1
|
Costa D, Grandolfo S, Birreci D, Angelini L, Passaretti M, Cannavacciuolo A, Martini A, De Riggi M, Paparella G, Fasano A, Bologna M. Impact of SARS-CoV-2 Infection on Essential Tremor: A Retrospective Clinical and Kinematic Analysis. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01751-5. [PMID: 39382809 DOI: 10.1007/s12311-024-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In the past few years, SARS-CoV-2 infection has substantially impacted public health. Alongside respiratory symptoms, some individuals have reported new neurological manifestations or a worsening of pre-existing neurological conditions. We previously documented two cases of essential tremor (ET) who experienced a deterioration in tremor following SARS-CoV-2 infection. However, the effects of SARS-CoV-2 on ET remain largely unexplored. This study aims to evaluate the impact of SARS-CoV-2 infection on a relatively broad sample of ET patients by retrospectively comparing their clinical and kinematic data collected before and after the exposure to SARS-CoV-2. We surveyed to evaluate the impact of SARS-CoV-2 infection on tremor features in ET. Subsequently, we retrospectively analysed clinical and kinematic data, including accelerometric recordings of postural and kinetic tremor. We included 36 ET patients (14 females with a mean age of 71.1 ± 10.6 years). Among the 25 patients who reported SARS-CoV-2 infection, 11 (44%) noted a subjective worsening of tremor. All patients reporting subjective tremor worsening also exhibited symptoms of long COVID, whereas the prevalence of these symptoms was lower (50%) in those without subjective exacerbation. The retrospective analysis of clinical data revealed a tremor deterioration in infected patients, which was not observed in non-infected patients. Finally, kinematic analysis revealed substantial stability of tremor features in both groups. The study highlighted a potential correlation between the SARS-CoV-2 infection and clinical worsening of ET. Long COVID contributes to a greater impact of tremor on the daily life of ET patients.
Collapse
Affiliation(s)
| | - Sofia Grandolfo
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | | | - Adriana Martini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Paparella
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS), Italy.
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Jin N, Pang X, Song S, Zheng J, Liu Z, Gu T, Yu Y. A comparative study of femoral artery and combined femoral and axillary artery cannulation in veno-arterial extracorporeal membrane oxygenation patients. Front Cardiovasc Med 2024; 11:1388577. [PMID: 39359639 PMCID: PMC11445077 DOI: 10.3389/fcvm.2024.1388577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is a critical support technique for cardiac surgery patients. This study compares the outcomes of femoral artery cannulation vs. combined femoral and axillary artery cannulation in post-cardiotomy VA-ECMO patients. This study aimed to compare the clinical outcomes of critically ill patients post-cardiac surgery under VA-ECMO support using different cannulation strategies. Specifically, the focus was on the impact of femoral artery (FA) cannulation vs. combined femoral artery and axillary artery (FA+AA) cannulation on patient outcomes. Methods Through a retrospective analysis, we compared 51 adult patients who underwent cardiac surgery and received VA-ECMO support based on the cannulation strategy employed-FA cannulation in 27 cases vs. FA+AA cannulation in 24 cases. Results The FA+AA group showed significant advantages over the FA group in terms of the incidence of chronic renal failure (CRF) (37.50% vs. 14.81%, p = 0.045), preoperative blood filtration requirement (37.50% vs. 11.11%, p = 0.016), decreased platelet count (82.67 ± 44.95 vs. 147.33 ± 108.79, p = 0.014), and elevated creatinine (Cr) levels (151.80 ± 60.73 vs. 110.26 ± 57.99, p = 0.041), although the two groups had similar 30-day mortality rates (FA group 40.74%, FA+AA group 33.33%). These findings underscore that a combined approach may offer more effective hemodynamic support and better clinical outcomes when selecting an ECMO cannulation strategy. Conclusion Despite the FA+AA group patients presenting with more preoperative risk factors, this group has exhibited lower rates of complications and faster recovery during ECMO treatment. While there has been no significant difference in 30-day mortality rates between the two cannulation strategies, the FA+AA approach may be more effective in reducing complications and improving limb ischemia. These findings highlight the importance of individualized treatment strategies and meticulous monitoring in managing post-cardiac surgery ECMO patients.
Collapse
Affiliation(s)
- Na Jin
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xin Pang
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shiyang Song
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jin Zheng
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhimeng Liu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianxiang Gu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Chan YH, Lundberg V, Le Pen J, Yuan J, Lee D, Pinci F, Volpi S, Nakajima K, Bondet V, Åkesson S, Khobrekar NV, Bodansky A, Du L, Melander T, Mariaggi AA, Seeleuthner Y, Saleh TS, Chakravarty D, Marits P, Dobbs K, Vonlanthen S, Hennings V, Thörn K, Rinchai D, Bizien L, Chaldebas M, Sobh A, Özçelik T, Keles S, AlKhater SA, Prando C, Meyts I, Wilson MR, Rosain J, Jouanguy E, Aubart M, Abel L, Mogensen TH, Pan-Hammarström Q, Gao D, Duffy D, Cobat A, Berg S, Notarangelo LD, Harschnitz O, Rice CM, Studer L, Casanova JL, Ekwall O, Zhang SY. SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency. J Exp Med 2024; 221:e20231725. [PMID: 39023559 PMCID: PMC11256911 DOI: 10.1084/jem.20231725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Inherited deficiency of the RNA lariat-debranching enzyme 1 (DBR1) is a rare etiology of brainstem viral encephalitis. The cellular basis of disease and the range of viral predisposition are unclear. We report inherited DBR1 deficiency in a 14-year-old boy who suffered from isolated SARS-CoV-2 brainstem encephalitis. The patient is homozygous for a previously reported hypomorphic and pathogenic DBR1 variant (I120T). Consistently, DBR1 I120T/I120T fibroblasts from affected individuals from this and another unrelated kindred have similarly low levels of DBR1 protein and high levels of RNA lariats. DBR1 I120T/I120T human pluripotent stem cell (hPSC)-derived hindbrain neurons are highly susceptible to SARS-CoV-2 infection. Exogenous WT DBR1 expression in DBR1 I120T/I120T fibroblasts and hindbrain neurons rescued the RNA lariat accumulation phenotype. Moreover, expression of exogenous RNA lariats, mimicking DBR1 deficiency, increased the susceptibility of WT hindbrain neurons to SARS-CoV-2 infection. Inborn errors of DBR1 impair hindbrain neuron-intrinsic antiviral immunity, predisposing to viral infections of the brainstem, including that by SARS-CoV-2.
Collapse
Affiliation(s)
- Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vanja Lundberg
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jiayi Yuan
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | | | - Stefano Volpi
- Rheumatology and Autoinflammatory Diseases, IRCCS Giannina Gaslini Institute, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Koji Nakajima
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Paris City University, Paris, France
| | - Sanna Åkesson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Noopur V. Khobrekar
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Aaron Bodansky
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Likun Du
- Department of Medical Biochemistry and Biophysics, Division of Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Melander
- Department of Pediatrics, Härnösand Hospital, Region Västernorrland, Sundsvall, Sweden
| | - Alice-Andrée Mariaggi
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Tariq Shikh Saleh
- Department of Pediatric Dentistry, Sundsvall, Region Västernorrland, Sundsvall, Sweden
| | - Debanjana Chakravarty
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Per Marits
- Department of Medicine, Huddinge, Hematology Unit, Therapeutic Immunology and Transfusion, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kerry Dobbs
- Division of Intramural Research, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sofie Vonlanthen
- Department of Medicine, Huddinge, Hematology Unit, Therapeutic Immunology and Transfusion, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Hennings
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karolina Thörn
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children’s Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tayfun Özçelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Suzan A. AlKhater
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pediatrics, King Fahad University Hospital, Al-Khobar, Saudi Arabia
| | - Carolina Prando
- Faculty of Pequeno Príncipe, Pesquisa Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jérémie Rosain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | | | - Qiang Pan-Hammarström
- Department of Medical Biochemistry and Biophysics, Division of Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Daxing Gao
- Division of Life Science and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Paris City University, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stefan Berg
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luigi D. Notarangelo
- Division of Intramural Research, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Paris City University, Imagine Institute, Paris, France
| |
Collapse
|
4
|
Guo Z, Sun S, Xiao S, Chen G, Chen P, Yang Z, Tang X, Huang L, Wang Y. COVID-19 is associated with changes in brain function and structure: A multimodal meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 2024; 164:105792. [PMID: 38969310 DOI: 10.1016/j.neubiorev.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
The actual role of coronavirus disease 2019 (COVID-19) in brain damage has been increasingly reported, necessitating a meta-analysis to collate and summarize the inconsistent findings from functional imaging and voxel-based morphometry (VBM) studies. A comprehensive voxel-wise meta-analysis of the whole brain was conducted to identify alterations in functional activity and gray matter volume (GMV) between COVID-19 patients and healthy controls (HCs) by using Seed-based d Mapping software. We included 15 functional imaging studies (484 patients with COVID-19, 534 HCs) and 9 VBM studies (449 patients with COVID-19, 388 HCs) in the analysis. Overall, patients with COVID-19 exhibited decreased functional activity in the right superior temporal gyrus (STG) (extending to the right middle and inferior temporal gyrus, insula, and temporal pole [TP]), left insula, right orbitofrontal cortex (OFC) (extending to the right olfactory cortex), and left cerebellum compared to HCs. For VBM, patients with COVID-19, relative to HCs, showed decreased GMV in the bilateral anterior cingulate cortex/medial prefrontal cortex (extending to the bilateral OFC), and left cerebellum, and increased GMV in the bilateral amygdala (extending to the bilateral hippocampus, STG, TP, MTG, and right striatum). Moreover, overlapping analysis revealed that patients with COVID-19 exhibited both decreased functional activity and increased GMV in the right TP (extending to the right STG). The multimodal meta-analysis suggests that brain changes of function and structure in the temporal lobe, OFC and cerebellum, and functional or structural alterations in the insula and the limbic system in COVID-19. These findings contribute to a better understanding of the pathophysiology of brain alterations in COVID-19. SIGNIFICANCE STATEMENT: This first large-scale multimodal meta-analysis collates existing neuroimaging studies and provides voxel-wise functional and structural whole-brain abnormalities in COVID-19. Findings of this meta-analysis provide valuable insights into the dynamic brain changes (from infection to recovery) and offer further explanations for the pathophysiological basis of brain alterations in COVID-19.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shilin Sun
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Xinyue Tang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Merson L, Duque S, Garcia-Gallo E, Yeabah TO, Rylance J, Diaz J, Flahault A. Optimising Clinical Epidemiology in Disease Outbreaks: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation. EPIDEMIOLOGIA 2024; 5:557-580. [PMID: 39311356 PMCID: PMC11417906 DOI: 10.3390/epidemiologia5030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Standardised forms for capturing clinical data promote consistency in data collection and analysis across research sites, enabling faster, higher-quality evidence generation. ISARIC and the World Health Organization have developed case report forms (CRFs) for the clinical characterisation of several infectious disease outbreaks. To improve the design and quality of future forms, we analysed the inclusion and completion rates of the 243 fields on the ISARIC-WHO COVID-19 CRF. Data from 42 diverse collaborations, covering 1886 hospitals and 950,064 patients, were analysed. A mean of 129.6 fields (53%) were included in the adapted CRFs implemented across the sites. Consistent patterns of field inclusion and completion aligned with globally recognised research priorities in outbreaks of novel infectious diseases. Outcome status was the most highly included (95.2%) and completed (89.8%) field, followed by admission demographics (79.1% and 91.6%), comorbidities (77.9% and 79.0%), signs and symptoms (68.9% and 78.4%), and vitals (70.3% and 69.1%). Mean field completion was higher in severe patients (70.2%) than in all patients (61.6%). The results reveal how clinical characterisation CRFs can be streamlined to reduce data collection time, including the modularisation of CRFs, to offer a choice of data volume collection and the separation of critical care interventions. This data-driven approach to designing CRFs enhances the efficiency of data collection to inform patient care and public health response.
Collapse
Affiliation(s)
- Laura Merson
- ISARIC, Pandemic Sciences Institute, University of Oxford, Oxford OX37LF, UK; (S.D.); (E.G.-G.)
- Institute of Global Health, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland;
| | - Sara Duque
- ISARIC, Pandemic Sciences Institute, University of Oxford, Oxford OX37LF, UK; (S.D.); (E.G.-G.)
- Infectious Diseases Department, Universidad de La Sabana, Chia 250001, Colombia
| | - Esteban Garcia-Gallo
- ISARIC, Pandemic Sciences Institute, University of Oxford, Oxford OX37LF, UK; (S.D.); (E.G.-G.)
- Infectious Diseases Department, Universidad de La Sabana, Chia 250001, Colombia
| | | | - Jamie Rylance
- Health Emergencies Program, World Health Organization, 1211 Geneva, Switzerland; (J.R.); (J.D.)
| | - Janet Diaz
- Health Emergencies Program, World Health Organization, 1211 Geneva, Switzerland; (J.R.); (J.D.)
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland;
| | | |
Collapse
|
6
|
Chien C, Heine J, Khalil A, Schlenker L, Hartung TJ, Boesl F, Schwichtenberg K, Rust R, Bellmann‐Strobl J, Franke C, Paul F, Finke C. Altered brain perfusion and oxygen levels relate to sleepiness and attention in post-COVID syndrome. Ann Clin Transl Neurol 2024; 11:2016-2029. [PMID: 38874398 PMCID: PMC11330224 DOI: 10.1002/acn3.52121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Persisting neurological symptoms after COVID-19 affect up to 10% of patients and can manifest in fatigue and cognitive complaints. Based on recent evidence, we evaluated whether cerebral hemodynamic changes contribute to post-COVID syndrome (PCS). METHODS Using resting-state functional magnetic resonance imaging, we investigated brain perfusion and oxygen level estimates in 47 patients (44.4 ± 11.6 years; F:M = 38:9) and 47 individually matched healthy control participants. Group differences were calculated using two-sample t-tests. Multivariable linear regression was used for associations of each regional perfusion and oxygen level measure with cognition and sleepiness measures. Exploratory hazard ratios were calculated for each brain metric with clinical measures. RESULTS Patients presented with high levels of fatigue (79%) and daytime sleepiness (45%). We found widespread decreased brain oxygen levels, most evident in the white matter (false discovery rate adjusted-p-value (p-FDR) = 0.038) and cortical grey matter (p-FDR = 0.015). Brain perfusion did not differ between patients and healthy participants. However, delayed patient caudate nucleus perfusion was associated with better executive function (p-FDR = 0.008). Delayed perfusion in the cortical grey matter and hippocampus were associated with a reduced risk of daytime sleepiness (hazard ratio (HR) = 0.07, p = 0.037 and HR = 0.06, p = 0.034). Decreased putamen oxygen levels were associated with a reduced risk of poor cognitive outcome (HR = 0.22, p = 0.019). Meanwhile, lower thalamic oxygen levels were associated with a higher risk of cognitive fatigue (HR = 6.29, p = 0.017). INTERPRETATION Our findings of lower regional brain blood oxygen levels suggest increased cerebral metabolism in PCS, which potentially holds a compensatory function. These hemodynamic changes were related to symptom severity, possibly representing metabolic adaptations.
Collapse
Affiliation(s)
- Claudia Chien
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Josephine Heine
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Ahmed Khalil
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Lars Schlenker
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Tim J. Hartung
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Fabian Boesl
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Katia Schwichtenberg
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Rebekka Rust
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Judith Bellmann‐Strobl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Christiana Franke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Finke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
7
|
Hanganu AR, Dulămea AO, Niculae CM, Moisă E, Hristea A. Independent Risk Factors and Mortality Implications of De Novo Central Nervous System Involvement in Patients Hospitalized with Severe COVID-19: A Retrospective Cohort Study. J Clin Med 2024; 13:3948. [PMID: 38999510 PMCID: PMC11242379 DOI: 10.3390/jcm13133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: Central nervous system (CNS) involvement is a complication of COVID-19, adding to disease burden. The aim of this study is to identify the risk factors independently associated with CNS involvement in a cohort of patients hospitalized with severe forms of COVID-19 and the risk factors associated with all causes of in-hospital mortality and assess the impact of CNS involvement on in-hospital mortality of the severe COVID-19 patients. Methods: We performed a retrospective observational cohort study including adult patients with severe or critical forms of COVID-19 with and without new-onset CNS manifestations between March 2020 and December 2022. Results: We included 162 patients, 50 of which presented with CNS involvement. Independent risk factors for CNS involvement were female sex (p = 0.04, OR 3.67, 95%CI 1.05-12.85), diabetes mellitus (p = 0.008, OR 5.08, 95%CI 1.519-17.04)), lymphocyte count (0.04, OR 0.23, 95%CI 0.05-0.97), platelets count (p = 0.001, OR 0.98, 95%CI 0.98-0.99) CRP value (p = 0.04, OR 1.007, 95%CI 1.000-1.015), and CK value (p = 0.004, OR 1.003, 95%CI 1.001-1.005). Obesity was a protective factor (p < 0.001, OR 0.57, 95%CI 0.016-0.20). New-onset CNS manifestations (p = 0.002, OR 14.48, 95%CI 2.58-81.23) were independent risk factors for in-hospital mortality. In-hospital mortality was higher in the new-onset CNS involvement group compared to patients without neurological involvement, 44% versus 7.1% (p < 0.001). Conclusions: CNS involvement in severe COVID-19 patients contributes to all causes of in-hospital mortality. There are several risk factors associated with new-onset CNS manifestations and preventing and controlling them could have an important impact on patients' outcome.
Collapse
Affiliation(s)
- Andreea Raluca Hanganu
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Bals", 021105 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Adriana Octaviana Dulămea
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Cristian-Mihail Niculae
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Bals", 021105 Bucharest, Romania
| | - Emanuel Moisă
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Adriana Hristea
- Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Bals", 021105 Bucharest, Romania
| |
Collapse
|
8
|
Marsters CM, Bakal JA, Lam GY, McAlister FA, Power C. Increased frequency and mortality in persons with neurological disorders during COVID-19. Brain 2024; 147:2542-2551. [PMID: 38641563 PMCID: PMC11224605 DOI: 10.1093/brain/awae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/17/2024] [Indexed: 04/21/2024] Open
Abstract
Determining the frequency and outcomes of neurological disorders associated with coronavirus disease 2019 (COVID-19) is imperative for understanding risks and for recognition of emerging neurological disorders. We investigated the susceptibility and impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among persons with premorbid neurological disorders, in addition to the post-infection incidence of neurological sequelae, in a case-control population-based cohort. Using health service data collected between 1 March 2020 and 30 June 2021, we constructed a cohort of SARS-CoV-2 RNA-positive (n = 177 892) and -negative (n = 177 800) adults who were age, sex and comorbidity matched and underwent RT-PCR testing at similar times. COVID-19-associated mortality rates were examined within the cohort. Neurological sequelae were analysed during the acute (<3 months) and the post-acute (3-9 months) phases post-infection. The risk of death was significantly greater in the SARS-CoV-2 RNA-positive (2140 per 100 000 person years) compared with RNA-negative (922 per 100 000 person years) over a follow-up of 9 months, particularly amongst those with premorbid neurological disorders: adjusted odds ratios (95% confidence interval) in persons with a prior history of parkinsonism, 1.65 (1.15-2.37); dementia, 1.30 (1.11-1.52); seizures, 1.91 (1.26-2.87); encephalopathy, 1.82 (1.02-3.23); and stroke, 1.74 (1.05-2.86). There was also a significantly increased risk for diagnosis of new neurological sequelae during the acute time phase after COVID-19, including encephalopathy, 2.0 (1.10-3.64); dementia, 1.36 (1.07-1.73); seizure, 1.77 (1.22-2.56); and brain fog, 1.96 (1.20-3.20). These risks persisted into the post-acute phase after COVID-19, during which inflammatory myopathy (2.57, 1.07-6.15) and coma (1.87, 1.22-2.87) also became significantly increased. Thus, persons with SARS-CoV-2 infection and premorbid neurological disorders are at greater risk of death, and SARS-CoV-2 infection was complicated by increased risk of new-onset neurological disorders in both the acute and post-acute phases of COVID-19.
Collapse
Affiliation(s)
- Candace M Marsters
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Jeffrey A Bakal
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Provincial Research Data Services-Alberta Health Services, Edmonton, AB T6G 2B7, Canada
- Alberta Strategy for Patient Oriented Research Unit, Edmonton, AB T6G 2C8, Canada
| | - Grace Y Lam
- Division of Pulmonology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Finlay A McAlister
- Alberta Strategy for Patient Oriented Research Unit, Edmonton, AB T6G 2C8, Canada
| | - Christopher Power
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
9
|
Schaefer Bennett G, Naik S, Krawiec C. Impact of the COVID-19 Pandemic on the Diagnostic Frequency and Medical Therapies Applied to Subjects With Functional Seizures. Neurohospitalist 2024; 14:253-258. [PMID: 38895022 PMCID: PMC11181988 DOI: 10.1177/19418744241232011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Background and Purposes The coronavirus 2019 (COVID-19) pandemic was associated with catastrophic consequences and increased psychological distress. However, it is unknown if the pandemic impacted the frequency of functional seizures (FS), a well known manifestation of psychiatric disease. The study objectives are to evaluate FS diagnostic code frequency before and during the COVID-19 pandemic and the therapies applied. We hypothesized that FS frequency would be higher during the pandemic, but that the therapies applied would be similar between the two time periods. Methods This was a retrospective observational cohort study utilizing the TriNetX ® electronic health record (EHR) database. We included subjects aged 8 to 65 years with a diagnostic code of "conversion disorder with seizures or convulsions." After the query, the study population was divided into 2 groups [pre-COVID-19 (3/1/2018 to 2/29/2020) and COVID-19 (3/1/2020 to 2/28/2022). We analyzed subject demographics, diagnostic, procedure, and medication codes. Results We included 8680 subjects [5029 (57.9%) pre-COVID-19 and 3651 (42.1%) COVID-19] in this study. There was a higher odds of mental health conditions, anxiolytic prescription, emergency department services, and hospital services, but a lower odds of critical care services during COVID-19. There was no difference in antiepileptic use between the time periods. Conclusions During the COVID-19 pandemic, a higher odds of anxiolytic use, need for emergency department services, and hospital services was reported. In addition, there was a decreased odds of critical care services. This may reflect a change in how patients with FS were managed during the pandemic.
Collapse
Affiliation(s)
| | - Sunil Naik
- Department of Neurology, Penn State Milton Hershey Medical Center, Hershey, PA, USA
| | - Conrad Krawiec
- Pediatric Critical Care Medicine, Department of Pediatrics, Penn State Hershey Children’s Hospital, Hershey, PA, USA
| |
Collapse
|
10
|
Mao S, Qian G, Xiao K, Xu H, Zhou H, Guo X. Study on the relationship between body mass index and blood pressure indices in children aged 7-17 during COVID-19. Front Public Health 2024; 12:1409214. [PMID: 38962763 PMCID: PMC11220196 DOI: 10.3389/fpubh.2024.1409214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Background To explore the relationship between body mass index (BMI), age, sex, and blood pressure (systolic blood pressure, SBP; diastolic blood pressure, DBP) in children during COVID-19, providing reference for the prevention and screening of hypertension in children. Methods This study adopted a large-scale cross-sectional design to investigate the association between BMI and blood pressure in 7-17-year-old students in City N, China, during COVID-19. Thirty-six primary and secondary schools in City N were sampled using a stratified cluster sampling method. A total of 11,433 students aged 7-17 years in City N, China, were selected for blood pressure (Diastolic blood pressure, DBP, Systolic blood pressure, SBP), height, and weight, Resting heart rate (RHR), chest circumference, measurements, and the study was written using the STROBE checklist. Data analysis was conducted using SPSS 26.0, calculating the mean and standard deviation of BMI and blood pressure for male and female students in different age groups. Regression analysis was employed to explore the impact of BMI, age, and sex on SBP and DBP, and predictive models were established. The model fit was evaluated using the model R2. Results The study included 11,287 primary and secondary school students, comprising 5,649 boys and 5,638 girls. It was found that with increasing age, BMI and blood pressure of boys and girls generally increased. There were significant differences in blood pressure levels between boys and girls in different age groups. In regression models, LC, Age, BMI, and chest circumference show significant positive linear relationships with SBP and DBP in adolescents, while RHR exhibits a negative linear relationship with SBP. These factors were individually incorporated into a stratified regression model, significantly enhancing the model's explanatory power. After including factors such as Age, Gender, and BMI, the adjusted R2 value showed a significant improvement, with Age and BMI identified as key predictive factors for SBP and DBP. The robustness and predictive accuracy of the model were further examined through K-fold cross-validation and independent sample validation methods. The validation results indicate that the model has a high accuracy and explanatory power in predicting blood pressure in children of different weight levels, especially among obese children, where the prediction accuracy is highest. Conclusion During COVID-19, age, sex, and BMI significantly influence blood pressure in children aged 7-17 years, and predictive models for SBP and DBP were established. This model helps predict blood pressure in children and reduce the risk of cardiovascular diseases. Confirmation of factors such as sex, age, and BMI provide a basis for personalized health plans for children, especially during large-scale infectious diseases, providing guidance for addressing health challenges and promoting the health and well-being of children.
Collapse
Affiliation(s)
- SuJie Mao
- Graduate Development, Harbin Sport University, Harbin, Heilongjiang, China
| | - GuoPing Qian
- Faculty of Sports Medicine, Gdansk University of Sport, Gdańsk, Poland
| | - KaiWen Xiao
- Discipline Development Office, Nanjing Sport Institute, Nanjing, Jiangsu, China
| | - Hong Xu
- College of Sports and Health, Sangmyung University, Seoul, Republic of Korea
| | - Hao Zhou
- Teaching Evaluation Center, Nanjing Police University, Nanjing, Jiangsu, China
| | - XiuJin Guo
- Discipline Development Office, Nanjing Sport Institute, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Vivisenco IC, Lescaie A, Dragomirescu A, Ioniță IC, Florescu I, Ciocea B, Grama AR, Crăciun MD, Chivu CD, Ulmeanu CE, Nițescu VG. Neurological Manifestations of Acute SARS-CoV-2 Infection in Pediatric Patients: A 3-Year Study on Differences between Pandemic Waves. Viruses 2024; 16:967. [PMID: 38932259 PMCID: PMC11209294 DOI: 10.3390/v16060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
This study analyzed the neurological manifestation profiles of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across pandemic waves in pediatric patients. The study collected data on patients aged between 0 and 18 years, diagnosed with acute SARS-CoV-2 infection, admitted to a pediatric tertiary hospital between 1 March 2020 and 28 February 2023. This study included 1677 patients. Neurological manifestations were noted in 10% (n = 168) of patients with a median age of 3.2 years (interquartile range: 1-11.92). Neurological manifestations were significantly associated with the pandemic waves (p = 0.006) and age groups (p < 0.001). Seizures were noted in 4.2% of cases and reached an increasing frequency over time (p = 0.001), but were not associated with age groups. Febrile seizures accounted for the majority of seizures. Headache was reported in 2.6% of cases and had similar frequencies across the pandemic waves and age groups. Muscular involvement was noted in 2% of cases, reached a decreasing frequency over time (p < 0.001), and showed different frequencies among the age groups. Neurological manifestations of acute SARS-CoV-2 infection exhibit distinct patterns, depending on the pandemic wave and patient age group. The Wuhan and Omicron waves involved the nervous system more often than the other waves.
Collapse
Affiliation(s)
- Iolanda Cristina Vivisenco
- Discipline of Pediatrics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 17-23 Plevnei Road, 010221 Bucharest, Romania; (I.C.V.); (A.R.G.); (C.E.U.); (V.G.N.)
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (A.D.); (I.C.I.)
| | - Andreea Lescaie
- Discipline of Pediatrics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 17-23 Plevnei Road, 010221 Bucharest, Romania; (I.C.V.); (A.R.G.); (C.E.U.); (V.G.N.)
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (A.D.); (I.C.I.)
| | - Ana Dragomirescu
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (A.D.); (I.C.I.)
| | - Ioana Cătălina Ioniță
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (A.D.); (I.C.I.)
| | - Irina Florescu
- Department of Neurology, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (I.F.); (B.C.)
| | - Bogdan Ciocea
- Department of Neurology, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (I.F.); (B.C.)
| | - Andreea Rodica Grama
- Discipline of Pediatrics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 17-23 Plevnei Road, 010221 Bucharest, Romania; (I.C.V.); (A.R.G.); (C.E.U.); (V.G.N.)
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (A.D.); (I.C.I.)
| | - Maria-Dorina Crăciun
- Department of Epidemiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 17-23 Plevnei Road, 010221 Bucharest, Romania; (M.-D.C.); (C.-D.C.)
- Department of Infection Prevention and Control, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania
| | - Carmen-Daniela Chivu
- Department of Epidemiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 17-23 Plevnei Road, 010221 Bucharest, Romania; (M.-D.C.); (C.-D.C.)
- Department of Infection Prevention and Control, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania
| | - Coriolan Emil Ulmeanu
- Discipline of Pediatrics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 17-23 Plevnei Road, 010221 Bucharest, Romania; (I.C.V.); (A.R.G.); (C.E.U.); (V.G.N.)
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (A.D.); (I.C.I.)
| | - Viorela Gabriela Nițescu
- Discipline of Pediatrics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 17-23 Plevnei Road, 010221 Bucharest, Romania; (I.C.V.); (A.R.G.); (C.E.U.); (V.G.N.)
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania; (A.D.); (I.C.I.)
| |
Collapse
|
12
|
Gupta T, Kumar M, Kaur UJ, Rao A, Bharti R. Mapping ACE2 and TMPRSS2 co-expression in human brain tissue: implications for SARS-CoV-2 neurological manifestations. J Neurovirol 2024; 30:316-326. [PMID: 38600308 DOI: 10.1007/s13365-024-01206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily targets respiratory cells, but emerging evidence shows neurological involvement, with the virus directly affecting neurons and glia. SARS-CoV-2 entry into a target cell requires co-expression of ACE2 (Angiotensin-converting enzyme-2) and TMPRSS2 (Trans membrane serine protease-2). Relevant literature on human neurological tissue is sparse and mostly focused on the olfactory areas. This prompted our study to map brain-wide expression of these entry proteins and assess age-related changes. The normal brain tissue samples were collected from cerebral cortex, hippocampus, basal ganglia, thalamus, hypothalamus, brain stem and cerebellum; and were divided into two groups - up to 40 years (n = 10) and above 40 years (n = 10). ACE2 and TMPRSS2 gene expression analysis was done using qRT-PCR and protein co-expression was seen by immunofluorescence. The ACE2 and TMPRSS2 gene expression was observed to be highest in hypothalamus and thalamus regions, respectively. Immunoreactivity for both ACE-2 and TMPRSS2 was observed in all examined brain regions, confirming the presence of these viral entry receptors. Co-localisation was maximum in hypothalamus. Our study did not find any trend related to different age groups. The expression of both these viral entry receptors suggests that normal human brain is susceptibility to SARS-CoV-2, perhaps which could be related to the cognitive and neurological impairment that occur in patients.
Collapse
Affiliation(s)
- Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ujjwal Jit Kaur
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Asha Rao
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Bharti
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Seniaray N, Verma R, Ranjan R, Belho E. FDG PET in Neurological Manifestations of COVID-19. Clin Nucl Med 2024; 49:e307-e311. [PMID: 38557407 DOI: 10.1097/rlu.0000000000005187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
ABSTRACT Both the central and peripheral nervous systems can be affected in COVID-19. Although MRI is the primary investigative tool for neurological imaging, FDG PET may show additional areas of involvement in the brain in the form of regional hypometabolism or hypermetabolism, secondary to synaptic dysfunction and electrical or glial activation. We present a case series of 4 patients who had neurological symptoms attributable to COVID-19 infection with abnormalities in the brain FDG PET scan.
Collapse
Affiliation(s)
| | - Ritu Verma
- Department of Nuclear Medicine & PET/CT, Mahajan Imaging & labs, Sir Ganga Ram Hospital
| | - Rajeev Ranjan
- Department of Neurology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ethel Belho
- Department of Nuclear Medicine & PET/CT, Mahajan Imaging & labs, Sir Ganga Ram Hospital
| |
Collapse
|
14
|
Jiang Z, Fang C, Peng F, Fan W. Comparison of clinical characteristics and disease burden of febrile seizures in children with and without COVID-19. BMC Pediatr 2024; 24:329. [PMID: 38741083 DOI: 10.1186/s12887-024-04821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Febrile seizures (FS) are the most common seizure disorder in children and a common neurologic complication in children with coronavirus disease 2019 (COVID-19). This study aimed to identify differences in clinical characteristics and disease burden between FS with and without COVID-19. MATERIALS AND METHODS We conducted a retrospective analysis of medical data at our hospital from December 2019 to July 2023, focusing on hospitalized patients under the age of 14 diagnosed with FS who underwent COVID-19 polymerase chain reaction (PCR) testing. Descriptive statistics and analysis of variance were employed to compare the COVID-19 and non-COVID-19 groups in terms of clinical characteristics and disease burden. RESULTS A total of 514 patients were included, with 106 testing positive for COVID-19 and 408 testing negative. Patients with COVID-19 were older (34.87 ± 6.16 vs. 28.61 ± 11.35 months, P < 0.001) and had a higher proportion of males (79.2% vs. 62.3%, P = 0.001). The COVID-19 group had longer seizure durations (4.57 ± 4.38 vs. 3.22 ± 2.91 min, P = 0.006) and more complex FS (25.5% vs. 15.9%, P = 0.022). Laboratory tests showed lower lymphocyte counts in the COVID-19 group (1.87 ± 1.48 vs. 2.75 ± 1.51 × 103/µL, P < 0.001) and higher creatine kinase levels (158.49 ± 82.89 vs. 110.89 ± 56.11 U/L, P < 0.001). No significant differences were found in hospital costs, length of hospitalization, and intensive care unit admissions. CONCLUSION Clinicians should be knowledgeable about the distinct clinical characteristics of FS in children with COVID-19. Despite distinct features, the prognosis remains favorable and does not require excessive intervention. Ongoing monitoring and research are needed to fully understand the impact of COVID-19 on FS and optimize management strategies.
Collapse
Affiliation(s)
- Zhongli Jiang
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| | - Cuiyun Fang
- Department of Nursing, Liyang People's Hospital, Liyang, China
| | - Fengyimei Peng
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| | - Wei Fan
- Department of Pediatrics, Liyang People's Hospital, Liyang, China.
| |
Collapse
|
15
|
Nicoliche T, Bartolomeo CS, Lemes RMR, Pereira GC, Nunes TA, Oliveira RB, Nicastro ALM, Soares ÉN, da Cunha Lima BF, Rodrigues BM, Maricato JT, Okuda LH, de Sairre MI, Prado CM, Ureshino RP, Stilhano RS. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci Rep 2024; 14:10696. [PMID: 38730068 PMCID: PMC11087556 DOI: 10.1038/s41598-024-61662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/08/2024] [Indexed: 05/12/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.
Collapse
Affiliation(s)
- Tiago Nicoliche
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Gabriela Cruz Pereira
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tamires Alves Nunes
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arthur Luiz Miranda Nicastro
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | | | | | - Beatriz Moreira Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Liria Hiromi Okuda
- Biological Institute, Agriculture and Supply Department, São Paulo, SP, Brazil
| | - Mirela Inês de Sairre
- Human and Natural Sciences Center, Federal University of ABC (UFABC), São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil.
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil.
| |
Collapse
|
16
|
Chavhan R, Wanjari A, Kumar S, Acharya S, Rathod N, Reddy H, Gemnani R. A Comprehensive Review on Navigating the Neurological Landscape of COVID-19: Insights Into Etiopathogenesis and Clinical Management. Cureus 2024; 16:e60079. [PMID: 38860093 PMCID: PMC11163389 DOI: 10.7759/cureus.60079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a global health crisis with significant neurological implications. While initially characterized by respiratory symptoms, COVID-19 has been increasingly recognized for its diverse neurological manifestations, including encephalopathy, stroke, peripheral neuropathies, and neuropsychiatric disorders. Understanding the neurological landscape of COVID-19 is essential for elucidating its pathophysiology, optimizing clinical management, and improving patient outcomes. This comprehensive review provides insights into the etiopathogenesis, clinical manifestations, diagnostic approaches, management strategies, and prognostic implications of neurological involvement in COVID-19. Mechanistic insights highlight the multifactorial nature of neurological complications involving direct viral invasion, immune-mediated mechanisms, and thrombotic events. Diagnostic challenges underscore the importance of a multidisciplinary approach to patient care, while management strategies emphasize early recognition and appropriate intervention. Long-term neurological sequelae and prognostic factors are also examined, emphasizing the need for comprehensive follow-up and rehabilitation services. Finally, recommendations for future research prioritize efforts to elucidate underlying mechanisms, identify biomarkers, and evaluate rehabilitative interventions. By addressing these challenges, we can better understand and mitigate the neurological consequences of the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Roma Chavhan
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institiute of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institiute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institiute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institiute of Higher Education and Research, Wardha, IND
| | - Nishant Rathod
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institiute of Higher Education and Research, Wardha, IND
| | - Harshitha Reddy
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institiute of Higher Education and Research, Wardha, IND
| | - Rinkle Gemnani
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institiute of Higher Education and Research, Wardha, IND
| |
Collapse
|
17
|
Marcotullio C, Attanasi M, Porreca A, Di Filippo P, Matricardi S, Venanzi A, Schiavo M, Paone A, Rossi N, Chiarelli F, Prezioso G. Neuropsychological Symptoms and Quality of Life during the COVID-19 Pandemic in Children: A Survey in a Pediatric Population in the Abruzzo Region, Italy. CHILDREN (BASEL, SWITZERLAND) 2024; 11:532. [PMID: 38790527 PMCID: PMC11119843 DOI: 10.3390/children11050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has significantly affected the pediatric population. Long-term sequelae (Long COVID-19) may particularly involve the central nervous system, with possible effects on psychological well-being and quality of life (QoL), aspects that were already influenced by the restrictive measures and general social impact of the pandemic. METHODS We conducted a cross-sectional survey that aims at investigating the neuropsychological effects and the QoL impairment of SARS-CoV-2 on a cohort of children and adolescents in the Abruzzo region (Italy). A questionnaire was submitted to caregivers with the help of the PEDIATOTEM platform. A control group of healthy subjects was also included to distinguish between the effects of infection from the general influence of the pandemic. RESULTS A total of 569 subjects responded: 396 COVID-19 patients (99 of whom had Long COVID-19) and 111 controls. After the pandemic, when compared with the COVID-19 group, the controls reported significantly increased appetite, sleeping habits, and time spent remotely with friends and a reduction in physical activity and time spent in person with friends. A significant higher rate of controls asked for psychological/medical support for emotional problems. On the other hand, the Long COVID-19 group showed more fatigue and emotional instability with respect to non-Long-COVID-19 subjects. No differences in QoL results (EuroQOL) were found between the COVID-19 patients and controls, while the Long-COVID-19 subgroup showed significantly higher rates of pain/discomfort and mood instability, as confirmed by the analysis of variation of responses from the pre-COVID-19 to the post-COVID-19 period. CONCLUSIONS Among COVID-19 patients, neuropsychological and QoL impairment was more evident in the Long COVID-19 subgroup, although emotional and relational issues were also reported by uninfected patients, with a growing request for specialist support as a possible consequence of social restriction.
Collapse
Affiliation(s)
- Chiara Marcotullio
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Marina Attanasi
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Paola Di Filippo
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Annamaria Venanzi
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Marco Schiavo
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Antonio Paone
- Department of Neuroscience, Imaging and Clinical Science, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Nadia Rossi
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| | - Giovanni Prezioso
- Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (C.M.); (M.A.); (P.D.F.); (S.M.); (A.V.); (M.S.); (N.R.); (F.C.)
| |
Collapse
|
18
|
Mathur R, Meyfroidt G, Robba C, Stevens RD. Neuromonitoring in the ICU - what, how and why? Curr Opin Crit Care 2024; 30:99-105. [PMID: 38441121 DOI: 10.1097/mcc.0000000000001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW We selectively review emerging noninvasive neuromonitoring techniques and the evidence that supports their use in the ICU setting. The focus is on neuromonitoring research in patients with acute brain injury. RECENT FINDINGS Noninvasive intracranial pressure evaluation with optic nerve sheath diameter measurements, transcranial Doppler waveform analysis, or skull mechanical extensometer waveform recordings have potential safety and resource-intensity advantages when compared to standard invasive monitors, however each of these techniques has limitations. Quantitative electroencephalography can be applied for detection of cerebral ischemia and states of covert consciousness. Near-infrared spectroscopy may be leveraged for cerebral oxygenation and autoregulation computation. Automated quantitative pupillometry and heart rate variability analysis have been shown to have diagnostic and/or prognostic significance in selected subtypes of acute brain injury. Finally, artificial intelligence is likely to transform interpretation and deployment of neuromonitoring paradigms individually and when integrated in multimodal paradigms. SUMMARY The ability to detect brain dysfunction and injury in critically ill patients is being enriched thanks to remarkable advances in neuromonitoring data acquisition and analysis. Studies are needed to validate the accuracy and reliability of these new approaches, and their feasibility and implementation within existing intensive care workflows.
Collapse
Affiliation(s)
- Rohan Mathur
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geert Meyfroidt
- Department of Intensive Care Medicine, University Hospitals Leuven, Belgium and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genova, Italy
| | - Robert D Stevens
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| |
Collapse
|
19
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
20
|
Liu S, Zhang WW, Jia L, Zhang HL. Guillain-Barré syndrome: immunopathogenesis and therapeutic targets. Expert Opin Ther Targets 2024; 28:131-143. [PMID: 38470316 DOI: 10.1080/14728222.2024.2330435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/10/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Guillain-Barré syndrome (GBS) is a group of acute immune-mediated disorders in the peripheral nervous system. Both infectious and noninfectious factors are associated with GBS, which may act as triggers of autoimmune responses leading to neural damage and dysfunction. AREAS COVERED Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its vaccines as well as flaviviruses have been associated with GBS, although a robust conclusion has yet to be reached. Immunomodulatory treatments, including intravenous immunoglobulins (IVIg) and plasma exchange (PE), have long been the first-line therapies for GBS. Depending on GBS subtype and severity at initial presentation, the efficacy of IVIg and PE can be variable. Several new therapies showing benefits to experimental animals merit further investigation before translation into clinical practice. We review the state-of-the-art knowledge on the immunopathogenesis of GBS in the context of coronavirus disease 2019 (COVID-19). Immunomodulatory therapies in GBS, including IVIg, PE, corticosteroids, and potential therapies, are summarized. EXPERT OPINION The association with SARS-CoV-2 remains uncertain, with geographical differences that are difficult to explain. Evidence and guidelines are lacking for the decision-making of initiating immunomodulatory therapies in mildly affected patients or patients with regional subtypes of GBS.
Collapse
Affiliation(s)
- Shan Liu
- Department of Nuclear Medicine, Second Hospital of Jilin University, Changchun, China
| | - Wei Wei Zhang
- Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
21
|
Gajurel BP, Yadav SK, Nepal G, Pant S, Yadav M, Shah R, Shah S. Neurological manifestations and complications of COVID-19 in patients admitted to a tertiary care center in Nepal during the second wave. Medicine (Baltimore) 2024; 103:e36017. [PMID: 38363915 PMCID: PMC10869060 DOI: 10.1097/md.0000000000036017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 02/18/2024] Open
Abstract
Neurological symptoms and signs of Coronavirus disease-19 (COVID-19) can accompany, follow, or precede respiratory symptoms and signs; hence, they are important in the diagnosis and management of COVID-19 patients. In this retrospective study conducted during the second wave of COVID-19, we included all patients diagnosed with COVID-19 using real-time polymerase chain reaction and admitted to the Tribhuvan University Teaching Hospital between June 2021 and October 2021. The patients were categorized into 2 groups: group A (with neurological manifestations or complications) and Group-B (without neurological manifestations or complications). The 2 groups were compared in terms of intensive care unit (ICU) admission, need for ventilatory support, length of hospital stay, and various outcomes. The study included 235 participants ranging in age from 13 to 102 years (mean age = 54 years, standard deviation = 18). Among the participants, 54.50% were male. The proportion of individuals in group A was higher (59.15%, N = 139) than that in Group-B (40.85%, N = 96). Notably, a significantly greater number of patients were admitted to the ICU in Group B than in Group A. However, there were no statistically significant differences in the need for ventilatory support or hospital stay between the 2 groups. Interestingly, group A showed a higher rate of improvement (Z = -3.1145, P = .00188, 95% CI), while Group-B had a higher rate of mortality (Z = 4.5562, P < .00001, 95% CI). Altered mental status and stroke have been specifically linked to poorer outcomes, whereas typical neurological manifestations, such as hyposmia, hypogeusia, dizziness, headache, and myalgia, are associated with better outcomes.
Collapse
Affiliation(s)
- Bikram Prasad Gajurel
- Department of Neurology Maharajgunj Medical Campus, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Sushil Kumar Yadav
- Maharajgunj Medical Campus, Tribhuvan University, Institute of Medicine, Kathmandu, Nepal
| | - Gaurav Nepal
- Maharajgunj Medical Campus, Tribhuvan University, Institute of Medicine, Kathmandu, Nepal
| | - Sobin Pant
- Maharajgunj Medical Campus, Tribhuvan University, Institute of Medicine, Kathmandu, Nepal
| | - Manish Yadav
- Maharajgunj Medical Campus, Tribhuvan University, Institute of Medicine, Kathmandu, Nepal
| | - Ravi Shah
- Maharajgunj Medical Campus, Tribhuvan University, Institute of Medicine, Kathmandu, Nepal
| | - Sumit Shah
- Maharajgunj Medical Campus, Tribhuvan University, Institute of Medicine, Kathmandu, Nepal
| |
Collapse
|
22
|
Wang X, Xiong Z, Hong W, Liao X, Yang G, Jiang Z, Jing L, Huang S, Fu Z, Zhu F. Identification of cuproptosis-related gene clusters and immune cell infiltration in major burns based on machine learning models and experimental validation. Front Immunol 2024; 15:1335675. [PMID: 38410514 PMCID: PMC10894925 DOI: 10.3389/fimmu.2024.1335675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Burns are a global public health problem. Major burns can stimulate the body to enter a stress state, thereby increasing the risk of infection and adversely affecting the patient's prognosis. Recently, it has been discovered that cuproptosis, a form of cell death, is associated with various diseases. Our research aims to explore the molecular clusters associated with cuproptosis in major burns and construct predictive models. Methods We analyzed the expression and immune infiltration characteristics of cuproptosis-related factors in major burn based on the GSE37069 dataset. Using 553 samples from major burn patients, we explored the molecular clusters based on cuproptosis-related genes and their associated immune cell infiltrates. The WGCNA was utilized to identify cluster-specific genes. Subsequently, the performance of different machine learning models was compared to select the optimal model. The effectiveness of the predictive model was validated using Nomogram, calibration curves, decision curves, and an external dataset. Finally, five core genes related to cuproptosis and major burn have been was validated using RT-qPCR. Results In both major burn and normal samples, we determined the cuproptosis-related genes associated with major burns through WGCNA analysis. Through immune infiltrate profiling analysis, we found significant immune differences between different clusters. When K=2, the clustering number is the most stable. GSVA analysis shows that specific genes in cluster 2 are closely associated with various functions. After identifying the cross-core genes, machine learning models indicate that generalized linear models have better accuracy. Ultimately, a generalized linear model for five highly correlated genes was constructed, and validation with an external dataset showed an AUC of 0.982. The accuracy of the model was further verified through calibration curves, decision curves, and modal graphs. Further analysis of clinical relevance revealed that these correlated genes were closely related to time of injury. Conclusion This study has revealed the intricate relationship between cuproptosis and major burns. Research has identified 15 cuproptosis-related genes that are associated with major burn. Through a machine learning model, five core genes related to cuproptosis and major burn have been selected and validated.
Collapse
Affiliation(s)
- Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenfang Xiong
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wangbing Hong
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xincheng Liao
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guangping Yang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengying Jiang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lanxin Jing
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghua Fu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Cho SM, Premraj L, Battaglini D, Fanning JP, Suen J, Bassi GL, Fraser J, Robba C, Griffee M, Solomon T, Semple MG, Baillie K, Sigfrid L, Scott JT, Citarella BW, Merson L, Arora RC, Whitman G, Thomson D, White N. Sex differences in post-acute neurological sequelae of SARS-CoV-2 and symptom resolution in adults after coronavirus disease 2019 hospitalization: an international multi-centre prospective observational study. Brain Commun 2024; 6:fcae036. [PMID: 38444907 PMCID: PMC10914448 DOI: 10.1093/braincomms/fcae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Although it is known that coronavirus disease 2019 can present with a range of neurological manifestations and in-hospital complications, sparse data exist on whether these initial neurological symptoms of coronavirus disease 2019 are closely associated with post-acute neurological sequelae of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2; PANSC) and whether female versus male sex impacts symptom resolution. In this international, multi-centre, prospective, observational study across 407 sites from 15 countries (30 January 2020 to 30 April 2022), we report the prevalence and risk factors of PANSC among hospitalized adults and investigate the differences between males and females on neurological symptom resolution over time. PANSC symptoms included altered consciousness/confusion, fatigue/malaise, anosmia, dysgeusia and muscle ache/joint pain, on which information was collected at index hospitalization and during follow-up assessments. The analysis considered a time to the resolution of individual and all neurological symptoms. The resulting times were modelled by Weibull regression, assuming mixed-case interval censoring, with sex and age included as covariates. The model results were summarized as cumulative probability functions and age-adjusted and sex-adjusted median times to resolution. We included 6862 hospitalized adults with coronavirus disease 2019, who had follow-up assessments. The median age of the participants was 57 years (39.2% females). Males and females had similar baseline characteristics, except that more males (versus females) were admitted to the intensive care unit (30.5 versus 20.3%) and received mechanical ventilation (17.2 versus 11.8%). Approximately 70% of patients had multiple neurological symptoms at the first follow-up (median = 102 days). Fatigue (49.9%) and myalgia/arthralgia (45.2%) were the most prevalent symptoms of PANSC at the initial follow-up. The reported prevalence in females was generally higher (versus males) for all symptoms. At 12 months, anosmia and dysgeusia were resolved in most patients, although fatigue, altered consciousness and myalgia remained unresolved in >10% of the cohort. Females had a longer time to the resolution (5.2 versus 3.4 months) of neurological symptoms at follow-up for those with more than one neurological symptom. In the multivariable analysis, males were associated with a shorter time to the resolution of symptoms (hazard ratio = 1.53; 95% confidence interval = 1.39-1.69). Intensive care unit admission was associated with a longer time to the resolution of symptoms (hazard ratio = 0.68; 95% confidence interval = 0.60-0.77). Post-discharge stroke was uncommon (0.3% in females and 0.5% in males). Despite the methodological challenges involved in the collection of survey data, this international multi-centre prospective cohort study demonstrated that PANSC following index hospitalization was high. Symptom prevalence was higher and took longer to resolve in females than in males. This supported the fact that while males were sicker during acute illness, females were disproportionately affected by PANSC.
Collapse
Affiliation(s)
- Sung-Min Cho
- Neuroscience Critical Care Division, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21278, USA
- Neuroscience Critical Care Division, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21278, USA
- Neuroscience Critical Care Division, Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21278, USA
| | - Lavienraj Premraj
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove 4059, Australia
- Griffith University School of Medicine, Gold Coast 4215, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia
| | - Denise Battaglini
- Department of Surgical Science and Integrated Diagnostic, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, University of Genoa, Genoa 16132, Italy
- Department of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Jonathon Paul Fanning
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane 4006, Australia
| | - Jacky Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane 4006, Australia
| | - Gianluigi Li Bassi
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove 4059, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane 4006, Australia
- Institut d’Investigacions Biomediques August Pi I Sunyer, Barcelona 08036, Spain
| | - John Fraser
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove 4059, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane 4006, Australia
- St Andrew’s War Memorial Hospital, UnitingCare, Spring Hill 4000, Australia
| | - Chiara Robba
- Department of Surgical Science and Integrated Diagnostic, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, University of Genoa, Genoa 16132, Italy
| | - Matthew Griffee
- Department of Anesthesiology, University of Utah, Salt Lake City, UT 84132, USA
| | - Tom Solomon
- Brain Infections Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5TR, UK
- Department of Neuroscience, University of Liverpool, Liverpool, L3 5TR, UK
- Walton Centre NHS Foundation Trust, Liverpool, L9 7LJ, UK
| | - Malcolm G Semple
- Child Health and Outbreak Medicine, University of Liverpool, Liverpool, L3 5TR, UK
| | - Kenneth Baillie
- Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Louise Sigfrid
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LG, UK
| | - Janet T Scott
- Infectious Disease, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Barbara Wanjiru Citarella
- International Severe Acute Respiratory and emerging Infections Consortium (ISARIC), Pandemic Sciences Institute, University of Oxford, Oxford, OX1 2JD, UK
| | - Laura Merson
- Institut d’Investigacions Biomediques August Pi I Sunyer, Barcelona 08036, Spain
| | - Rakesh C Arora
- Department of Surgery, University Hospitals/Case Western Reserve University, Cleveland, OH 44106, USA
| | - Glenn Whitman
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21278, USA
| | - David Thomson
- Department of Anaesthesia and Peri-operative Medicine, University of Cape Town, Cape Town 7700, South Africa
- Division of Critical Care, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Nicole White
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove 4059, Australia
| |
Collapse
|
24
|
Hanganu AR, Niculae CM, Dulămea AO, Moisă E, Constantin R, Neagu G, Hristea A. The outcome and risk factors associated with central and peripheral nervous system involvement in hospitalized COVID-19 patients: a retrospective cohort study. Front Neurol 2024; 14:1338593. [PMID: 38274890 PMCID: PMC10808716 DOI: 10.3389/fneur.2023.1338593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction SARS-CoV-2 infection can affect any organ, including both the central nervous system (CNS) and peripheral nervous system (PNS). The aim of this study was to explore the outcome and risk factors associated with the involvement of either CNS or PNS in a cohort of hospitalized COVID-19 patients. Methods We performed a retrospective observational cohort study of hospitalized adult patients with COVID-19, between May 2020 and December 2022, presenting with new onset neurological disabilities any time after admission. Results We included 115 patients, 72 with CNS manifestations and 43 with PNS involvement. The CNS manifestations were COVID-19-associated encephalopathy, headache, neurovascular events, and seizures in 80.5, 43, 31.9, and 11.1% of patients, respectively. The neurovascular events were ischemic stroke in 17 (23.6%) patients, hemorrhagic stroke in 6 (8.3%) patients, venous thrombosis in 1 (1.4%) patient, and subarachnoid hemorrhage in 1 (1.4%) patient. Cranial nerve involvement was the most frequent PNS manifestation in 34 (79%) cases, followed by mononeuritis in 5 (11.6%) patients and polyneuropathy in 4 (9.3%) patients. The affected cranial nerves were the vestibulocochlear nerve in 26 (60.5%) patients, the olfactory nerve in 24 (55.8%) patients, the oculomotor nerves in 5 (11.6%) patients, and the facial nerve in 1 (2.3%) patient. Two patients (9.3%) presented with polyneuritis cranialis. Older age (HR = 1.02, 95% CI: 1.003-1.037, p = 0.01), COVID severity (HR = 2.53, 95% CI: 1.42-4.5, p = 0.002), ischemic cardiac disease (HR = 2.42, 95% CI: 1.05-5.6, p = 0.03), and increased D-dimers (HR = 1.00, 95% CI: 1.00-1.00, p = 0.02) were independently associated with the development of CNS manifestations. The factors associated with in-hospital mortality were age (HR = 1.059, 95% CI: 1.024-1.096, p = 0.001), C-reactive protein (HR = 1.006, 95% CI: 1.00-1.011, p = 0.03), CNS involvement (HR = 9.155, 95% CI: 1.185-70.74, p = 0.03), and leucocyte number (HR = 1.053, 95% CI: 1.026-1.081, p < 0.001). Conclusion COVID-19-associated encephalopathy was the most common CNS manifestation in our study, but neurovascular events are also important considering the overlap between inflammatory and prothrombotic pathways, especially in severe cases. CNS involvement was associated with in-hospital all-cause mortality. PNS findings were various, involving mostly the cranial nerves, especially the vestibulocochlear nerve.
Collapse
Affiliation(s)
- Andreea Raluca Hanganu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Cristian-Mihail Niculae
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Adriana Octaviana Dulămea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Emanuel Moisă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Elias University Emergency Hospital, Bucharest, Romania
| | - Rareș Constantin
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Georgiana Neagu
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Adriana Hristea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| |
Collapse
|
25
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5-5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Sirko S, Schichor C, Della Vecchia P, Metzger F, Sonsalla G, Simon T, Bürkle M, Kalpazidou S, Ninkovic J, Masserdotti G, Sauniere JF, Iacobelli V, Iacobelli S, Delbridge C, Hauck SM, Tonn JC, Götz M. Injury-specific factors in the cerebrospinal fluid regulate astrocyte plasticity in the human brain. Nat Med 2023; 29:3149-3161. [PMID: 38066208 PMCID: PMC10719094 DOI: 10.1038/s41591-023-02644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2023] [Indexed: 12/17/2023]
Abstract
The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage and found a striking correlation between lesions involving blood-brain barrier rupture and astrocyte proliferation that was further corroborated in an assay probing for neural stem cell potential. Most importantly, proteomic analysis unraveled a crucial signaling pathway regulating this astrocyte plasticity with GALECTIN3 as a novel marker for proliferating astrocytes and the GALECTIN3-binding protein LGALS3BP as a functional hub mediating astrocyte proliferation and neurosphere formation. Taken together, this work identifies a therapeutically relevant astrocyte response and their molecular regulators in different pathologies affecting the human cerebral cortex.
Collapse
Affiliation(s)
- Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | | | - Giovanna Sonsalla
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Tatiana Simon
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Martina Bürkle
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Sofia Kalpazidou
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany
| | - Giacomo Masserdotti
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | | | | | | | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, TUM School of Medicine, TU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany.
| |
Collapse
|
27
|
Liu L, Zhou C, Jiang H, Wei H, Zhou Y, Zhou C, Ji X. Epidemiology, pathogenesis, and management of Coronavirus disease 2019-associated stroke. Front Med 2023; 17:1047-1067. [PMID: 38165535 DOI: 10.1007/s11684-023-1041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
The Coronavirus disease 2019 (COVID-19) epidemic has triggered a huge impact on healthcare, socioeconomics, and other aspects of the world over the past three years. An increasing number of studies have identified a complex relationship between COVID-19 and stroke, although active measures are being implemented to prevent disease transmission. Severe COVID-19 may be associated with an increased risk of stroke and increase the rates of disability and mortality, posing a serious challenge to acute stroke diagnosis, treatment, and care. This review aims to provide an update on the influence of COVID-19 itself or vaccines on stroke, including arterial stroke (ischemic stroke and hemorrhagic stroke) and venous stroke (cerebral venous thrombosis). Additionally, the neurovascular mechanisms involved in SARS-CoV-2 infection and the clinical characteristics of stroke in the COVID-19 setting are presented. Evidence on vaccinations, potential therapeutic approaches, and effective strategies for stroke management has been highlighted.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
- Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of China, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
| | - Chenxia Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
- Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of China, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Huimin Wei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xunming Ji
- Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of China, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China.
| |
Collapse
|
28
|
Srichawla BS, Quast J, Pacut P, Sivakumar S, Garcia-Dominguez MA, Belgrad J, Panda A, Carbone S, Sanders DT, Min E, Hayes NT, Bose A, Lee V, Ghasemi M. COVID-19 in the intensive care unit: Unmasking the critical factors impacting patient survival. J Investig Med 2023; 71:907-916. [PMID: 37485922 DOI: 10.1177/10815589231191813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In the midst of the coronavirus disease 2019 (COVID-19) pandemic, intensive care units (ICUs) around the world have been pushed to their limits as they grapple with the effects of the severe acute respiratory syndrome coronavirus 2 virus. Identifying prognostic factors that influence mortality in COVID-19 patients admitted to the ICU could offer valuable insights for clinicians seeking to prevent disease progression. A retrospective analysis was conducted on COVID-19 patients admitted to the ICU between January and September 2020. The analysis considered patient demographics, comorbidities, neurological and non-neurological symptoms, as well as laboratory markers. The multivariate logistic regression analysis aims to uncover associations between these factors and patient outcomes. Of the 387 patients included in this study, nearly half (48.5%) of the ICU patients succumbed to COVID-19. Factors that contributed to increased mortality included being 60 years of age or older, impaired consciousness, lung disease, elevated international normalized ratio (INR), and elevated blood urea nitrogen (BUN) levels. Surprisingly, symptoms such as dizziness/lightheadedness, myalgia, and headache were associated with a higher likelihood of survival. In addition, elevated D-dimer and aspartate aminotransferase (AST) levels, as well as lymphopenia, were more commonly observed in deceased patients. The study concluded that those who died in the ICU tended to be older, white, and burdened with more comorbidities and impaired consciousness. With the intriguing link between specific symptoms and survival, further research is essential to uncover the underlying pathophysiological mechanisms that influence ICU patient outcomes in the context of COVID-19.
Collapse
Affiliation(s)
| | - Jared Quast
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Peter Pacut
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | - Jillian Belgrad
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ashwin Panda
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sara Carbone
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Delia T Sanders
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Eli Min
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nicole T Hayes
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abigail Bose
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vanessa Lee
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mehdi Ghasemi
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
29
|
Al-Mazidi SH, ALRouq F, Alsabty AS, Alhajlah A, AlYahya A, Alsabih A, Al-Taweraqi R, Alahmari AS, Al-Dakhil L, Habib S. Relationship Between Clinical Outcomes and Nerve Conduction Studies Before and After Viral Infections in Healthy Individuals: Case Series. Cureus 2023; 15:e48980. [PMID: 38111436 PMCID: PMC10726065 DOI: 10.7759/cureus.48980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND The neurological effect of viral respiratory infections has been acknowledged in many studies. However, patients who recovered from this infection show neurological manifestations and are not being routinely transferred for electrodiagnostic evaluation. AIM This study aimed to examine the neurological effect of viral respiratory infections on the nerve function using electrophysiology in patients fully recovered from viral respiratory infections. METHODS To limit bias in the results, the authors decided to choose patients who recovered from one virus in all participants (coronavirus). Medical records were screened for patients who performed nerve conduction studies (NCSs) before the coronavirus pandemic. Thirty patients met our inclusion criteria, and only 10 showed up to perform NCS. Data of the NCS was compared before and after the coronavirus infection for motor and sensory NCS parameters. RESULTS An increase in both the median and ulnar sensory nerve latencies and a decrease in the sensory nerve amplitude was observed. Also, there was a decrease in the motor conduction velocity (MCV) of the ulnar nerves and motor amplitude in the median nerve. In the lower limbs, there was a decrease in the sural nerve latency, increased MCV in the tibial nerves, and decreased MCV in the peroneal nerves. The proximal amplitudes of the tibial and peroneal nerves were increased, but the distal amplitude was increased only in the peroneal nerves and decreased in the tibial nerves. CONCLUSION There is a significant impact of viral infections on the peripheral nerves. Large-scale prospective studies are required to investigate the pathogenesis of the neuropathy and myopathy after viral infections.
Collapse
Affiliation(s)
| | - Fawzia ALRouq
- Physiology, King Saud University, College of Medicine, Riyadh, SAU
| | - Areej S Alsabty
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdullah Alhajlah
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Asma AlYahya
- Physiology, King Saud University, College of Medicine, Riyadh, SAU
| | - Ahmed Alsabih
- Physiology, King Saud University, College of Medicine, Riyadh, SAU
| | | | | | - Lina Al-Dakhil
- Research, King Saud Medical City, Research Center, Riyadh, SAU
| | - Syed Habib
- Physiology, King Saud University, Riyadh, SAU
| |
Collapse
|
30
|
Beghi E, Ivashynka A, Logroscino G, de Oliveira FF, Fleisher JE, Dumitrascu OM, Patel R, Savica R, Kim YJ. Pitfalls and biases in neuroepidemiological studies of COVID-19 and the nervous system: a critical appraisal of the current evidence and future directions. J Neurol 2023; 270:5162-5170. [PMID: 37682315 DOI: 10.1007/s00415-023-11981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Neurological manifestations frequently occur in individuals with COVID-19, manifesting during the acute phase, persisting beyond the resolution of acute symptoms, and appearing days or weeks after the initial onset of COVID-19 symptoms. However, predicting the incidence, course, and outcome of these neurological manifestations at the individual patient level remains challenging. Biases in study design and limitations in data collection may contribute to the inconsistency and limited validity of the reported findings. Herein, we focused on critically appraising pitfalls and biases of prior reports and provide guidance for improving the quality and standardization of future research. Patients with COVID-19 exhibit diverse demographic features, sociocultural backgrounds, lifestyle habits, and comorbidities, all of which can influence the severity and progression of the infection and its impact on other organ systems. Overlooked or undocumented comorbidities and related treatments may contribute to neurological sequelae, which may not solely be attributable to COVID-19. It is crucial to consider the potential side effects of vaccines in relation to neurological manifestations. CONCLUSION To investigate neurological manifestations of COVID-19, it is essential to employ valid and reliable diagnostic criteria and standard definitions of the factors of interest. Although population-based studies are lacking, well-defined inception cohorts, including hospitalized individuals, outpatients, and community residents, can serve as valuable compromises. These cohorts should be evaluated for the presence of common comorbidities, alongside documenting the primary non-neurological manifestations of the infectious disease. Lastly, patients with COVID-19 should be followed beyond the acute phase to assess the persistence, duration, and severity of neurological symptoms, signs, or diseases.
Collapse
Affiliation(s)
- Ettore Beghi
- Department of Neuroscience, Istituto di Ricerch Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andrei Ivashynka
- Department of Parkinson's Disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital, Gravedona ed Uniti, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico" Hospital Tricase, Lecce, Italy
| | | | - Jori E Fleisher
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Oana M Dumitrascu
- Departments of Neurology and Ophthalmology, Mayo Clinic, Scottsdale, AZ, USA
| | - Roshni Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Neurology Service, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Rodolfo Savica
- Department of Neurology and Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Yun Jin Kim
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia.
| |
Collapse
|
31
|
Basak I, Harfoot R, Palmer JE, Kumar A, Quiñones-Mateu ME, Schweitzer L, Hughes SM. Neuroproteomic Analysis after SARS-CoV-2 Infection Reveals Overrepresented Neurodegeneration Pathways and Disrupted Metabolic Pathways. Biomolecules 2023; 13:1597. [PMID: 38002279 PMCID: PMC10669333 DOI: 10.3390/biom13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neurological symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2, TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2 receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human cells; however, the virus could not replicate or produce infectious virions in this neuronal model. Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular morphology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2 infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development of neurological complications. The findings from our study uncover a possible mechanism behind SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on the human brain.
Collapse
Affiliation(s)
- Indranil Basak
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Jennifer E. Palmer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin 9016, New Zealand
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Lucia Schweitzer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie M. Hughes
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
32
|
Fang C, Zhou Y, Fan W, Zhang C, Yang Y. Clinical features of febrile seizures in children with COVID-19: an observational study from a tertiary care hospital in China. Front Pediatr 2023; 11:1290806. [PMID: 37868269 PMCID: PMC10587579 DOI: 10.3389/fped.2023.1290806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Febrile seizures are a common neurologic manifestation in children with coronavirus disease 2019 (COVID-19). Compared to seasonal respiratory viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a pronounced neurological impact, with the result that febrile seizures with COVID-19 may exhibit unique clinical features. Materials and methods We conducted a retrospective study in a tertiary care hospital in China. We collected medical record information on febrile seizures with COVID-19, including demographic characteristics, clinical features, laboratory tests, and disease burden. Subsequently, the data were then analyzed descriptively. Results A total of 103 children diagnosed with febrile seizures and positive COVID-19 PCR results were included in our study. Among them, 81 (78.6%) were males and 22 (21.4%) were females. The age of onset of febrile seizures ranged from 14 to 57 months, with a mean age of 34.9 ± 6.24 months. Complex febrile seizures were observed in 34 (33%) cases. Antiseizure medications were administered to 24 (23.3%) patients. Laboratory tests showed a white blood cell count of (27.05 ± 8.20) × 103/µl, a neutrophil count of (20.09 ± 5.66) × 103/µl and a lymphocyte count of (6.44 ± 1.86) × 103/µl. A creatine kinase level was significantly elevated, with a mean value of (412.00 ± 158.96) U/L. The mean length of stay was 4.36 days. Twelve patients (11.7%) required intensive care services, but there were no deaths or patients remaining on antiseizure medications after discharge. Conclusion In the post-epidemic era of COVID-19, pediatric clinicians should be aware of the changing clinical features of febrile seizures associated with COVID-19. The average age of onset has increased, with a higher proportion of males. Length of stay and hospitalization costs did not increase significantly. The prognosis remained favorable, although a small number of children required intensive care services during the acute phase.
Collapse
Affiliation(s)
- Cuiyun Fang
- Department of Nursing, Liyang People’s Hospital, Liyang, China
| | - Yuan Zhou
- Department of Nursing, Liyang People’s Hospital, Liyang, China
| | - Wei Fan
- Department of Pediatrics, Liyang People’s Hospital, Liyang, China
| | - Chunsheng Zhang
- Department of Pediatrics, Liyang People’s Hospital, Liyang, China
| | - Yi Yang
- Department of Pediatrics, Liyang People’s Hospital, Liyang, China
| |
Collapse
|
33
|
Chang T, Wijeyekoon R, Keshavaraj A, Ranawaka U, Senanayake S, Ratnayake P, Senanayake B, Caldera MC, Pathirana G, Sirisena D, Wanigasinghe J, Gunatilake S. Neurological disorders associated with COVID-19 in Sri Lanka. BMC Neurol 2023; 23:351. [PMID: 37794324 PMCID: PMC10548601 DOI: 10.1186/s12883-023-03399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Neurological manifestations of SARS-CoV-2 infection have been reported from many countries around the world, including the South Asian region. This surveillance study aimed to describe the spectrum of neurological disorders associated with COVID-19 in Sri Lanka. METHODS COVID-19 patients manifesting neurological disorders one week prior and up to six weeks after infection were recruited from all the neurology centres of the government hospitals in Sri Lanka from May 2021 - May 2022. Data was collected using a structured data form that was electronically transmitted to a central repository. All patients were evaluated and managed by a neurologist. Data were analysed using simple descriptive analysis to characterise demographic and disease related variables, and simple comparisons and logistic regression were performed to analyse outcomes and their associations. RESULTS One hundred and eighty-four patients with neurological manifestations associated with COVID-19 were recruited from all nine provinces in Sri Lanka. Ischaemic stroke (31%) was the commonest neurological manifestation followed by encephalopathy (13.6%), Guillain-Barre syndrome (GBS) (9.2%) and encephalitis (7.6%). Ischaemic stroke, encephalitis and encephalopathy presented within 6 days of onset of COVID-19 symptoms, whereas GBS and myelitis presented up to 10 days post onset while epilepsy and Bell palsy presented up to 20 - 40 days post onset. Haemorrhagic stroke presented either just prior to or at onset, or 10 - 25 days post onset of COVID-19 symptomatic infection. An increased frequency of children presenting with encephalitis and encephalopathy was observed during the Omicron variant predominant period. A poor outcome (no recovery or death) was associated with supplemental oxygen requirement during admission (Odds Ratio: 12.94; p = 0.046). CONCLUSIONS The spectrum and frequencies of COVID-19 associated neurological disorders in Sri Lanka were similar to that reported from other countries, with strokes and encephalopathy being the commonest. Requiring supplemental oxygen during hospitalisation was associated with a poor outcome.
Collapse
Affiliation(s)
- Thashi Chang
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Ruwani Wijeyekoon
- Association of Sri Lankan Neurologists, Wijerama Mawatha, Colombo, Sri Lanka
| | | | - Udaya Ranawaka
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | | | | | | | | | | | | | - Jithangi Wanigasinghe
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Saman Gunatilake
- Department of Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
34
|
Bonura A, Iaccarino G, Rossi SS, Capone F, Motolese F, Calandrelli R, Di Lazzaro V, Pilato F. Posterior reversible encephalopathy syndrome and reversible cerebral vasoconstriction syndrome in patients with COVID-19 infection: is there a link? A systematic review and case report analysis. J Neurol 2023; 270:2826-2852. [PMID: 37014421 PMCID: PMC10071475 DOI: 10.1007/s00415-023-11684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
During the SARS-CoV2 pandemic, several cases of Posterior Reversible Encephalopathy Syndrome (PRES) and of Reversible Cerebral Vasoconstriction Syndrome (RCVS) in COVID-19 patients have been reported, but the link between these syndromes and COVID-19 is unclear. We performed a systematic review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to evaluate whether SARS-CoV2 infection or the drugs used to treat it could be deemed potential risk factors for PRES or RCVS. We performed a literature search. We found 70 articles (60 on PRES and 10 on RCVS) concerning n = 105 patients (n = 85 with PRES, n = 20 with RCVS). We analyzed the clinical characteristics of the two populations separately, then performed an inferential analysis to search for other independent risk factors. We found fewer than usual PRES-related (43.9%) and RCVS-related (45%) risk factors in patients with COVID-19. Such a low incidence of risk factors for PRES and RCVS might suggest the involvement of COVID-19 as an additional risk factor for both diseases due to its capability to cause endothelial dysfunction. We discuss the putative mechanisms of endothelial damage by SARS-CoV2 and antiviral drugs which may underlie the development of PRES and RCVS.
Collapse
Affiliation(s)
- Adriano Bonura
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Gianmarco Iaccarino
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Sergio Soeren Rossi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Rosalinda Calandrelli
- Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, 00168, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
| |
Collapse
|
35
|
Sun PYW, Fanning J, Peeler A, Shou B, Lindsley J, Caturegli G, Whitman G, Cha S, Kim BS, Cho SM. Characteristics of delirium and its association with sedation and in-hospital mortality in patients with COVID-19 on veno-venous extracorporeal membrane oxygenation. Front Med (Lausanne) 2023; 10:1172063. [PMID: 37305142 PMCID: PMC10248255 DOI: 10.3389/fmed.2023.1172063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Veno-venous extracorporeal membrane oxygenation (VV-ECMO) has been used in patients with COVID-19 acute respiratory distress syndrome (ARDS). We aim to assess the characteristics of delirium and describe its association with sedation and in-hospital mortality. Methods We retrospectively reviewed adult patients on VV-ECMO for severe COVID-19 ARDS in the Johns Hopkins Hospital ECMO registry in 2020-2021. Delirium was assessed by the Confusion Assessment Method for the ICU (CAM-ICU) when patients scored-3 or above on the Richmond Agitation-Sedation Scale (RASS). Primary outcomes were delirium prevalence and duration in the proportion of days on VV-ECMO. Results Of 47 patients (median age = 51), 6 were in a persistent coma and 40 of the remaining 41 patients (98%) had ICU delirium. Delirium in the survivors (n = 21) and non-survivors (n = 26) was first detected at a similar time point (VV-ECMO day 9.5(5,14) vs. 8.5(5,21), p = 0.56) with similar total delirium days on VV-ECMO (9.5[3.3, 16.8] vs. 9.0[4.3, 28.3] days, p = 0.43). Non-survivors had numerically lower RASS scores on VV-ECMO days (-3.72[-4.42, -2.96] vs. -3.10[-3.91, -2.21], p = 0.06) and significantly prolonged delirium-unassessable days on VV-ECMO with a RASS of -4/-5 (23.0[16.3, 38.3] vs. 17.0(6,23), p = 0.03), and total VV-ECMO days (44.5[20.5, 74.3] vs. 27.0[21, 38], p = 0.04). The proportion of delirium-present days correlated with RASS (r = 0.64, p < 0.001), the proportions of days on VV-ECMO with a neuromuscular blocker (r = -0.59, p = 0.001), and with delirium-unassessable exams (r = -0.69, p < 0.001) but not with overall ECMO duration (r = 0.01, p = 0.96). The average daily dosage of delirium-related medications on ECMO days did not differ significantly. On an exploratory multivariable logistic regression, the proportion of delirium days was not associated with mortality. Conclusion Longer duration of delirium was associated with lighter sedation and shorter paralysis, but it did not discern in-hospital mortality. Future studies should evaluate analgosedation and paralytic strategies to optimize delirium, sedation level, and outcomes.
Collapse
Affiliation(s)
- Philip Young-woo Sun
- Division of Neurosciences Critical Care, Departments of Neurology, Neurosurgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathon Fanning
- Division of Cardiothoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Anna Peeler
- King's College London, Cicely Saunders Institute of Palliative Care, Policy, and Rehabilitation, London, United Kingdom
| | - Benjamin Shou
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John Lindsley
- Department of Pharmacy, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Giorgio Caturegli
- Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Glenn Whitman
- Division of Cardiothoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Stephanie Cha
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Bo Soo Kim
- Department of Pulmonary Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sung-Min Cho
- Division of Neurosciences Critical Care, Departments of Neurology, Neurosurgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, United States
| | | |
Collapse
|
36
|
Jensen-Kondering U, Maurer CJ, Brudermann HCB, Ernst M, Sedaghat S, Margraf NG, Bahmer T, Jansen O, Nawabi J, Vogt E, Büttner L, Siebert E, Bartl M, Maus V, Werding G, Schlamann M, Abdullayev N, Bender B, Richter V, Mengel A, Göpel S, Berlis A, Grams A, Ladenhauf V, Gizewski ER, Kindl P, Schulze-Zachau V, Psychogios M, König IR, Sondermann S, Wallis S, Brüggemann N, Schramm P, Neumann A. Patterns of acute ischemic stroke and intracranial hemorrhage in patients with COVID-19 : Results of a retrospective multicenter neuroimaging-based study from three central European countries. J Neurol 2023; 270:2349-2359. [PMID: 36820915 PMCID: PMC9947908 DOI: 10.1007/s00415-023-11608-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an infection which can affect the central nervous system. In this study, we sought to investigate associations between neuroimaging findings with clinical, demographic, blood and cerebrospinal fluid (CSF) parameters, pre-existing conditions and the severity of acute COVID-19. MATERIALS AND METHODS Retrospective multicenter data retrieval from 10 university medical centers in Germany, Switzerland and Austria between February 2020 and September 2021. We included patients with COVID-19, acute neurological symptoms and cranial imaging. We collected demographics, neurological symptoms, COVID-19 severity, results of cranial imaging, blood and CSF parameters during the hospital stay. RESULTS 442 patients could be included. COVID-19 severity was mild in 124 (28.1%) patients (moderate n = 134/30.3%, severe n = 43/9.7%, critical n = 141/31.9%). 220 patients (49.8%) presented with respiratory symptoms, 167 (37.8%) presented with neurological symptoms first. Acute ischemic stroke (AIS) was detected in 70 (15.8%), intracranial hemorrhage (IH) in 48 (10.9%) patients. Typical risk factors were associated with AIS; extracorporeal membrane oxygenation therapy and invasive ventilation with IH. No association was found between the severity of COVID-19 or blood/CSF parameters and the occurrence of AIS or IH. DISCUSSION AIS was the most common finding on cranial imaging. IH was more prevalent than expected but a less common finding than AIS. Patients with IH had a distinct clinical profile compared to patients with AIS. There was no association between AIS or IH and the severity of COVID-19. A considerable proportion of patients presented with neurological symptoms first. Laboratory parameters have limited value as a screening tool.
Collapse
Affiliation(s)
- Ulf Jensen-Kondering
- Department of Radiology and Neuroradiology, UKSH, Campus Kiel, Kiel, Germany.
- Department of Neuroradiology, UKSH, Campus Lübeck, Lübeck, Germany.
| | - Christoph J Maurer
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Hanna C B Brudermann
- Institute of Medical Biometry and Statistics (IMBS), UKSH, Campus Lübeck, Lübeck, Germany
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center, Göttingen, Germany
| | - Sam Sedaghat
- Department of Radiology and Neuroradiology, UKSH, Campus Kiel, Kiel, Germany
- Department of Radiology, University of California San Diego, San Diego, USA
| | - Nils G Margraf
- Department of Neurology, UKSH, Campus Kiel, Kiel, Germany
| | - Thomas Bahmer
- Department of Internal Medicine, UKSH, Campus Kiel, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, UKSH, Campus Kiel, Kiel, Germany
| | - Jawed Nawabi
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte (CCM), Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), BIH Biomedical Innovation Academy, Berlin, Germany
| | - Estelle Vogt
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte (CCM), Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
| | - Laura Büttner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte (CCM), Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
| | - Eberhard Siebert
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Bartl
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Volker Maus
- Department of Diagnostic and Interventional Neuroradiology and Nuclear Medicine, University Medical Center Knappschaftskrankenhaus, Bochum, Germany
| | - Gregor Werding
- Department of Diagnostic and Interventional Neuroradiology and Nuclear Medicine, University Medical Center Knappschaftskrankenhaus, Bochum, Germany
| | - Marc Schlamann
- Department of Radiology, Neuroradiology Division, University of Cologne, Cologne, Germany
| | - Nuran Abdullayev
- Department of Radiology, Neuroradiology Division, University of Cologne, Cologne, Germany
- GFO Clinics Troisdorf, Radiology and Neuroradiologie, Troisdorf, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Vivien Richter
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Annerose Mengel
- Department of Neurology and Stroke, University Hospital Tübingen, Tübingen, Germany
| | - Siri Göpel
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ansgar Berlis
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Valentin Ladenhauf
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke R Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Kindl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Marios Psychogios
- Department of Neuroradiology, University Hospital Basel, Basel, Switzerland
| | - Inke R König
- Institute of Medical Biometry and Statistics (IMBS), UKSH, Campus Lübeck, Lübeck, Germany
| | | | - Sönke Wallis
- Department of Internal Medicine, UKSH, Campus Lübeck, Lübeck, Germany
| | | | - Peter Schramm
- Department of Neuroradiology, UKSH, Campus Lübeck, Lübeck, Germany
| | | |
Collapse
|
37
|
Sonneville R, Dangayach NS, Newcombe V. Neurological complications of critically ill COVID-19 patients. Curr Opin Crit Care 2023; 29:61-67. [PMID: 36880556 DOI: 10.1097/mcc.0000000000001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW COVID-19 and systemic critical illness are both associated with neurological complications. We provide an update on the diagnosis and critical care management of adult patients with neurological complications of COVID-19. RECENT FINDINGS Large prospective multicentre studies conducted in the adult population over the last 18 months improved current knowledge on severe neurological complications of COVID-19. In COVID-19 patients presenting with neurological symptoms, a multimodal diagnostic workup (including CSF analysis, brain MRI, and EEG) may identify different syndromes associated with distinct trajectories and outcomes. Acute encephalopathy, which represents the most common neurological presentation of COVID-19, is associated with hypoxemia, toxic/metabolic derangements, and systemic inflammation. Other less frequent complications include cerebrovascular events, acute inflammatory syndromes, and seizures, which may be linked to more complex pathophysiological processes. Neuroimaging findings include infarction, haemorrhagic stroke, encephalitis, microhaemorrhages and leukoencephalopathy. In the absence of structural brain injury, prolonged unconsciousness is usually fully reversible, warranting a cautious approach for prognostication. Advanced quantitative MRI may provide useful insights into the extent and pathophysiology of the consequences of COVID-19 infection including atrophy and functional imaging changes in the chronic phase. SUMMARY Our review highlights the importance of a multimodal approach for the accurate diagnosis and management of complications of COVID-19, both at the acute phase and in the long-term.
Collapse
Affiliation(s)
- Romain Sonneville
- Université Paris Cité, IAME, INSERM UMR1137
- AP-HP, Hôpital Bichat - Claude Bernard, Department of Intensive Care Medicine, F-75018 Paris, France
| | - Neha S Dangayach
- Neurocritical Care Division, Departments of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Virginia Newcombe
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
38
|
The role of the blood-brain barrier during neurological disease and infection. Biochem Soc Trans 2023; 51:613-626. [PMID: 36929707 DOI: 10.1042/bst20220830] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
A healthy brain is protected by the blood-brain barrier (BBB), which is formed by the endothelial cells that line brain capillaries. The BBB plays an extremely important role in supporting normal neuronal function by maintaining the homeostasis of the brain microenvironment and restricting pathogen and toxin entry to the brain. Dysfunction of this highly complex and regulated structure can be life threatening. BBB dysfunction is implicated in many neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, and brain infections. Among other mechanisms, inflammation and/or flow disturbances are major causes of BBB dysfunction in neurological infections and diseases. In particular, in ischaemic stroke, both inflammation and flow disturbances contribute to BBB disruption, leading to devastating consequences. While a transient or minor disruption to the barrier function could be tolerated, chronic or a total breach of the barrier can result in irreversible brain damage. It is worth noting that timing and extent of BBB disruption play an important role in the process of any repair of brain damage and treatment strategies. This review evaluates and summarises some of the latest research on the role of the BBB during neurological disease and infection with a focus on the effects of inflammation and flow disturbances on the BBB. The BBB's crucial role in protecting the brain is also the bottleneck in central nervous system drug development. Therefore, innovative strategies to carry therapeutics across the BBB and novel models to screen drugs, and to study the complex, overlapping mechanisms of BBB disruption are urgently needed.
Collapse
|