1
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 PMCID: PMC11531848 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
2
|
Liu T, Wang S, Tang Y, Jiang S, Lin H, Li F, Yao D, Zhu X, Luo C, Li Q. Structural and functional alterations in MRI-negative drug-resistant epilepsy and associated gene expression features. Neuroimage 2024; 302:120908. [PMID: 39490944 DOI: 10.1016/j.neuroimage.2024.120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroimaging techniques have been widely used in the study of epilepsy. However, structural and functional changes in the MRI-negative drug-resistant epilepsy (DRE) and the genetic mechanisms behind the structural alterations remain poorly understood. Using structural and functional MRI, we analyzed gray matter volume (GMV) and regional homogeneity (ReHo) in DRE, drug-sensitive epilepsy (DSE) and healthy controls. Gene expression data from Allen human brain atlas and GMV/ReHo were evaluated to obtain drug resistance-related and epilepsy-associated gene expression and compared with real transcriptional data in blood. We found structural and functional alterations in the cerebellum of DRE patients, which may be related to the mechanisms of drug resistance in DRE. Our study confirms that changes in brain morphology and regional activity in DRE patients may be associated with abnormal gene expression related to nervous system development. And SP1, as an important transcription factor, plays an important role in the mechanism of drug resistance.
Collapse
Affiliation(s)
- Ting Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, China.; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China..
| | - Sheng Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, China.; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China..
| | - Yingjie Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China..
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China..
| | - Huixia Lin
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, China.; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China..
| | - Fei Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, China.; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China..
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China..
| | - Xian Zhu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, China.; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China..
| | - Cheng Luo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, China.; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China..
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, China.; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China..
| |
Collapse
|
3
|
Chen Y, Pan J, Lin A, Sun L, Li Y, Lin H, Pu R, Wang Y, Qi Y, Sun B. Cerebellar white and gray matter abnormalities in temporal lobe epilepsy: a voxel-based morphometry study. Front Neurosci 2024; 18:1417342. [PMID: 39156634 PMCID: PMC11328152 DOI: 10.3389/fnins.2024.1417342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Background Previous structural neuroimaging studies linked cerebellar deficits to temporal lobe epilepsy (TLE). The functions of various cerebellar regions are increasingly being valued, and their changes in TLE patients warrant further in-depth investigation. In this study, we used the Spatially Unbiased Infratentorial (SUIT) toolbox with a new template to evaluate the cerebellar structural abnormalities in patients with TLE, and further explored the relationship between the changes of different cerebellar regions and cognition. Methods Thirty-two patients with TLE were compared with 39 healthy controls (HC) matched according to age, gender, handedness, and education level. All participants underwent a high-resolution T1-weighted MRI scan on a 3.0 Tesla scanner. We used a voxel-based morphometry (VBM) approach utilizing the SUIT toolbox to provide an optimized and fine-grained exploration of cerebellar structural alterations associated with TLE. Results Compared with HC, TLE patients showed a significant reduction in the volume of gray matter in the Left lobule VI and white matter in the Right Crus II. In the TLE patient group, we conducted partial correlation analysis between the volumes of different cerebellar regions and cognitive rating scale scores, such as MMSE and MoCA. The volume of the Left lobule VI (GM) exhibited a positive correlation with the MMSE score, but no significant correlation was found with the MoCA score. On the other hand, there was no significant correlation observed between the volume of the Right Crus II (WM) and the two cognitive scale scores mentioned above. Furthermore, it was observed that the MMSE was more effective than the MoCA in identifying epilepsy patients with cognitive impairment. Conclusion This study supported previous research indicating that temporal lobe epilepsy (TLE) is linked to structural changes in the cerebellum, specifically affecting the volume of both gray and white matter. These findings offer valuable insights into the neurobiology of TLE and hold potential to inform the development of enhanced diagnostic methods and more effective treatment approaches.
Collapse
Affiliation(s)
- Yini Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyu Pan
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Andong Lin
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, China
| | - Lu Sun
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufei Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongsen Lin
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Renwang Pu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiwei Qi
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Sun
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Wirsich J, Iannotti GR, Ridley B, Shamshiri EA, Sheybani L, Grouiller F, Bartolomei F, Seeck M, Lazeyras F, Ranjeva JP, Guye M, Vulliemoz S. Altered correlation of concurrently recorded EEG-fMRI connectomes in temporal lobe epilepsy. Netw Neurosci 2024; 8:466-485. [PMID: 38952816 PMCID: PMC11142634 DOI: 10.1162/netn_a_00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/17/2024] [Indexed: 07/03/2024] Open
Abstract
Whole-brain functional connectivity networks (connectomes) have been characterized at different scales in humans using EEG and fMRI. Multimodal epileptic networks have also been investigated, but the relationship between EEG and fMRI defined networks on a whole-brain scale is unclear. A unified multimodal connectome description, mapping healthy and pathological networks would close this knowledge gap. Here, we characterize the spatial correlation between the EEG and fMRI connectomes in right and left temporal lobe epilepsy (rTLE/lTLE). From two centers, we acquired resting-state concurrent EEG-fMRI of 35 healthy controls and 34 TLE patients. EEG-fMRI data was projected into the Desikan brain atlas, and functional connectomes from both modalities were correlated. EEG and fMRI connectomes were moderately correlated. This correlation was increased in rTLE when compared to controls for EEG-delta/theta/alpha/beta. Conversely, multimodal correlation in lTLE was decreased in respect to controls for EEG-beta. While the alteration was global in rTLE, in lTLE it was locally linked to the default mode network. The increased multimodal correlation in rTLE and decreased correlation in lTLE suggests a modality-specific lateralized differential reorganization in TLE, which needs to be considered when comparing results from different modalities. Each modality provides distinct information, highlighting the benefit of multimodal assessment in epilepsy.
Collapse
Affiliation(s)
- Jonathan Wirsich
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giannina Rita Iannotti
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elhum A. Shamshiri
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Fabrice Bartolomei
- Aix-Marseille Univ, INS, INSERM, UMR 1106, Marseille, France
- AP-HM CHU Timone, Service d’épileptologie, Marseille, France
| | - Margitta Seeck
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Tavakol S, Kebets V, Royer J, Li Q, Auer H, DeKraker J, Jefferies E, Bernasconi N, Bernasconi A, Helmstaedter C, Arafat T, Armony J, Nathan Spreng R, Caciagli L, Frauscher B, Smallwood J, Bernhardt B. Differential relational memory impairment in temporal lobe epilepsy. Epilepsy Behav 2024; 155:109722. [PMID: 38643660 DOI: 10.1016/j.yebeh.2024.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.
Collapse
Affiliation(s)
- Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Qiongling Li
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Hans Auer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jordan DeKraker
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Thaera Arafat
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jorge Armony
- Department of Psychiatry, McGill University, Montreal, Canada.
| | - R Nathan Spreng
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Birgit Frauscher
- ANPHY Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
7
|
Voigtlaender S, Pawelczyk J, Geiger M, Vaios EJ, Karschnia P, Cudkowicz M, Dietrich J, Haraldsen IRJH, Feigin V, Owolabi M, White TL, Świeboda P, Farahany N, Natarajan V, Winter SF. Artificial intelligence in neurology: opportunities, challenges, and policy implications. J Neurol 2024; 271:2258-2273. [PMID: 38367046 DOI: 10.1007/s00415-024-12220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
Neurological conditions are the leading cause of disability and mortality combined, demanding innovative, scalable, and sustainable solutions. Brain health has become a global priority with adoption of the World Health Organization's Intersectoral Global Action Plan in 2022. Simultaneously, rapid advancements in artificial intelligence (AI) are revolutionizing neurological research and practice. This scoping review of 66 original articles explores the value of AI in neurology and brain health, systematizing the landscape for emergent clinical opportunities and future trends across the care trajectory: prevention, risk stratification, early detection, diagnosis, management, and rehabilitation. AI's potential to advance personalized precision neurology and global brain health directives hinges on resolving core challenges across four pillars-models, data, feasibility/equity, and regulation/innovation-through concerted pursuit of targeted recommendations. Paramount actions include swift, ethical, equity-focused integration of novel technologies into clinical workflows, mitigating data-related issues, counteracting digital inequity gaps, and establishing robust governance frameworks balancing safety and innovation.
Collapse
Affiliation(s)
- Sebastian Voigtlaender
- Systems Neuroscience Division, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Virtual Diagnostics Team, QuantCo Inc., Cambridge, MA, USA
| | - Johannes Pawelczyk
- Faculty of Medicine, Ruprecht-Karls-University, Heidelberg, Germany
- Graduate Center of Medicine and Health, Technical University Munich, Munich, Germany
| | - Mario Geiger
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- NVIDIA, Zurich, Switzerland
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University and University Hospital Munich, Munich, Germany
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ira R J Hebold Haraldsen
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Valery Feigin
- National Institute for Stroke and Applied Neurosciences, Auckland University of Technology, Auckland, New Zealand
| | - Mayowa Owolabi
- Center for Genomics and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Neurology Unit, Department of Medicine, University of Ibadan, Ibadan, Nigeria
- Blossom Specialist Medical Center, Ibadan, Nigeria
- Lebanese American University of Beirut, Beirut, Lebanon
| | - Tara L White
- Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | | | | | | | - Sebastian F Winter
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Chen J, Ngo A, Rodríguez-Cruces R, Royer J, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Alvim MKM, Bonilha L, Gleichgerrcht E, Focke NK, Kreilkamp B, Domin M, von Podewils F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, Bender B, O’Brien TJ, Sinclair B, Vivash L, Kwan P, Desmond PM, Lui E, Duma GM, Bonanni P, Ballerini A, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Lenge M, Guerrini R, Bartolini E, Hamandi K, Foley S, Rüber T, Bauer T, Weber B, Caldairou B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Pardoe H, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Arienzo D, Vos SB, Ryten M, Taylor PN, Duncan JS, Whelan CD, Galovic M, Winston GP, Thomopoulos SI, Thompson PM, Sisodiya SM, Labate A, McDonald CR, Caciagli L, Bernasconi N, Bernasconi A, Larivière S, Schrader D, Bernhardt BC. A WORLDWIDE ENIGMA STUDY ON EPILEPSY-RELATED GRAY AND WHITE MATTER COMPROMISE ACROSS THE ADULT LIFESPAN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583073. [PMID: 38496668 PMCID: PMC10942350 DOI: 10.1101/2024.03.02.583073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Objectives Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.
Collapse
Affiliation(s)
- Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S. Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Fernando Cendes
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L. Yasuda
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | - Marina K. M. Alvim
- Department of Neurology, University of Campinas-–UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K. Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Barbara Kreilkamp
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Epilepsy Center, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Germany
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Kwan
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia M. Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy Unit, Conegliano (TV), Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy Unit, Conegliano (TV), Italy
| | - Alice Ballerini
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Colin P. Doherty
- Department of Neurology, St James’ Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D. Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Rhys H. Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China
| | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | | | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Theodor Rüber
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J. A. Carr
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Eugenio Abela
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Mark P. Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Heath Pardoe
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Sean N. Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Donatello Arienzo
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Sjoerd B. Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Mina Ryten
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Bucks, UK
| | - Peter N. Taylor
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- CNNP Lab, ICOS group, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Christopher D. Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zürich, Zürich, Switzerland
| | - Gavin P. Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, ON, Canada
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Angelo Labate
- Neurophysiopathology and Movement Disorders Clinic, Regional Epilepsy Center, University of Messina, Italy
| | - Carrie R. McDonald
- Department of Radiation Medicine and Applied Sciences; Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Bucks, UK
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA, USA
| | - Dewi Schrader
- BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Yang S, Zhou Y, Peng C, Meng Y, Chen H, Zhang S, Kong X, Kong R, Yeo BTT, Liao W, Zhang Z. Macroscale intrinsic dynamics are associated with microcircuit function in focal and generalized epilepsies. Commun Biol 2024; 7:145. [PMID: 38302632 PMCID: PMC10834476 DOI: 10.1038/s42003-024-05819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Epilepsies are a group of neurological disorders characterized by abnormal spontaneous brain activity, involving multiscale changes in brain functional organizations. However, it is not clear to what extent the epilepsy-related perturbations of spontaneous brain activity affect macroscale intrinsic dynamics and microcircuit organizations, that supports their pathological relevance. We collect a sample of patients with temporal lobe epilepsy (TLE) and genetic generalized epilepsy with tonic-clonic seizure (GTCS), as well as healthy controls. We extract massive temporal features of fMRI BOLD time-series to characterize macroscale intrinsic dynamics, and simulate microcircuit neuronal dynamics used a large-scale biological model. Here we show whether macroscale intrinsic dynamics and microcircuit dysfunction are differed in epilepsies, and how these changes are linked. Differences in macroscale gradient of time-series features are prominent in the primary network and default mode network in TLE and GTCS. Biophysical simulations indicate reduced recurrent connection within somatomotor microcircuits in both subtypes, and even more reduced in GTCS. We further demonstrate strong spatial correlations between differences in the gradient of macroscale intrinsic dynamics and microcircuit dysfunction in epilepsies. These results emphasize the impact of abnormal neuronal activity on primary network and high-order networks, suggesting a systematic abnormality of brain hierarchical organization.
Collapse
Affiliation(s)
- Siqi Yang
- School of Cybersecurity (Xin Gu Industrial College), Chengdu University of Information Technology, Chengdu, 610225, PR China.
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yimin Zhou
- School of Cybersecurity (Xin Gu Industrial College), Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Chengzong Peng
- School of Cybersecurity (Xin Gu Industrial College), Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Shaoshi Zhang
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Zhiqiang Zhang
- Laboratory of Neuroimaging, Department of Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, PR China.
| |
Collapse
|
10
|
Granovetter MC, Maallo AMS, Patterson C, Glen D, Behrmann M. Morphometrics of the preserved post-surgical hemisphere in pediatric drug-resistant epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559189. [PMID: 37808659 PMCID: PMC10557613 DOI: 10.1101/2023.09.24.559189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Importance Structural integrity of cortex following cortical resection for epilepsy management has been previously characterized, but only in adult patients. Objective This study sought to determine whether morphometrics of the preserved hemisphere in pediatric cortical resection patients differ from non-neurological controls. Design This was a case-control study, from 2013-2022. Setting This was a single-site study. Participants 32 patients with childhood epilepsy surgery and 51 age- and gender-matched controls participated. Main Measures We quantified morphometrics of the preserved hemisphere at the level of gross anatomy (lateral ventricle size, volume of gray and white matter). Additionally, cortical thickness, volume, and surface area were measured for 34 cortical regions segmented with the Desikan-Killiany atlas, and, last, volumes of nine subcortical regions were also quantified. Results 13 patients with left hemisphere (LH) surgery and a preserved right hemisphere (RH) (median age/median absolute deviation of age: 15.7/1.7 yr; 6 females, 7 males) and 19 patients with RH surgery and a preserved LH (15.4/3.7 yr; 11 females, 8 males) were compared to 51 controls (14.8/4.9 yr; 24 females, 27 males). Patient groups had larger ventricles and reduced total white matter volume relative to controls, and only patients with a preserved RH, but not patients with a preserved LH, had reduced total gray matter volume relative to controls. Furthermore, patients with a preserved RH had lower cortical thickness and volume and greater surface area of several cortical regions, relative to controls. Patients with a preserved LH had no differences in thickness, volume, or area, of any of the 34 cortical regions, relative to controls. Moreover, both LH and RH patients showed reduced volumes in select subcortical structures, relative to controls. Conclusions and Relevance That left-sided, but not right-sided, resection is associated with more pronounced reduction in cortical thickness and volume and increased cortical surface area relative to typically developing, age-matched controls suggests that the preserved RH undergoes structural plasticity to an extent not observed in cases of right-sided pediatric resection. Future work probing the association of the current findings with neuropsychological outcomes will be necessary to understand the implications of these structural findings for clinical practice.
Collapse
Affiliation(s)
- Michael C. Granovetter
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
| | - Christina Patterson
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA 15213
| |
Collapse
|
11
|
Mugikura S, Mori N, Gang M, Kanno S, Jin K, Osawa SI, Nakasato N, Takase K. Interhemispheric asymmetrical change in gray matter volume in patients with unilateral hippocampal sclerosis. J Clin Imaging Sci 2023; 13:38. [PMID: 38205275 PMCID: PMC10778066 DOI: 10.25259/jcis_77_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
Objectives To clarify the interhemispheric asymmetrical change in gray matter volume (GMV) in unilateral hippocampal sclerosis (HS), we compared changes in GMV relative to normal subjects between the HS and contralateral or non-HS sides. Material and Methods Forty-five patients with unilateral HS and 30 healthy subjects were enrolled. We quantified changes in GMV in the patients with HS as compared to GMV in the normal subjects by introducing the Z-score (Z-GMV) in each region or region of interest in unilateral HS. Then, we assessed the asymmetrically decreased regions, that is, regions with significantly higher Z-GMV on the HS side than the contralateral or non-HS side. Z-GMV was calculated according to the two templates of 58 regions per hemisphere covering the whole brain by anatomical automatic labeling (AAL) and 78 regions per cerebral hemisphere using the Anatomy Toolbox. Results Seven and four regions in AAL and 17 and 11 regions in Anatomy Toolbox were asymmetrically decreased in the Left Hand Side (LHS) and Right Hand Side (RHS), respectively. Hippocampus and Caudate in AAL, five subregions of the hippocampus (CA1-3, Dentate Gyrus and hippocampus-amygdala-transition-area and 4 extrahippocampal regions including two subregions in amygdala (CM: Centromedial, SF: Superficial), basal forebrain (BF) (Ch4), and thalamus (temporal) in anatomy toolbox were common among LHS and RHS concerning asymmetrically decreased regions. Conclusion By introducing Z-GMV, we demonstrated the regions with asymmetrically decreased GMV in LHS and RHS, and found that the hippocampus and extrahippocampal regions, including the BF, were the common asymmetrically decreased regions among LHS and RHS.
Collapse
Affiliation(s)
- Shunji Mugikura
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, Akita, Japan
| | - Miyeong Gang
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University, Sendai, Japan
| | - Shigenori Kanno
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University, Sendai, Japan
| | - Kazutaka Jin
- Department of Epileptology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shin-Ichiro Osawa
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
13
|
Akel S, Asztely F, Banote RK, Axelsson M, Zetterberg H, Zelano J. Neurofilament light, glial fibrillary acidic protein, and tau in a regional epilepsy cohort: High plasma levels are rare but related to seizures. Epilepsia 2023; 64:2690-2700. [PMID: 37469165 DOI: 10.1111/epi.17713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Higher levels of biochemical blood markers of brain injury have been described immediately after tonic-clonic seizures and in drug-resistant epilepsy, but the levels of such markers in epilepsy in general have not been well characterized. We analyzed neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau in a regional hospital-based epilepsy cohort and investigated what proportion of patients have levels suggesting brain injury, and whether certain epilepsy features are associated with high levels. METHODS Biomarker levels were measured in 204 patients with an epilepsy diagnosis participating in a prospective regional biobank study, with age and sex distribution correlating closely to that of all patients seen for epilepsy in the health care region. Absolute biomarker levels were assessed between two patient groups: patients reporting seizures within the 2 months preceding inclusion and patients who did not have seizures for more than 1 year. We also assessed the proportion of patients with above-normal levels of NfL. RESULTS NfL and GFAP, but not tau, increased with age. Twenty-seven patients had abnormally high levels of NfL. Factors associated with such levels were recent seizures (p = .010) and epileptogenic lesion on radiology (p = .001). Levels of NfL (p = .006) and GFAP (p = .032) were significantly higher in young patients (<65 years) with seizures ≤2 months before inclusion compared to those who reported no seizures for >1 year. NfL and GFAP correlated weakly with the number of days since last seizure (NfL: rs = -.228, p = .007; GFAP: rs = -.167, p = .048) in young patients. NfL also correlated weakly with seizure frequency in the last 2 months (rs = .162, p = .047). SIGNIFICANCE Most patients with epilepsy do not have biochemical evidence of brain injury. The association with seizures merits further study; future studies should aim for longitudinal sampling and examine whether individual variations in NfL or GFAP levels could reflect seizure activity.
Collapse
Affiliation(s)
- Sarah Akel
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Asztely
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Zhang C, Xu K, Zhang H, Sha J, Yang H, Zhao H, Chen N, Li K. Recovery of glymphatic system function in patients with temporal lobe epilepsy after surgery. Eur Radiol 2023; 33:6116-6123. [PMID: 37010581 DOI: 10.1007/s00330-023-09588-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVES To investigate the recovery of human glymphatic system (GS) function in patients with temporal lobe epilepsy (TLE) after successful anterior temporal lobectomy (ATL) using diffusion tensor image analysis along the perivascular space (DTI-ALPS). METHODS We retrospectively analysed DTI-ALPS index in 13 patients with unilateral TLE before and after ATL, and compared the index with 20 healthy controls (HCs). Two-sample t tests and paired t tests were performed to analyse differences in the DTI-ALPS index between patients and HCs. The Pearson correlation analysis was used to observe the relationship between the disease duration and GS function. RESULTS The DTI-ALPS index before ATL was significantly lower in the hemisphere ipsilateral to the epileptogenic foci than in the contralateral hemisphere of the patients (p < 0.001, t = - 4.81) and in the ipsilateral hemisphere of the HCs (p = 0.007, t = - 2.90). A significant increase in the DTI-ALPS index was found in the hemisphere ipsilateral to the epileptogenic foci after successful ATL (p = 0.01, t = - 3.01). In addition, the DTI-ALPS index of the lesion side before ATL was significantly correlated with disease duration (p = 0.04, r = - 0.59). CONCLUSIONS DTI-ALPS may be used as a quantitative biomarker evaluating surgical outcomes and TLE disease duration. DTI-ALPS index may also help localise epileptogenic foci in unilateral TLE. Overall, our study suggests that GS may potentially serve as a new method for the management of TLE and a new direction for investigating the mechanism of epilepsy. KEY POINTS • DTI-ALPS index may contribute to epileptogenic foci lateralisation in TLE. • DTI-ALPS index is a potential quantitative feature evaluating surgical outcomes and TLE disease duration. • The GS provides a new perspective for the study of TLE.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China.
| | - Haiyan Zhang
- Department of Radiology, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Jingyun Sha
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Hongyu Yang
- Department of Radiology, Luhe Hospital, Capital Medical University, Beijing, 101100, People's Republic of China
| | - Houliang Zhao
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| |
Collapse
|
15
|
Wang J, Ma S, Yu P, He X. Evolution of Human Brain Left-Right Asymmetry: Old Genes with New Functions. Mol Biol Evol 2023; 40:msad181. [PMID: 37561991 PMCID: PMC10473864 DOI: 10.1093/molbev/msad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The human brain is generally anatomically symmetrical, boasting mirror-like brain regions in the left and right hemispheres. Despite this symmetry, fine-scale structural asymmetries are prevalent and are believed to be responsible for distinct functional divisions within the brain. Prior studies propose that these asymmetric structures are predominantly primate specific or even unique to humans, suggesting that the genes contributing to the structural asymmetry of the human brain might have evolved recently. In our study, we identified approximately 1,500 traits associated with human brain asymmetry by collecting paired brain magnetic resonance imaging features from the UK Biobank. Each trait is measured in a specific region of one hemisphere and mirrored in the corresponding region of the other hemisphere. Conducting genome-wide association studies on these traits, we identified over 1,000 quantitative trait loci. Around these index single nucleotide polymorphisms, we found approximately 200 genes that are enriched in brain-related Gene Ontology terms and are predominantly upregulated in brain tissues. Interestingly, most of these genes are evolutionarily old, originating just prior to the emergence of Bilateria (bilaterally symmetrical animals) and Euteleostomi (bony vertebrates with a brain), at a significantly higher ratio than expected. Further analyses of these genes reveal a brain-specific upregulation in humans relative to other mammalian species. This suggests that the structural asymmetry of the human brain has been shaped by evolutionarily ancient genes that have assumed new functions over time.
Collapse
Affiliation(s)
- Jianguo Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sidi Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peijie Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | |
Collapse
|
16
|
Chu C, Pan W, Ren Y, Mao P, Yang C, Liu C, Tang YL. Executive function deficits and medial temporal lobe atrophy in late-life depression and Alzheimer's disease: a comparative study. Front Psychiatry 2023; 14:1243894. [PMID: 37720905 PMCID: PMC10501151 DOI: 10.3389/fpsyt.2023.1243894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Objectives Alzheimer's disease (AD) and late-life depression (LLD) frequently exhibit executive function deficits (EFD) and medial temporal lobe atrophy (MTA) as shared characteristics. The objective of this research was to examine the utility of the Trail Making Test (TMT) and the MTA scale in distinguishing between LLD and AD. Methods A study of 100 patients, 50 with AD and 50 with LLD, was conducted using a cross-sectional design. The individuals were subjected to clinical evaluations to assess their level of depression and overall cognitive abilities, which included the Geriatric Depression Scale (GDS), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA). We evaluated executive function deficits (EFD) through the use of the TMT, which includes both TMT-A and TMT-B. MTA was measured using magnetic resonance imaging. To evaluate the ability of TMT and MTA scale to distinguish between the two groups, a receiver operating characteristic (ROC) curve was utilized. To investigate the connections between MTA and neuropsychological measures, a correlation analysis was performed. Results AD patients exhibited notably reduced MMSE, MoCA, and GDS scores, as well as an increased MTA total scores, time spent on TMT-A, and TMT-B compared to LLD patients (p < 0.05). TMT-A and TMT-B both exhibited excellent discriminatory power between AD and LLD, achieving area under curve (AUC) values of 92.2 and 94.2%, respectively. In AD patients, there was a negative correlation between MMSE and MoCA scores and MTA scores, while in LLD patients, there was a positive correlation between time spent on TMT-A and GDS scores and MTA scores. Conclusion AD patients experience more severe EFD and MTA than LLD patients. The differential diagnosis of AD and LLD can be aided by the useful tool known as TMT. It is important to acknowledge that TMT is capable of capturing only a fraction of the executive function, thus necessitating a cautious interpretation of research findings.
Collapse
Affiliation(s)
- Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Weigang Pan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanping Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Peixian Mao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chunlin Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi-lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta VA Medical Center, Decatur, GA, United States
| |
Collapse
|
17
|
Ballerini A, Arienzo D, Stasenko A, Schadler A, Vaudano AE, Meletti S, Kaestner E, McDonald CR. Spatial patterns of gray and white matter compromise relate to age of seizure onset in temporal lobe epilepsy. Neuroimage Clin 2023; 39:103473. [PMID: 37531834 PMCID: PMC10415805 DOI: 10.1016/j.nicl.2023.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Temporal Lobe Epilepsy (TLE) is frequently a neurodevelopmental disorder, involving subcortical volume loss, cortical atrophy, and white matter (WM) disruption. However, few studies have addressed how these pathological changes in TLE relate to one another. In this study, we investigate spatial patterns of gray and white matter degeneration in TLE and evaluate the hypothesis that the relationship among these patterns varies as a function of the age at which seizures begin. METHODS Eighty-two patients with TLE and 59 healthy controls were enrolled. T1-weighted images were used to obtain hippocampal volumes and cortical thickness estimates. Diffusion-weighted imaging was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) of the superficial WM (SWM) and deep WM tracts. Analysis of covariance was used to examine patterns of WM and gray matter alterations in TLE relative to controls, controlling for age and sex. Sliding window correlations were then performed to examine the relationships between SWM degeneration, cortical thinning, and hippocampal atrophy across ages of seizure onset. RESULTS Cortical thinning in TLE followed a widespread, bilateral pattern that was pronounced in posterior centroparietal regions, whereas SWM and deep WM loss occurred mostly in ipsilateral, temporolimbic regions compared to controls. Window correlations revealed a relationship between hippocampal volume loss and whole brain SWM disruption in patients who developed epilepsy during childhood. On the other hand, in patients with adult-onset TLE, co-occurring cortical and SWM alterations were observed in the medial temporal lobe ipsilateral to the seizure focus. SIGNIFICANCE Our results suggest that although cortical, hippocampal and WM alterations appear spatially discordant at the group level, the relationship among these features depends on the age at which seizures begin. Whereas neurodevelopmental aspects of TLE may result in co-occurring WM and hippocampal degeneration near the epileptogenic zone, the onset of seizures in adulthood may set off a cascade of SWM microstructural loss and cortical atrophy of a neurodegenerative nature.
Collapse
Affiliation(s)
- Alice Ballerini
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Department of Psychiatry, University of California, San Diego, USA
| | - Donatello Arienzo
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Alena Stasenko
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Adam Schadler
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Neurology Unit, OCB Hospital, AOU Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Neurology Unit, OCB Hospital, AOU Modena, Italy
| | - Erik Kaestner
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA; Department of Radiation Medicine & Applied Sciences, University of California, San Diego, USA.
| |
Collapse
|
18
|
Kang K, Sathe A, Mandloi S, Muller J, Ozuna GAG, Franco D, Miller C, Sharan A, Mohamed FB, Faro S, Alizadeh M, Wu C. Evaluation of eight registration algorithms applied to the insula and insular gyri. J Neuroimaging 2023; 33:446-454. [PMID: 36813464 DOI: 10.1111/jon.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Spatial registration is crucial in establishing correspondence between anatomic brain regions for research and clinical purposes. The insular cortex (IC) and gyri (IG) are implicated in various functions and pathologies including epilepsy. Optimizing registration of the insula to a common atlas can improve the accuracy of group-level analyses. Here, we compared six nonlinear, one linear, and one semiautomated registration algorithms (RAs) for registering the IC and IG to the Montreal Neurologic Institute standard space (MNI152). METHODS 3T images acquired from 20 controls and 20 temporal lobe epilepsy patients with mesial temporal sclerosis underwent automated segmentation of the insula. This was followed by manual segmentation of the entire IC and six individual IGs. Consensus segmentations were created at 75% agreement for IC and IG before undergoing registration to MNI152 space with eight RAs. Dice similarity coefficients (DSCs) were calculated between segmentations after registration and the IC and IG in MNI152 space. Statistical analysis involved the Kruskal-Wallace test with Dunn's test for IC and two-way analysis of variance with Tukey's honest significant difference test for IG. RESULTS DSCs were significantly different between RAs. Based on multiple pairwise comparisons, we report that certain RAs performed better than others across population groups. Additionally, registration performance differed according to specific IG. CONCLUSION We compared different methods for registering the IC and IG to MNI152 space. We found differences in performance between RAs, which suggests that algorithm choice is important factor in analyses involving the insula.
Collapse
Affiliation(s)
- KiChang Kang
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anish Sathe
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jennifer Muller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Glenn Arturo Gonzalez Ozuna
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Franco
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Miller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Scott Faro
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Li Z, Jiang C, Gao Q, Xiang W, Qi Z, Peng K, Lin J, Wang W, Deng B, Wang W. The relationship between the interictal epileptiform discharge source connectivity and cortical structural couplings in temporal lobe epilepsy. Front Neurol 2023; 14:1029732. [PMID: 36846133 PMCID: PMC9948620 DOI: 10.3389/fneur.2023.1029732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Objective The objective of this study was to explore the relation between interictal epileptiform discharge (IED) source connectivity and cortical structural couplings (SCs) in temporal lobe epilepsy (TLE). Methods High-resolution 3D-MRI and 32-sensor EEG data from 59 patients with TLE were collected. Principal component analysis was performed on the morphological data on MRI to obtain the cortical SCs. IEDs were labeled from EEG data and averaged. The standard low-resolution electromagnetic tomography analysis was performed to locate the source of the average IEDs. Phase-locked value was used to evaluate the IED source connectivity. Finally, correlation analysis was used to compare the IED source connectivity and the cortical SCs. Results The features of the cortical morphology in left and right TLE were similar across four cortical SCs, which could be mainly described as the default mode network, limbic regions, connections bilateral medial temporal, and connections through the ipsilateral insula. The IED source connectivity at the regions of interest was negatively correlated with the corresponding cortical SCs. Significance The cortical SCs were confirmed to be negatively related to IED source connectivity in patients with TLE as detected with MRI and EEG coregistered data. These findings suggest the important role of intervening IEDs in treating TLE.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Che Jiang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Quwen Gao
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Xiang
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zijuan Qi
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Kairun Peng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China,Bingmei Deng ✉
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China,*Correspondence: Weimin Wang ✉
| |
Collapse
|
20
|
He X, Caciagli L, Parkes L, Stiso J, Karrer TM, Kim JZ, Lu Z, Menara T, Pasqualetti F, Sperling MR, Tracy JI, Bassett DS. Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. SCIENCE ADVANCES 2022; 8:eabn2293. [PMID: 36351015 PMCID: PMC9645718 DOI: 10.1126/sciadv.abn2293] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
Network control theory is increasingly used to profile the brain's energy landscape via simulations of neural dynamics. This approach estimates the control energy required to simulate the activation of brain circuits based on structural connectome measured using diffusion magnetic resonance imaging, thereby quantifying those circuits' energetic efficiency. The biological basis of control energy, however, remains unknown, hampering its further application. To fill this gap, investigating temporal lobe epilepsy as a lesion model, we show that patients require higher control energy to activate the limbic network than healthy volunteers, especially ipsilateral to the seizure focus. The energetic imbalance between ipsilateral and contralateral temporolimbic regions is tracked by asymmetric patterns of glucose metabolism measured using positron emission tomography, which, in turn, may be selectively explained by asymmetric gray matter loss as evidenced in the hippocampus. Our investigation provides the first theoretical framework unifying gray matter integrity, metabolism, and energetic generation of neural dynamics.
Collapse
Affiliation(s)
- Xiaosong He
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire, UK
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Teresa M. Karrer
- Personalized Health Care, Product Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhixin Lu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tommaso Menara
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | | | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Psychiatry, and Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
21
|
Ballerini A, Tondelli M, Talami F, Molinari MA, Micalizzi E, Giovannini G, Turchi G, Malagoli M, Genovese M, Meletti S, Vaudano AE. Amygdala subnuclear volumes in temporal lobe epilepsy with hippocampal sclerosis and in non-lesional patients. Brain Commun 2022; 4:fcac225. [PMID: 36213310 PMCID: PMC9536297 DOI: 10.1093/braincomms/fcac225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Together with hippocampus, the amygdala is important in the epileptogenic network of patients with temporal lobe epilepsy. Recently, an increase in amygdala volumes (i.e. amygdala enlargement) has been proposed as morphological biomarker of a subtype of temporal lobe epilepsy patients without MRI abnormalities, although other data suggest that this finding might be unspecific and not exclusive to temporal lobe epilepsy. In these studies, the amygdala is treated as a single entity, while instead it is composed of different nuclei, each with peculiar function and connection. By adopting a recently developed methodology of amygdala's subnuclei parcellation based of high-resolution T1-weighted image, this study aims to map specific amygdalar subnuclei participation in temporal lobe epilepsy due to hippocampal sclerosis (n = 24) and non-lesional temporal lobe epilepsy (n = 24) with respect to patients with focal extratemporal lobe epilepsies (n = 20) and healthy controls (n = 30). The volumes of amygdala subnuclei were compared between groups adopting multivariate analyses of covariance and correlated with clinical variables. Additionally, a logistic regression analysis on the nuclei resulting statistically different across groups was performed. Compared with other populations, temporal lobe epilepsy with hippocampal sclerosis showed a significant atrophy of the whole amygdala (p Bonferroni = 0.040), particularly the basolateral complex (p Bonferroni = 0.033), while the non-lesional temporal lobe epilepsy group demonstrated an isolated hypertrophy of the medial nucleus (p Bonferroni = 0.012). In both scenarios, the involved amygdala was ipsilateral to the epileptic focus. The medial nucleus demonstrated a volume increase even in extratemporal lobe epilepsies although contralateral to the seizure onset hemisphere (p Bonferroni = 0.037). Non-lesional patients with psychiatric comorbidities showed a larger ipsilateral lateral nucleus compared with those without psychiatric disorders. This exploratory study corroborates the involvement of the amygdala in temporal lobe epilepsy, particularly in mesial temporal lobe epilepsy and suggests a different amygdala subnuclei engagement depending on the aetiology and lateralization of epilepsy. Furthermore, the logistic regression analysis indicated that the basolateral complex and the medial nucleus of amygdala can be helpful to differentiate temporal lobe epilepsy with hippocampal sclerosis and with MRI negative, respectively, versus controls with a consequent potential clinical yield. Finally, the present results contribute to the literature about the amygdala enlargement in temporal lobe epilepsy, suggesting that the increased volume of amygdala can be regarded as epilepsy-related structural changes common across different syndromes whose meaning should be clarified.
Collapse
Affiliation(s)
- Alice Ballerini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Francesca Talami
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Elisa Micalizzi
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Giada Giovannini
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Giulia Turchi
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| | | | | | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
- Neurology Unit, OCB Hospital, AOU Modena, Modena 41126, Italy
| |
Collapse
|
22
|
Lopez SM, Aksman LM, Oxtoby NP, Vos SB, Rao J, Kaestner E, Alhusaini S, Alvim M, Bender B, Bernasconi A, Bernasconi N, Bernhardt B, Bonilha L, Caciagli L, Caldairou B, Caligiuri ME, Calvet A, Cendes F, Concha L, Conde‐Blanco E, Davoodi‐Bojd E, de Bézenac C, Delanty N, Desmond PM, Devinsky O, Domin M, Duncan JS, Focke NK, Foley S, Fortunato F, Galovic M, Gambardella A, Gleichgerrcht E, Guerrini R, Hamandi K, Ives‐Deliperi V, Jackson GD, Jahanshad N, Keller SS, Kochunov P, Kotikalapudi R, Kreilkamp BAK, Labate A, Larivière S, Lenge M, Lui E, Malpas C, Martin P, Mascalchi M, Medland SE, Meletti S, Morita‐Sherman ME, Owen TW, Richardson M, Riva A, Rüber T, Sinclair B, Soltanian‐Zadeh H, Stein DJ, Striano P, Taylor P, Thomopoulos SI, Thompson PM, Tondelli M, Vaudano AE, Vivash L, Wang Y, Weber B, Whelan CD, Wiest R, Winston GP, Yasuda CL, McDonald CR, Alexander D, Sisodiya SM, Altmann A. Event-based modeling in temporal lobe epilepsy demonstrates progressive atrophy from cross-sectional data. Epilepsia 2022; 63:2081-2095. [PMID: 35656586 PMCID: PMC9540015 DOI: 10.1111/epi.17316] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.
Collapse
Affiliation(s)
- Seymour M. Lopez
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Leon M. Aksman
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neil P. Oxtoby
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Sjoerd B. Vos
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Neuroradiological Academic Unit, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Jun Rao
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Erik Kaestner
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Saud Alhusaini
- Department of NeurologyAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
| | - Marina Alvim
- Department of Neurology and Neuroimaging LaboratoryUniversity of CampinasCampinasBrazil
| | - Benjamin Bender
- Department of Radiology, Diagnostic and Interventional NeuroradiologyUniversity Hospital TübingenTübingenGermany
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy LaboratoryMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy LaboratoryMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealQuebecCanada
| | | | - Lorenzo Caciagli
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealQuebecCanada
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Benoit Caldairou
- Neuroimaging of Epilepsy LaboratoryMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | - Angels Calvet
- Magnetic Resonance Image Core FacilityAugust Pi i Sunyer Biomedical Research Institute, University of BarcelonaBarcelonaSpain
| | - Fernando Cendes
- Department of Neurology and Neuroimaging LaboratoryUniversity of CampinasCampinasBrazil
| | - Luis Concha
- Institute of NeurobiologyNational Autonomous University of MexicoQuerétaroMexico
| | - Estefania Conde‐Blanco
- Epilepsy Program, Neurology DepartmentHospital Clinic of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research InstituteBarcelonaSpain
| | | | - Christophe de Bézenac
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Norman Delanty
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro SFI Research Centre for Rare and Chronic Neurological DiseasesDublinIreland
| | - Patricia M. Desmond
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Orrin Devinsky
- New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Martin Domin
- Functional Imaging Unit, Department of Diagnostic Radiology and NeuroradiologyGreifswald University MedicineGreifswaldGermany
| | - John S. Duncan
- Department of NeurologyEmory UniversityAtlantaUSA
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Niels K. Focke
- Department of NeurologyUniversity Medical CenterGöttingenGermany
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | - Marian Galovic
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Antonio Gambardella
- Neuroscience Research Center, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | | | - Renzo Guerrini
- Neuroscience DepartmentUniversity of FlorenceFlorenceItaly
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
- Wales Epilepsy Unit, Department of NeurologyUniversity Hospital of WalesCardiffUK
| | | | - Graeme D. Jackson
- Florey Institute of Neuroscience and Mental Health, Austin CampusHeidelbergVictoriaAustralia
- University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAustin HealthHeidelbergVictoriaAustralia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Simon S. Keller
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Raviteja Kotikalapudi
- Department of Radiology, Diagnostic and Interventional NeuroradiologyUniversity Hospital TübingenTübingenGermany
- Department of Clinical NeurophysiologyUniversity Hospital GöttingenGöttingenGermany
- Department of Neurology and EpileptologyHertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Barbara A. K. Kreilkamp
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Clinical NeurophysiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Angelo Labate
- Neuroscience Research Center, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Græcia University of CatanzaroCatanzaroItaly
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealQuebecCanada
| | - Matteo Lenge
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and LaboratoriesA. Meyer Children's Hospital, University of FlorenceFlorenceItaly
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery DepartmentA. Meyer Children's Hospital, University of FlorenceFlorenceItaly
| | - Elaine Lui
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Charles Malpas
- Department of NeurologyRoyal Melbourne HospitalMelbourneVictoriaAustralia
- Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Pascal Martin
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Mario Mascalchi
- Mario Serio Department of Clinical and Experimental Medical SciencesUniversity of FlorenceFlorenceItaly
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Neurology Unit, OCB HospitalModena University HospitalModenaItaly
| | - Marcia E. Morita‐Sherman
- Department of NeurologyUniversity of CampinasCampinasBrazil
- Cleveland Clinic Neurological InstituteClevelandOhioUSA
| | - Thomas W. Owen
- School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | | | - Antonella Riva
- Giannina Gaslini Institute, Scientific Institute for Research and Health CareGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
| | - Theodor Rüber
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Ben Sinclair
- Department of Neuroscience, Central Clinical School, Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
- Departments of Medicine and Radiology, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Hamid Soltanian‐Zadeh
- Radiology and Research AdministrationHenry Ford Health SystemDetroitMichiganUSA
- School of Electrical and Computer EngineeringCollege of Engineering, University of TehranTehranIran
| | - Dan J. Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Pasquale Striano
- Giannina Gaslini Institute, Scientific Institute for Research and Health CareGenoaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
| | - Peter N. Taylor
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Primary Care DepartmentLocal Health Authority of ModenaModenaItaly
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Neurology Unit, OCB HospitalModena University HospitalModenaItaly
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
- Departments of Medicine and Radiology, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Yujiang Wang
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition ResearchUniversity of BonnBonnGermany
| | - Christopher D. Whelan
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
| | - Roland Wiest
- Support Center for Advanced NeuroimagingUniversity Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
- Department of Medicine, Division of NeurologyQueen's UniversityKingstonOntarioCanada
| | - Clarissa Lin Yasuda
- Department of Neurology and Neuroimaging LaboratoryUniversity of CampinasCampinasBrazil
| | - Carrie R. McDonald
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|