Surrey, Surrey, UK.
| |
Collapse
|
9
|
Hunter TR, Santos LE, Tovar-Moll F, De Felice FG. Alzheimer's disease biomarkers and their current use in clinical research and practice. Mol Psychiatry 2024:10.1038/s41380-024-02709-z. [PMID: 39232196 DOI: 10.1038/s41380-024-02709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
While blood-based tests are readily available for various conditions, including cardiovascular diseases, type 2 diabetes, and common cancers, Alzheimer's disease (AD) and other neurodegenerative diseases lack an early blood-based screening test that can be used in primary care. Major efforts have been made towards the investigation of approaches that may lead to minimally invasive, cost-effective, and reliable tests capable of measuring brain pathological status. Here, we review past and current technologies developed to investigate biomarkers of AD, including novel blood-based approaches and the more established cerebrospinal fluid and neuroimaging biomarkers of disease. The utility of blood as a source of AD-related biomarkers in both clinical practice and interventional trials is discussed, supported by a comprehensive list of clinical trials for AD drugs and interventions that list biomarkers as primary or secondary endpoints. We highlight that identifying individuals in early preclinical AD using blood-based biomarkers will improve clinical trials and the optimization of therapeutic treatments as they become available. Lastly, we discuss challenges that remain in the field and address new approaches being developed, such as the examination of cargo packaged within extracellular vesicles of neuronal origin isolated from peripheral blood.
Collapse
Affiliation(s)
- Tai R Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Luis E Santos
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
| | | | - Fernanda G De Felice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
- Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Dyer AH, Dolphin H, O'Connor A, Morrison L, Sedgwick G, Young C, Killeen E, Gallagher C, McFeely A, Connolly E, Davey N, Claffey P, Doyle P, Lyons S, Gaffney C, Ennis R, McHale C, Joseph J, Knight G, Kelly E, O'Farrelly C, Fallon A, O'Dowd S, Bourke NM, Kennelly SP. Performance of plasma p-tau217 for the detection of amyloid-β positivity in a memory clinic cohort using an electrochemiluminescence immunoassay. Alzheimers Res Ther 2024; 16:186. [PMID: 39160628 PMCID: PMC11331802 DOI: 10.1186/s13195-024-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Plasma p-tau217 has emerged as the most promising blood-based marker (BBM) for the detection of Alzheimer Disease (AD) pathology, yet few studies have evaluated plasma p-tau217 performance in memory clinic settings. We examined the performance of plasma p-tau217 for the detection of AD using a high-sensitivity immunoassay in individuals undergoing diagnostic lumbar puncture (LP). METHODS Paired plasma and cerebrospinal fluid (CSF) samples were analysed from the TIMC-BRAiN cohort. Amyloid (Aβ) and Tau (T) pathology were classified based on established cut-offs for CSF Aβ42 and CSF p-tau181 respectively. High-sensitivity electrochemiluminescence (ECL) immunoassays were performed on paired plasma/CSF samples for p-tau217, p-tau181, Glial Fibrillary Acidic Protein (GFAP), Neurofilament Light (NfL) and total tau (t-tau). Biomarker performance was evaluated using Receiver-Operating Curve (ROC) and Area-Under-the-Curve (AUC) analysis. RESULTS Of 108 participants (age: 69 ± 6.5 years; 54.6% female) with paired samples obtained at time of LP, 64.8% (n = 70/108) had Aβ pathology detected (35 with Mild Cognitive Impairment and 35 with mild dementia). Plasma p-tau217 was over three-fold higher in Aβ + (12.4 pg/mL; 7.3-19.2 pg/mL) vs. Aβ- participants (3.7 pg/mL; 2.8-4.1 pg/mL; Mann-Whitney U = 230, p < 0.001). Plasma p-tau217 exhibited excellent performance for the detection of Aβ pathology (AUC: 0.91; 95% Confidence Interval [95% CI]: 0.86-0.97)-greater than for T pathology (AUC: 0.83; 95% CI: 0.75-0.90; z = 1.75, p = 0.04). Plasma p-tau217 outperformed plasma p-tau181 for the detection of Aβ pathology (z = 3.24, p < 0.001). Of the other BBMs, only plasma GFAP significantly differed by Aβ status which significantly correlated with plasma p-tau217 in Aβ + (but not in Aβ-) individuals. Application of a two-point threshold at 95% and 97.5% sensitivities & specificities may have enabled avoidance of LP in 58-68% of cases. CONCLUSIONS Plasma p-tau217 measured using a high-sensitivity ECL immunoassay demonstrated excellent performance for detection of Aβ pathology in a real-world memory clinic cohort. Moving forward, clinical use of plasma p-tau217 to detect AD pathology may substantially reduce need for confirmatory diagnostic testing for AD pathology with diagnostic LP in specialist memory services.
Collapse
Affiliation(s)
- Adam H Dyer
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland.
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
| | - Helena Dolphin
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Laura Morrison
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gavin Sedgwick
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Conor Young
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Emily Killeen
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Conal Gallagher
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Aoife McFeely
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Eimear Connolly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Naomi Davey
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Paul Claffey
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Paddy Doyle
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Shane Lyons
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
| | - Christine Gaffney
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
| | - Ruth Ennis
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Cathy McHale
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Jasmine Joseph
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Graham Knight
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Emmet Kelly
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aoife Fallon
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sean O'Dowd
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
| | - Nollaig M Bourke
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sean P Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Lai R, Li B, Bishnoi R. P-tau217 as a Reliable Blood-Based Marker of Alzheimer's Disease. Biomedicines 2024; 12:1836. [PMID: 39200300 PMCID: PMC11351463 DOI: 10.3390/biomedicines12081836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Amyloid plaques and tau tangles are the hallmark pathologic features of Alzheimer's disease (AD). Traditionally, these changes are identified in vivo via cerebrospinal fluid (CSF) analysis or positron emission tomography (PET) scans. However, these methods are invasive, expensive, and resource-intensive. To address these limitations, there has been ongoing research over the past decade to identify blood-based markers for AD. Despite the challenges posed by their extremely low concentrations, recent advances in mass spectrometry and immunoassay techniques have made it feasible to detect these blood markers of amyloid and tau deposition. Phosphorylated tau (p-tau) has shown greater promise in reflecting amyloid pathology as evidenced by CSF and PET positivity. Various isoforms of p-tau, distinguished by their differential phosphorylation sites, have been recognized for their ability to identify amyloid-positive individuals. Notable examples include p-tau181, p-tau217, and p-tau235. Among these, p-tau217 has emerged as a superior and reliable marker of amyloid positivity and, thus, AD in terms of accuracy of diagnosis and ability for early prognosis. In this narrative review, we aim to elucidate the utility of p-tau217 as an AD marker, exploring its underlying basis, clinical diagnostic potential, and relevance in clinical care and trials.
Collapse
Affiliation(s)
- Roy Lai
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA (B.L.)
| | - Brenden Li
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA (B.L.)
| | - Ram Bishnoi
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL 33613, USA
- USF Health Byrd Alzheimer’s Center and Research Institute, Tampa, FL 33613, USA
- USF Memory Disorder Clinic, Tampa, FL 33613, USA
| |
Collapse
|
12
|
Eastwood SM, Meyer MR, Kirmess KM, Wente-Roth TL, Irvin F, Holubasch MS, Verghese PB, West T, Braunstein JB, Yarasheski KE, Contois JH. PrecivityAD2™ Blood Test: Analytical Validation of an LC-MS/MS Assay for Quantifying Plasma Phospho-tau217 and Non-Phospho-tau217 Peptide Concentrations That Are Used with Plasma Amyloid-β42/40 in a Multianalyte Assay with Algorithmic Analysis for Detecting Brain Amyloid Pathology. Diagnostics (Basel) 2024; 14:1739. [PMID: 39202226 PMCID: PMC11353612 DOI: 10.3390/diagnostics14161739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disorder that represents a major global public health concern. Traditionally, AD is diagnosed using cerebrospinal fluid biomarker analysis or brain imaging modalities. Recently, less burdensome, more widely available blood biomarker (BBM) assays for amyloid-beta (Aβ42/40) and phosphorylated-tau concentrations have been found to accurately identify the presence/absence of brain amyloid plaques and tau tangles and have helped to streamline AD diagnosis. However, few BBMs have been rigorously analytically validated. Herein, we report the analytical validation of a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) multiplex method for quantifying plasma phosphorylated-tau217 (p-tau217) and non-phosphorylated-tau217 (np-tau217) peptide concentrations. We combined the p-tau217/np-tau217 concentrations ratio (%p-tau217) and the previously validated LC-MS/MS multiplex assay for plasma Aβ42/40 into a new multianalyte assay with algorithmic analysis (MAAA; PrecivityAD2™ test) that identifies brain amyloid status based on brain amyloid positron emission tomography. We found (a) the %p-tau217 assay is precise, accurate, sensitive, and linear over a wide analytical measurement range, and free from carryover and interference; (b) the pre-analytical specimen collection, processing, storage, and shipping conditions that maintain plasma tau peptide stability; and (c) using the measured analytical imprecision for plasma Aβ42/40 and p-tau217/np-tau217 levels in a worst-case scenario model, the PrecivityAD2 test algorithm for amyloid pathology classification changed for only 3.5% of participants from brain amyloid positive to negative, or from negative to positive. The plasma sample preparation and LC-MS/MS methods underlying the PrecivityAD2 test are suitable for use in the clinical laboratory and valid for the test's intended purpose: to aid in the diagnostic evaluation of individuals aged 55 and older with signs or symptoms of mild cognitive impairment or dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kevin E. Yarasheski
- C2N Diagnostics, 4340 Duncan Avenue, Suite 110, Saint Louis, MO 63110, USA; (S.M.E.); (M.R.M.); (K.M.K.); (T.L.W.-R.); (F.I.); (M.S.H.); (P.B.V.); (T.W.); (J.B.B.); (J.H.C.)
| | | |
Collapse
|
13
|
Abdul Manap AS, Almadodi R, Sultana S, Sebastian MG, Kavani KS, Lyenouq VE, Shankar A. Alzheimer's disease: a review on the current trends of the effective diagnosis and therapeutics. Front Aging Neurosci 2024; 16:1429211. [PMID: 39185459 PMCID: PMC11341404 DOI: 10.3389/fnagi.2024.1429211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
The most prevalent cause of dementia is Alzheimer's disease. Cognitive decline and accelerating memory loss characterize it. Alzheimer's disease advances sequentially, starting with preclinical stages, followed by mild cognitive and/or behavioral impairment, and ultimately leading to Alzheimer's disease dementia. In recent years, healthcare providers have been advised to make an earlier diagnosis of Alzheimer's, prior to individuals developing Alzheimer's disease dementia. Regrettably, the identification of early-stage Alzheimer's disease in clinical settings can be arduous due to the tendency of patients and healthcare providers to disregard symptoms as typical signs of aging. Therefore, accurate and prompt diagnosis of Alzheimer's disease is essential in order to facilitate the development of disease-modifying and secondary preventive therapies prior to the onset of symptoms. There has been a notable shift in the goal of the diagnosis process, transitioning from merely confirming the presence of symptomatic AD to recognizing the illness in its early, asymptomatic phases. Understanding the evolution of disease-modifying therapies and putting effective diagnostic and therapeutic management into practice requires an understanding of this concept. The outcomes of this study will enhance in-depth knowledge of the current status of Alzheimer's disease's diagnosis and treatment, justifying the necessity for the quest for potential novel biomarkers that can contribute to determining the stage of the disease, particularly in its earliest stages. Interestingly, latest clinical trial status on pharmacological agents, the nonpharmacological treatments such as behavior modification, exercise, and cognitive training as well as alternative approach on phytochemicals as neuroprotective agents have been covered in detailed.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Reema Almadodi
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Shirin Sultana
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | | | | | - Vanessa Elle Lyenouq
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Aravind Shankar
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| |
Collapse
|
14
|
Bougea A, Gourzis P. Biomarker-Based Precision Therapy for Alzheimer's Disease: Multidimensional Evidence Leading a New Breakthrough in Personalized Medicine. J Clin Med 2024; 13:4661. [PMID: 39200803 PMCID: PMC11355840 DOI: 10.3390/jcm13164661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
(1) Background: Alzheimer's disease (AD) is a worldwide neurodegenerative disorder characterized by the buildup of abnormal proteins in the central nervous system and cognitive decline. Since no radical therapy exists, only symptomatic treatments alleviate symptoms temporarily. In this review, we will explore the latest advancements in precision medicine and biomarkers for AD, including their potential to revolutionize the way we diagnose and treat this devastating condition. (2) Methods: A literature search was performed combining the following Medical Subject Heading (MeSH) terms on PubMed: "Alzheimer's disease", "biomarkers", "APOE", "APP", "GWAS", "cerebrospinal fluid", "polygenic risk score", "Aβ42", "τP-181", " p-tau217", "ptau231", "proteomics", "total tau protein", and "precision medicine" using Boolean operators. (3) Results: Genome-wide association studies (GWAS) have identified numerous genetic variants associated with AD risk, while a transcriptomic analysis has revealed dysregulated gene expression patterns in the brains of individuals with AD. The proteomic and metabolomic profiling of biological fluids, such as blood, urine, and CSF, and neuroimaging biomarkers have also yielded potential biomarkers of AD that could be used for the early diagnosis and monitoring of disease progression. (4) Conclusion: By leveraging a combination of the above biomarkers, novel ultrasensitive immunoassays, mass spectrometry methods, and metabolomics, researchers are making significant strides towards personalized healthcare for individuals with AD.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Philippos Gourzis
- 1st Department of Psychiatry, University of Patras, 26504 Rio, Greece;
| |
Collapse
|
15
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Krawczuk D, Kulczyńska-Przybik A, Mroczko B. Clinical Application of Blood Biomarkers in Neurodegenerative Diseases-Present and Future Perspectives. Int J Mol Sci 2024; 25:8132. [PMID: 39125699 PMCID: PMC11311320 DOI: 10.3390/ijms25158132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases are a group of complex diseases characterized by a progressive loss of neurons and degeneration in different areas of the nervous system. They share similar mechanisms, such as neuroinflammation, oxidative stress, and mitochondrial injury, resulting in neuronal loss. One of the biggest challenges in diagnosing neurodegenerative diseases is their heterogeneity. Clinical symptoms are usually present in the advanced stages of the disease, thus it is essential to find optimal biomarkers that would allow early diagnosis. Due to the development of ultrasensitive methods analyzing proteins in other fluids, such as blood, huge progress has been made in the field of biomarkers for neurodegenerative diseases. The application of protein biomarker measurement has significantly influenced not only diagnosis but also prognosis, differentiation, and the development of new therapies, as it enables the recognition of early stages of disease in individuals with preclinical stages or with mild symptoms. Additionally, the introduction of biochemical markers into routine clinical practice may improve diagnosis and allow for a stratification group of people with higher risk, as well as an extension of well-being since a treatment could be started early. In this review, we focus on blood biomarkers, which could be potentially useful in the daily medical practice of selected neurodegenerative diseases.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
17
|
Orduña Dolado A, Stomrud E, Ashton NJ, Nilsson J, Quijano-Rubio C, Jethwa A, Brum WS, Brinkmalm Westman A, Zetterberg H, Blennow K, Janelidze S, Hansson O. Effects of time of the day at sampling on CSF and plasma levels of Alzheimer' disease biomarkers. Alzheimers Res Ther 2024; 16:132. [PMID: 38909218 PMCID: PMC11193266 DOI: 10.1186/s13195-024-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Studies suggest that cerebrospinal fluid (CSF) levels of amyloid-β (Aβ)42 and Aβ40 present a circadian rhythm. However sustained sampling of large volumes of CSF with indwelling intrathecal catheters used in most of these studies might have affected CSF dynamics and thereby confounded the observed fluctuations in the biomarker levels. METHODS We included 38 individuals with either normal (N = 20) or abnormal (N = 18) CSF Aβ42/Aβ40 levels at baseline. CSF and plasma were collected at two visits separated by an average of 53 days with lumbar punctures and venipunctures performed either in the morning or evening. At the first visit, sample collection was performed in the morning for 17 participants and the order was reversed for the remaining 21 participants. CSF and plasma samples were analyzed for Alzheimer' disease (AD) biomarkers, including Aβ42, Aβ40, GFAP, NfL p-tau181, p-tau217, p-tau231 and t-tau. CSF samples were also tested using mass spectrometry for 22 synaptic and endo-lysosomal proteins. RESULTS CSF Aβ42 (mean difference [MD], 0.21 ng/mL; p = 0.038), CSF Aβ40 (MD, 1.85 ng/mL; p < 0.001), plasma Aβ42 (MD, 1.65 pg/mL; p = 0.002) and plasma Aβ40 (MD, 0.01 ng/mL, p = 0.002) were increased by 4.2-17.0% in evening compared with morning samples. Further, CSF levels of 14 synaptic and endo-lysosomal proteins, including neurogranin and neuronal pentraxin-1, were increased by 4.5-13.3% in the evening samples (MDrange, 0.02-0.56 fmol/µl; p < 0.042). However, no significant differences were found between morning and evening levels for the Aβ42/Aβ40 ratio, different p-tau variants, GFAP and NfL. There were no significant interaction between sampling time and Aβ status for any of the biomarkers, except that CSF t-tau was increased (by 5.74%) in the evening samples compared to the morning samples in Aβ-positive (MD, 16.46 ng/ml; p = 0.009) but not Aβ-negative participants (MD, 1.89 ng/ml; p = 0.47). There were no significant interactions between sampling time and order in which samples were obtained. DISCUSSION Our findings provide evidence for diurnal fluctuations in Aβ peptide levels, both in CSF and plasma, while CSF and plasma p-tau, GFAP and NfL were unaffected. Importantly, Aβ42/Aβ40 ratio remained unaltered, suggesting that it is more suitable for implementation in clinical workup than individual Aβ peptides. Additionally, we show that CSF levels of many synaptic and endo-lysosomal proteins presented a diurnal rhythm, implying a build-up of neuronal activity markers during the day. These results will guide the development of unified sample collection procedures to avoid effects of diurnal variation for future implementation of AD biomarkers in clinical practice and drug trials.
Collapse
Affiliation(s)
- Anna Orduña Dolado
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden.
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden
- Memory Clinic, Skåne University Hospital, S:t Johannesgatan 8, Malmö, SE-20502, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ann Brinkmalm Westman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Paris Brain Institute, ICM, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden.
- Memory Clinic, Skåne University Hospital, S:t Johannesgatan 8, Malmö, SE-20502, Sweden.
| |
Collapse
|
18
|
Ossenkoppele R, Salvadó G, Janelidze S, Binette AP, Bali D, Karlsson L, Palmqvist S, Mattsson-Carlgren N, Stomrud E, Therriault J, Rahmouni N, Rosa-Neto P, Coomans EM, van de Giessen E, van der Flier WM, Teunissen CE, Jonaitis EM, Johnson SC, Villeneuve S, Benzinger TL, Schindler SE, Bateman RJ, Doecke JD, Doré V, Feizpour A, Masters CL, Rowe C, Wiste HJ, Petersen RC, Jack CR, Hansson O. Prediction of future cognitive decline among cognitively unimpaired individuals using measures of soluble phosphorylated tau or tau tangle pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.12.24308824. [PMID: 38947004 PMCID: PMC11213114 DOI: 10.1101/2024.06.12.24308824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Linda Karlsson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emma M. Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Erin M. Jonaitis
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | | | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tammie L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E. Schindler
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Randall J. Bateman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, United States
| | - James D. Doecke
- Australian eHealth Research Centre, CSIRO, Melbourne, Victoria, Australia
| | - Vincent Doré
- Australian eHealth Research Centre, CSIRO, Melbourne, Victoria, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Azadeh Feizpour
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather J. Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
19
|
Hristovska I, Binette AP, Kumar A, Gaiteri C, Karlsson L, Strandberg O, Janelidze S, van Westen D, Stomrud E, Palmqvist S, Ossenkoppele R, Mattsson-Carlgren N, Vogel JW, Hansson O. Identification of distinct and shared biomarker panels in different manifestations of cerebral small vessel disease through proteomic profiling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.10.24308599. [PMID: 38947084 PMCID: PMC11213103 DOI: 10.1101/2024.06.10.24308599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The pathophysiology underlying various manifestations of cerebral small vessel disease (cSVD) remains obscure. Using cerebrospinal fluid proximity extension assays and co-expression network analysis of 2,943 proteins, we found common and distinct proteomic signatures between white matter lesions (WML), microbleeds and infarcts measured in 856 living patients, and validated WML-associated proteins in three additional datasets. Proteins indicative of extracellular matrix dysregulation and vascular remodeling, including ELN, POSTN, CCN2 and MMP12 were elevated across all cSVD manifestations, with MMP12 emerging as an early cSVD indicator. cSVD-associated proteins formed a co-abundance network linked to metabolism and enriched in endothelial and arterial smooth muscle cells, showing elevated levels at early disease manifestations. Later disease stages involved changes in microglial proteins, associated with longitudinal WML progression, and changes in neuronal proteins mediating WML-associated cognitive decline. These findings provide an atlas of novel cSVD biomarkers and a promising roadmap for the next generation of cSVD therapeutics.
Collapse
Affiliation(s)
- Ines Hristovska
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Atul Kumar
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Chris Gaiteri
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- Rush University Alzheimer's Disease Center, Rush University, Chicago IL, USA
| | - Linda Karlsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University
- Imaging and Function, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
20
|
Penny LK, Lofthouse R, Arastoo M, Porter A, Palliyil S, Harrington CR, Wischik CM. Considerations for biomarker strategies in clinical trials investigating tau-targeting therapeutics for Alzheimer's disease. Transl Neurodegener 2024; 13:25. [PMID: 38773569 PMCID: PMC11107038 DOI: 10.1186/s40035-024-00417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD. There is a clear overlap of the purpose of biomarker use at each stage of clinical development between amyloid-targeting and tau-targeting clinical trials. However, there are differences within the potential context of use and interpretation for some biomarkers in particular measurements of amyloid and utility of soluble, phosphorylated tau biomarkers. Given the complexities of tau in health and disease, it is paramount that therapies target disease-relevant tau and, in parallel, appropriate assays of target engagement are developed. Tau positron emission tomography, fluid biomarkers reflecting tau pathology and downstream measures of neurodegeneration will be important both for participant recruitment and for monitoring disease-modification in tau-targeting clinical trials. Bespoke design of biomarker strategies and interpretations for different modalities and tau-based targets should also be considered.
Collapse
Affiliation(s)
- Lewis K Penny
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Richard Lofthouse
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Mohammad Arastoo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Andy Porter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Soumya Palliyil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- GT Diagnostics (UK) Ltd, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- GT Diagnostics (UK) Ltd, Aberdeen, UK.
- TauRx Therapeutics Ltd, Aberdeen, UK.
| |
Collapse
|
21
|
Zhang D, Zhang W, Ming C, Gao X, Yuan H, Lin X, Mao X, Wang C, Guo X, Du Y, Shao L, Yang R, Lin Z, Wu X, Huang TY, Wang Z, Zhang YW, Xu H, Zhao Y. P-tau217 correlates with neurodegeneration in Alzheimer's disease, and targeting p-tau217 with immunotherapy ameliorates murine tauopathy. Neuron 2024; 112:1676-1693.e12. [PMID: 38513667 DOI: 10.1016/j.neuron.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Neuronal loss is the central issue in Alzheimer's disease (AD), yet no treatment developed so far can halt AD-associated neurodegeneration. Here, we developed a monoclonal antibody (mAb2A7) against 217 site-phosphorylated human tau (p-tau217) and observed that p-tau217 levels positively correlated with brain atrophy and cognitive impairment in AD patients. Intranasal administration efficiently delivered mAb2A7 into male PS19 tauopathic mouse brain with target engagement and reduced tau pathology/aggregation with little effect on total soluble tau. Further, mAb2A7 treatment blocked apoptosis-associated neuronal loss and brain atrophy, reversed cognitive deficits, and improved motor function in male tauopathic mice. Proteomic analysis revealed that mAb2A7 treatment reversed alterations mainly in proteins associated with synaptic functions observed in murine tauopathy and AD brain. An antibody (13G4) targeting total tau also attenuated tau-associated pathology and neurodegeneration but impaired the motor function of male tauopathic mice. These results implicate p-tau217 as a potential therapeutic target for AD-associated neurodegeneration.
Collapse
Affiliation(s)
- Denghong Zhang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China; Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR 999078, China
| | - Xuheng Gao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huilong Yuan
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaojie Lin
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xinru Mao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Chunping Wang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoyi Guo
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Lin Shao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Renzhi Yang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Zhihao Lin
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xilin Wu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Timothy Y Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zhanxiang Wang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yun-Wu Zhang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingjun Zhao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
22
|
Yakoub Y, Gonzalez-Ortiz F, Ashton NJ, Déry C, Strikwerda-Brown C, St-Onge F, Ourry V, Schöll M, Geddes MR, Ducharme S, Montembeault M, Rosa-Neto P, Soucy JP, Breitner JCS, Zetterberg H, Blennow K, Poirier J, Villeneuve S. Plasma p-tau217 predicts cognitive impairments up to ten years before onset in normal older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307120. [PMID: 38766113 PMCID: PMC11100946 DOI: 10.1101/2024.05.09.24307120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Importance Positron emission tomography (PET) biomarkers are the gold standard for detection of Alzheimer amyloid and tau in vivo . Such imaging can identify cognitively unimpaired (CU) individuals who will subsequently develop cognitive impartment (CI). Plasma biomarkers would be more practical than PET or even cerebrospinal fluid (CSF) assays in clinical settings. Objective Assess the prognostic accuracy of plasma p-tau217 in comparison to CSF and PET biomarkers for predicting the clinical progression from CU to CI. Design In a cohort of elderly at high risk of developing Alzheimer's dementia (AD), we measured the proportion of CU individuals who developed CI, as predicted by Aβ (A+) and/or tau (T+) biomarker assessment from plasma, CSF, and PET. Results from each method were compared with (A-T-) reference individuals. Data were analyzed from June 2023 to April 2024. Setting Longitudinal observational cohort. Participants Some 228 participants from the PREVENT-AD cohort were CU at the time of biomarker assessment and had 1 - 10 years of follow-up. Plasma was available from 215 participants, CSF from 159, and amyloid- and tau-PET from 155. Ninety-three participants had assessment using all three methods (main group of interest). Progression to CI was determined by clinical consensus among physicians and neuropsychologists who were blind to plasma, CSF, PET, and MRI findings, as well as APOE genotype. Exposures Plasma Aβ 42/40 was measured using IP-MS; CSF Aβ 42/40 using Lumipulse; plasma and CSF p-tau217 using UGOT assay. Aβ-PET employed the 18 F-NAV4694 ligand, and tau-PET used 18 F-flortaucipir. Main Outcome Prognostic accuracy of plasma, CSF, and PET biomarkers for predicting the development of CI in CU individuals. Results Cox proportional hazard models indicated a greater progression rate in all A+T+ groups compared to A-T-groups (HR = 6.61 [95% CI = 2.06 - 21.17] for plasma, 3.62 [1.49 - 8.81] for CSF and 9.24 [2.34 - 36.43] for PET). The A-T+ groups were small, but also characterized with individuals who developed CI. Plasma biomarkers identified about five times more T+ than PET. Conclusion and relevance Plasma p-tau217 assessment is a practical method for identification of persons who will develop cognitive impairment up to 10 years later. Key Points Question: Can plasma p-tau217 serve as a prognostic indicator for identifying cognitively unimpaired (CU) individuals at risk of developing cognitive impairments (CI)?Findings: In a longitudinal cohort of CU individuals with a family history of sporadic AD, almost all individuals with abnormal plasma p-tau217 concentrations developed CI within 10 years, regardless of plasma amyloid levels. Similar findings were obtained with CSF p-tau217 and tau-PET. Fluid p-tau217 biomarkers had the main advantage over PET of identifying five times more participants with elevated tau.Meaning: Elevated plasma p-tau217 levels in CU individuals strongly indicate future clinical progression.
Collapse
|
23
|
Pilotto A, Quaresima V, Trasciatti C, Tolassi C, Bertoli D, Mordenti C, Galli A, Rizzardi A, Caratozzolo S, Zancanaro A, Contador J, Hansson O, Palmqvist S, Santis GD, Zetterberg H, Blennow K, Brugnoni D, Suárez-Calvet M, Ashton NJ, Padovani A. Plasma p-tau217 in Alzheimer's disease: Lumipulse and ALZpath SIMOA head-to-head comparison. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.02.24306780. [PMID: 38746261 PMCID: PMC11092737 DOI: 10.1101/2024.05.02.24306780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Plasma phosphorylated-tau217 (p-tau217) has been shown to be one of the most accurate diagnostic markers for Alzheimer's disease (AD). No studies have compared the clinical performance of p-tau217 as assessed by the fully automated Lumipulse and SIMOA ALZpath p-tau217. Aim To evaluate the diagnostic accuracy of Lumipulse and SIMOA plasma p-tau217 assays for AD. Methods The study included 392 participants, 162 with AD, 70 with other neurodegenerative diseases (NDD) with CSF biomarkers and 160 healthy controls. Plasma p-tau217 levels were measured using the Lumipulse and ALZpath SIMOA assays. The ability of p-tau217 assessed by both techniques to discriminate AD from NDD and controls was investigated using ROC analyses. Results Both techniques showed high internal consistency of p-tau217 with similar correlation with CSF p-tau181 levels. In head-to-head comparison, Lumipulse and SIMOA showed similar diagnostic accuracy for differentiating AD from NDD (area under the curve [AUC] 0.952, 95%CI 0.927-0.978 vs 0.955, 95%CI 0.928-0.982, respectively) and HC (AUC 0.938, 95%CI 0.910-0.966 and 0.937, 95% CI0.907-0.967 for both assays). Conclusions This study demonstrated the high precision and diagnostic accuracy of p-tau217 for the clinical diagnosis of Alzheimer's disease using either fully automated or semi-automated techniques.
Collapse
|
24
|
Salvadó G, Horie K, Barthélemy NR, Vogel JW, Pichet Binette A, Chen CD, Aschenbrenner AJ, Gordon BA, Benzinger TLS, Holtzman DM, Morris JC, Palmqvist S, Stomrud E, Janelidze S, Ossenkoppele R, Schindler SE, Bateman RJ, Hansson O. Disease staging of Alzheimer's disease using a CSF-based biomarker model. NATURE AGING 2024; 4:694-708. [PMID: 38514824 PMCID: PMC11108782 DOI: 10.1038/s43587-024-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aβ42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0-5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aβ-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials.
Collapse
Affiliation(s)
- Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | - Kanta Horie
- Tracy Family Stable Isotope Labeling Quantitation (SILQ) Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Eisai, Inc., Nutley, NJ, USA
| | - Nicolas R Barthélemy
- Tracy Family Stable Isotope Labeling Quantitation (SILQ) Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Science, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Charles D Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Aschenbrenner
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Tracy Family Stable Isotope Labeling Quantitation (SILQ) Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
25
|
Mantellatto Grigoli M, Pelegrini LNC, Whelan R, Cominetti MR. Present and Future of Blood-Based Biomarkers of Alzheimer's Disease: Beyond the Classics. Brain Res 2024; 1830:148812. [PMID: 38369085 DOI: 10.1016/j.brainres.2024.148812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The field of blood-based biomarkers for Alzheimer's disease (AD) has advanced at an incredible pace, especially after the development of sensitive analytic platforms that can facilitate large-scale screening. Such screening will be important when more sophisticated diagnostic methods are scarce and expensive. Thus, blood-based biomarkers can potentially reduce diagnosis inequities among populations from different socioeconomic contexts. This large-scale screening can be performed so that older adults at risk of cognitive decline assessed using these methods can then undergo more complete assessments with classic biomarkers, increasing diagnosis efficiency and reducing costs to the health systems. Blood-based biomarkers can also aid in assessing the effect of new disease-modifying treatments. This paper reviews recent advances in the area, focusing on the following leading candidates for blood-based biomarkers: amyloid-beta (Aβ), phosphorylated tau isoforms (p-tau), neurofilament light (NfL), and glial fibrillary acidic (GFAP) proteins, as well as on new candidates, Neuron-Derived Exosomes contents (NDEs) and Transactive response DNA-binding protein-43 (TDP-43), based on data from longitudinal observational cohort studies. The underlying challenges of validating and incorporating these biomarkers into routine clinical practice and primary care settings are also discussed. Importantly, challenges related to the underrepresentation of ethnic minorities and socioeconomically disadvantaged persons must be considered. If these challenges are overcome, a new time of cost-effective blood-based biomarkers for AD could represent the future of clinical procedures in the field and, together with continued prevention strategies, the beginning of an era with a lower incidence of dementia worldwide.
Collapse
Affiliation(s)
| | | | - Robert Whelan
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
26
|
Dark HE, Duggan MR, Walker KA. Plasma biomarkers for Alzheimer's and related dementias: A review and outlook for clinical neuropsychology. Arch Clin Neuropsychol 2024; 39:313-324. [PMID: 38520383 PMCID: PMC11484593 DOI: 10.1093/arclin/acae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/25/2024] Open
Abstract
Recent technological advances have improved the sensitivity and specificity of blood-based biomarkers for Alzheimer's disease and related dementias. Accurate quantification of amyloid-ß peptide, phosphorylated tau (pTau) isoforms, as well as markers of neurodegeneration (neurofilament light chain [NfL]) and neuro-immune activation (glial fibrillary acidic protein [GFAP] and chitinase-3-like protein 1 [YKL-40]) in blood has allowed researchers to characterize neurobiological processes at scale in a cost-effective and minimally invasive manner. Although currently used primarily for research purposes, these blood-based biomarkers have the potential to be highly impactful in the clinical setting - aiding in diagnosis, predicting disease risk, and monitoring disease progression. Whereas plasma NfL has shown promise as a non-specific marker of neuronal injury, plasma pTau181, pTau217, pTau231, and GFAP have demonstrated desirable levels of sensitivity and specificity for identification of individuals with Alzheimer's disease pathology and Alzheimer's dementia. In this forward looking review, we (i) provide an overview of the most commonly used blood-based biomarkers for Alzheimer's disease and related dementias, (ii) discuss how comorbid medical conditions, demographic, and genetic factors can inform the interpretation of these biomarkers, (iii) describe ongoing efforts to move blood-based biomarkers into the clinic, and (iv) highlight the central role that clinical neuropsychologists may play in contextualizing and communicating blood-based biomarker results for patients.
Collapse
Affiliation(s)
- Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
27
|
Jarek DJ, Mizerka H, Nuszkiewicz J, Szewczyk-Golec K. Evaluating p-tau217 and p-tau231 as Biomarkers for Early Diagnosis and Differentiation of Alzheimer's Disease: A Narrative Review. Biomedicines 2024; 12:786. [PMID: 38672142 PMCID: PMC11048667 DOI: 10.3390/biomedicines12040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The escalating prevalence of Alzheimer's disease (AD) highlights the urgent need to develop reliable biomarkers for early diagnosis and intervention. AD is characterized by the pathological accumulation of amyloid-beta plaques and tau neurofibrillary tangles. Phosphorylated tau (p-tau) proteins, particularly p-tau217 and p-tau231, have been identified as promising biomarker candidates to differentiate the disease progression from preclinical stages. This narrative review is devoted to a critical evaluation of the diagnostic accuracy, sensitivity, and specificity of p-tau217 and p-tau231 levels in the detection of AD, measured in plasma, serum, and cerebrospinal fluid, compared to established biomarkers. Additionally, the efficacy of these markers in distinguishing AD from other neurodegenerative disorders is examined. The significant advances offered by p-tau217 and p-tau231 in AD diagnostics are highlighted, demonstrating their unique utility in early detection and differential diagnosis. This comprehensive analysis not only confirms the excellent diagnostic capabilities of these markers, but also deepens the understanding of the molecular dynamics of AD, contributing to the broader scientific discourse on neurodegenerative diseases. This review is aimed to provide key information for researchers and clinicians across disciplines, filling interdisciplinary gaps and highlighting the role of p-tau proteins in revolutionizing AD research and clinical practice.
Collapse
Affiliation(s)
- Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Hubert Mizerka
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
28
|
Toniolo S, Zhao S, Scholcz A, Amein B, Ganse‐Dumrath A, Heslegrave AJ, Thompson S, Manohar S, Zetterberg H, Husain M. Relationship of plasma biomarkers to digital cognitive tests in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12590. [PMID: 38623387 PMCID: PMC11016819 DOI: 10.1002/dad2.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION A major limitation in Alzheimer's disease (AD) research is the lack of the ability to measure cognitive performance at scale-robustly, remotely, and frequently. Currently, there are no established online digital platforms validated against plasma biomarkers of AD. METHODS We used a novel web-based platform that assessed different cognitive functions in AD patients (N = 46) and elderly controls (N = 53) who were also evaluated for plasma biomarkers (amyloid beta 42/40 ratio, phosphorylated tau ([p-tau]181, glial fibrillary acidic protein, neurofilament light chain). Their cognitive performance was compared to a second, larger group of elderly controls (N = 352). RESULTS Patients with AD were significantly impaired across all digital cognitive tests, with performance correlating with plasma biomarker levels, particularly p-tau181. The combination of p-tau181 and the single best-performing digital test achieved high accuracy in group classification. DISCUSSION These findings show how online testing can now be deployed in patients with AD to measure cognitive function effectively and related to blood biomarkers of the disease. Highlights This is the first study comparing online digital testing to plasma biomarkers.Alzheimer's disease patients and two independent cohorts of elderly controls were assessed.Cognitive performance correlated with plasma biomarkers, particularly phosphorylated tau (p-tau)181.Glial fibrillary acidic protein and neurofilament light chain, and less so the amyloid beta 42/40 ratio, were also associated with performance.The best cognitive metric performed at par to p-tau181 in group classification.
Collapse
Affiliation(s)
- Sofia Toniolo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
| | - Sijia Zhao
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Anna Scholcz
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Benazir Amein
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Akke Ganse‐Dumrath
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Amanda J. Heslegrave
- UK Dementia Research InstituteUCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | | | - Sanjay Manohar
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Henrik Zetterberg
- UK Dementia Research InstituteUCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Institute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
29
|
Ferrari-Souza JP, Brum WS, Hauschild LA, Da Ros LU, Ferreira PCL, Bellaver B, Leffa DT, Bieger A, Tissot C, Lussier FZ, De Bastiani MA, Povala G, Benedet AL, Therriault J, Wang YT, Ashton NJ, Zetterberg H, Blennow K, Martins SO, Souza DO, Rosa-Neto P, Karikari TK, Pascoal TA, Zimmer ER. Vascular risk burden is a key player in the early progression of Alzheimer's disease. Neurobiol Aging 2024; 136:88-98. [PMID: 38335912 DOI: 10.1016/j.neurobiolaging.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024]
Abstract
Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF Aβ1-42 or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lucas A Hauschild
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas U Da Ros
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pâmela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas T Leffa
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrei Bieger
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cécile Tissot
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sheila O Martins
- Department of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
31
|
Mendes AJ, Ribaldi F, Lathuiliere A, Ashton NJ, Janelidze S, Zetterberg H, Scheffler M, Assal F, Garibotto V, Blennow K, Hansson O, Frisoni GB. Head-to-head study of diagnostic accuracy of plasma and cerebrospinal fluid p-tau217 versus p-tau181 and p-tau231 in a memory clinic cohort. J Neurol 2024; 271:2053-2066. [PMID: 38195896 PMCID: PMC10972950 DOI: 10.1007/s00415-023-12148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND OBJECTIVE Phosphorylated tau (p-tau) 217 has recently received attention because it seems more reliable than other p-tau variants for identifying Alzheimer's disease (AD) pathology. Thus, we aimed to compare the diagnostic accuracy of plasma and CSF p-tau217 with p-tau181 and p-tau231 in a memory clinic cohort. METHODS The study included 114 participants (CU = 33; MCI = 67; Dementia = 14). The p-tau variants were correlated versus continuous measures of amyloid (A) and tau (T)-PET. The p-tau phospho-epitopes were assessed through: (i) effect sizes (δ) between diagnostic and A ± and T ± groups; (ii) receiver operating characteristic (ROC) analyses in A-PET and T-PET. RESULTS The correlations between both plasma and CSF p-tau217 with A-PET and T-PET (r range 0.64-0.83) were stronger than those of p-tau181 (r range 0.44-0.79) and p-tau231 (r range 0.46-0.76). Plasma p-tau217 showed significantly higher diagnostic accuracy than p-tau181 and p-tau231 in (i) differences between diagnostic and biomarker groups (δrange: p-tau217 = 0.55-0.96; p-tau181 = 0.51-0.67; p-tau231 = 0.53-0.71); (ii) ROC curves to identify A-PET and T-PET positivity (AUCaverage: p-tau217 = 0.96; p-tau181 = 0.76; p-tau231 = 0.79). On the other hand, CSF p-tau217 (AUCaverage = 0.95) did not reveal significant differences in A-PET and T-PET AUC than p-tau181 (AUCaverage = 0.88) and p-tau231 (AUCaverage = 0.89). DISCUSSION Plasma p-tau217 demonstrated better performance in the identification of AD pathology and clinical phenotypes in comparison with other variants of p-tau in a memory clinic cohort. Furthermore, p-tau217 had comparable performance in plasma and CSF. Our findings suggest the potential of plasma p-tau217 in the diagnosis and screening for AD, which could allow for a decreased use of invasive biomarkers in the future.
Collapse
Affiliation(s)
- Augusto J Mendes
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland.
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Aurelien Lathuiliere
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
32
|
Brum WS, Cullen NC, Therriault J, Janelidze S, Rahmouni N, Stevenson J, Servaes S, Benedet AL, Zimmer ER, Stomrud E, Palmqvist S, Zetterberg H, Frisoni GB, Ashton NJ, Blennow K, Mattsson-Carlgren N, Rosa-Neto P, Hansson O. A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings. Nat Commun 2024; 15:2311. [PMID: 38486040 PMCID: PMC10940585 DOI: 10.1038/s41467-024-46603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n = 548) and in the TRIAD study (n = 179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
Collapse
Affiliation(s)
- Wagner S Brum
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Joseph Therriault
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nesrine Rahmouni
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Jenna Stevenson
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Stijn Servaes
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Giovanni B Frisoni
- Memory Center, Geneva University and University Hospital, Geneva, Switzerland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
33
|
Guo Z, Tian C, Shi Y, Song XR, Yin W, Tao QQ, Liu J, Peng GP, Wu ZY, Wang YJ, Zhang ZX, Zhang J. Blood-based CNS regionally and neuronally enriched extracellular vesicles carrying pTau217 for Alzheimer's disease diagnosis and differential diagnosis. Acta Neuropathol Commun 2024; 12:38. [PMID: 38444036 PMCID: PMC10913681 DOI: 10.1186/s40478-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/07/2024] Open
Abstract
Accurate differential diagnosis among various dementias is crucial for effective treatment of Alzheimer's disease (AD). The study began with searching for novel blood-based neuronal extracellular vesicles (EVs) that are more enriched in the brain regions vulnerable to AD development and progression. With extensive proteomic profiling, GABRD and GPR162 were identified as novel brain regionally enriched plasma EVs markers. The performance of GABRD and GPR162, along with the AD molecule pTau217, was tested using the self-developed and optimized nanoflow cytometry-based technology, which not only detected the positive ratio of EVs but also concurrently presented the corresponding particle size of the EVs, in discovery (n = 310) and validation (n = 213) cohorts. Plasma GABRD+- or GPR162+-carrying pTau217-EVs were significantly reduced in AD compared with healthy control (HC). Additionally, the size distribution of GABRD+- and GPR162+-carrying pTau217-EVs were significantly different between AD and non-AD dementia (NAD). An integrative model, combining age, the number and corresponding size of the distribution of GABRD+- or GPR162+-carrying pTau217-EVs, accurately and sensitively discriminated AD from HC [discovery cohort, area under the curve (AUC) = 0.96; validation cohort, AUC = 0.93] and effectively differentiated AD from NAD (discovery cohort, AUC = 0.91; validation cohort, AUC = 0.90). This study showed that brain regionally enriched neuronal EVs carrying pTau217 in plasma may serve as a robust diagnostic and differential diagnostic tool in both clinical practice and trials for AD.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yang Shi
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ru Song
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, 310011, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Guo-Ping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhen-Xin Zhang
- Department of Neurology and Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University, 311121, Hangzhou, China.
| |
Collapse
|
34
|
Della Monica C, Ravindran KKG, Atzori G, Lambert DJ, Rodriguez T, Mahvash-Mohammadi S, Bartsch U, Skeldon AC, Wells K, Hampshire A, Nilforooshan R, Hassanin H, The Uk Dementia Research Institute Care Research Amp Technology Research Group, Revell VL, Dijk DJ. A Protocol for Evaluating Digital Technology for Monitoring Sleep and Circadian Rhythms in Older People and People Living with Dementia in the Community. Clocks Sleep 2024; 6:129-155. [PMID: 38534798 DOI: 10.3390/clockssleep6010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Sleep and circadian rhythm disturbance are predictors of poor physical and mental health, including dementia. Long-term digital technology-enabled monitoring of sleep and circadian rhythms in the community has great potential for early diagnosis, monitoring of disease progression, and assessing the effectiveness of interventions. Before novel digital technology-based monitoring can be implemented at scale, its performance and acceptability need to be evaluated and compared to gold-standard methodology in relevant populations. Here, we describe our protocol for the evaluation of novel sleep and circadian technology which we have applied in cognitively intact older adults and are currently using in people living with dementia (PLWD). In this protocol, we test a range of technologies simultaneously at home (7-14 days) and subsequently in a clinical research facility in which gold standard methodology for assessing sleep and circadian physiology is implemented. We emphasize the importance of assessing both nocturnal and diurnal sleep (naps), valid markers of circadian physiology, and that evaluation of technology is best achieved in protocols in which sleep is mildly disturbed and in populations that are relevant to the intended use-case. We provide details on the design, implementation, challenges, and advantages of this protocol, along with examples of datasets.
Collapse
Affiliation(s)
- Ciro Della Monica
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Kiran K G Ravindran
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Giuseppe Atzori
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Damion J Lambert
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Thalia Rodriguez
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- School of Mathematics & Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Sara Mahvash-Mohammadi
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
| | - Ullrich Bartsch
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Anne C Skeldon
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- School of Mathematics & Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Kevin Wells
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | - Ramin Nilforooshan
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Surrey and Borders Partnership NHS Foundation Trust Surrey, Chertsey KT16 9AU, UK
| | - Hana Hassanin
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Surrey Clinical Research Facility, University of Surrey, Guildford GU2 7XP, UK
- NIHR Royal Surrey CRF, Royal Surrey Foundation Trust, Guildford GU2 7XX, UK
| | | | - Victoria L Revell
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| |
Collapse
|
35
|
Lantero-Rodriguez J, Salvadó G, Snellman A, Montoliu-Gaya L, Brum WS, Benedet AL, Mattsson-Carlgren N, Tideman P, Janelidze S, Palmqvist S, Stomrud E, Ashton NJ, Zetterberg H, Blennow K, Hansson O. Plasma N-terminal containing tau fragments (NTA-tau): a biomarker of tau deposition in Alzheimer's Disease. Mol Neurodegener 2024; 19:19. [PMID: 38365825 PMCID: PMC10874032 DOI: 10.1186/s13024-024-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Novel phosphorylated-tau (p-tau) blood biomarkers (e.g., p-tau181, p-tau217 or p-tau231), are highly specific for Alzheimer's disease (AD), and can track amyloid-β (Aβ) and tau pathology. However, because these biomarkers are strongly associated with the emergence of Aβ pathology, it is difficult to determine the contribution of insoluble tau aggregates to the plasma p-tau signal in blood. Therefore, there remains a need for a biomarker capable of specifically tracking insoluble tau accumulation in brain. METHODS NTA is a novel ultrasensitive assay targeting N-terminal containing tau fragments (NTA-tau) in cerebrospinal fluid (CSF) and plasma, which is elevated in AD. Using two well-characterized research cohorts (BioFINDER-2, n = 1,294, and BioFINDER-1, n = 932), we investigated the association between plasma NTA-tau levels and disease progression in AD, including tau accumulation, brain atrophy and cognitive decline. RESULTS We demonstrate that plasma NTA-tau increases across the AD continuum¸ especially during late stages, and displays a moderate-to-strong association with tau-PET (β = 0.54, p < 0.001) in Aβ-positive participants, while weak with Aβ-PET (β = 0.28, p < 0.001). Unlike plasma p-tau181, GFAP, NfL and t-tau, tau pathology determined with tau-PET is the most prominent contributor to NTA-tau variance (52.5% of total R2), while having very low contribution from Aβ pathology measured with CSF Aβ42/40 (4.3%). High baseline NTA-tau levels are predictive of tau-PET accumulation (R2 = 0.27), steeper atrophy (R2 ≥ 0.18) and steeper cognitive decline (R2 ≥ 0.27) in participants within the AD continuum. Plasma NTA-tau levels significantly increase over time in Aβ positive cognitively unimpaired (βstd = 0.16) and impaired (βstd = 0.18) at baseline compared to their Aβ negative counterparts. Finally, longitudinal increases in plasma NTA-tau levels were associated with steeper longitudinal decreases in cortical thickness (R2 = 0.21) and cognition (R2 = 0.20). CONCLUSION Our results indicate that plasma NTA-tau levels increase across the AD continuum, especially during mid-to-late AD stages, and it is closely associated with in vivo tau tangle deposition in AD and its downstream effects. Moreover, this novel biomarker has potential as a cost-effective and easily accessible tool for monitoring disease progression and cognitive decline in clinical settings, and as an outcome measure in clinical trials which also need to assess the downstream effects of successful Aβ removal.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden.
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden.
| |
Collapse
|
36
|
Bali D, Hansson O, Janelidze S. Effects of certain pre-analytical factors on the performance of plasma phospho-tau217. Alzheimers Res Ther 2024; 16:31. [PMID: 38331843 PMCID: PMC10851521 DOI: 10.1186/s13195-024-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Pre-analytical factors can cause substantial variability in the measurements of cerebrospinal fluid (CSF) and plasma biomarkers of Alzheimer's disease (AD). However, their effects on the performance of one of the most promising plasma AD biomarkers, phosphorylated tau (p-tau)217, are not known. METHODS We included 50 amyloid-β positive (Aβ+) and 50 Aβ- participants from the Swedish BioFINDER-1 study. Plasma and CSF p-tau217 were measured using an immunoassay developed by Lilly Research Laboratories. We examined the effect of four plasma handling conditions, i.e., (1) thawing at room temperature (RT) with no centrifugation, (2) thawing at RT followed by centrifugation, (3) thawing on ice with no centrifugation, and (4) thawing on ice followed by centrifugation. In addition, we also tested the effects of up to 3 freeze-thaw cycles on the associations of plasma p-tau217 with AD-related pathologies measured with CSF p-tau217 and CSF Aβ42/Aβ40. RESULTS In the whole cohort (combining Aβ+ and Aβ- participants), we found significant correlations between plasma p-tau217 and both CSF p-tau217 (Rrange, 0.614-0.717, p < 0.001) and CSF Aβ42/Aβ40 (Spearman Rrange, - 0.515 to - 0.652, p < 0.001) for each of the four tested conditions. Correlations between plasma and CSF p-tau217 were also significant for all conditions in the Aβ+ group (Rrange, 0.506-0.579, p < 0.001). However, in this Aβ+ subgroup, correlations with CSF Aβ42/Aβ40 were only significant for centrifuged samples (thawed at RT, R = - 0.394, p = 0.010; thawed on ice, R = - 0.406; p = 0.007). In Aβ- participants, correlations between plasma and CSF p-tau217 were again significant only for centrifuged samples (thawed at RT, R = 0.394, p = 0.007; thawed on ice, R = 0.334; p = 0.022), with no correlations seen between plasma p-tau217 and CSF Aβ42/Aβ40 for any of the conditions. While the accuracy of plasma p-tau217 to identify individuals with abnormal CSF Aβ42/Aβ40 or CSF p-tau217 status was high, the AUCs for samples thawed at RT and analyzed without centrifugation were numerically lower than the AUCs of other conditions (CSF Aβ42/Aβ40 = 0.845 vs 0.872-0.884; CSF p-tau217 = 0.866 vs 0.908-0.924, pdiff > 0.11). P-tau217 concentration was consistently higher in non-centrifuged samples than in centrifuged samples (p ≤ 0.021). There were no differences between samples freeze-thawed once, twice, or three times. CONCLUSION Centrifugation improved the performance of plasma p-tau217, but thawing temperatures and up to three freeze-thaw cycles did not have a significant impact. These results may inform the future development of standardized sample-handling protocols for AD biomarkers.
Collapse
Affiliation(s)
- Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Sölvegatan 19, BMC B11, 22184, Lund, Sweden.
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Sölvegatan 19, BMC B11, 22184, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Sölvegatan 19, BMC B11, 22184, Lund, Sweden.
| |
Collapse
|
37
|
Han K, Liang W, Geng H, Jing X, Wang X, Huo Y, Li W, Huang A, An C. The diagnostic value of cognitive assessment indicators for mild cognitive impairment (MCI). APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-10. [PMID: 38316014 DOI: 10.1080/23279095.2024.2306144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
OBJECTIVE This study aims to evaluate and analyze the standard diagnostic methods for mild cognitive impairment (MCI). METHODS This study used a prospective case-control study to examine baseline data and diagnostic indicators in a population of elderly with MCI. Based on different cognitive abilities, this study divided MCI and healthy control groups. The diagnostic indicators included CDT, MOCA, MMSE, PSQI, MBI, DST, HAMD, AD-related blood markers, and olfactory testing. The diagnostic value of each indicator was done using the ROC curve. RESULTS This study included 240 adult participants, 135 in the health group and 105 in the MCI group. A comparison of baseline data revealed statistically significant differences between the two groups regarding age, blood glucose, MMSE, CTD, MOCA, ability to perform daily living, AD-related blood indices and olfactory tests (all p < 0.05). Logistic regression analysis statistically showed that age, MOCA, and CDT were independent diagnostic factors for MCI (all p < 0.05). Combining these three indicators has the best diagnostic specificity (92.54%). AD-related blood and olfactory tests indices had only moderate diagnostic values (AUC: 0.7-0.8). CONCLUSION Age, MOCA, and CDT are good indicators for diagnosing early-stage MCI. AD-related blood indices and olfactory tests can serve as valuable adjuncts in diagnosing MCI.
Collapse
Affiliation(s)
- Keyan Han
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Wei Liang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Hao Geng
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xinyang Jing
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xuemeng Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Yaxin Huo
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Wei Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Anqi Huang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Cuixia An
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| |
Collapse
|
38
|
Rissman RA, Langford O, Raman R, Donohue MC, Abdel‐Latif S, Meyer MR, Wente‐Roth T, Kirmess KM, Ngolab J, Winston CN, Jimenez‐Maggiora G, Rafii MS, Sachdev P, West T, Yarasheski KE, Braunstein JB, Irizarry M, Johnson KA, Aisen PS, Sperling RA. Plasma Aβ42/Aβ40 and phospho-tau217 concentration ratios increase the accuracy of amyloid PET classification in preclinical Alzheimer's disease. Alzheimers Dement 2024; 20:1214-1224. [PMID: 37932961 PMCID: PMC10916957 DOI: 10.1002/alz.13542] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Incorporating blood-based Alzheimer's disease biomarkers such as tau and amyloid beta (Aβ) into screening algorithms may improve screening efficiency. METHODS Plasma Aβ, phosphorylated tau (p-tau)181, and p-tau217 concentration levels from AHEAD 3-45 study participants were measured using mass spectrometry. Tau concentration ratios for each proteoform were calculated to normalize for inter-individual differences. Receiver operating characteristic (ROC) curve analysis was performed for each biomarker against amyloid positivity, defined by > 20 Centiloids. Mixture of experts analysis assessed the value of including tau concentration ratios into the existing predictive algorithm for amyloid positron emission tomography status. RESULTS The area under the receiver operating curve (AUC) was 0.87 for Aβ42/Aβ40, 0.74 for phosphorylated variant p-tau181 ratio (p-tau181/np-tau181), and 0.92 for phosphorylated variant p-tau217 ratio (p-tau217/np-tau217). The Plasma Predicted Centiloid (PPC), a predictive model including p-tau217/np-tau217, Aβ42/Aβ40, age, and apolipoprotein E improved AUC to 0.95. DISCUSSION Including plasma p-tau217/np-tau217 along with Aβ42/Aβ40 in predictive algorithms may streamline screening preclinical individuals into anti-amyloid clinical trials. CLINICALTRIALS gov Identifier: NCT04468659 HIGHLIGHTS: The addition of plasma phosphorylated variant p-tau217 ratio (p-tau217/np-tau217) significantly improved plasma biomarker algorithms for identifying preclinical amyloid positron emission tomography positivity. Prediction performance at higher NAV Centiloid levels was improved with p-tau217/np-tau217. All models generated for this study are incorporated into the Plasma Predicted Centiloid (PPC) app for public use.
Collapse
Affiliation(s)
- Robert A. Rissman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Oliver Langford
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael C. Donohue
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Sara Abdel‐Latif
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | | | | | - Jennifer Ngolab
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Charisse N. Winston
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Gustavo Jimenez‐Maggiora
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | - Tim West
- C2N DiagnosticsSt. LouisMissouriUSA
| | | | | | | | - Keith A. Johnson
- Brigham and Women's Hospital, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Reisa A. Sperling
- Brigham and Women's Hospital, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
39
|
Cogswell PM, Lundt ES, Therneau TM, Wiste HJ, Graff‐Radford J, Algeciras‐Schimnich A, Lowe VJ, Mielke MM, Schwarz CG, Senjem ML, Gunter JL, Knopman DS, Vemuri P, Petersen RC, Jack Jr CR. Modeling the temporal evolution of plasma p-tau in relation to amyloid beta and tau PET. Alzheimers Dement 2024; 20:1225-1238. [PMID: 37963289 PMCID: PMC10916944 DOI: 10.1002/alz.13539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION The timing of plasma biomarker changes is not well understood. The goal of this study was to evaluate the temporal co-evolution of plasma and positron emission tomography (PET) Alzheimer's disease (AD) biomarkers. METHODS We included 1408 Mayo Clinic Study of Aging and Alzheimer's Disease Research Center participants. An accelerated failure time (AFT) model was fit with amyloid beta (Aβ) PET, tau PET, plasma p-tau217, p-tau181, and glial fibrillary acidic protein (GFAP) as endpoints. RESULTS Individual timing of plasma p-tau progression was strongly associated with Aβ PET and GFAP progression. In the population, GFAP became abnormal first, then Aβ PET, plasma p-tau, and tau PET temporal meta-regions of interest when applying cut points based on young, cognitively unimpaired participants. DISCUSSION Plasma p-tau is a stronger indicator of a temporally linked response to elevated brain Aβ than of tau pathology. While Aβ deposition and a rise in GFAP are upstream events associated with tau phosphorylation, the temporal link between p-tau and Aβ PET was the strongest. HIGHLIGHTS Plasma p-tau progression was more strongly associated with Aβ than tau PET. Progression on plasma p-tau was associated with Aβ PET and GFAP progression. P-tau181 and p-tau217 become abnormal after Aβ PET and before tau PET. GFAP became abnormal first, before plasma p-tau and Aβ PET.
Collapse
Affiliation(s)
| | - Emily S. Lundt
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Terry M. Therneau
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Heather J. Wiste
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Matthew L. Senjem
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
- Department of Information TechnologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Ronald C. Petersen
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
40
|
Bhalala OG, Watson R, Yassi N. Multi-Omic Blood Biomarkers as Dynamic Risk Predictors in Late-Onset Alzheimer's Disease. Int J Mol Sci 2024; 25:1231. [PMID: 38279230 PMCID: PMC10816901 DOI: 10.3390/ijms25021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Late-onset Alzheimer's disease is the leading cause of dementia worldwide, accounting for a growing burden of morbidity and mortality. Diagnosing Alzheimer's disease before symptoms are established is clinically challenging, but would provide therapeutic windows for disease-modifying interventions. Blood biomarkers, including genetics, proteins and metabolites, are emerging as powerful predictors of Alzheimer's disease at various timepoints within the disease course, including at the preclinical stage. In this review, we discuss recent advances in such blood biomarkers for determining disease risk. We highlight how leveraging polygenic risk scores, based on genome-wide association studies, can help stratify individuals along their risk profile. We summarize studies analyzing protein biomarkers, as well as report on recent proteomic- and metabolomic-based prediction models. Finally, we discuss how a combination of multi-omic blood biomarkers can potentially be used in memory clinics for diagnosis and to assess the dynamic risk an individual has for developing Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Oneil G. Bhalala
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| |
Collapse
|
41
|
Hale MR, Langhough R, Du L, Hermann BP, Van Hulle CA, Carboni M, Kollmorgen G, Basche KE, Bruno D, Sanson-Miles L, Jonaitis EM, Chin NA, Okonkwo OC, Bendlin BB, Carlsson CM, Zetterberg H, Blennow K, Betthauser TJ, Johnson SC, Mueller KD. Associations between recall of proper names in story recall and CSF amyloid and tau in adults without cognitive impairment. Neurobiol Aging 2024; 133:87-98. [PMID: 37925995 PMCID: PMC10842469 DOI: 10.1016/j.neurobiolaging.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Neuropsychological measures sensitive to decline in the preclinical phase of Alzheimer's disease are needed. We previously demonstrated that higher amyloid-beta (Aβ) assessed by positron emission tomography in adults without cognitive impairment was associated with recall of fewer proper names in Logical Memory story recall. The current study investigated the association between proper names and cerebrospinal fluid biomarkers (Aβ42/40, phosphorylated tau181 [pTau181], neurofilament light) in 223 participants from the Wisconsin Registry for Alzheimer's Prevention. We assessed associations between biomarkers and delayed Logical Memory total score and proper names using binary logistic regressions. Sensitivity analyses used multinomial logistic regression and stratified biomarker groups. Lower Logical Memory total score and proper names scores from the most recent visit were associated with biomarker positivity. Relatedly, there was a 27% decreased risk of being classified Aβ42/40+/pTau181+ for each additional proper name recalled. A linear mixed effects model found that longitudinal change in proper names recall was predicted by biomarker status. These results demonstrate a novel relationship between proper names and Alzheimer's disease-cerebrospinal fluid pathology.
Collapse
Affiliation(s)
- Madeline R Hale
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca Langhough
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lianlian Du
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Bruce P Hermann
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Carol A Van Hulle
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | | | | | - Kristin E Basche
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Leah Sanson-Miles
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin M Jonaitis
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Nathaniel A Chin
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA; VA Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Ozioma C Okonkwo
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA; VA Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tobey J Betthauser
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA; VA Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kimberly D Mueller
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA; Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
42
|
Sperling RA, Donohue MC, Rissman RA, Johnson KA, Rentz DM, Grill JD, Heidebrink JL, Jenkins C, Jimenez-Maggiora G, Langford O, Liu A, Raman R, Yaari R, Holdridge KC, Sims JR, Aisen PS. Amyloid and Tau Prediction of Cognitive and Functional Decline in Unimpaired Older Individuals: Longitudinal Data from the A4 and LEARN Studies. J Prev Alzheimers Dis 2024; 11:802-813. [PMID: 39044488 PMCID: PMC11266444 DOI: 10.14283/jpad.2024.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Converging evidence suggests that markers of Alzheimer's disease (AD) pathology in cognitively unimpaired older individuals are associated with high risk of cognitive decline and progression to functional impairment. The Anti-Amyloid Treatment in Asymptomatic Alzheimer's disease (A4) and Longitudinal Evaluation of Amyloid and Neurodegeneration Risk (LEARN) Studies enrolled a large cohort of cognitively normal older individuals across a range of baseline amyloid PET levels. Recent advances in AD blood-based biomarkers further enable the comparison of baseline markers in the prediction of longitudinal clinical outcomes. OBJECTIVES We sought to evaluate whether biomarker indicators of higher levels of AD pathology at baseline predicted greater cognitive and functional decline, and to compare the relative predictive power of amyloid PET imaging, tau PET imaging, and a plasma P-tau217 assay. DESIGN All participants underwent baseline amyloid PET scan, plasma P-tau217; longitudinal cognitive testing with the Primary Alzheimer Cognitive Composite (PACC) every 6 months; and annual functional assessments with the clinical dementia rating (CDR), cognitive functional index (CFI), and activities of daily living (ADL) scales. Baseline tau PET scans were obtained in a subset of participants. Participants with elevated amyloid (Aβ+) on screening PET who met inclusion/exclusion criteria were randomized to receive placebo or solanezumab in a double-blind phase of the A4 Study over 240+ weeks. Participants who did not have elevated amyloid (Aβ-) but were otherwise eligible for the A4 Study were referred to the companion observational LEARN Study with the same outcome assessments over 240+ weeks. SETTING The A4 and LEARN Studies were conducted at 67 clinical trial sites in the United States, Canada, Japan and Australia. PARTICIPANTS Older participants (ages 65-85) who were cognitively unimpaired at baseline (CDR-GS=0, MMSE 25-30 with educational adjustment, and Logical Memory scores within the normal range LMIIa 6-18) were eligible to continue in screening. Aβ+ participants were randomized to either placebo (n=583) or solanezumab (n=564) in the A4 Study. A subset of Aβ+ underwent tau PET imaging in A4 (n=350). Aβ- were enrolled into the LEARN Study (n=553). MEASUREMENTS Baseline 18-F Florbetapir amyloid PET, 18-F Flortaucipir tau PET in a subset and plasma P-tau217 with an electrochemiluminescence (ECL) immunoassay were evaluated as predictors of cognitive (PACC), and functional (CDR, CFI and ADL) change. Models were evaluated to explore the impact of baseline tertiles of amyloid PET and tertiles of plasma P-tau217 on cognitive and functional outcomes in the A4 Study compared to LEARN. Multivariable models were used to evaluate the unique and common variance explained in longitudinal outcomes based on baseline predictors, including effects for age, gender, education, race/ethnic group, APOEε4 carrier status, baseline PACC performance and treatment assignment in A4 participants (solanezumab vs placebo). RESULTS Higher baseline amyloid PET CL and P-tau217 levels were associated with faster rates of PACC decline, and increased likelihood of progression to functional impairment (CDR 0.5 or higher on two consecutive measurements), both across LEARN Aβ- and A4 Aβ+ (solanezumab and placebo arms). In analyses considering all baseline predictor variables, P-tau217 was the strongest predictor of PACC decline. Among participants in the highest tertiles of amyloid PET or P-tau217, >50% progressed to CDR 0.5 or greater. In the tau PET substudy, neocortical tau was the strongest predictor of PACC decline, but plasma P-tau217 contributed additional independent predictive variance in commonality variance models. CONCLUSIONS In a large cohort of cognitively unimpaired individuals enrolled in a Phase 3 clinical trial and companion observational study, these findings confirm that higher baseline levels of amyloid and tau markers are associated with increased rates of cognitive decline and progression to functional impairment. Interestingly, plasma P-tau217 was the best predictor of decline in the overall sample, superior to baseline amyloid PET. Neocortical tau was the strongest predictor of cognitive decline in the subgroup with tau PET, suggesting that tau deposition is most closely linked to clinical decline. These findings indicate that biomarkers of AD pathology are useful to predict decline in an older asymptomatic population and may prove valuable in the selection of individuals for disease-modifying treatments.
Collapse
Affiliation(s)
- R A Sperling
- Reisa A. Sperling, MD, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, 617-732-8472
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rissman RA, Donohue MC, Langford O, Raman R, Abdel-Latif S, Yaari R, Holdridge KC, Sims JR, Molina-Henry D, Jimenez-Maggiora G, Johnson KA, Aisen PS, Sperling RA. Longitudinal Phospho-tau217 Predicts Amyloid Positron Emission Tomography in Asymptomatic Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:823-830. [PMID: 39044490 PMCID: PMC11266279 DOI: 10.14283/jpad.2024.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Blood-based AD biomarkers such as plasma P-tau217 are increasingly used in clinical trials as a screening tool. OBJECTIVES To assess the utility of an electrochemiluminescence (ECL) immunoassay in predicting brain amyloid PET status in cognitively unimpaired individuals. SETTING Plasma samples collected at baseline, week 12, and week 240 or endpoint originated from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) trial and the companion Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) study. PARTICIPANTS Both A4 and LEARN enrolled eligible cognitively unimpaired persons 65 to 85 years. Individuals with elevated brain amyloid PET levels were eligible for the A4 Study, while those without elevated brain amyloid PET levels were eligible for the LEARN Study. INTERVENTION Participants in the A4 Study received intravenous solanezumab (up to 1600 mg) or placebo every 4 weeks. The LEARN Study is an observational study without intervention. MEASUREMENTS Plasma P-tau217 concentration levels from A4 Study participants were measured using an ECL immunoassay. Receiver Operating Characteristic (ROC) curve analysis was performed for each biomarker against amyloid positivity, defined by ≥22 CL and ≥ 33 CL. RESULTS Receiver operating characteristic curve (ROC) analysis indicates high diagnostic value of P-tau217 in individuals with amyloid PET ≥ 20 (Area under the ROC (AUROC): 0.87) and ≥ 33 CL (AUROC: 0.89). Repeated testing with the placebo group taken 12 weeks apart (range: 68 to 143 days) and the LEARN participants taken between 1.4 and 1.75 years resulted in a strong positive correlation (Corr. 0.91 (0.90 to 0.92)). CONCLUSION An ECL immunoassay testing plasma P-tau217 accurately predicts amyloid PET positivity in cognitively unimpaired individuals. Our future analyses aim to determine if use of this assay may reduce the screening burden of preclinical individuals into anti-amyloid clinical trials.
Collapse
Affiliation(s)
- R A Rissman
- Robert Rissman, Ph.D., Department of Physiology and Neuroscience, USC Alzheimer's Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saloner R, VandeVrede L, Asken BM, Paolillo EW, Gontrum EQ, Wolf A, Lario‐Lago A, Milà‐Alomà M, Triana‐Baltzer G, Kolb HC, Dubal DB, Rabinovici GD, Miller BL, Boxer AL, Casaletto KB, Kramer JH. Plasma phosphorylated tau-217 exhibits sex-specific prognostication of cognitive decline and brain atrophy in cognitively unimpaired adults. Alzheimers Dement 2024; 20:376-387. [PMID: 37639492 PMCID: PMC10843677 DOI: 10.1002/alz.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Accumulating evidence indicates disproportionate tau burden and tau-related clinical progression in females. However, sex differences in plasma phosphorylated tau (p-tau)217 prediction of subclinical cognitive and brain changes are unknown. METHODS We measured baseline plasma p-tau217, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) in 163 participants (85 cognitively unimpaired [CU], 78 mild cognitive impairment [MCI]). In CU, linear mixed effects models examined sex differences in plasma biomarker prediction of longitudinal domain-specific cognitive decline and brain atrophy. Cognitive models were repeated in MCI. RESULTS In CU females, baseline plasma p-tau217 predicted verbal memory and medial temporal lobe trajectories such that trajectories significantly declined once p-tau217 concentrations surpassed 0.053 pg/ml, a threshold that corresponded to early levels of cortical amyloid aggregation in secondary amyloid positron emission tomography analyses. CU males exhibited similar rates of cognitive decline and brain atrophy, but these trajectories were not dependent on plasma p-tau217. Plasma GFAP and NfL exhibited similar female-specific prediction of medial temporal lobe atrophy in CU. Plasma p-tau217 exhibited comparable prediction of cognitive decline across sex in MCI. DISCUSSION Plasma p-tau217 may capture earlier Alzheimer's disease (AD)-related cognitive and brain atrophy hallmarks in females compared to males, possibly reflective of increased susceptibility to AD pathophysiology.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lawren VandeVrede
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Breton M. Asken
- Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleFloridaUSA
| | - Emily W. Paolillo
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Eva Q. Gontrum
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Amy Wolf
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Argentina Lario‐Lago
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Marta Milà‐Alomà
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Hartmuth C. Kolb
- Neuroscience BiomarkersJanssen Research & Development, LLCSan DiegoCaliforniaUSA
| | - Dena B. Dubal
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Adam L. Boxer
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Kaitlin B. Casaletto
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyWeill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
45
|
Li Z, Fan Z, Zhang Q. The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2024; 98:13-32. [PMID: 38339929 DOI: 10.3233/jad-230799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Background Cerebrospinal fluid (CSF) or blood biomarkers like phosphorylated tau proteins (p-tau) are used to detect Alzheimer's disease (AD) early. Increasing studies on cognitive function and blood or CSF p-tau levels are controversial. Objective Our study examined the potential of p-tau as a biomarker of cognitive status in normal control (NC), mild cognitive impairment (MCI), and AD patients. Methods We searched PubMed, Cochrane, Embase, and Web of Science for relevant material through 12 January 2023. 5,017 participants from 20 studies-1,033 AD, 2,077 MCI, and 1,907 NC-were evaluated. Quantitative analysis provided continuous outcomes as SMDs with 95% CIs. Begg tested publication bias. Results MCI patients had lower CSF p-tau181 levels than AD patients (SMD =-0.60, 95% CI (-0.85, -0.36)) but higher than healthy controls (SMD = 0.67). AD/MCI patients had greater plasma p-tau181 levels than healthy people (SMD =-0.73, 95% CI (-1.04, -0.43)). MCI patients had significantly lower p-tau231 levels than AD patients in plasma and CSF (SMD =-0.90, 95% CI (-0.82, -0.45)). MCI patients showed greater CSF and plasma p-tau231 than healthy controls (SMD = 1.34, 95% CI (0.89, 1.79) and 0.43, (0.23, 0.64)). Plasma p-tau181/231 levels also distinguished the three categories. MCI patients had higher levels than healthy people, while AD patients had higher levels than MCI patients. Conclusions CSF p-tau181 and p-tau231 biomarkers distinguished AD, MCI, and healthy populations. Plasma-based p-tau181 and p-tau231 biomarkers for AD and MCI need further study.
Collapse
Affiliation(s)
- Zhirui Li
- Department of Disease Control and Prevention, Sichuan Provincial Center for Disease Control and Prevention, Sichuan Chengdu, China
| | - Zixuan Fan
- School of Health Policy and Management, Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Oncology, Xiamen Fifth Hospital, Fujian Xiamen, China
| |
Collapse
|
46
|
Chen T, Hutchison RM, Rubel C, Murphy J, Xie J, Montenigro P, Cheng W, Fraser K, Dent G, Hendrix S, Hansson O, Aisen P, Tian Y, O'Gorman J. A Statistical Framework for Assessing the Relationship between Biomarkers and Clinical Endpoints in Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:1228-1240. [PMID: 39350368 PMCID: PMC11436399 DOI: 10.14283/jpad.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 10/04/2024]
Abstract
Changes in biomarker levels of Alzheimer's disease (AD) reflect underlying pathophysiological changes in the brain and can provide evidence of direct and downstream treatment effects linked to disease modification. Recent results from clinical trials of anti-amyloid β (Aβ) treatments have raised the question of how to best characterize the relationship between AD biomarkers and clinical endpoints. Consensus methodology for assessing such relationships is lacking, leading to inconsistent evaluation and reporting. In this review, we provide a statistical framework for reporting treatment effects on early and late accelerating AD biomarkers and assessing their relationship with clinical endpoints at the subject and group levels. Amyloid positron emission tomography (PET), plasma p-tau, and tau PET follow specific trajectories during AD and are used as exemplar cases to contrast biomarkers with early and late progression. Subject-level correlation was assessed using change from baseline in biomarkers versus change from baseline in clinical endpoints, and interpretation of the correlation is dependent on the biomarker and disease stage. Group-level correlation was assessed using the placebo-adjusted treatment effects on biomarkers versus those on clinical endpoints in each trial. This correlation leverages the fundamental advantages of randomized placebo-controlled trials and assesses the predictivity of a treatment effect on a biomarker or clinical benefit. Harmonization in the assessment of treatment effects on biomarkers and their relationship to clinical endpoints will provide a wealth of comparable data across clinical trials and may yield new insights for the treatment of AD.
Collapse
Affiliation(s)
- T Chen
- Tianle Chen, Biogen Inc., 225 Binney St., Cambridge, MA 02142, Email address: , Phone: 617-914-7278
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Meijer L, Chrétien E, Ravel D. Leucettinib-21, a DYRK1A Kinase Inhibitor as Clinical Drug Candidate for Alzheimer's Disease and Down Syndrome. J Alzheimers Dis 2024; 101:S95-S113. [PMID: 39422950 DOI: 10.3233/jad-240078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) and Down syndrome (DS) share a common therapeutic target, the dual-specificity, tyrosine phosphorylation activated kinase 1A (DYRK1A). Abnormally active DYRK1A is responsible for cognitive disorders (memory, learning, spatial localization) observed in both conditions. In DS, DYRK1A is overexpressed due to the presence of the DYRK1A gene on chromosome 21. In AD, calcium-activated calpains cleave full-length DYRK1A (FL-DYRK1A) into a more stable and more active, low molecular weight, kinase (LMW-DYRK1A). Genetic and pharmacological experiments carried out with animal models of AD and DS strongly support the idea that pharmacological inhibitors of DYRK1A might be able to correct memory/learning disorders in people with AD and DS. Starting from a marine sponge natural product, Leucettamine B, Perha Pharmaceuticals has optimized, through classical medicinal chemistry, and extensively characterized a small molecule drug candidate, Leucettinib-21. Regulatory preclinical safety studies in rats and minipigs have been completed and formulation of Leucettinib-21 has been optimized as immediate-release tablets. Leucettinib-21 is now undergoing a phase 1 clinical trial (120 participants, including 12 adults with DS and 12 patients with AD). The therapeutic potential of DYRK1A inhibitors in AD and DS is presented.
Collapse
Affiliation(s)
- Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Roscoff, Bretagne, France
| | - Emilie Chrétien
- Perha Pharmaceuticals, Hôtel de Recherche, Roscoff, Bretagne, France
| | | |
Collapse
|
48
|
Mitsunaga S, Fujito N, Nakaoka H, Imazeki R, Nagata E, Inoue I. Detection of APP gene recombinant in human blood plasma. Sci Rep 2023; 13:21703. [PMID: 38066066 PMCID: PMC10709617 DOI: 10.1038/s41598-023-48993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is believed to involve the accumulation of amyloid-β in the brain, which is produced by the sequential cleavage of amyloid precursor protein (APP) by β-secretase and γ-secretase. Recently, analysis of genomic DNA and mRNA from postmortem brain neurons has revealed intra-exonic recombinants of APP (gencDNA), which have been implicated in the accumulation of amyloid-β. In this study, we computationally analyzed publicly available sequence data (SRA) using probe sequences we constructed to screen APP gencDNAs. APP gencDNAs were detected in SRAs constructed from both genomic DNA and RNA obtained from the postmortem brain and in the SRA constructed from plasma cell-free mRNA (cf-mRNA). The SRA constructed from plasma cf-mRNA showed a significant difference in the number of APP gencDNA reads between SAD and NCI: the p-value from the Mann-Whitney U test was 5.14 × 10-6. The transcripts were also found in circulating nucleic acids (CNA) from our plasma samples with NGS analysis. These data indicate that transcripts of APP gencDNA can be detected in blood plasma and suggest the possibility of using them as blood biomarkers for Alzheimer's disease.
Collapse
Affiliation(s)
- Shigeki Mitsunaga
- Laboratory of Human Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Naoko Fujito
- Laboratory of Human Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Ryoko Imazeki
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Ituro Inoue
- Laboratory of Human Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
49
|
Du L, Hermann BP, Jonaitis EM, Cody KA, Rivera-Rivera L, Rowley H, Field A, Eisenmenger L, Christian BT, Betthauser TJ, Larget B, Chappell R, Janelidze S, Hansson O, Johnson SC, Langhough R. Harnessing cognitive trajectory clusterings to examine subclinical decline risk factors. Brain Commun 2023; 5:fcad333. [PMID: 38107504 PMCID: PMC10724051 DOI: 10.1093/braincomms/fcad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Cognitive decline in Alzheimer's disease and other dementias typically begins long before clinical impairment. Identifying people experiencing subclinical decline may facilitate earlier intervention. This study developed cognitive trajectory clusters using longitudinally based random slope and change point parameter estimates from a Preclinical Alzheimer's disease Cognitive Composite and examined how baseline and most recently available clinical/health-related characteristics, cognitive statuses and biomarkers for Alzheimer's disease and vascular disease varied across these cognitive clusters. Data were drawn from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal cohort study of adults from late midlife, enriched for a parental history of Alzheimer's disease and without dementia at baseline. Participants who were cognitively unimpaired at the baseline visit with ≥3 cognitive visits were included in trajectory modelling (n = 1068). The following biomarker data were available for subsets: positron emission tomography amyloid (amyloid: n = 367; [11C]Pittsburgh compound B (PiB): global PiB distribution volume ratio); positron emission tomography tau (tau: n = 321; [18F]MK-6240: primary regions of interest meta-temporal composite); MRI neurodegeneration (neurodegeneration: n = 581; hippocampal volume and global brain atrophy); T2 fluid-attenuated inversion recovery MRI white matter ischaemic lesion volumes (vascular: white matter hyperintensities; n = 419); and plasma pTau217 (n = 165). Posterior median estimate person-level change points, slopes' pre- and post-change point and estimated outcome (intercepts) at change point for cognitive composite were extracted from Bayesian Bent-Line Regression modelling and used to characterize cognitive trajectory groups (K-means clustering). A common method was used to identify amyloid/tau/neurodegeneration/vascular biomarker thresholds. We compared demographics, last visit cognitive status, health-related factors and amyloid/tau/neurodegeneration/vascular biomarkers across the cognitive groups using ANOVA, Kruskal-Wallis, χ2, and Fisher's exact tests. Mean (standard deviation) baseline and last cognitive assessment ages were 58.4 (6.4) and 66.6 (6.6) years, respectively. Cluster analysis identified three cognitive trajectory groups representing steep, n = 77 (7.2%); intermediate, n = 446 (41.8%); and minimal, n = 545 (51.0%) cognitive decline. The steep decline group was older, had more females, APOE e4 carriers and mild cognitive impairment/dementia at last visit; it also showed worse self-reported general health-related and vascular risk factors and higher amyloid, tau, neurodegeneration and white matter hyperintensity positive proportions at last visit. Subtle cognitive decline was consistently evident in the steep decline group and was associated with generally worse health. In addition, cognitive trajectory groups differed on aetiology-informative biomarkers and risk factors, suggesting an intimate link between preclinical cognitive patterns and amyloid/tau/neurodegeneration/vascular biomarker differences in late middle-aged adults. The result explains some of the heterogeneity in cognitive performance within cognitively unimpaired late middle-aged adults.
Collapse
Affiliation(s)
- Lianlian Du
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Neurology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Karly Alex Cody
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Leonardo Rivera-Rivera
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Howard Rowley
- Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Aaron Field
- Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bradley T Christian
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bret Larget
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rick Chappell
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund 205 02, Sweden
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| | - Rebecca Langhough
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
50
|
Dubois B, von Arnim CAF, Burnie N, Bozeat S, Cummings J. Biomarkers in Alzheimer's disease: role in early and differential diagnosis and recognition of atypical variants. Alzheimers Res Ther 2023; 15:175. [PMID: 37833762 PMCID: PMC10571241 DOI: 10.1186/s13195-023-01314-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Development of in vivo biomarkers has shifted the diagnosis of Alzheimer's disease (AD) from the later dementia stages of disease towards the earlier stages and has introduced the potential for pre-symptomatic diagnosis. The International Working Group recommends that AD diagnosis is restricted in the clinical setting to people with specific AD phenotypes and supportive biomarker findings. MAIN BODY In this review, we discuss the phenotypic presentation and use of biomarkers for the early diagnosis of typical and atypical AD and describe how this can support clinical decision making, benefit patient communication, and improve the patient journey. Early diagnosis is essential to optimize the benefits of available and emerging treatments. As atypical presentations of AD often mimic other dementias, differential diagnosis can be challenging and can be facilitated using AD biomarkers. However, AD biomarkers alone are not sufficient to confidently diagnose AD or predict disease progression and should be supplementary to clinical assessment to help inform the diagnosis of AD. CONCLUSIONS Use of AD biomarkers with incorporation of atypical AD phenotypes into diagnostic criteria will allow earlier diagnosis of patients with atypical clinical presentations that otherwise would have been misdiagnosed and treated inappropriately. Early diagnosis is essential to guide informed discussion, appropriate care and support, and individualized treatment. It is hoped that disease-modifying treatments will impact the underlying AD pathology; thus, determining the patient's AD phenotype will be a critical factor in guiding the therapeutic approach and the assessment of the effects of interventions.
Collapse
Affiliation(s)
- Bruno Dubois
- Assistance Publique-Hôpitaux de Paris (AP-HP), Memory and Alzheimer's Disease Institute, Sorbonne University, Paris, France
- Brain Institute, Sorbonne University, Paris, France
| | | | - Nerida Burnie
- General Practice, South West London CCG, London, UK
- London Dementia Clinical Network, London, UK
| | | | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|