1
|
Fanshawe JB, Sargent BF, Badenoch JB, Saini A, Watson CJ, Pokrovskaya A, Aniwattanapong D, Conti I, Nye C, Burchill E, Hussain ZU, Said K, Kuhoga E, Tharmaratnam K, Pendered S, Mbwele B, Taquet M, Wood GK, Rogers JP, Hampshire A, Carson A, David AS, Michael BD, Nicholson TR, Paddick S, Leek CE. Cognitive domains affected post-COVID-19; a systematic review and meta-analysis. Eur J Neurol 2025; 32:e16181. [PMID: 38375608 PMCID: PMC11618111 DOI: 10.1111/ene.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND PURPOSE This review aims to characterize the pattern of post-COVID-19 cognitive impairment, allowing better prediction of impact on daily function to inform clinical management and rehabilitation. METHODS A systematic review and meta-analysis of neurocognitive sequelae following COVID-19 was conducted, following PRISMA-S guidelines. Studies were included if they reported domain-specific cognitive assessment in patients with COVID-19 at >4 weeks post-infection. Studies were deemed high-quality if they had >40 participants, utilized healthy controls, had low attrition rates and mitigated for confounders. RESULTS Five of the seven primary Diagnostic and Statistical Manual of Mental Disorders (DSM-5) cognitive domains were assessed by enough high-quality studies to facilitate meta-analysis. Medium effect sizes indicating impairment in patients post-COVID-19 versus controls were seen across executive function (standardised mean difference (SMD) -0.45), learning and memory (SMD -0.55), complex attention (SMD -0.54) and language (SMD -0.54), with perceptual motor function appearing to be impacted to a greater degree (SMD -0.70). A narrative synthesis of the 56 low-quality studies also suggested no obvious pattern of impairment. CONCLUSIONS This review found moderate impairments across multiple domains of cognition in patients post-COVID-19, with no specific pattern. The reported literature was significantly heterogeneous, with a wide variety of cognitive tasks, small sample sizes and disparate initial disease severities limiting interpretability. The finding of consistent impairment across a range of cognitive tasks suggests broad, as opposed to domain-specific, brain dysfunction. Future studies should utilize a harmonized test battery to facilitate inter-study comparisons, whilst also accounting for the interactions between COVID-19, neurological sequelae and mental health, the interplay between which might explain cognitive impairment.
Collapse
Affiliation(s)
- Jack B. Fanshawe
- Department of PsychiatryUniversity of OxfordOxfordUK
- Oxford Health NHS Foundation TrustOxfordUK
| | - Brendan F. Sargent
- Department of PsychiatryUniversity of OxfordOxfordUK
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - James B. Badenoch
- Barts Health NHS TrustLondonUK
- Preventive Neurology UnitQueen Mary University of LondonLondonUK
| | - Aman Saini
- School of Life and Medical SciencesUniversity College LondonLondonUK
| | - Cameron J. Watson
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- South London and Maudsley NHS Foundation TrustLondonUK
| | | | - Daruj Aniwattanapong
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Department of PsychiatryKing Chulalongkorn Memorial HospitalBangkokThailand
| | - Isabella Conti
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Charles Nye
- Gloucestershire Hospitals NHS Foundation TrustGloucesterUK
| | - Ella Burchill
- Division of PsychiatryUniversity College LondonLondonUK
| | - Zain U. Hussain
- NHS Greater Glasgow and ClydeGlasgowUK
- Edinburgh Medical SchoolUniversity of EdinburghEdinburghUK
| | - Khanafi Said
- Mbeya College of Health and Allied SciencesUniversity of Dar es SalaamMbeyaTanzania
| | - Elinda Kuhoga
- Mbeya College of Health and Allied SciencesUniversity of Dar es SalaamMbeyaTanzania
| | - Kukatharmini Tharmaratnam
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Sophie Pendered
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Bernard Mbwele
- Mbeya College of Health and Allied SciencesUniversity of Dar es SalaamMbeyaTanzania
| | - Maxime Taquet
- Department of PsychiatryUniversity of OxfordOxfordUK
- Oxford Health NHS Foundation TrustOxfordUK
| | - Greta K. Wood
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Adam Hampshire
- Department of Brain SciencesImperial College LondonLondonUK
| | - Alan Carson
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | | | - Benedict D. Michael
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections at University of LiverpoolLiverpoolUK
- Walton Centre NHS Foundation TrustLiverpoolUK
| | - Timothy R. Nicholson
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Stella‐Maria Paddick
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Gateshead Health NHS Foundation TrustGatesheadUK
| | | |
Collapse
|
2
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2025; 123:928-945. [PMID: 39500417 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
3
|
Palladini M, Mazza MG, De Lorenzo R, Spadini S, Aggio V, Bessi M, Calesella F, Bravi B, Rovere-Querini P, Benedetti F. Circulating inflammatory markers predict depressive symptomatology in COVID-19 survivors. Cytokine 2024; 186:156839. [PMID: 39700666 DOI: 10.1016/j.cyto.2024.156839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Growing evidence suggests the neurobiological mechanism upholding post-COVID-19 depression mainly relates to immune response and subsequent unresolved low-grade inflammation. Herein we exploit a broad panel of cytokines serum levels measured in COVID-19 survivors at one- and three-month since infection to predict post-COVID-19 depression. 87 COVID survivors were screened for depressive symptomatology at one- and three-month after discharge through the Beck Depression Inventory (BDI-13) and the Zung Self-Rating Depression Scale (ZSDS) at San Raffaele Hospital. Blood samples were collected at both timepoints and analyzed through Luminex. We entered one-month 42 inflammatory compounds into two separate penalized logistic regression models to evaluate their reliability in identifying COVID-19 survivors suffering from clinical depression at the two timepoints, applied within a machine learning routine. Delta values of analytes lowering between timepoints were entered in a third model predicting presence long-term depression. 5000 bootstraps were computed to determine significance of predictors. The cross-sectional model reached a balance accuracy (BA) of 76 % and a sensitivity of 70 %. Post-COVID-19 depression was predicted by high levels of CCL17, CCL22. On the other hand, CXCL10, CCL2, CCL3, CCL8, CXCL5, CCL15, CCL23, CXCL13, and GM-CSF showed protective effects. The longitudinal model obtained good performance as well (BA = 74 % and sensitivity = 68 %), revealing CXCL16 and CCL25 as additional drivers of clinical depression. Moreover, dynamic changes of analytes over time accurately predicted long-term depression (BA = 76 % and sensitivity = 75 %). Our findings unveil a putative immune profile upholding post-COVID-19 depression, thus reinforcing the need to deepen molecular mechanisms to appropriately target depression.
Collapse
Affiliation(s)
- Mariagrazia Palladini
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- School of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | | | - Federico Calesella
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Beatrice Bravi
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia Rovere-Querini
- School of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy; Unit of Innate Immunity and Tissue Remodeling, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy; Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
4
|
Zhang S, Yuan M, He D, Dang W, Zhang W. Long-term follow-up of brain regional changes and the association with cognitive impairment in quarantined COVID-19 survivors. Eur Arch Psychiatry Clin Neurosci 2024; 274:1911-1922. [PMID: 38319396 DOI: 10.1007/s00406-023-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVE This study aimed to evaluate the neuropsychiatric symptoms of quarantined COVID-19 survivors 15 months after discharge and explore its potential association with structural and functional brain changes and inflammation. METHODS A total of 51 quarantined COVID-19 survivors and 74 healthy controls were included in this study. Cognitive function was assessed using the THINC-integrated tool. Structural brain changes were examined through both surface- and volume-based analyses, and functional changes were assessed using resting-state amplitude low-frequency fluctuation (ALFF). Serum inflammatory markers were measured by a multiplexed flow cytometric assay. RESULTS COVID-19 survivors exhibited subjective cognitive decline compared to healthy controls, despite no significant differences in objective cognitive tasks. Structural analysis revealed significantly increased gray matter volume and cortical surface area in the left transverse temporal gyrus (Heschl's gyrus) in quarantined COVID-19 survivors. This enlargement was negatively correlated with cognitive impairment. The ALFF analysis showed decreased neural activity in multiple brain regions. Elevated levels of serum inflammatory markers were also found in COVID-19 survivors, including MIP-1a, MIP-1b, TNF-a, and IL-8, which correlated with functional abnormalities. CONCLUSIONS Our findings indicate a subjective cognitive decline in quarantined COVID-19 survivors 15 months after discharge, which is associated with brain structural alterations in the left Heschl's gyrus. The observed elevation of inflammatory markers suggests a potential mechanism involving inflammation-induced neurogenesis. These results contribute to our understanding of the possible mechanisms underlying long-term neuropsychiatric consequences of COVID-19 and highlight the need for further research to develop targeted interventions.
Collapse
Affiliation(s)
- Simai Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Minlan Yuan
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Danmei He
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Dang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Qi X, Yuan S, Ding J, Sun W, Shi Y, Xing Y, Liu Z, Yao Y, Fu S, Sun B, Qi X, Xia B, Liu F, Yi M, Mao J, Wan Y, Zheng J. Emerging signs of Alzheimer-like tau hyperphosphorylation and neuroinflammation in the brain post recovery from COVID-19. Aging Cell 2024; 23:e14352. [PMID: 39344133 PMCID: PMC11561645 DOI: 10.1111/acel.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been suggested to increase the risk of memory decline and Alzheimer's disease (AD), the main cause of dementia in the elderly. However, direct evidence about whether COVID-19 induces AD-like neuropathological changes in the brain, especially post recovery from acute infection, is still lacking. Here, using postmortem human brain samples, we found abnormal accumulation of hyperphosphorylated tau protein in the hippocampus and medial entorhinal cortex within 4-13 months post clinically recovery from acute COVID-19, together with prolonged activation of glia cells and increases in inflammatory factors, even though no SARS-COV-2 invasion was detected in these regions. By contrast, COVID-19 did not change beta-amyloid deposition and hippocampal neuron number, and had limited effects on AD-related pathological phenotypes in olfactory circuits including olfactory bulb, anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral entorhinal cortex. These results provide neuropathological evidences linking COVID-19 with prognostic increase of risk for AD.
Collapse
Affiliation(s)
- Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health CommissionPeking UniversityBeijingChina
| | - Shulu Yuan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Jiuyang Ding
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou ProvinceGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of EducationGuizhou Medical UniversityGuiyangChina
- School of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Weiqi Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yuanwei Xing
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Zilong Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yun Yao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health CommissionPeking UniversityBeijingChina
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health CommissionPeking UniversityBeijingChina
| | - Baofei Sun
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou ProvinceGuizhou Medical UniversityGuiyangChina
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of EducationGuizhou Medical UniversityGuiyangChina
| | - Bing Xia
- School of Forensic MedicineGuizhou Medical UniversityGuiyangChina
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health CommissionPeking UniversityBeijingChina
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health CommissionPeking UniversityBeijingChina
| | - Jian Mao
- Beijing Life Science AcademyBeijingChina
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health CommissionPeking UniversityBeijingChina
- Beijing Life Science AcademyBeijingChina
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory for Neuroscience, Ministry of Education/National Health CommissionPeking UniversityBeijingChina
- Beijing Life Science AcademyBeijingChina
| |
Collapse
|
6
|
Li Y, Zhuo Z, Liu C, Duan Y, Shi Y, Wang T, Li R, Wang Y, Jiang J, Xu J, Tian D, Zhang X, Shi F, Zhang X, Carass A, Barkhof F, Prince JL, Ye C, Liu Y. Deep learning enables accurate brain tissue microstructure analysis based on clinically feasible diffusion magnetic resonance imaging. Neuroimage 2024; 300:120858. [PMID: 39317273 DOI: 10.1016/j.neuroimage.2024.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) allows non-invasive assessment of brain tissue microstructure. Current model-based tissue microstructure reconstruction techniques require a large number of diffusion gradients, which is not clinically feasible due to imaging time constraints, and this has limited the use of tissue microstructure information in clinical settings. Recently, approaches based on deep learning (DL) have achieved promising tissue microstructure reconstruction results using clinically feasible dMRI. However, it remains unclear whether the subtle tissue changes associated with disease or age are properly preserved with DL approaches and whether DL reconstruction results can benefit clinical applications. Here, we provide the first evidence that DL approaches to tissue microstructure reconstruction yield reliable brain tissue microstructure analysis based on clinically feasible dMRI scans. Specifically, we reconstructed tissue microstructure from four different brain dMRI datasets with only 12 diffusion gradients, a clinically feasible protocol, and the neurite orientation dispersion and density imaging (NODDI) and spherical mean technique (SMT) models were considered. With these results we show that disease-related and age-dependent alterations of brain tissue were accurately identified. These findings demonstrate that DL tissue microstructure reconstruction can accurately quantify microstructural alterations in the brain based on clinically feasible dMRI.
Collapse
Affiliation(s)
- Yuxing Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenghao Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yulu Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingting Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runzhi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Decai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fudong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofeng Zhang
- School of Information and Electronics, Beijing Institute of Technology, Zhuhai, China
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, 1081 HV, the Netherlands
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Chuyang Ye
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Nelson BK, Farah LN, Grier A, Su W, Chen J, Sossi V, Sekhon MS, Stoessl AJ, Wellington C, Honer WG, Lang D, Silverberg ND, Panenka WJ. Differences in brain structure and cognitive performance between patients with long-COVID and those with normal recovery. Neuroimage 2024; 300:120859. [PMID: 39317274 DOI: 10.1016/j.neuroimage.2024.120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The pathophysiology of protracted symptoms after COVID-19 is unclear. This study aimed to determine if long-COVID is associated with differences in baseline characteristics, markers of white matter diffusivity in the brain, and lower scores on objective cognitive testing. METHODS Individuals who experienced COVID-19 symptoms for more than 60 days post-infection (long-COVID) (n = 56) were compared to individuals who recovered from COVID-19 within 60 days of infection (normal recovery) (n = 35). Information regarding physical and mental health, and COVID-19 illness was collected. The National Institute of Health Toolbox Cognition Battery was administered. Participants underwent magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI). Tract-based spatial statistics were used to perform a whole-brain voxel-wise analysis on standard DTI metrics (fractional anisotropy, axial diffusivity, mean diffusivity, radial diffusivity), controlling for age and sex. NIH Toolbox Age-Adjusted Fluid Cognition Scores were used to compare long-COVID and normal recovery groups, covarying for Age-Adjusted Crystallized Cognition Scores and years of education. False discovery rate correction was applied for multiple comparisons. RESULTS There were no significant differences in age, sex, or history of neurovascular risk factors between the groups. The long-COVID group had significantly (p < 0.05) lower mean diffusivity than the normal recovery group across multiple white matter regions, including the internal capsule, anterior and superior corona radiata, corpus callosum, superior fronto-occiptal fasciculus, and posterior thalamic radiation. However, the effect sizes of these differences were small (all β<|0.3|) and no significant differences were found for the other DTI metrics. Fluid cognition composite scores did not differ significantly between the long-COVID and normal recovery groups (p > 0.05). CONCLUSIONS Differences in diffusivity between long-COVID and normal recovery groups were found on only one DTI metric. This could represent subtle areas of pathology such as gliosis or edema, but the small effect sizes and non-specific nature of the diffusion indices make pathological inference difficult. Although long-COVID patients reported many neuropsychiatric symptoms, significant differences in objective cognitive performance were not found.
Collapse
Affiliation(s)
- Breanna K Nelson
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Lea N Farah
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Ava Grier
- University of British Columbia, Department of Radiology, 2775 Laurel Street Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Wayne Su
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Johnson Chen
- Vancouver General Hospital, British Columbia, 899 West 12th Ave Vancouver, BC Canada
| | - Vesna Sossi
- University of British Columbia, Department of Physics and Astronomy, 325-6224 Agricultural Road Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - Mypinder S Sekhon
- University of British Columbia, Department of Medicine, 2775 Laurel Street Vancouver, BC Canada; Vancouver General Hospital, British Columbia, 899 West 12th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - A Jon Stoessl
- University of British Columbia, Department of Medicine, 2775 Laurel Street Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - Cheryl Wellington
- University of British Columbia, Department of Pathology and Laboratory Medicine, 317 - 2194 Health Sciences Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - William G Honer
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
| | - Donna Lang
- University of British Columbia, Department of Radiology, 2775 Laurel Street Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - Noah D Silverberg
- University of British Columbia, Department of Psychology, 2136 West Mall Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
| | - William J Panenka
- University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada.
| |
Collapse
|
8
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
9
|
González-Rosa JJ, Gómez-Molinero MP, Lozano-Soto E, Fernández-Rosa SP, Campos-Silvo M, García-Rodríguez MP, Cano-Cano F, Sanmartino F, Rashid-López R, Macías-García P, Gómez-Ramírez JD, Espinosa-Rosso R, Paz-Espósito J, Gómez-Molinero R, Forero L, Cruz-Gómez ÁJ. Structural and functional brain markers of cognitive impairment in healthcare workers following mild SARS-CoV-2 infection during the original stream. Brain Commun 2024; 6:fcae340. [PMID: 39416878 PMCID: PMC11481020 DOI: 10.1093/braincomms/fcae340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/01/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 infection often involves the nervous system, leading to cognitive dysfunctions, fatigue and many other neurological signs that are becoming increasingly recognized. Despite mild forms of the disease accounting for most cases worldwide, research on the pathophysiology driving mild coronavirus disease 2019 (COVID-19) has received little attention. In this respect, recent evidence has pointed out that around 30-40% of non-critical, mild-to-moderate severity COVID-19 survivors may display cognitive disturbances several months post-illness. Hence, the impact of COVID-19 on the brain structure and function, through potential neuropathological mechanisms underpinning cognitive alterations in post-mild COVID-19 infections, remains largely unexplored. This retrospective multicentre observational cohort study, entirely based on a healthcare worker sample (n = 65; 55% females, aged 21-61), investigated the cognitive status and the structural and functional brain integrity among non-hospitalized individuals who developed mild COVID-19 symptoms during the occurrence of severe acute respiratory syndrome coronavirus 2 variants Alpha to Delta, compared with healthy controls tested before the pandemic onset. All evaluations were performed at an average of 9-month follow-up post-infection period. Participants completed a comprehensive neuropsychological assessment and structural and functional MRI exams. Radiological inspection sought to detect the presence of white matter hyperintensities on axial fluid-attenuated inversion recovery images. Global and regional grey matter integrity assessment, analysing changes in grey matter volumes and cortical thinning, and functional connectivity alterations of resting-state brain networks were also conducted. Regression analyses tested the relationships between the presence of specific cognitive impairments and potential structural and functional brain findings. Our results revealed that clinical, cognitive screening and neuropsychological examinations were average between both groups, except for specific impairments related to executive functions in the mild COVID-19. Compared to healthy controls, mild COVID-19 subjects exhibited increased juxtacortical white matter hyperintensities, thalamic and occipital volume loss and diminished resting-state functional connectivity involving the left precuneus and cuneus in default-mode network and affecting the right angular gyrus and left precuneus in the dorsal attentional network. Reduced thalamic volume was the only variable selected in the final model explaining the observed executive function impairment in mild COVID-19. The presence of cognitive, structural and functional brain abnormalities over time suggests that the action of widespread neurovascular and inflammatory phenomena on the nervous system might also occur in mild forms following COVID-19 infection rather than permanent brain damage linked to the direct or indirect action of the virus. Our findings emphasize the need to pay attention to the long-term brain-related consequences of mild COVID-19 infections during the original stream.
Collapse
Affiliation(s)
- Javier J González-Rosa
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Psychology Department, University of Cadiz, 11510 Puerto Real, Spain
| | - María P Gómez-Molinero
- Radiodiagnostic Department, Jerez de la Frontera University Hospital, 11407 Jerez de la Frontera, Spain
| | - Elena Lozano-Soto
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Psychology Department, University of Cadiz, 11510 Puerto Real, Spain
| | - Silvia P Fernández-Rosa
- Radiodiagnostic Department, Jerez de la Frontera University Hospital, 11407 Jerez de la Frontera, Spain
| | - Marina Campos-Silvo
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
| | | | - Fátima Cano-Cano
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
| | - Florencia Sanmartino
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Psychology Department, University of Cadiz, 11510 Puerto Real, Spain
| | - Raúl Rashid-López
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Neurology Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Paloma Macías-García
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Psychology Department, University of Cadiz, 11510 Puerto Real, Spain
| | - Jaime D Gómez-Ramírez
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
| | - Raúl Espinosa-Rosso
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Neurology Department, Jerez de la Frontera University Hospital, 11407 Jerez de la Frontera, Spain
| | - José Paz-Espósito
- Radiodiagnostic Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | | | - Lucía Forero
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Neurology Department, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Álvaro J Cruz-Gómez
- Institute of Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Psychology Department, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
10
|
Wood GK, Sargent BF, Ahmad ZUA, Tharmaratnam K, Dunai C, Egbe FN, Martin NH, Facer B, Pendered SL, Rogers HC, Hübel C, van Wamelen DJ, Bethlehem RAI, Giunchiglia V, Hellyer PJ, Trender W, Kalsi G, Needham E, Easton A, Jackson TA, Cunningham C, Upthegrove R, Pollak TA, Hotopf M, Solomon T, Pett SL, Shaw PJ, Wood N, Harrison NA, Miller KL, Jezzard P, Williams G, Duff EP, Williams S, Zelaya F, Smith SM, Keller S, Broome M, Kingston N, Husain M, Vincent A, Bradley J, Chinnery P, Menon DK, Aggleton JP, Nicholson TR, Taylor JP, David AS, Carson A, Bullmore E, Breen G, Hampshire A, Michael BD, Paddick SM, Leek EC. Posthospitalization COVID-19 cognitive deficits at 1 year are global and associated with elevated brain injury markers and gray matter volume reduction. Nat Med 2024:10.1038/s41591-024-03309-8. [PMID: 39312956 DOI: 10.1038/s41591-024-03309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The spectrum, pathophysiology and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the 1-year cognitive, serum biomarker and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who required hospitalization, compared with 2,927 normative matched controls. Cognitive deficits were global, associated with elevated brain injury markers and reduced anterior cingulate cortex volume 1 year after COVID-19. Severity of the initial infective insult, postacute psychiatric symptoms and a history of encephalopathy were associated with the greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies.
Collapse
Affiliation(s)
- Greta K Wood
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Brendan F Sargent
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Zain-Ul-Abideen Ahmad
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Cordelia Dunai
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franklyn N Egbe
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Naomi H Martin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bethany Facer
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sophie L Pendered
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Henry C Rogers
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Christopher Hübel
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Centre for Register-based Research, Aarhus Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel J van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London, UK
- Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Peter J Hellyer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - William Trender
- Department of Brain Sciences, Imperial College London, London, UK
| | - Gursharan Kalsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edward Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ava Easton
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Encephalitis International, Malton, UK
| | - Thomas A Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel Upthegrove
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tom Solomon
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, University of Liverpool, Liverpool, UK
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK
| | - Sarah L Pett
- MRC Clinical Trials Unit, UCL, London, UK
- Institute of Clinical Trials and Methodology, UCL, London, UK
- Institute for Global Health, UCL, London, UK
| | - Pamela J Shaw
- Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, NIHR Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, UCL, London, UK
- UCL Genetics Institute, Division of Biosciences, UCL, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, School of Medicine, Cardiff University, Cardiff, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Guy Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eugene P Duff
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Steven Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Simon Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Broome
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nathalie Kingston
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - John Bradley
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Section of Perioperative, Acute, Critical Care and Emergency Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Timothy R Nicholson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Neuropsychiatry Research and Education Group, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Old Age Psychiatry, Tyne and Wear NHS Trust, Newcastle, UK
| | - Anthony S David
- Department of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ed Bullmore
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Institute of Behavioural and Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Adam Hampshire
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Benedict D Michael
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK.
| | - Stella-Maria Paddick
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Old Age Psychiatry, Gateshead Health NHS Foundation Trust, Gateshead, UK
- Millenium Institute for Care Research (MICARE), Santiago, Chile
| | - E Charles Leek
- Department of Psychology, Institute of Population Health, Institute of Life and Human Sciences, University of Liverpool, Liverpool, UK
- School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
11
|
Dacosta-Aguayo R, Torán-Monserrat P, Carmona-Cervelló M, León-Gómez BB, Mataró M, Puig J, Monté-Rubio G, López-Lifante VM, Maria Manresa-Domínguez J, Zamora-Putin V, Montero-Alia P, Chacón C, Bielsa-Pascual J, Moreno-Gabriel E, García-Sierra R, Rodríguez-Pérez MC, Costa-Garrido A, Prado JG, Martínez-Cáceres E, Mateu L, Massanella M, Violán C, Lamonja-Vicente N. Multimodal neuroimaging in Long-COVID and its correlates with cognition 1.8 years after SARS-CoV-2 infection: a cross-sectional study of the Aliança ProHEpiC-19 Cognitiu. Front Neurol 2024; 15:1426881. [PMID: 39346769 PMCID: PMC11428557 DOI: 10.3389/fneur.2024.1426881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction There is a growing interest in the effect of Long-COVID (LC) on cognition, and neuroimaging allows us to gain insight into the structural and functional changes underlying cognitive impairment in LC. We used multimodal neuroimaging data in combination with neuropsychological evaluations to study cognitive complaints in a cohort of LC patients with mild to moderate severity symptoms. Methods We conducted a 3T brain magnetic resonance imaging (MRI) study with diffusion tensor imaging (DTI) and functional MRI (fMRI) sequences on 53 LC patients 1.8 years after acute COVID-19 onset. We administered neuropsychological tests to evaluate cognitive domains and examined correlations with Tract-Based Spatial Statistics (TBSS) and resting state. Results We included 53 participants with LC (mean age, 48.23 years; 88.7% females). According to the Frascati criteria, more than half of the participants had deficits in the executive (59%) and attentional (55%) domains, while 40% had impairments in the memory domain. Only one participant (1.89%) showed problems in the visuospatial and visuoconstructive domain. We observed that increased radial diffusivity in different white matter tracts was negatively correlated with the memory domain. Our results showed that higher resting state activity in the fronto-parietal network was associated with lower memory performance. Moreover, we detected increased functional connectivity among the bilateral hippocampus, the right hippocampus and the left amygdala, and the right hippocampus and the left middle temporal gyrus. These connectivity patterns were inversely related to memory and did not survive false discovery rate (FDR) correction. Discussion People with LC exhibit cognitive impairments linked to long-lasting changes in brain structure and function, which justify the cognitive alterations detected.
Collapse
Affiliation(s)
- Rosalia Dacosta-Aguayo
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Girona, Girona, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
| | - Meritxell Carmona-Cervelló
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Brenda Biaani León-Gómez
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Josep Puig
- Radiology Department CDI, Hospital Clinic of Barcelona, Barcelona, Spain
- IDIBAPS (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain
- Comparative Medicine and Bioimaging Center (CMCiB), Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Gemma Monté-Rubio
- Comparative Medicine and Bioimaging Center (CMCiB), Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Victor M López-Lifante
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
- Palau-Solità Healthcare Centre, Palau-Solità Plegamans Institut Català de la Salut, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Maria Manresa-Domínguez
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Valeria Zamora-Putin
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Palau-Solità Healthcare Centre, Palau-Solità Plegamans Institut Català de la Salut, Barcelona, Spain
| | - Pilar Montero-Alia
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
| | - Carla Chacón
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Grup de REcerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
| | - Jofre Bielsa-Pascual
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Eduard Moreno-Gabriel
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
- Department of Social Psychology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosa García-Sierra
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
- Nursing Department, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Carmen Rodríguez-Pérez
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Anna Costa-Garrido
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
| | - Julia G Prado
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- IrsiCaixa-AIDS Research, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva Martínez-Cáceres
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Immunology Department, FOCIS Center of Excellence-Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Immunology Division, Laboratori Clinic Metropolitana Nord (LCMN), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Lourdes Mateu
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- IrsiCaixa-AIDS Research, Badalona, Spain
- Infectious Diseases Department, Fundació Lluita contra les Infeccions (FLI), Germans Trias i Pujol Hospital, Badalona, Spain
- Red Española de investigación en Covid Persistente, Madrid, Spain
| | - Marta Massanella
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- IrsiCaixa-AIDS Research, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Red Española de investigación en Covid Persistente, Madrid, Spain
| | - Concepción Violán
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Girona, Girona, Spain
- Grup de REcerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Prevención y Promoción de la Salud (RICAPPS), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Noemí Lamonja-Vicente
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Spain
- Grup de REcerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol), Barcelona, Spain
| |
Collapse
|
12
|
Villareal JAB, Bathe T, Hery GP, Phillips JL, Tsering W, Prokop S. Deterioration of neuroimmune homeostasis in Alzheimer's Disease patients who survive a COVID-19 infection. J Neuroinflammation 2024; 21:202. [PMID: 39154174 PMCID: PMC11330027 DOI: 10.1186/s12974-024-03196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Growing evidence has implicated systemic infection as a significant risk factor for the development and advancement of Alzheimer's disease (AD). With the emergence of SARS-CoV-2 (COVID-19) and the resultant pandemic, many individuals from the same aging population vulnerable to AD suffered a severe systemic infection with potentially unidentified long-term consequences for survivors. To study the impact of COVID-19 survival on the brain's intrinsic immune system in a population also suffering from AD, we profiled post-mortem brain tissue from patients in the UF Neuromedicine Human Brain and Tissue Bank with a diagnosis of AD who survived a COVID-19 infection (COVID-AD) and contrasted our findings with AD patients who did not experience a COVID-19 infection, including a group of brain donors who passed away before arrival of SARS-CoV-2 in the United States. We assessed disease-relevant protein pathology and microglial and astrocytic markers by quantitative immunohistochemistry and supplemented these data with whole tissue gene expression analysis performed on the NanoString nCounter® platform. COVID-AD patients showed slightly elevated Aβ burden in the entorhinal, fusiform, and inferior temporal cortices compared to non-COVID-AD patients, while tau pathology burden did not differ between groups. Analysis of microglia revealed a significant loss of microglial homeostasis as well as exacerbated microgliosis in COVID-AD patients compared to non-COVID-AD patients in a brain region-dependent manner. Furthermore, COVID-AD patients showed reduced cortical astrocyte numbers, independent of functional subtype. Transcriptomic analysis supported these histological findings and, in addition, identified a dysregulation of oligodendrocyte and myelination pathways in the hippocampus of COVID-AD patients. In summary, our data demonstrate a profound impact of COVID-19 infection on neuroimmune and glial pathways in AD patients persisting for months post-infection, highlighting the importance of peripheral to central neuroimmune crosstalk in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan A B Villareal
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Tim Bathe
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jennifer L Phillips
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Wangchen Tsering
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Khodanovich M, Svetlik M, Kamaeva D, Usova A, Kudabaeva M, Anan’ina T, Vasserlauf I, Pashkevich V, Moshkina M, Obukhovskaya V, Kataeva N, Levina A, Tumentceva Y, Vasilieva S, Schastnyy E, Naumova A. Demyelination in Patients with POST-COVID Depression. J Clin Med 2024; 13:4692. [PMID: 39200834 PMCID: PMC11355865 DOI: 10.3390/jcm13164692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Depression is one of the most severe sequelae of COVID-19, with major depressive disorder often characterized by disruption in white matter (WM) connectivity stemming from changes in brain myelination. This study aimed to quantitatively assess brain myelination in clinically diagnosed post-COVID depression (PCD) using the recently proposed MRI method, macromolecular proton fraction (MPF) mapping. Methods: The study involved 63 recovered COVID-19 patients (52 mild, 11 moderate, and 2 severe) at 13.5 ± 10.0 months post-recovery, with matched controls without prior COVID-19 history (n = 19). A post-COVID depression group (PCD, n = 25) was identified based on psychiatric diagnosis, while a comparison group (noPCD, n = 38) included participants with neurological COVID-19 complications, excluding clinical depression. Results: Fast MPF mapping revealed extensive demyelination in PCD patients, particularly in juxtacortical WM (predominantly occipital lobe and medial surface), WM tracts (inferior fronto-occipital fasciculus (IFOF), posterior thalamic radiation, external capsule, sagittal stratum, tapetum), and grey matter (GM) structures (hippocampus, putamen, globus pallidus, and amygdala). The noPCD group also displayed notable demyelination, but with less magnitude and propagation. Multiple regression analysis highlighted IFOF demyelination as the primary predictor of Hamilton scores, PCD presence, and severity. The number of post-COVID symptoms was a significant predictor of PCD presence, while the number of acute symptoms was a significant predictor of PCD severity. Conclusions: This study, for the first time, reveals extensive demyelination in numerous WM and GM structures in PCD, outlining IFOF demyelination as a key biomarker.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Daria Kamaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Anna Usova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 12/1 Savinykh Street, Tomsk 634028, Russia
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Tatyana Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Irina Vasserlauf
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634028, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Medica Diagnostic and Treatment Center, 86 Sovetskaya Street, Tomsk 634510, Russia
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Svetlana Vasilieva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Evgeny Schastnyy
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Anna Naumova
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
14
|
van Lith TJ, Li H, van der Wijk MW, Wijers NT, Sluis WM, Wermer MJH, de Leeuw FE, Meijer FJA, Tuladhar AM. White matter integrity in hospitalized COVID-19 patients is not associated with short- and long-term clinical outcomes. Front Neurol 2024; 15:1440294. [PMID: 39175757 PMCID: PMC11340528 DOI: 10.3389/fneur.2024.1440294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Objectives SARS-CoV-2 infection is associated with a decline in functional outcomes; many patients experience persistent symptoms, while the underlying pathophysiology remains unclear. This study investigated white matter (WM) integrity on brain MRI in hospitalized COVID-19 patients and its associations with clinical outcomes, including long COVID. Materials and methods We included hospitalized COVID-19 patients and controls from CORONavirus and Ischemic Stroke (CORONIS), an observational cohort study, who underwent MRI-DWI imaging at baseline shortly after discharge (<3 months after positive PCR) and 3 months after baseline scanning. We assessed WM integrity using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) and performed comparisons between groups and within patients. Clinical assessment was conducted at 3 and 12 months with functional outcomes such as modified Rankin Scale (mRS), Post-COVID-19 Functional Status scale (PCFS), Visual Analogue Scale (VAS), and long COVID, cognitive assessment was conducted by the Modified Telephone Interview for Cognitive Status (TICS-M), and the Hospital Anxiety and Depression Scale (HADS) was used to assess mood disorder. Associations between WM integrity and clinical outcomes were evaluated using logistic regression and linear regression. Results A total of 49 patients (mean age 59.5 years) showed higher overall peak width of skeletonized mean diffusivity (PSMD) (p = 0.030) and lower neurite density index (NDI) in several WM regions compared with 25 controls at the baseline (p < 0.05; FWE-corrected) but did not remain statistically significant after adjusting for WM hyperintensities. Orientation dispersion index (ODI) increased after 3-month follow-up in several WM regions within patients (p < 0.05), which remained significant after correction for changes in WMH volume. Patients exhibited worse clinical outcomes compared with controls. Low NDI at baseline was associated with worse performance on the Post-COVID-19 Functional Status scale after 12 months (p = 0.018). Conclusion After adjusting for WMH, hospitalized COVID-19 patients no longer exhibited lower WM integrity compared with controls. WM integrity was generally not associated with clinical assessments as measured shortly after discharge, suggesting that factors other than underlying WM integrity play a role in worse clinical outcomes or long COVID.
Collapse
Affiliation(s)
- Theresa J. van Lith
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hao Li
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marte W. van der Wijk
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Naomi T. Wijers
- Department of Neurology, Leiden University Medical CenterLeiden, Netherlands
| | - Wouter M. Sluis
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marieke J. H. Wermer
- Department of Neurology, University Medical Center Groningen, Groningen, Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Anil M. Tuladhar
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
15
|
Churchill NW, Roudaia E, Chen JJ, Sekuler A, Gao F, Masellis M, Lam B, Cheng I, Heyn C, Black SE, MacIntosh BJ, Graham SJ, Schweizer TA. Effects of post-acute COVID-19 syndrome on cerebral white matter and emotional health among non-hospitalized individuals. Front Neurol 2024; 15:1432450. [PMID: 39165270 PMCID: PMC11333225 DOI: 10.3389/fneur.2024.1432450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Post-acute COVID syndrome (PACS) is a growing concern, given its impact on mental health and quality of life. However, its effects on cerebral white matter remain poorly understood, particularly in non-hospitalized cohorts. The goals of this cross-sectional, observational study were to examine (1) whether PACS was associated with distinct alterations in white matter microstructure, compared to symptom-matched non-COVID viral infection; and (2) whether microstructural alterations correlated with indices of post-COVID emotional health. Methods Data were collected for 54 symptomatic individuals who tested positive for COVID-19 (mean age 41 ± 12 yrs., 36 female) and 14 controls who tested negative for COVID-19 (mean age 41 ± 14 yrs., 8 female), with both groups assessed an average of 4-5 months after COVID testing. Diffusion magnetic resonance imaging data were collected, and emotional health was assessed via the NIH emotion toolbox, with summary scores indexing social satisfaction, well-being and negative affect. Results Despite similar symptoms, the COVID-19 group had reduced mean and axial diffusivity, along with increased mean kurtosis and neurite dispersion, in deep white matter. After adjusting for social satisfaction, higher levels of negative affect in the COVID-19 group were also correlated with increased mean kurtosis and reduced free water in white matter. Discussion These results provide preliminary evidence that indices of white matter microstructure distinguish PACS from symptomatic non-COVID infection. Moreover, white matter effects seen in PACS correlate with the severity of emotional sequelae, providing novel insights into this highly prevalent disorder.
Collapse
Affiliation(s)
- Nathan W. Churchill
- Brain Health and Wellness Research Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, ON, Canada
| | - Eugenie Roudaia
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - J. Jean Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Allison Sekuler
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Mario Masellis
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Benjamin Lam
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ivy Cheng
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Integrated Community Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chris Heyn
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Black
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Computational Radiology and Artificial Intelligence Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon J. Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tom A. Schweizer
- Brain Health and Wellness Research Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Ibrahim I, Škoch A, Dezortová M, Adla T, Flusserová V, Nagy M, Douchová I, Fialová M, Filová V, Pajuelo D, Ibrahimová M, Tintěra J. Evaluation of microstructural brain changes in post-coronavirus disease 2019 (COVID-19) patients with neurological symptoms: a cross-sectional study. Quant Imaging Med Surg 2024; 14:5499-5512. [PMID: 39144056 PMCID: PMC11320515 DOI: 10.21037/qims-24-162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 08/16/2024]
Abstract
Background Changes in both the vascular system and brain tissues can occur after a prior episode of coronavirus disease 2019 (COVID-19), detectable through modifications in diffusion parameters using magnetic resonance imaging (MRI) techniques. These changes in diffusion parameters may be particularly prominent in highly organized structures such as the corpus callosum (CC), including its major components, which have not been adequately studied following COVID-19 infection. Therefore, the study aimed to evaluate microstructural changes in whole-brain (WB) diffusion, with a specific focus on the CC. Methods A total of 101 probands (age range from 18 to 69 years) participated in this retrospective study, consisting of 55 volunteers and 46 post-COVID-19 patients experiencing neurological symptoms. The participants were recruited from April 2022 to September 2023 at the Institute for Clinical and Experimental Medicine in Prague, Czech Republic. All participants underwent MRI examinations on a 3T MR scanner with a diffusion protocol, complemented by additional MRI techniques. Two volunteers and five patients were excluded from the study due to motion artefacts, severe hypoperfusion or the presence of lesions. Participants were selected by a neurologist based on clinical examination and a serological test for COVID-19 antibodies. They were then divided into three groups: a control group of healthy volunteers (n=28), an asymptomatic group (n=25) with a history of infection but no symptoms, and a symptomatic group (n=41) with a history of COVID-19 and neurological symptoms. Symptomatic patients did not exhibit neurological symptoms before contracting COVID-19. Diffusion data underwent eddy current and susceptibility distortion corrections, and fiber tracking was performed using default parameters in DSI studio. Subsequently, various diffusion metrics, were computed within the reconstructed tracts of the WB and CC. To assess the impact of COVID-19 and its associated symptoms on diffusion indices within the white matter of the WB and CC regions, while considering age, we employed a statistical analysis using a linear mixed-effects model within the R framework. Results Statistical analysis revealed a significant difference in mean diffusivity (MD) between the symptomatic and control groups in the forceps minor (P=0.001) and CC body (P=0.003). In addition to changes in diffusion, alterations in brain perfusion were observed in two post-COVID-19 patients who experienced a severe course. Furthermore, hyperintense lesions were identified in subcortical and deep white matter areas in the vast majority of symptomatic patients. Conclusions The main finding of our study was that post-COVID-19 patients exhibit increased MD in the forceps minor and body of the CC. This finding suggests a potential association between microstructural brain changes in post-COVID-19 patients and reported neurological symptoms, with significant implications for research and clinical applications.
Collapse
Affiliation(s)
- Ibrahim Ibrahim
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Antonín Škoch
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Dezortová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Theodor Adla
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vlasta Flusserová
- Specialised Outpatient Care Division, Department of Neurology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Markéta Nagy
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Douchová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Fialová
- Laboratory Methods Division, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vanda Filová
- Laboratory Methods Division, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dita Pajuelo
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Markéta Ibrahimová
- Laboratory of Immunology, Thomayer University Hospital, Prague, Czech Republic
| | - Jaroslav Tintěra
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
17
|
McClelland AC, Benitez SJ, Burns J. COVID-19 Neuroimaging Update: Pathophysiology, Acute Findings, and Post-Acute Developments. Semin Ultrasound CT MR 2024; 45:318-331. [PMID: 38518814 DOI: 10.1053/j.sult.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
COVID-19 has prominent effects on the nervous system with important manifestations on neuroimaging. In this review, we discuss the neuroimaging appearance of acute COVID-19 that became evident during the early stages of the pandemic. We highlight the underlying pathophysiology mediating nervous system effects and neuroimaging appearances including systemic inflammatory response such as cytokine storm, coagulopathy, and para/post-infections immune mediated phenomena. We also discuss the nervous system manifestations of COVID-19 and the role of imaging as the pandemic has evolved over time, including related to the development of vaccines and the emergence of post-acute sequalae such as long COVID.
Collapse
Affiliation(s)
| | - Steven J Benitez
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Judah Burns
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
18
|
Du Y, Li C, Zhao W, Li J, Zhao L, Guo H, Jiang Y, Liu WV, Zeng S, Zhang H, Guo H, Ouyang X, Liu J. Multimodal neuroimaging exploration of the mechanisms of sleep quality deterioration after SARS-CoV-2 Omicron infection. BMC Med 2024; 22:271. [PMID: 38926881 PMCID: PMC11210028 DOI: 10.1186/s12916-024-03487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To evaluate the neurological alterations induced by Omicron infection, to compare brain changes in chronic insomnia with those in exacerbated chronic insomnia in Omicron patients, and to examine individuals without insomnia alongside those with new-onset insomnia. METHODS In this study, a total of 135 participants were recruited between January 11 and May 4, 2023, including 26 patients with chronic insomnia without exacerbation, 24 patients with chronic insomnia with exacerbation, 40 patients with no sleep disorder, and 30 patients with new-onset insomnia after infection with Omicron (a total of 120 participants with different sleep statuses after infection), as well as 15 healthy controls who were never infected with Omicron. Neuropsychiatric data, clinical symptoms, and multimodal magnetic resonance imaging data were collected. The gray matter thickness and T1, T2, proton density, and perivascular space values were analyzed. Associations between changes in multimodal magnetic resonance imaging findings and neuropsychiatric data were evaluated with correlation analyses. RESULTS Compared with healthy controls, gray matter thickness changes were similar in the patients who have and do not have a history of chronic insomnia groups after infection, including an increase in cortical thickness near the parietal lobe and a reduction in cortical thickness in the frontal, occipital, and medial brain regions. Analyses showed a reduced gray matter thickness in patients with chronic insomnia compared with those with an aggravation of chronic insomnia post-Omicron infection, and a reduction was found in the right medial orbitofrontal region (mean [SD], 2.38 [0.17] vs. 2.67 [0.29] mm; P < 0.001). In the subgroups of Omicron patients experiencing sleep deterioration, patients with a history of chronic insomnia whose insomnia symptoms worsened after infection displayed heightened medial orbitofrontal cortical thickness and increased proton density values in various brain regions. Conversely, patients with good sleep quality who experienced a new onset of insomnia after infection exhibited reduced cortical thickness in pericalcarine regions and decreased proton density values. In new-onset insomnia patients post-Omicron infection, the thickness in the right pericalcarine was negatively correlated with the Self-rating Anxiety Scale (r = - 0.538, P = 0.002, PFDR = 0.004) and Self-rating Depression Scale (r = - 0.406, P = 0.026, PFDR = 0.026) scores. CONCLUSIONS These findings help us understand the pathophysiological mechanisms involved when Omicron invades the nervous system and induces various forms of insomnia after infection. In the future, we will continue to pay attention to the dynamic changes in the brain related to insomnia caused by Omicron infection.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Cong Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, 410011, China
- Department of Radiology Quality Control Center, Changsha, Hunan, 410011, China
| | - Jinyue Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Huili Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Yingjia Jiang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | | | - Song Zeng
- MR Product, GE Healthcare, Guangzhou, 510000, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers, Wuhan, 430000, China
| | - Hu Guo
- MR Application, Siemens Healthineers, Guangzhou, 510000, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, 410011, China.
- Department of Radiology Quality Control Center, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Rudroff T. Long COVID in Brain Health Research: A Call to Action. Brain Sci 2024; 14:587. [PMID: 38928587 PMCID: PMC11201626 DOI: 10.3390/brainsci14060587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic has brought attention to the long-term consequences of the virus, particularly the persistent symptoms that characterize long COVID. This syndrome, which can last for months after the initial infection, includes a range of neurological and neuropsychiatric manifestations that have significant implications for brain health and dementia research. This review explores the current understanding of long COVID's cognitive, neurological, and psychiatric symptoms and their potential impact on brain stimulation and neuroimaging studies. It argues that researchers must adapt their study designs and screening processes to account for the confounding effects of long COVID and ensure the accuracy and reliability of their findings. To advance the understanding of this condition and its long-term effects on brain health, the review proposes a series of strategies, including the development of standardized screening tools, the investigation of underlying mechanisms, and the identification of risk factors and protective factors. It also emphasizes the importance of collaborative research efforts and international data sharing platforms in accelerating the pace of discovery and developing targeted interventions for individuals with long COVID. As the prevalence of this condition continues to grow, it is imperative that the neuroscience community comes together to address this challenge and support those affected by long COVID.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Nada MG, Almalki YE, Basha MAA, Metwally MI, Dessouky R, Radwan MHSS, Zaitoun MMA, Abdalla AAEHM, Bessar AAA, Tantwy EF, Assy MM, Dawoud BM, Hanna D, Gohary MM, Alduraibi SK, Lduraibi AK, Eldib DB, Khater HM, Sarhan NT, Hamed DE, Saadawy SF, Huneif MA, Abdelkhalik Basha AM, Libda YI. Insights Into MRI Neuroimaging Patterns of COVID-19 in Children: A Retrospective Comprehensive Analysis. Acad Radiol 2024; 31:2536-2549. [PMID: 38614828 DOI: 10.1016/j.acra.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Neurological complications associated with coronavirus disease (COVID-19) have been reported in children; however, data on neuroimaging findings remain limited. This study aimed to comprehensively examine neuroimaging patterns of COVID-19 in children and their relationship with clinical outcomes. MATERIALS AND METHODS This retrospective cross-sectional study involved reviewing the medical records and MRI scans of 95 children who developed new neurological symptoms within 2-4 weeks of clinical and laboratory confirmation of COVID-19. Patients were categorized into four groups based on guidelines approved by the Centers for Disease Control and Prevention (CDC). Initial brain/spinal MRI was performed. Images were reviewed by three blinded radiologists, and the findings were analyzed and categorized based on the observed patterns in the brain and spinal cord. Follow-up MRI was performed and analyzed to track lesion progression. RESULTS Encephalopathy was the most common neurological symptom (50.5%). The most common initial MRI involvement patterns were non-confluent multifocal hyperintense white matter (WM) lesions (36.8%) and ischemia (18.9%). Most patients who underwent follow-up MRI (n = 56) showed complete resolution (69.9%); however, some patients developed encephalomalacia and myelomalacia (23.2% and 7.1%, respectively). Non-confluent hyperintense WM lesions were associated with good outcomes (45.9%, P = 0.014), whereas ischemia and hemorrhage were associated with poor outcomes (44.1%, P < 0.001). CONCLUSION This study revealed diverse neuroimaging patterns in pediatric COVID-19 patients. Non-confluent WM lesions were associated with good outcomes, whereas ischemia and hemorrhage were associated with poorer prognoses. Understanding these patterns is crucial for their early detection, accurate diagnosis, and appropriate management.
Collapse
Affiliation(s)
- Mohamad Gamal Nada
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Yassir Edrees Almalki
- Division of Radiology, Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | | | - Maha Ibrahim Metwally
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Riham Dessouky
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed M A Zaitoun
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed A A Bessar
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Engy Fathy Tantwy
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa Mohamad Assy
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Bassant Mahmoud Dawoud
- Department of Diagnostic Radiology, Faculty of Human Medicine, Tanta University, Tanta, Egypt
| | - Diana Hanna
- Pediatric Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud M Gohary
- Pediatric Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Sharifa Khalid Alduraibi
- Department of Radiology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Alaa K Lduraibi
- Department of Radiology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Diaa Bakry Eldib
- Department of Radiology, Faculty of Human Medicine, Benha University, Benha, Egypt
| | - Hamada M Khater
- Department of Radiology, Faculty of Human Medicine, Benha University, Benha, Egypt
| | - Noha T Sarhan
- Department of Neurology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Dina Esmat Hamed
- Department of Dermatology, Venereology, and Andrology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Sara F Saadawy
- Medical Biochemistry Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed A Huneif
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia
| | | | - Yasmin Ibrahim Libda
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
De Lorenzo R, Mazza MG, Sciorati C, Leone R, Scavello F, Palladini M, Merolla A, Ciceri F, Bottazzi B, Garlanda C, Benedetti F, Rovere-Querini P, Manfredi AA. Post-COVID Trajectory of Pentraxin 3 Plasma Levels Over 6 Months and Their Association with the Risk of Developing Post-Acute Depression and Anxiety. CNS Drugs 2024; 38:459-472. [PMID: 38658499 DOI: 10.1007/s40263-024-01081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Clinical manifestations of coronavirus disease 2019 (COVID-19) often persist after acute disease resolution. Underlying molecular mechanisms are unclear. The objective of this original article was to longitudinally measure plasma levels of markers of the innate immune response to investigate whether they associate with and predict post-COVID symptomatology. METHODS Adult patients with previous severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection during the first pandemic wave who underwent the 6-month multidisciplinary follow-up were included. Plasma levels of pentraxin 3 (PTX3), the complement components C3a and C5a, and chitinase-3 like-protein-1 (CHI3L1) were measured at hospital admission during acute disease (baseline) and at 1 and 6 months after hospital discharge. Associations with post-COVID-19 sequelae at 6 months were investigated using descriptive statistic and multiple regression models. RESULTS Ninety-four COVID-19 patients were included. Baseline PTX3, C5a, C3a, and CHI3L1 did not predict post-COVID-19 sequelae. The extent of the reduction of PTX3 over time (delta PTX3) was associated with lower depressive and anxiety symptoms at 6 months (both p < 0.05). When entering sex, age, need for intensive care unit or non-invasive ventilation during hospital stay, psychiatric history, and baseline PTX3 as nuisance covariates into a generalized linear model (GLM), the difference between baseline and 6-month PTX3 levels (delta PTX3) significantly predicted depression (χ2 = 4.66, p = 0.031) and anxiety (χ2 = 4.68, p = 0.031) at 6 months. No differences in PTX3 levels or PTX3 delta were found in patients with or without persistent or new-onset other COVID-19 symptoms or signs at 6 months. Plasma levels of C3a, C5a, and CHI3L1 did not correlate with PTX3 levels at either time point and failed to associate with residual or de novo respiratory or systemic clinical manifestations of the disease at 6 months. CONCLUSIONS A lower reduction of plasma PTX3 after acute COVID-19 associates with the presence of depression and anxiety, suggesting an involvement of inflammation in post-COVID-19 psychopathology and a potential role of PTX3 as a biomarker.
Collapse
Affiliation(s)
- Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mario G Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy.
| | - Clara Sciorati
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Mariagrazia Palladini
- Vita-Salute San Raffaele University, Milan, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy
| | - Aurora Merolla
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Autoimmunity and Vascular Inflammation, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
22
|
Chaganti J, Poudel G, Cysique LA, Dore GJ, Kelleher A, Matthews G, Darley D, Byrne A, Jakabek D, Zhang X, Lewis M, Jha N, Brew BJ. Blood brain barrier disruption and glutamatergic excitotoxicity in post-acute sequelae of SARS COV-2 infection cognitive impairment: potential biomarkers and a window into pathogenesis. Front Neurol 2024; 15:1350848. [PMID: 38756214 PMCID: PMC11097901 DOI: 10.3389/fneur.2024.1350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2024] Open
Abstract
Objective To investigate the association between blood-brain barrier permeability, brain metabolites, microstructural integrity of the white matter, and cognitive impairment (CI) in post-acute sequelae of SARS-COV-2 infection (PASC). Methods In this multimodal longitudinal MRI study 14 PASC participants with CI and 10 healthy controls were enrolled. All completed investigations at 3 months following acute infection (3 months ± 2 weeks SD), and 10 PASC participants completed at 12 months ± 2.22 SD weeks. The assessments included a standard neurological assessment, a cognitive screen using the brief CogState battery and multi-modal MRI derived metrics from Dynamic contrast enhanced (DCE) perfusion Imaging, Diffusion Tensor Imaging (DTI), and single voxel proton Magnetic Resonance Spectroscopy. These measures were compared between patients and controls and correlated with cognitive scores. Results At baseline, and relative to controls, PASC participants had higher K-Trans and Myo-inositol, and lower levels of Glutamate/Glutamine in the frontal white matter (FWM) (p < 0.01) as well as in brain stem (p < 0.05), and higher FA and lower MD in the FWM (p < 0.05). In PASC participants, FA and MD decreased in the FWM at 12 months compared to baseline (p < 0.05). K-Trans and metabolite concentrations did not change significantly over time. Neurocognitive scores did not correlation with the increased permeability (K trans). Interpretation PASC with CI is associated with BBB impairment, loss of WM integrity, and inflammation at 3 months which significantly but not uniformly improved at 12 months. The loss of WM integrity is possibly mediated by BBB impairment and associated glutamatergic excitotoxicity.
Collapse
Affiliation(s)
- Joga Chaganti
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Lucette Adeline Cysique
- Department of Neurology and Immunology, Peter Duncan Neuroscience Unit, St Vincent’s Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Gregory J. Dore
- The Kirby Institute, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Anthony Kelleher
- The Kirby Institute, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
- St Vincent’s Hospital, University of NSW, Darlinghurst, NSW, Australia
| | - Gael Matthews
- The Kirby Institute, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - David Darley
- Department of Neurology and Immunology, Peter Duncan Neuroscience Unit, St Vincent’s Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Anthony Byrne
- St Vincent’s Hospital, University of NSW, Darlinghurst, NSW, Australia
| | - David Jakabek
- St Vincent’s Hospital, University of NSW, Darlinghurst, NSW, Australia
| | - Xin Zhang
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Marrissa Lewis
- St Vincent’s Hospital, University of NSW, Darlinghurst, NSW, Australia
| | - Nikhil Jha
- The Canberra Hospital, Canberra, ACT, Australia
| | - Bruce James Brew
- Department of Neurology and Immunology, Peter Duncan Neuroscience Unit, St Vincent’s Hospital, University of New South Wales, Darlinghurst, NSW, Australia
- University of Notre Dame, Sydney, NSW, Australia
| |
Collapse
|
23
|
Mohammadi S, Ghaderi S. Post-COVID-19 conditions: a systematic review on advanced magnetic resonance neuroimaging findings. Neurol Sci 2024; 45:1815-1833. [PMID: 38421524 DOI: 10.1007/s10072-024-07427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Post-COVID conditions (PCCs) cover a wide spectrum of lingering symptoms experienced by survivors of coronavirus disease 2019 (COVID-19). Neurological and neuropsychiatric sequelae are common in PCCs. Advanced magnetic resonance imaging (MRI) techniques can reveal subtle alterations in brain structure, function, and perfusion that underlie these sequelae. This systematic review aimed to synthesize findings from studies that used advanced MRI to characterize brain changes in individuals with PCCs. A detailed literature search was conducted in the PubMed and Scopus databases to identify relevant studies that used advanced MRI modalities, such as structural MRI (sMRI), diffusion tensor imaging (DTI), functional MRI (fMRI), and perfusion-weighted imaging (PWI), to evaluate brain changes in PCCs. Twenty-five studies met the inclusion criteria, comprising 1219 participants with PCCs. The most consistent findings from sMRI were reduced gray matter volume (GMV) and cortical thickness (CTh) in cortical and subcortical regions. DTI frequently reveals increased mean diffusivity (MD), radial diffusivity (RD), and decreased fractional anisotropy (FA) in white matter tracts (WMTs) such as the corpus callosum, corona radiata, and superior longitudinal fasciculus. fMRI demonstrated altered functional connectivity (FC) within the default mode, salience, frontoparietal, somatomotor, subcortical, and cerebellar networks. PWI showed decreased cerebral blood flow (CBF) in the frontotemporal area, thalamus, and basal ganglia. Advanced MRI shows changes in the brain networks and regions of the PCCs, which may cause neurological and neuropsychiatric problems. Multimodal neuroimaging may help understand brain-behavior relationships. Longitudinal studies are necessary to better understand the progression of these brain anomalies.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Eligulashvili A, Gordon M, Lee JS, Lee J, Mehrotra-Varma S, Mehrotra-Varma J, Hsu K, Hilliard I, Lee K, Li A, Essibayi MA, Yee J, Altschul DJ, Eskandar E, Mehler MF, Duong TQ. Long-term outcomes of hospitalized patients with SARS-CoV-2/COVID-19 with and without neurological involvement: 3-year follow-up assessment. PLoS Med 2024; 21:e1004263. [PMID: 38573873 PMCID: PMC10994395 DOI: 10.1371/journal.pmed.1004263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Acute neurological manifestation is a common complication of acute Coronavirus Disease 2019 (COVID-19) disease. This retrospective cohort study investigated the 3-year outcomes of patients with and without significant neurological manifestations during initial COVID-19 hospitalization. METHODS AND FINDINGS Patients hospitalized for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection between 03/01/2020 and 4/16/2020 in the Montefiore Health System in the Bronx, an epicenter of the early pandemic, were included. Follow-up data was captured up to 01/23/2023 (3 years post-COVID-19). This cohort consisted of 414 patients with COVID-19 with significant neurological manifestations and 1,199 propensity-matched patients (for age and COVID-19 severity score) with COVID-19 without neurological manifestations. Neurological involvement during the acute phase included acute stroke, new or recrudescent seizures, anatomic brain lesions, presence of altered mentation with evidence for impaired cognition or arousal, and neuro-COVID-19 complex (headache, anosmia, ageusia, chemesthesis, vertigo, presyncope, paresthesias, cranial nerve abnormalities, ataxia, dysautonomia, and skeletal muscle injury with normal orientation and arousal signs). There were no significant group differences in female sex composition (44.93% versus 48.21%, p = 0.249), ICU and IMV status, white, not Hispanic (6.52% versus 7.84%, p = 0.380), and Hispanic (33.57% versus 38.20%, p = 0.093), except black non-Hispanic (42.51% versus 36.03%, p = 0.019). Primary outcomes were mortality, stroke, heart attack, major adverse cardiovascular events (MACE), reinfection, and hospital readmission post-discharge. Secondary outcomes were neuroimaging findings (hemorrhage, active and prior stroke, mass effect, microhemorrhages, white matter changes, microvascular disease (MVD), and volume loss). More patients in the neurological cohort were discharged to acute rehabilitation (10.39% versus 3.34%, p < 0.001) or skilled nursing facilities (35.75% versus 25.35%, p < 0.001) and fewer to home (50.24% versus 66.64%, p < 0.001) than matched controls. Incidence of readmission for any reason (65.70% versus 60.72%, p = 0.036), stroke (6.28% versus 2.34%, p < 0.001), and MACE (20.53% versus 16.51%, p = 0.032) was higher in the neurological cohort post-discharge. Per Kaplan-Meier univariate survival curve analysis, such patients in the neurological cohort were more likely to die post-discharge compared to controls (hazard ratio: 2.346, (95% confidence interval (CI) [1.586, 3.470]; p < 0.001)). Across both cohorts, the major causes of death post-discharge were heart disease (13.79% neurological, 15.38% control), sepsis (8.63%, 17.58%), influenza and pneumonia (13.79%, 9.89%), COVID-19 (10.34%, 7.69%), and acute respiratory distress syndrome (ARDS) (10.34%, 6.59%). Factors associated with mortality after leaving the hospital involved the neurological cohort (odds ratio (OR): 1.802 (95% CI [1.237, 2.608]; p = 0.002)), discharge disposition (OR: 1.508 (95% CI [1.276, 1.775]; p < 0.001)), congestive heart failure (OR: 2.281 (95% CI [1.429, 3.593]; p < 0.001)), higher COVID-19 severity score (OR: 1.177 (95% CI [1.062, 1.304]; p = 0.002)), and older age (OR: 1.027 (95% CI [1.010, 1.044]; p = 0.002)). There were no group differences in radiological findings, except that the neurological cohort showed significantly more age-adjusted brain volume loss (p = 0.045) than controls. The study's patient cohort was limited to patients infected with COVID-19 during the first wave of the pandemic, when hospitals were overburdened, vaccines were not yet available, and treatments were limited. Patient profiles might differ when interrogating subsequent waves. CONCLUSIONS Patients with COVID-19 with neurological manifestations had worse long-term outcomes compared to matched controls. These findings raise awareness and the need for closer monitoring and timely interventions for patients with COVID-19 with neurological manifestations, as their disease course involving initial neurological manifestations is associated with enhanced morbidity and mortality.
Collapse
Affiliation(s)
- Anna Eligulashvili
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Moshe Gordon
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jimmy S. Lee
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeylin Lee
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shiv Mehrotra-Varma
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jai Mehrotra-Varma
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kevin Hsu
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Imanyah Hilliard
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kristen Lee
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Arleen Li
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Muhammed Amir Essibayi
- Department of Neurological Surgery, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Judy Yee
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David J. Altschul
- Department of Neurological Surgery, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Emad Eskandar
- Department of Neurological Surgery, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mark F. Mehler
- Department of Neurology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tim Q. Duong
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
25
|
Makhluf H, Madany H, Kim K. Long COVID: Long-Term Impact of SARS-CoV2. Diagnostics (Basel) 2024; 14:711. [PMID: 38611624 PMCID: PMC11011397 DOI: 10.3390/diagnostics14070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Four years post-pandemic, SARS-CoV-2 continues to affect many lives across the globe. An estimated 65 million people suffer from long COVID, a term used to encapsulate the post-acute sequelae of SARS-CoV-2 infections that affect multiple organ systems. Known symptoms include chronic fatigue syndrome, brain fog, cardiovascular issues, autoimmunity, dysautonomia, and clotting due to inflammation. Herein, we review long COVID symptoms, the proposed theories behind the pathology, diagnostics, treatments, and the clinical trials underway to explore treatments for viral persistence, autonomic and cognitive dysfunctions, sleep disturbances, fatigue, and exercise intolerance.
Collapse
Affiliation(s)
- Huda Makhluf
- Department of Mathematics and Natural Sciences, National University, San Diego, CA 92123, USA
- Center for Infectious Disease, La Jolla Institute, La Jolla, CA 92037, USA; (H.M.); (K.K.)
| | - Henry Madany
- Center for Infectious Disease, La Jolla Institute, La Jolla, CA 92037, USA; (H.M.); (K.K.)
- Public Health Sciences, University of California, Irvine, CA 92697, USA
| | - Kenneth Kim
- Center for Infectious Disease, La Jolla Institute, La Jolla, CA 92037, USA; (H.M.); (K.K.)
| |
Collapse
|
26
|
van der Knaap N, Ariës MJH, van der Horst ICC, Jansen JFA. On the merits and potential of advanced neuroimaging techniques in COVID-19: A scoping review. Neuroimage Clin 2024; 42:103589. [PMID: 38461701 PMCID: PMC10938171 DOI: 10.1016/j.nicl.2024.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Many Coronavirus Disease 2019 (COVID-19) patients are suffering from long-term neuropsychological sequelae. These patients may benefit from a better understanding of the underlying neuropathophysiological mechanisms and identification of potential biomarkers and treatment targets. Structural clinical neuroimaging techniques have limited ability to visualize subtle cerebral abnormalities and to investigate brain function. This scoping review assesses the merits and potential of advanced neuroimaging techniques in COVID-19 using literature including advanced neuroimaging or postmortem analyses in adult COVID-19 patients published from the start of the pandemic until December 2023. Findings were summarized according to distinct categories of reported cerebral abnormalities revealed by different imaging techniques. Although no unified COVID-19-specific pattern could be subtracted, a broad range of cerebral abnormalities were revealed by advanced neuroimaging (likely attributable to hypoxic, vascular, and inflammatory pathology), even in absence of structural clinical imaging findings. These abnormalities are validated by postmortem examinations. This scoping review emphasizes the added value of advanced neuroimaging compared to structural clinical imaging and highlights implications for brain functioning and long-term consequences in COVID-19.
Collapse
Affiliation(s)
- Noa van der Knaap
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marcel J H Ariës
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
27
|
Mohammadi S, Ghaderi S. Advanced magnetic resonance neuroimaging techniques: feasibility and applications in long or post-COVID-19 syndrome - a review. Ann Med Surg (Lond) 2024; 86:1584-1589. [PMID: 38463042 PMCID: PMC10923379 DOI: 10.1097/ms9.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Long-term or post-COVID-19 syndrome (PCS) is a condition that affects people infected with SARS‑CoV‑2, the virus that causes COVID-19. PCS is characterized by a wide range of persistent or new symptoms that last months after the initial infection, such as fatigue, shortness of breath, cognitive dysfunction, and pain. Advanced magnetic resonance (MR) neuroimaging techniques can provide valuable information on the structural and functional changes in the brain associated with PCS as well as potential biomarkers for diagnosis and prognosis. In this review, we discuss the feasibility and applications of various advanced MR neuroimaging techniques in PCS, including perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), functional MR imaging (fMRI), diffusion tensor imaging (DTI), and tractography. We summarize the current evidence on neuroimaging findings in PCS, the challenges and limitations of these techniques, and the future directions for research and clinical practice. Although still uncertain, advanced MRI techniques show promise for gaining insight into the pathophysiology and guiding the management of COVID-19 syndrome, pending larger validation studies.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Khodanovich M, Naumova A, Kamaeva D, Obukhovskaya V, Vasilieva S, Schastnyy E, Kataeva N, Levina A, Kudabaeva M, Pashkevich V, Moshkina M, Tumentceva Y, Svetlik M. Neurocognitive Changes in Patients with Post-COVID Depression. J Clin Med 2024; 13:1442. [PMID: 38592295 PMCID: PMC10933987 DOI: 10.3390/jcm13051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Depression and cognitive impairment are recognized complications of COVID-19. This study aimed to assess cognitive performance in clinically diagnosed post-COVID depression (PCD, n = 25) patients using neuropsychological testing. Methods: The study involved 71 post-COVID patients with matched control groups: recovered COVID-19 individuals without complications (n = 18) and individuals without prior COVID-19 history (n = 19). A post-COVID depression group (PCD, n = 25) was identified based on psychiatric diagnosis, and a comparison group (noPCD, n = 46) included participants with neurological COVID-19 complications, excluding clinical depression. Results: The PCD patients showed gender-dependent significant cognitive impairment in the MoCA, Word Memory Test (WMT), Stroop task (SCWT), and Trail Making Test (TMT) compared to the controls and noPCD patients. Men with PCD showed worse performances on the SCWT, in MoCA attention score, and on the WMT (immediate and delayed word recall), while women with PCD showed a decline in MoCA total score, an increased processing time with less errors on the TMT, and worse immediate recall. No differences between groups in Sniffin's stick test were found. Conclusions: COVID-related direct (post-COVID symptoms) and depression-mediated (depression itself, male sex, and severity of COVID-19) predictors of decline in memory and information processing speed were identified. Our findings may help to personalize the treatment of depression, taking a patient's gender and severity of previous COVID-19 disease into account.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Anna Naumova
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican Street, Seattle, WA 98109, USA;
| | - Daria Kamaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 6340505, Russia
| | - Svetlana Vasilieva
- Department of Affective States, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia; (S.V.); (E.S.)
| | - Evgeny Schastnyy
- Department of Affective States, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia; (S.V.); (E.S.)
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 6340505, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Medica Diagnostic and Treatment Center, 86 Sovetskaya Street, Tomsk 634510, Russia
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| |
Collapse
|
29
|
Zhang W, Gorelik AJ, Wang Q, Norton SA, Hershey T, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. Brain Behav Immun Health 2024; 36:100722. [PMID: 38298902 PMCID: PMC10825665 DOI: 10.1016/j.bbih.2023.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N = 416 including n = 224 COVID-19 cases; Mage = 58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF). We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|β|'s < 0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (β's > 0.3, all pFDR = 0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sara A. Norton
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Janine D. Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| |
Collapse
|
30
|
Yang L, Li J, Huang C, Du Y, Li C, Huang B, Hou F, Zhao L, Guo H, Hu J, Ouyang X, Liu J. Altered orientation dispersion index of white matter in individuals with insomnia during the COVID-19 pandemic: A study combining neuroimaging technique and Mendelian randomization. Sleep Med 2024; 114:167-177. [PMID: 38211375 DOI: 10.1016/j.sleep.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
STUDY OBJECTIVES Coronavirus disease 2019 (COVID-19) can lead to insomnia. However, associations between COVID-19-caused insomnia and white matter (WM) changes are unclear. METHODS All subjects had ever been infected with COVID-19. We investigated 89 insomniacs (29 chronic insomniacs, 33 new-onset insomniacs, 27 aggravated insomniacs) and 44 matched non-insomnia participants. Neurite orientation dispersion and density imaging (NODDI) was performed to identify micro-structural alterations of WM, and twelve scales related to sleeping status, memory, attention, learning, emotional status, and executive functions were used. Then, correlations between insomnia/cognitive-behavioral functions and diffusion metrics were tested. To eliminate influence of pre-COVID-19 factors on insomnia, causal relationships between COVID-19 and WM changes were validated by Mendelian randomization (MR) analysis. The significant brain regions of COVID-19-caused insomnia were intersected results of tract-based spatial statistics (TBSS) and MR analyses. RESULTS Compared to non-insomnia group, insomnia group and its subgroups including post-COVID-19 aggravated or unchanged chronic insomnia group had higher orientation dispersion index (ODI) in extensive brain regions. The left superior longitudinal fasciculus (SLF), left posterior thalamic radiation (PTR), and left cingulate gyrus (CG) were specific brain regions in COVID-19-induced insomnia aggravation. After Bonferroni correction, partial correlation analyses within insomnia group showed that ODI in left SLF was positively correlated with Pittsburgh sleep quality index (PSQI), insomnia severity index (ISI), and self-rating anxiety scale (SAS) scores; ODI in the left PTR was positively correlated with PSQI and ISI scores. CONCLUSIONS This study is a continuation of our previous research, which provided potential biomarkers for COVID-19-induced insomnia.
Collapse
Affiliation(s)
- Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinyue Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyao Du
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cong Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bei Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Hou
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huili Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Junjiao Hu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China; Department of Radiology Quality Control Center in Hunan Province, Changsha, China.
| |
Collapse
|
31
|
Qin H, Duan G, Zhou K, Qin L, Lai Y, Liu Y, Lu Y, Peng B, Zhang Y, Zhou X, Huang J, Huang J, Liang L, Wei Y, Zhang Q, Li X, OuYang Y, Bin B, Zhao M, Yang J, Deng D. Alteration of white matter microstructure in patients with sleep disorders after COVID-19 infection. Sleep Med 2024; 114:109-118. [PMID: 38181582 DOI: 10.1016/j.sleep.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The pathophysiology of coronasomnia remains unclear. This study aimed to investigate changes in white matter (WM) microstructure and inflammatory factors in patients with sleep disorders (SD) characterized by poor sleep quantity, quality, or timing following coronavirus disease 2019 (COVID-19) infection in the acute phase (within one month) and whether these changes could be recovered at 3-month follow-up. METHODS 29 acute COVID-19 patients with SD (COVID_SD) and 27 acute COVID-19 patients without SD (COVID_NonSD) underwent diffusion tensor imaging (DTI), tested peripheral blood inflammatory cytokines level, and measured Pittsburgh Sleep Quality Index (PSQI), and matched 30 uninfected healthy controls. Analyzed WM abnormalities between groups in acute phase and explored its changes in COVID_SD at 3-month follow-up by using tract-based spatial statistics (TBSS). Correlations between DTI and clinical data were examined using Spearman partial correlation analysis. RESULTS Both COVID_SD and COVID_NonSD exhibited widespread WM microstructure abnormalities. The COVID_SD group showed specific WM microstructure changes in right inferior fronto-occipital fasciculus (IFOF) (lower fractional anisotropy [FA]/axial diffusivity [AD] and higher radial diffusivity [RD]) and left corticospinal tract (CST) (higher FA and lower RD) and higher interleukin-1β (IL-1β) compared with COVID_NonSD group. These WM abnormalities and IL-1β levels were correlated PSQI score. After 3 months, the IFOF integrity and IL-1β levels tended to return to normal accompanied by symptom improvement in the COVID_SD relative to baseline. CONCLUSION Abnormalities in right IFOF and left CST and elevated IL-1β levels were important neurophenotypes correlated with COVID_SD, which might provide new insights into the pathogenesis of neuroinflammation in SD patients induced by COVID-19.
Collapse
Affiliation(s)
- Haixia Qin
- Medical College of Guangxi University, Guangxi University, Nanning, 530004, Guangxi, China; Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Gaoxiong Duan
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Kaixuan Zhou
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Lixia Qin
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yinqi Lai
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Ying Liu
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yian Lu
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Bei Peng
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yan Zhang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Xiaoyan Zhou
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Jiazhu Huang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Jinli Huang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Lingyan Liang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yichen Wei
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Qingping Zhang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Xiaocheng Li
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yinfei OuYang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Bolin Bin
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Mingming Zhao
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Jianrong Yang
- Guangxi Clinical Reserch Center for Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Demao Deng
- Medical College of Guangxi University, Guangxi University, Nanning, 530004, Guangxi, China; Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China.
| |
Collapse
|
32
|
Scardua-Silva L, Amorim da Costa B, Karmann Aventurato Í, Batista Joao R, Machado de Campos B, Rabelo de Brito M, Bechelli JF, Santos Silva LC, Ferreira Dos Santos A, Koutsodontis Machado Alvim M, Vieira Nunes Ludwig G, Rocha C, Kaue Alves Silva Souza T, Mendes MJ, Waku T, de Oliveira Boldrini V, Silva Brunetti N, Nora Baptista S, da Silva Schmitt G, Duarte de Sousa JG, Marchiori de Oliveira Cardoso TA, Schwambach Vieira A, Barbosa Santos LM, Dos Santos Farias A, Nogueira MH, Cendes F, Lin Yasuda C. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci Rep 2024; 14:1758. [PMID: 38242927 PMCID: PMC10798999 DOI: 10.1038/s41598-024-52005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Although some studies have shown neuroimaging and neuropsychological alterations in post-COVID-19 patients, fewer combined neuroimaging and neuropsychology evaluations of individuals who presented a mild acute infection. Here we investigated cognitive dysfunction and brain changes in a group of mildly infected individuals. We conducted a cross-sectional study of 97 consecutive subjects (median age of 41 years) without current or history of psychiatric symptoms (including anxiety and depression) after a mild infection, with a median of 79 days (and mean of 97 days) after diagnosis of COVID-19. We performed semi-structured interviews, neurological examinations, 3T-MRI scans, and neuropsychological assessments. For MRI analyses, we included a group of non-infected 77 controls. The MRI study included white matter (WM) investigation with diffusion tensor images (DTI) and functional connectivity with resting-state functional MRI (RS-fMRI). The patients reported memory loss (36%), fatigue (31%) and headache (29%). The quantitative analyses confirmed symptoms of fatigue (83% of participants), excessive somnolence (35%), impaired phonemic verbal fluency (21%), impaired verbal categorical fluency (13%) and impaired logical memory immediate recall (16%). The WM analyses with DTI revealed higher axial diffusivity values in post-infected patients compared to controls. Compared to controls, there were no significant differences in the functional connectivity of the posterior cingulum cortex. There were no significant correlations between neuropsychological scores and neuroimaging features (including DTI and RS-fMRI). Our results suggest persistent cognitive impairment and subtle white matter abnormalities in individuals mildly infected without anxiety or depression symptoms. The longitudinal analyses will clarify whether these alterations are temporary or permanent.
Collapse
Affiliation(s)
- Lucas Scardua-Silva
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Beatriz Amorim da Costa
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Ítalo Karmann Aventurato
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Rafael Batista Joao
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Brunno Machado de Campos
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
| | - Mariana Rabelo de Brito
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - José Flávio Bechelli
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Leila Camila Santos Silva
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Alan Ferreira Dos Santos
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Marina Koutsodontis Machado Alvim
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Guilherme Vieira Nunes Ludwig
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas, Brazil
| | - Cristiane Rocha
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Molecular Genetics Laboratory, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Thierry Kaue Alves Silva Souza
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Maria Julia Mendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Takeshi Waku
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
| | | | | | - Sophia Nora Baptista
- Autoimmune Research Lab, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | | | - André Schwambach Vieira
- Molecular Genetics Laboratory, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Autoimmune Research Lab, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | - Mateus Henrique Nogueira
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil.
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil.
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil.
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil.
| | - Clarissa Lin Yasuda
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil.
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil.
| |
Collapse
|
33
|
Clouston S, Huang C, Ying J, Sekendiz Z, Kritikos M, Fontana A, Bangiyev L, Luft B. Neuroinflammatory imaging markers in white matter: insights into the cerebral consequences of post-acute sequelae of COVID-19 (PASC). RESEARCH SQUARE 2024:rs.3.rs-3760289. [PMID: 38313257 PMCID: PMC10836117 DOI: 10.21203/rs.3.rs-3760289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Symptoms of coronavirus disease 2019 (COVID-19) can persist for months or years after infection, a condition called Post-Acute Sequelae of COVID-19 (PASC). Whole-brain white matter and cortical gray matter health were assessed using multi-shell diffusion tensor imaging. Correlational tractography was utilized to dissect the nature and extent of white matter changes. In this study of 42 male essential workers, the most common symptoms of Neurological PASC (n = 24) included fatigue (n = 19) and headache (n = 17). Participants with neurological PASC demonstrated alterations to whole-brain white matter health when compared to controls made up of uninfected, asymptomatic, or mildly infected controls (n = 18). Large differences were evident between PASC and controls in measures of fractional anisotropy (Cohen's D=-0.54, P = 0.001) and cortical isotropic diffusion (Cohen's D = 0.50, P = 0.002). Symptoms were associated with white matter fractional anisotropy (fatigue: rho = -0.62, P< 0.001; headache: rho = -0.66, P < 0.001), as well as nine other measures of white and gray matter health. Brain fog was associated with improved cerebral functioning including improved white matter isotropic diffusion and quantitative anisotropy. This study identified changes across measures of white and gray matter connectivity, neuroinflammation, and cerebral atrophy that were interrelated and associated with differences in symptoms of PASC. These results provide insights into the long-term cerebral implications of COVID-19.
Collapse
|
34
|
Wang J, Chen J. Infection with COVID-19 is a risk factor for poor prognosis in patients with intracranial hemorrhage: A prospective observational cohort study. Medicine (Baltimore) 2023; 102:e35716. [PMID: 37960736 PMCID: PMC10637543 DOI: 10.1097/md.0000000000035716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
This research aimed to explore the COVID-19 infection in the prognosis of patients with intracerebral hemorrhage (ICH), as well as analyzed the risk factors of the poor prognosis. This present prospective observational cohort study enrolled 136 patients with ICH who were admitted in our hospital during May 2020 to July 2022. The diagnosis of COVID-19 was confirmed by reverse transcriptase polymerase chain reaction. All patients were collected demographic and clinical data and were followed up for 3 months, and we used the modified Rankin scale (mRS) to assess the prognosis of ICH patients, mRS score ≥ 3 indicated a bad prognosis and mRS score ≤ 2 indicated a good prognosis. All data used SPSS 18.0 for statistical analyses. The mRS score after 3 months of patients in COVID-19 group were also remarkably elevated than that in the patients in control group (P < .05). The levels of fasting plasma glucose (FPG), D-dimer (D-D) were remarkably enhanced in the ICH patients in COVID-19 group compared to the control group (P < .05). The national institutes of health stroke scale scores, hematoma volume, the serum levels of white blood cell, FPG, D-D and the proportion of patients with diabetes were significantly higher while the Glasgow coma scale scores were significantly lower in bad prognosis group (P < .05). In addition, we found a significantly higher rate of COVID-19 infections in ICH patients with poor prognosis (P < .05). Infection of COVID-19, FPG, white blood cell, national institutes of health stroke scale, Glasgow coma scale and hematoma volume were the risk factors for poor prognosis in patients with ICH. This study showed that the proportion of patients with diabetes, the mRS score after 3 months and the levels of FPG, D-D were remarkably elevated in the ICH patients in COVID-19 group compared to the control group. This study may provide the effective preventive and treatment measures for the burden of ICH on families and society.
Collapse
Affiliation(s)
- Jia Wang
- Department of Critical Care Medicine, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| | - Jin Chen
- Department of Critical Care Medicine, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| |
Collapse
|
35
|
Zhao S, Toniolo S, Hampshire A, Husain M. Effects of COVID-19 on cognition and brain health. Trends Cogn Sci 2023; 27:1053-1067. [PMID: 37657964 PMCID: PMC10789620 DOI: 10.1016/j.tics.2023.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023]
Abstract
COVID-19 is associated with a range of neurological, cognitive, and mental health symptoms both acutely and chronically that can persist for many months after infection in people with long-COVID syndrome. Investigations of cognitive function and neuroimaging have begun to elucidate the nature of some of these symptoms. They reveal that, although cognitive deficits may be related to brain imaging abnormalities in some people, symptoms can also occur in the absence of objective cognitive deficits or neuroimaging changes. Furthermore, cognitive impairment may be detected even in asymptomatic individuals. We consider the evidence regarding symptoms, cognitive deficits, and neuroimaging, as well as their possible underlying mechanisms.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK.
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College London, 926 Sir Michael Uren Hub, 86 Wood Lane, London W12 0BZ, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK.
| |
Collapse
|
36
|
Du Y, Zhao W, Huang S, Huang C, Li C, Chen Y, Huang Y, Yang L, Li C, Zhang H, Guo H, Liu J. Gray Matter Thickness and Subcortical Nuclear Volume in Men After SARS-CoV-2 Omicron Infection. JAMA Netw Open 2023; 6:e2345626. [PMID: 38032639 PMCID: PMC10690469 DOI: 10.1001/jamanetworkopen.2023.45626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Importance The clinical manifestations and effects on the brain of the SARS-CoV-2 Omicron variant in the acute postinfection phase remain unclear. Objective To investigate the pathophysiological mechanisms underlying clinical symptoms and changes to gray matter and subcortical nuclei among male patients after Omicron infection and to provide an imaging basis for early detection and intervention. Design, Setting, and Participants In this cohort study, a total of 207 men underwent health screening magnetic resonance imaging scans between August 28 and September 18, 2022; among them, 98 provided complete imaging and neuropsychiatric data. Sixty-one participants with Omicron infection were reevaluated after infection (January 6 to 14, 2023). Neuropsychiatric data, clinical symptoms, and magnetic resonance imaging data were collected in the acute post-Omicron period, and their clinical symptoms were followed up after 3 months. Gray matter indexes and subcortical nuclear volumes were analyzed. Associations between changes in gray matter and neuropsychiatric data were evaluated with correlation analyses. Exposures Gray matter thickness and subcortical nuclear volume change data were compared before and after Omicron infection. Main Outcomes and Measures The gray matter indexes and subcutaneous nuclear volume were generated from the 3-dimensional magnetization-prepared rapid acquisition gradient echo and were calculated with imaging software. Results Ninety-eight men underwent complete baseline data collection; of these, 61 (mean [SD] age, 43.1 [9.9] years) voluntarily enrolled in post-Omicron follow-up and 17 (mean [SD] age, 43.5 [10.0] years) voluntarily enrolled in 3-month follow-up. Compared with pre-Omicron measures, Beck Anxiety Inventory scores were significantly increased (median, 4.50 [IQR, 1.00-7.00] to 4.00 [IQR, 2.00-9.75]; P = .006) and depressive distress scores were significantly decreased (median, 18.00 [IQR, 16.00-20.22] to 16.00 [IQR, 15.00-19.00]; P = .003) at the acute post-Omicron follow-up. Fever, headache, fatigue, myalgia, cough, and dyspnea were the main symptoms during the post-Omicron follow-up; among the participants in the 3-month follow-up, fever (11 [64.7%] vs 2 [11.8%]; P = .01), myalgia (10 [58.8%] vs 3 (17.6%]; P = .04), and cough (12 [70.6%] vs 4 [23.5%]; P = .02) were significantly improved. The gray matter thickness in the left precuneus (mean [SD], 2.7 [0.3] to 2.6 [0.2] mm; P < .001) and right lateral occipital region (mean [SD], 2.8 [0.2] to 2.7 [0.2] and 2.5 [0.2] to 2.5 [0.2] mm; P < .001 for both) and the ratio of the right hippocampus volume to the total intracranial volume (mean [SD]. 0.003 [0.0003] to 0.003 [0.0002]; P = .04) were significantly reduced in the post-Omicron follow-up. The febrile group had reduced sulcus depth of the right inferior parietal region compared with the nonfebrile group (mean [SD], 3.9 [2.3] to 4.8 [1.1]; P = .048. In the post-Omicron period, the thickness of the left precuneus was negatively correlated with the Beck Anxiety Inventory scores (r = -0.39; P = .002; false discovery rate P = .02), and the ratio of the right hippocampus to the total intracranial volume was positively correlated with the Word Fluency Test scores (r = 0.34; P = .007). Conclusions and Relevance In this cohort study of male patients infected with the Omicron variant, the duration of symptoms in multiple systems after infection was short. Changes in gray matter thickness and subcortical nuclear volume injury were observed in the post-Omicron period. These findings provide new insights into the emotional and cognitive mechanisms of an Omicron infection, demonstrate its association with alterations to the nervous system, and verify an imaging basis for early detection and intervention of neurological sequelae.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Hunan Province, Changsha, China
| | - Sihong Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuxin Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjing Chen
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yijie Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Longtao Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Cong Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd, Wuhan, China
| | - Hu Guo
- MR Application, Siemens Healthineers Ltd, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Hunan Province, Changsha, China
| |
Collapse
|
37
|
Boito D, Eklund A, Tisell A, Levi R, Özarslan E, Blystad I. MRI with generalized diffusion encoding reveals damaged white matter in patients previously hospitalized for COVID-19 and with persisting symptoms at follow-up. Brain Commun 2023; 5:fcad284. [PMID: 37953843 PMCID: PMC10638510 DOI: 10.1093/braincomms/fcad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural information which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41-79, all male) at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean age 58 years, range 46-69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the employed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, orientational coherence (Cc) and variance in compartment's size (CMD) were analysed using the tract-based spatial statistics framework. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for multiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffusivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in diffusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre coherence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vasogenic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous system symptoms that many patients experience after COVID-19.
Collapse
Affiliation(s)
- Deneb Boito
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Division of Statistics and Machine learning, Department of Computer and Information Science, Linköping University, S-58183 Linköping, Sweden
| | - Anders Tisell
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Radiation Physics, Linköping University, S-58185 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
| | - Richard Levi
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Rehabilitation Medicine in Linköping, Linköping University, S-58185 Linköping, Sweden
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Ida Blystad
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Radiology in Linköping, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
38
|
Wei C, Yu X, Chen Y, Yang T, Li S, Li J, Chen X. Can Patients with Asymptomatic/Mild Illness and Moderate Illness COVID-19 Have White Matter Damage? Int J Gen Med 2023; 16:4585-4593. [PMID: 37840824 PMCID: PMC10576465 DOI: 10.2147/ijgm.s434968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background and Purpose Studies have shown that severe coronavirus pandemic 2019 infection could lead to white matter hyperintensities, but the relationship between asymptomatic/mild illness and moderate illness coronavirus pandemic 2019 and white matter hyperintensities remains largely unknown. This study aimed to investigate the relationship between asymptomatic/mild illness and moderate illness coronavirus pandemic 2019 and the risk of white matter hyperintensities. Methods Hospitalized patients who were confirmed to have coronavirus pandemic 2019 for the first time were enrolled. Fazekas scores were used for assessment of the severity of white matter hyperintensities. We also rated the 90-day functional outcome after discharge. Results Of the 157 enrolled patients, 124 (78.98%) coronavirus pandemic 2019 patients were classified as having asymptomatic or mild illness, and 33 (21.02%) were classified as having moderate illness. The results showed that the Fazekas scale scores at baseline (periventricular white matter hyperintensities, 1.31±1.16 vs 2.06±1.20; Deep white matter hyperintensities, 1.04±0.97 vs 1.73±1.13 P <0.01) and at follow-up (periventricular white matter hyperintensities, 1.38±1.21 vs 2.09±1.21; Deep white matter hyperintensities, 1.13±1.04 vs 1.79±1.14 P <0.01) were lower in patients with symptomatic or mild illness than in those with moderate illness. Moreover, no significant difference (7.26% vs 3.03%; P =0.377) was observed between the two divided groups in terms of white matter hyperintensities progression. Conclusion Our findings suggest that moderate COVID-19 is related to severe white matter hyperintensities compared with asymptomatic/mild illness but not to the progression of white matter hyperintensities.
Collapse
Affiliation(s)
- Cunsheng Wei
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xiaorong Yu
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Yuan Chen
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Tingting Yang
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Shenghua Li
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Junrong Li
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xuemei Chen
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| |
Collapse
|
39
|
Lathouwers E, Radwan A, Blommaert J, Stas L, Tassignon B, Allard SD, De Ridder F, De Waele E, Hoornaert N, Lacor P, Mertens R, Naeyaert M, Raeymaekers H, Seyler L, Vanbinst AM, Van Liedekerke L, Van Schependom J, Van Schuerbeek P, Provyn S, Roelands B, Vandekerckhove M, Meeusen R, Sunaert S, Nagels G, De Mey J, De Pauw K. A cross-sectional case-control study on the structural connectome in recovered hospitalized COVID-19 patients. Sci Rep 2023; 13:15668. [PMID: 37735584 PMCID: PMC10514277 DOI: 10.1038/s41598-023-42429-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
COVID-19 can induce neurological sequelae, negatively affecting the quality of life. Unravelling this illness's impact on structural brain connectivity, white-matter microstructure (WMM), and cognitive performance may help elucidate its implications. This cross-sectional study aimed to investigate differences in these factors between former hospitalised COVID-19 patients (COV) and healthy controls. Group differences in structural brain connectivity were explored using Welch-two sample t-tests and two-sample Mann-Whitney U tests. Multivariate linear models were constructed (one per region) to examine fixel-based group differences. Differences in cognitive performance between groups were investigated using Wilcoxon Rank Sum tests. Possible effects of bundle-specific FD measures on cognitive performance were explored using a two-group path model. No differences in whole-brain structural organisation were found. Bundle-specific metrics showed reduced fiber density (p = 0.012, Hedges' g = 0.884) and fiber density cross-section (p = 0.007, Hedges' g = 0.945) in the motor segment of the corpus callosum in COV compared to healthy controls. Cognitive performance on the motor praxis and digit symbol substitution tests was worse in COV than healthy controls (p < 0.001, r = 0.688; p = 0.013, r = 422, respectively). Associations between the cognitive performance and bundle-specific FD measures differed significantly between groups. WMM and cognitive performance differences were observed between COV and healthy controls.
Collapse
Affiliation(s)
- Elke Lathouwers
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmed Radwan
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | | | - Lara Stas
- Biostatistics and Medical Informatics Research Group, Faculty of Medicine and Pharmacy, Department of Public Health, Vrije Universiteit Brussel, Brussels, Belgium
- Core Facility-Support for Quantitative and Qualitative Research (SQUARE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Tassignon
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sabine D Allard
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - Filip De Ridder
- Department of Radiology and Magnetic Resonance, UZ Brussel, Brussels, Belgium
| | | | - Nicole Hoornaert
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - Patrick Lacor
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - Rembert Mertens
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - Maarten Naeyaert
- Department of Radiology and Magnetic Resonance, UZ Brussel, Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology and Magnetic Resonance, UZ Brussel, Brussels, Belgium
| | - Lucie Seyler
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology and Magnetic Resonance, UZ Brussel, Brussels, Belgium
| | - Lien Van Liedekerke
- Department of Radiology and Magnetic Resonance, UZ Brussel, Brussels, Belgium
| | - Jeroen Van Schependom
- Artificial Intelligence and Modelling in Clinical Science, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Steven Provyn
- Department of Anatomical Research and Clinical Studies (ARCS), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marie Vandekerckhove
- Department of Radiology and Magnetic Resonance, UZ Brussel, Brussels, Belgium
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Medicine and Pharmaceutical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Arts and Philosophy, University of Ghent, Ghent, Belgium
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Strategic Research Program 'Exercise and the Brain in Health & Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
- Department of Radiology, UZ Leuven, Leuven, Belgium
| | - Guy Nagels
- Artificial Intelligence and Modelling in Clinical Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Johan De Mey
- Department of Radiology and Magnetic Resonance, UZ Brussel, Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium.
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium.
- Strategic Research Program 'Exercise and the Brain in Health & Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
40
|
Teller N, Chad JA, Wong A, Gunraj H, Ji X, Goubran M, Gilboa A, Roudaia E, Sekuler A, Churchill N, Schweizer T, Gao F, Masellis M, Lam B, Heyn C, Cheng I, Fowler R, Black SE, MacIntosh BJ, Graham SJ, Chen JJ. Feasibility of diffusion-tensor and correlated diffusion imaging for studying white-matter microstructural abnormalities: Application in COVID-19. Hum Brain Mapp 2023; 44:3998-4010. [PMID: 37162380 PMCID: PMC10258529 DOI: 10.1002/hbm.26322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.
Collapse
Affiliation(s)
- Nick Teller
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Jordan A Chad
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Alexander Wong
- Department of System Design Engineering, University of Waterloo, Waterloo, Canada
| | - Hayden Gunraj
- Department of System Design Engineering, University of Waterloo, Waterloo, Canada
| | - Xiang Ji
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Asaf Gilboa
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Eugenie Roudaia
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Allison Sekuler
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Nathan Churchill
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tom Schweizer
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
- Department of Neurosurgery, University of Toronto, Toronto, Canada
| | - Fuqiang Gao
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Mario Masellis
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Benjamin Lam
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Chris Heyn
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Ivy Cheng
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Robert Fowler
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Chang L, Ryan MC, Liang H, Zhang X, Cunningham E, Wang J, Wilson E, Herskovits EH, Kottilil S, Ernst TM. Changes in Brain Activation Patterns During Working Memory Tasks in People With Post-COVID Condition and Persistent Neuropsychiatric Symptoms. Neurology 2023; 100:e2409-e2423. [PMID: 37185175 PMCID: PMC10256123 DOI: 10.1212/wnl.0000000000207309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Post-COVID condition (PCC) is common and often involves neuropsychiatric symptoms. This study aimed to use blood oxygenation level-dependent fMRI (BOLD-fMRI) to assess whether participants with PCC had abnormal brain activation during working memory (WM) and whether the abnormal brain activation could predict cognitive performance, motor function, or psychiatric symptoms. METHODS The participants with PCC had documented coronavirus disease 2019 (COVID-19) at least 6 weeks before enrollment. Healthy control participants had no prior history of COVID-19 and negative tests for severe acute respiratory syndrome coronavirus 2. Participants were assessed using 3 NIH Toolbox (NIHTB) batteries for Cognition (NIHTB-CB), Emotion (NIHTB-EB), and Motor function (NIHTB-MB) and selected tests from the Patient-Reported Outcomes Measurement Information System (PROMIS). Each had BOLD-fMRI at 3T, during WM (N-back) tasks with increasing attentional/WM load. RESULTS One hundred sixty-nine participants were screened; 50 fulfilled the study criteria and had complete and usable data sets for this cross-sectional cohort study. Twenty-nine participants with PCC were diagnosed with COVID-19 242 ± 156 days earlier; they had similar ages (42 ± 12 vs 41 ± 12 years), gender proportion (65% vs 57%), racial/ethnic distribution, handedness, education, and socioeconomic status, as the 21 uninfected healthy controls. Despite the high prevalence of memory (79%) and concentration (93%) complaints, the PCC group had similar performance on the NIHTB-CB as the controls. However, participants with PCC had greater brain activation than the controls across the network (false discovery rate-corrected p = 0.003, Tmax = 4.17), with greater activation in the right superior frontal gyrus (p = 0.009, Cohen d = 0.81, 95% CI 0.15-1.46) but lesser deactivation in the default mode regions (p = 0.001, d = 1.03, 95% CI 0.61-1.99). Compared with controls, participants with PCC also had poorer dexterity and endurance on the NIHTB-MB, higher T scores for negative affect and perceived stress, but lower T scores for psychological well-being on the NIHTB-EB, as well as more pain symptoms and poorer mental and physical health on measures from the PROMIS. Greater brain activation predicted poorer scores on measures that were abnormal on the NIHTB-EB. DISCUSSION Participants with PCC and neuropsychiatric symptoms demonstrated compensatory neural processes with greater usage of alternate brain regions, and reorganized networks, to maintain normal performance during WM tasks. BOLD-fMRI was sensitive for detecting brain abnormalities that correlated with various quantitative neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Linda Chang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore.
| | - Meghann C Ryan
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Huajun Liang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Xin Zhang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Eric Cunningham
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Justin Wang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Eleanor Wilson
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Edward H Herskovits
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Shyamasundaran Kottilil
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Thomas M Ernst
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
42
|
Petersen M, Nägele FL, Mayer C, Schell M, Petersen E, Kühn S, Gallinat J, Fiehler J, Pasternak O, Matschke J, Glatzel M, Twerenbold R, Gerloff C, Thomalla G, Cheng B. Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2023; 120:e2217232120. [PMID: 37220275 PMCID: PMC10235949 DOI: 10.1073/pnas.2217232120] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 05/25/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study. Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10-3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups. Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Felix Leonard Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Elina Petersen
- Department of Cardiology, University Heart and Vascular Center, 20251Hamburg, Germany
- Population Health Research Department, University Heart and Vascular Center, 20251Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, 202115Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 202Boston, MA
| | - Jakob Matschke
- Institute of Neuropathology, University Center Hamburg-Eppendorf, Hamburg, 20251Gemany
| | - Markus Glatzel
- Institute of Neuropathology, University Center Hamburg-Eppendorf, Hamburg, 20251Gemany
| | - Raphael Twerenbold
- Department of Cardiology, University Heart and Vascular Center, 20251Hamburg, Germany
- Population Health Research Department, University Heart and Vascular Center, 20251Hamburg, Germany
- German Center for Cardiovascular Research, Partner site Hamburg/Kiel/Luebeck, 20251Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, 202115Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| |
Collapse
|
43
|
Díez-Cirarda M, Yus M, Gómez-Ruiz N, Polidura C, Gil-Martínez L, Delgado-Alonso C, Jorquera M, Gómez-Pinedo U, Matias-Guiu J, Arrazola J, Matias-Guiu JA. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 2023; 146:2142-2152. [PMID: 36288544 PMCID: PMC9620345 DOI: 10.1093/brain/awac384] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022] Open
Abstract
Brain changes have been reported in the first weeks after SARS-CoV-2 infection. However, limited literature exists about brain alterations in post-COVID syndrome, a condition increasingly associated with cognitive impairment. The present study aimed to evaluate brain functional and structural alterations in patients with post-COVID syndrome, and assess whether these brain alterations were related to cognitive dysfunction. Eighty-six patients with post-COVID syndrome and 36 healthy controls were recruited and underwent neuroimaging acquisition and a comprehensive neuropsychological assessment. Cognitive and neuroimaging examinations were performed 11 months after the first symptoms of SARS-CoV-2. Whole-brain functional connectivity analysis was performed. Voxel-based morphometry was performed to evaluate grey matter volume, and diffusion tensor imaging was carried out to analyse white-matter alterations. Correlations between cognition and brain changes were conducted and Bonferroni corrected. Post-COVID syndrome patients presented with functional connectivity changes, characterized by hypoconnectivity between left and right parahippocampal areas, and between bilateral orbitofrontal and cerebellar areas compared to controls. These alterations were accompanied by reduced grey matter volume in cortical, limbic and cerebellar areas, and alterations in white matter axial and mean diffusivity. Grey matter volume loss showed significant associations with cognitive dysfunction. These cognitive and brain alterations were more pronounced in hospitalized patients compared to non-hospitalized patients. No associations with vaccination status were found. The present study shows persistent structural and functional brain abnormalities 11 months after the acute infection. These changes are associated with cognitive dysfunction and contribute to a better understanding of the pathophysiology of the post-COVID syndrome.
Collapse
Affiliation(s)
- María Díez-Cirarda
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Miguel Yus
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Natividad Gómez-Ruiz
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Carmen Polidura
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Lidia Gil-Martínez
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Manuela Jorquera
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Ulises Gómez-Pinedo
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| |
Collapse
|
44
|
Oliver-Mas S, Delgado-Alonso C, Delgado-Álvarez A, Díez-Cirarda M, Cuevas C, Fernández-Romero L, Matias-Guiu A, Valles-Salgado M, Gil-Martínez L, Gil-Moreno MJ, Yus M, Matias-Guiu J, Matias-Guiu JA. Transcranial direct current stimulation for post-COVID fatigue: a randomized, double-blind, controlled pilot study. Brain Commun 2023; 5:fcad117. [PMID: 37091591 PMCID: PMC10116605 DOI: 10.1093/braincomms/fcad117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/19/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Fatigue is one of the most frequent and disabling symptoms of the post-COVID syndrome. In this study, we aimed to assess the effects of transcranial direct current stimulation on fatigue severity in a group of patients with post-COVID syndrome and chronic fatigue. We conducted a double-blind, parallel-group, sham-controlled study to evaluate the short-term effects of anodal transcranial direct current stimulation (2 mA, 20 min/day) on the left dorsolateral prefrontal cortex. The modified fatigue impact scale score was used as the primary endpoint. Secondary endpoints included cognition (Stroop test), depressive symptoms (Beck depression inventory) and quality of life (EuroQol-5D). Patients received eight sessions of transcranial direct current stimulation and were evaluated at baseline, immediately after the last session, and one month later. Forty-seven patients were enrolled (23 in the active treatment group and 24 in the sham treatment group); the mean age was 45.66 ± 9.49 years, and 37 (78.72%) were women. The mean progression time since the acute infection was 20.68 ± 6.34 months. Active transcranial direct current stimulation was associated with a statistically significant improvement in physical fatigue at the end of treatment and 1 month as compared with sham stimulation. No significant effect was detected for cognitive fatigue. In terms of secondary outcomes, active transcranial direct current stimulation was associated with an improvement in depressive symptoms at the end of treatment. The treatment had no effects on the quality of life. All the adverse events reported were mild and transient, with no differences between the active stimulation and sham stimulation groups. In conclusion, our results suggest that transcranial direct current stimulation on the dorsolateral prefrontal cortex may improve physical fatigue. Further studies are needed to confirm these findings and optimize stimulation protocols.
Collapse
Affiliation(s)
- Silvia Oliver-Mas
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alfonso Delgado-Álvarez
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Díez-Cirarda
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Constanza Cuevas
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lucía Fernández-Romero
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Andreu Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Valles-Salgado
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lidia Gil-Martínez
- Department of Radiology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María José Gil-Moreno
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel Yus
- Department of Radiology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Health Research Institute (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
45
|
Ariza M, Cano N, Segura B, Adan A, Bargalló N, Caldú X, Campabadal A, Jurado MA, Mataró M, Pueyo R, Sala-Llonch R, Barrué C, Bejar J, Cortés CU, Garolera M, Junqué C. COVID-19 severity is related to poor executive function in people with post-COVID conditions. J Neurol 2023; 270:2392-2408. [PMID: 36939932 PMCID: PMC10026205 DOI: 10.1007/s00415-023-11587-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/21/2023]
Abstract
Patients with post-coronavirus disease 2019 (COVID-19) conditions typically experience cognitive problems. Some studies have linked COVID-19 severity with long-term cognitive damage, while others did not observe such associations. This discrepancy can be attributed to methodological and sample variations. We aimed to clarify the relationship between COVID-19 severity and long-term cognitive outcomes and determine whether the initial symptomatology can predict long-term cognitive problems. Cognitive evaluations were performed on 109 healthy controls and 319 post-COVID individuals categorized into three groups according to the WHO clinical progression scale: severe-critical (n = 77), moderate-hospitalized (n = 73), and outpatients (n = 169). Principal component analysis was used to identify factors associated with symptoms in the acute-phase and cognitive domains. Analyses of variance and regression linear models were used to study intergroup differences and the relationship between initial symptomatology and long-term cognitive problems. The severe-critical group performed significantly worse than the control group in general cognition (Montreal Cognitive Assessment), executive function (Digit symbol, Trail Making Test B, phonetic fluency), and social cognition (Reading the Mind in the Eyes test). Five components of symptoms emerged from the principal component analysis: the "Neurologic/Pain/Dermatologic" "Digestive/Headache", "Respiratory/Fever/Fatigue/Psychiatric" and "Smell/ Taste" components were predictors of Montreal Cognitive Assessment scores; the "Neurologic/Pain/Dermatologic" component predicted attention and working memory; the "Neurologic/Pain/Dermatologic" and "Respiratory/Fever/Fatigue/Psychiatric" components predicted verbal memory, and the "Respiratory/Fever/Fatigue/Psychiatric," "Neurologic/Pain/Dermatologic," and "Digestive/Headache" components predicted executive function. Patients with severe COVID-19 exhibited persistent deficits in executive function. Several initial symptoms were predictors of long-term sequelae, indicating the role of systemic inflammation and neuroinflammation in the acute-phase symptoms of COVID-19." Study Registration: www.ClinicalTrials.gov , identifier NCT05307549 and NCT05307575.
Collapse
Affiliation(s)
- Mar Ariza
- grid.5841.80000 0004 1937 0247Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.476208.f0000 0000 9840 9189Grup de Recerca en Cervell, Cognició I Conducta, Consorci Sanitari de Terrassa (CST), Terrassa, Spain
| | - Neus Cano
- grid.5841.80000 0004 1937 0247Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- grid.476208.f0000 0000 9840 9189Grup de Recerca en Cervell, Cognició I Conducta, Consorci Sanitari de Terrassa (CST), Terrassa, Spain
- grid.410675.10000 0001 2325 3084Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Bàrbara Segura
- grid.5841.80000 0004 1937 0247Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ana Adan
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Departament de Psicologia Clínica I Psicobiologia, Universitat de Barcelona, Barcelona, Spain
| | - Núria Bargalló
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- grid.5841.80000 0004 1937 0247Diagnostic Imaging Centre, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Xavier Caldú
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Departament de Psicologia Clínica I Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- grid.411160.30000 0001 0663 8628Institut de Recerca de Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Anna Campabadal
- grid.5841.80000 0004 1937 0247Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Angeles Jurado
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Departament de Psicologia Clínica I Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- grid.411160.30000 0001 0663 8628Institut de Recerca de Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Maria Mataró
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Departament de Psicologia Clínica I Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- grid.411160.30000 0001 0663 8628Institut de Recerca de Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Roser Pueyo
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Departament de Psicologia Clínica I Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- grid.411160.30000 0001 0663 8628Institut de Recerca de Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Roser Sala-Llonch
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- grid.5841.80000 0004 1937 0247Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- grid.429738.30000 0004 1763 291XCentro de Investigación Biomédica en Red en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | | | - Javier Bejar
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Claudio Ulises Cortés
- grid.6835.80000 0004 1937 028XDepartament de Ciències de La Computació, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | | | - Maite Garolera
- grid.476208.f0000 0000 9840 9189Grup de Recerca en Cervell, Cognició I Conducta, Consorci Sanitari de Terrassa (CST), Terrassa, Spain
- grid.476208.f0000 0000 9840 9189Neuropsychology Unit, Consorci Sanitari de Terrassa (CST), Terrassa, Spain
| | - Carme Junqué
- grid.5841.80000 0004 1937 0247Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- grid.5841.80000 0004 1937 0247Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
46
|
Tassignon B, Radwan A, Blommaert J, Stas L, Allard SD, De Ridder F, De Waele E, Bulnes LC, Hoornaert N, Lacor P, Lathouwers E, Mertens R, Naeyaert M, Raeymaekers H, Seyler L, Van Binst AM, Van Imschoot L, Van Liedekerke L, Van Schependom J, Van Schuerbeek P, Vandekerckhove M, Meeusen R, Sunaert S, Nagels G, De Mey J, De Pauw K. Longitudinal changes in global structural brain connectivity and cognitive performance in former hospitalized COVID-19 survivors: an exploratory study. Exp Brain Res 2023; 241:727-741. [PMID: 36708380 PMCID: PMC9883830 DOI: 10.1007/s00221-023-06545-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Long-term sequelae of COVID-19 can result in reduced functionality of the central nervous system and substandard quality of life. Gaining insight into the recovery trajectory of admitted COVID-19 patients on their cognitive performance and global structural brain connectivity may allow a better understanding of the diseases' relevance. OBJECTIVES To assess whole-brain structural connectivity in former non-intensive-care unit (ICU)- and ICU-admitted COVID-19 survivors over 2 months following hospital discharge and correlate structural connectivity measures to cognitive performance. METHODS Participants underwent Magnetic Resonance Imaging brain scans and a cognitive test battery after hospital discharge to evaluate structural connectivity and cognitive performance. Multilevel models were constructed for each graph measure and cognitive test, assessing the groups' influence, time since discharge, and interactions. Linear regression models estimated whether the graph measurements affected cognitive measures and whether they differed between ICU and non-ICU patients. RESULTS Six former ICU and six non-ICU patients completed the study. Across the various graph measures, the characteristic path length decreased over time (β = 0.97, p = 0.006). We detected no group-level effects (β = 1.07, p = 0.442) nor interaction effects (β = 1.02, p = 0.220). Cognitive performance improved for both non-ICU and ICU COVID-19 survivors on four out of seven cognitive tests 2 months later (p < 0.05). CONCLUSION Adverse effects of COVID-19 on brain functioning and structure abate over time. These results should be supported by future research including larger sample sizes, matched control groups of healthy non-infected individuals, and more extended follow-up periods.
Collapse
Affiliation(s)
- B Tassignon
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - A Radwan
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - J Blommaert
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - L Stas
- Biostatistics and Medical Informatics Research Group, Department of Public Health, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Interfaculty Center for Data Processing and Statistics, Core Facility Statistics and Methodology, Vrije Universiteit Brussel, Brussels, Belgium
| | - S D Allard
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - F De Ridder
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - E De Waele
- Intensive Care Unit, UZ Brussel, Jette, Belgium
| | - L C Bulnes
- Brain, Body and Cognition Research Group, Faculty of Psychology, Vrije Universiteit Brussel, Brussels, Belgium
| | - N Hoornaert
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - P Lacor
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - E Lathouwers
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - R Mertens
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - M Naeyaert
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - H Raeymaekers
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - L Seyler
- Infectious Diseases Unit, Department of Internal Medicine, UZ Brussel, Jette, Belgium
| | - A M Van Binst
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - L Van Imschoot
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - L Van Liedekerke
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - J Van Schependom
- Artificial Intelligence and Modelling in Clinical Science, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - P Van Schuerbeek
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - M Vandekerckhove
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - R Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Strategic Research Program 'Exercise and the Brain in Health & Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, Brussels, Belgium
| | - S Sunaert
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
- Department of Radiology, UZ Leuven, Leuven, Belgium
| | - G Nagels
- Artificial Intelligence and Modelling in Clinical Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - J De Mey
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - K De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium.
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium.
- Strategic Research Program 'Exercise and the Brain in Health & Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
47
|
Paolini M, Palladini M, Mazza MG, Colombo F, Vai B, Rovere-Querini P, Falini A, Poletti S, Benedetti F. Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal magnetic resonance imaging study. Eur Neuropsychopharmacol 2023; 68:1-10. [PMID: 36640728 PMCID: PMC9742225 DOI: 10.1016/j.euroneuro.2022.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Cognitive impairment represents a leading residual symptom of COVID-19 infection, which lasts for months after the virus clearance. Up-to-date scientific reports documented a wide spectrum of brain changes in COVID-19 survivors following the illness's resolution, mainly related to neurological and neuropsychiatric consequences. Preliminary insights suggest abnormal brain metabolism, microstructure, and functionality as neural under-layer of post-acute cognitive dysfunction. While previous works focused on brain correlates of impaired cognition as objectively assessed, herein we investigated long-term neural correlates of subjective cognitive decline in a sample of 58 COVID-19 survivors with a multimodal imaging approach. Diffusion Tensor Imaging (DTI) analyses revealed widespread white matter disruption in the sub-group of cognitive complainers compared to the non-complainer one, as indexed by increased axial, radial, and mean diffusivity in several commissural, projection and associative fibres. Likewise, the Multivoxel Pattern Connectivity analysis (MVPA) revealed highly discriminant patterns of functional connectivity in resting-state among the two groups in the right frontal pole and in the middle temporal gyrus, suggestive of inefficient dynamic modulation of frontal brain activity and possible metacognitive dysfunction at rest. Beyond COVID-19 actual pathophysiological brain processes, our findings point toward brain connectome disruption conceivably translating into clinical post-COVID cognitive symptomatology. Our results could pave the way for a potential brain signature of cognitive complaints experienced by COVID-19 survivors, possibly leading to identify early therapeutic targets and thus mitigating its detrimental long-term impact on quality of life in the post-COVID-19 stages.
Collapse
Affiliation(s)
- Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Federica Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroradiology, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
48
|
Dubey S, Das S, Ghosh R, Dubey MJ, Chakraborty AP, Roy D, Das G, Dutta A, Santra A, Sengupta S, Benito-León J. The Effects of SARS-CoV-2 Infection on the Cognitive Functioning of Patients with Pre-Existing Dementia. J Alzheimers Dis Rep 2023; 7:119-128. [PMID: 36891252 PMCID: PMC9986710 DOI: 10.3233/adr-220090] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Background Cognitive postscripts of COVID-19, codenamed as 'cognitive COVID' or 'brain fog,' characterized by multidomain cognitive impairments, are now being reckoned as the most devastating sequelae of COVID-19. However, the impact on the already demented brain has not been studied. Objective We aimed to assess the cognitive functioning and neuroimaging following SARS-CoV-2 infection in patients with pre-existing dementia. Methods Fourteen COVID-19 survivors with pre-existing dementia (four with Alzheimer's disease, five with vascular dementia, three with Parkinson's disease dementia, and two with the behavioral variant of frontotemporal dementia) were recruited. All these patients had detailed cognitive and neuroimaging evaluations within three months before suffering from COVID-19 and one year later. Results Of the 14 patients, ten required hospitalization. All developed or increased white matter hyperintensities that mimicked multiple sclerosis and small vessel disease. There was a significant increase in fatigue (p = 0.001) and depression (p = 0.016) scores following COVID-19. The mean Frontal Assessment Battery (p < 0.001) and Addenbrooke's Cognitive Examination (p = 0.001) scores also significantly worsened. Conclusion The rapid progression of dementia, the addition of further impairments/deterioration of cognitive abilities, and the increase or new appearance of white matter lesion burden suggest that previously compromised brains have little defense to withstand a new insult (i.e., 'second hit' like infection/dysregulated immune response, and inflammation). 'Brain fog' is an ambiguous terminology without specific attribution to the spectrum of post-COVID-19 cognitive sequelae. We propose a new codename, i.e. 'FADE-IN MEMORY' (i.e., Fatigue, decreased Fluency, Attention deficit, Depression, Executive dysfunction, slowed INformation processing speed, and subcortical MEMORY impairment).
Collapse
Affiliation(s)
- Souvik Dubey
- Department of Neuromedicine, Bangur Institute of
Neurosciences (BIN), Kolkata, West Bengal, India
| | - Shambaditya Das
- Department of Neuromedicine, Bangur Institute of
Neurosciences (BIN), Kolkata, West Bengal, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College, and
Hospital, Burdwan, West Bengal, India
| | - Mahua Jana Dubey
- Department of Psychiatry, Berhampur Mental
Hospital, Berhampur, West Bengal, India
| | - Arka Prava Chakraborty
- Department of Neuromedicine, Bangur Institute of
Neurosciences (BIN), Kolkata, West Bengal, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical
Sciences (AIIMS), Patna, Bihar, India
- Indian Institute of Technology (IIT), Madras,
Tamil Nadu, India
- School of Sciences, Indira Gandhi National Open
University, New Delhi, India
| | - Gautam Das
- Department of Neuromedicine, Bangur Institute of
Neurosciences (BIN), Kolkata, West Bengal, India
| | - Ajitava Dutta
- Department of Neuromedicine, Bangur Institute of
Neurosciences (BIN), Kolkata, West Bengal, India
| | - Arindam Santra
- Department of Neuromedicine, Bangur Institute of
Neurosciences (BIN), Kolkata, West Bengal, India
| | - Samya Sengupta
- Department of General Medicine, Apollo Gleneagles
Hospital, Kolkata, West Bengal, India
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de
Octubre”, Madrid, Spain
- Centro de Investigación Biomódica en Red Sobre
Enfermedades Neurodegenerativas (CIBERNED), Madrid,
Spain
- Department of Medicine, Complutense University,
Madrid, Spain
| |
Collapse
|
49
|
Du Y, Zhao W, Huang S, Huang Y, Chen Y, Zhang H, Guo H, Liu J. Two-year follow-up of brain structural changes in patients who recovered from COVID-19: A prospective study. Psychiatry Res 2023; 319:114969. [PMID: 36462292 PMCID: PMC9684092 DOI: 10.1016/j.psychres.2022.114969] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The long-term effects of COVID-19 on brain structure remain unclear. A prospective study was conducted to explore the changes in brain structure in COVID-19 survivors at one and two years after discharge (COVID-19one, COVID-19two). The difference in gray matter volume (GMV) was analyzed using the voxel-based morphometry method, and correlation analyses were conducted. The dynamic changes in clinical sequelae varied. The GMVs in the cerebellum and vermis were reduced in COVID-19one and COVID-19two, positively correlated with lymphocyte count, and negatively correlated with neutrophil count, neutrophil/lymphocyte ratio (COVID-19one), and systemic immune-inflammation index (COVID-19two). The decreased GMVs in the left middle frontal gyrus, inferior frontal gyrus of the operculum, right middle temporal gyrus, and inferior temporal gyrus returned to normal in COVID-19two. The decreased GMV in the left frontal lobe was negatively correlated with the Athens Insomnia Scale (AIS). The GMV in the left temporal lobe was aggravated in COVID-19two and positively correlated with C-reactive protein. In conclusion, GMV recovery coexisted with injury, which was associated with AIS and inflammatory factors. This may shed some light on the dynamic changes in brain structure and the possible predictors that may be related to GMV changes in COVID-19two.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Changsha, Hunan Province 410011, China
| | - Sihong Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Yijie Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Yanjing Chen
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan 430000, China
| | - Hu Guo
- MR Application, Siemens Healthineers Ltd., Changsha 410011, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Changsha, Hunan Province 410011, China.
| |
Collapse
|
50
|
Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL, Rodríguez M, Aja-Fernández S, de Luis-García R. Structural brain changes in patients with persistent headache after COVID-19 resolution. J Neurol 2023; 270:13-31. [PMID: 36178541 PMCID: PMC9522538 DOI: 10.1007/s00415-022-11398-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/09/2023]
Abstract
Headache is among the most frequently reported symptoms after resolution of COVID-19. We assessed structural brain changes using T1- and diffusion-weighted MRI processed data from 167 subjects: 40 patients who recovered from COVID-19 but suffered from persistent headache without prior history of headache (COV), 41 healthy controls, 43 patients with episodic migraine and 43 patients with chronic migraine. To evaluate gray matter and white matter changes, morphometry parameters and diffusion tensor imaging-based measures were employed, respectively. COV patients showed significant lower cortical gray matter volume and cortical thickness than healthy subjects (p < 0.05, false discovery rate corrected) in the inferior frontal and the fusiform cortex. Lower fractional anisotropy and higher radial diffusivity (p < 0.05, family-wise error corrected) were observed in COV patients compared to controls, mainly in the corpus callosum and left hemisphere. COV patients showed higher cortical volume and thickness than migraine patients in the cingulate and frontal gyri, paracentral lobule and superior temporal sulcus, lower volume in subcortical regions and lower curvature in the precuneus and cuneus. Lower diffusion metric values in COV patients compared to migraine were identified prominently in the right hemisphere. COV patients present diverse changes in the white matter and gray matter structure. White matter changes seem to be associated with impairment of fiber bundles. Besides, the gray matter changes and other white matter modifications such as axonal integrity loss seemed subtle and less pronounced than those detected in migraine, showing that persistent headache after COVID-19 resolution could be an intermediate state between normality and migraine.
Collapse
Affiliation(s)
- Álvaro Planchuelo-Gómez
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, CF24 4HQ, UK
| | - David García-Azorín
- Department of Neurology, Headache Unit, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47003, Valladolid, Spain.
- Department of Medicine, Universidad de Valladolid, 47005, Valladolid, Spain.
| | - Ángel L Guerrero
- Department of Neurology, Headache Unit, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47003, Valladolid, Spain
- Department of Medicine, Universidad de Valladolid, 47005, Valladolid, Spain
| | - Margarita Rodríguez
- Department of Radiology, Hospital Clínico Universitario de Valladolid, 47003, Valladolid, Spain
| | - Santiago Aja-Fernández
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
| | - Rodrigo de Luis-García
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
| |
Collapse
|