1
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Shokr MM, Alexiou A, Papadakis M, Batiha GES. The janus face of astrocytes in multiple sclerosis: Balancing protection and pathology. Brain Res Bull 2025; 226:111356. [PMID: 40288545 DOI: 10.1016/j.brainresbull.2025.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS), predominantly affecting young adults with a notable female predominance. While the pathogenesis of MS involves complex interactions between peripheral immune cells and CNS glia, astrocytes-the most abundant glial cells-play a dual role in disease progression. Traditionally classified into pro-inflammatory A1 and neuroprotective A2 phenotypes, recent single-cell and spatial transcriptomics reveal that human astrocytes exhibit a continuum of states beyond this binary paradigm. In MS, reactive astrocytes contribute to neurotoxicity by disrupting the blood-brain barrier (BBB), promoting glutamate excitotoxicity, and presenting antigens to autoreactive T cells. Conversely, they also support repair through neurotrophic factor release (e.g., BDNF, CNTF) and remyelination. Emerging therapies like dimethyl fumarate (DMF) and fingolimod modulate astrocyte reactivity, targeting oxidative stress and sphingosine-1-phosphate receptors to mitigate neuroinflammation. However, challenges persist in translating murine A1/A2 concepts to human MS, as human astrocytes display heterogeneous, context-dependent responses influenced by regional microenvironments and disease stages. Advanced techniques, including spatial multi-omics, highlight astrocyte-microglia crosstalk and metabolic reprogramming as key drivers of MS pathology. This review synthesizes current evidence on astrocyte heterogeneity, their Janus-faced roles in MS, and the therapeutic potential of astrocyte-targeted strategies, advocating for precision approaches that account for human-specific astrocyte biology. Future research must priorities human-centric biomarkers and dynamic modelling to bridge the gap between experimental findings and clinical applications.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine Jabir ibn Hayyan Medical University, Al-Ameer Qu., Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Elahi R, Taremi S, Najafi A, Karimi H, Asadollahzadeh E, Sajedi SA, Rad HS, Sahraian MA. Advanced MRI Methods for Diagnosis and Monitoring of Multiple Sclerosis (MS). J Magn Reson Imaging 2025. [PMID: 40424444 DOI: 10.1002/jmri.29817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disorder affecting the central nervous system (CNS). It is primarily driven by an immune-mediated inflammatory response, leading to the demyelination of neurons. Neuroimaging, particularly magnetic resonance imaging (MRI), plays a crucial role in diagnosing, monitoring, and predicting the progression of MS. Conventional MRI sequences, including T1-weighted (T1w), T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and post-contrast T1 (T1ce) imaging, are commonly employed to visualize MS lesions. However, these standard MRI methods have limitations in clinical practice, such as reliance on the radiologist's expertise, difficulty in detecting heterogeneous patterns of demyelination in normal-appearing white and gray matter, and lack of specificity in differentiating between various clinical subtypes of MS. In recent years, advanced MRI methods have shown promise in overcoming these limitations, offering improved diagnostic accuracy and monitoring capabilities for MS. These methods include magnetic resonance spectroscopy (MRS), magnetization transfer (MT), diffusion tensor imaging (DTI), quantitative susceptibility mapping (QSM), sodium (23Na) MRI, double inversion recovery (DIR), phase-sensitive inversion-recovery (PSIR), M2PRAGE, resting-state functional MRI (Rs-fMRI), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), myelin water imaging (MWI), magnetic resonance fingerprinting (MRF), chemical exchange saturation transfer (CEST) MRI, and ultrasmall superparamagnetic iron oxide (USPIO). These methods have been extensively studied for their ability to provide novel biomarkers for demyelination, track lesion progression in white and gray matter, and assess neurodegeneration in MS. This review aims to explore the methods, current knowledge, weaknesses, and future prospects of advanced MRI methods, with a particular focus on their capacity to introduce novel diagnostic biomarkers based on the underlying pathophysiology of MS. For a better understanding, we also provide original clinical images from our tertiary MS care center. Additionally, we will discuss how these methods may be used to monitor disease progression across different stages of MS. Finally, we introduce our proposed protocol for imaging MS based on advanced MRI methods. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Reza Elahi
- Quantitative MR Imaging and Spectroscopy Group, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Anahita Najafi
- Quantitative MR Imaging and Spectroscopy Group, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- Quantitative MR Imaging and Spectroscopy Group, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Asadollahzadeh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Aidin Sajedi
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gong M, Han S, Shen Y, Li Y, Liu JS, Tao DD. Decoding tinnitus progression: neurochemical shifts in the anterior cingulate cortex revealed by magnetic resonance spectroscopy. Front Neurosci 2025; 19:1551106. [PMID: 40084135 PMCID: PMC11903401 DOI: 10.3389/fnins.2025.1551106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Background Tinnitus persists as a significant public health challenge with elusive neurochemical underpinnings. Emerging evidence implicates dysregulated excitatory-inhibitory neurotransmission in the anterior cingulate cortex (ACC), a limbic-auditory hub governing tinnitus salience. This study investigates dynamic ACC neurochemical changes during tinnitus progression. Methods Using single-voxel magnetic resonance spectroscopy (MRS), GABA+/creatine (Cr) and Glx (glutamate+glutamine)/Cr ratios were measured in the ACC of 16 recent-onset (RO; <6 months), 22 chronic (CH; ≥6 months) tinnitus patients, and 26 healthy controls (HC). Tinnitus severity was assessed via tinnitometry and Tinnitus Functional Index (TFI). Results RO patients exhibited significantly reduced ACC GABA+/Cr compared to CH and HC groups (p < 0.05), while CH and HC showed no differences. GABA+/Cr positively correlated with tinnitus duration across patients (r = 0.364, p = 0.025). Although Glx/Cr did not differ between groups, elevated Glx/Cr associated with higher tinnitus pitch-matching frequencies (r = 0.421, p = 0.008) and emotional distress (TFI-E; r = 0.370, p = 0.022), though these findings did not survive multiple comparison correction. Conclusion Early tinnitus is characterized by ACC GABAergic deficits, while chronicity features normalized GABA+/Cr levels-suggesting compensatory neuroplastic restoration of inhibition over time. Glutamatergic activity may modulate perceptual and emotional dimensions of tinnitus. These phase-specific ACC neurochemical shifts highlight potential therapeutic targets for arresting tinnitus progression. Longitudinal studies are warranted to validate temporal dynamics.
Collapse
Affiliation(s)
- Mengfang Gong
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuting Han
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongcong Shen
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji-Sheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Duo-Duo Tao
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Qi K, Li H, Tao J, Liu M, Zhang W, Liu Y, Liu Y, Gong H, Wei J, Wang A, Xu J, Li X. Glutamate chemical exchange saturation transfer (GluCEST) MRI to evaluate the relationship between demyelination and glutamate content in depressed mice. Behav Brain Res 2025; 476:115247. [PMID: 39277141 DOI: 10.1016/j.bbr.2024.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Glutamatergic alteration is one of the potential mechanisms of depression. However, there is no consensus on whether glutamate metabolism changes affect the myelin structure of depression in mouse models. Glutamate chemical exchange saturation transfer (GluCEST) is a novel and powerful molecular imaging technique that can visualize glutamate distribution. In this study, we used the GluCEST imaging technique to look at glutamate levels in mice under chronic unpredictable mild stress (CUMS) and how they relate to demyelination. The CUMS mice were exposed to different stress factors for 6 weeks. Evaluated of depression in CUMS mice by behavioral tests. MRI scans were then performed, including T2-mapping, GluCEST, and diffusion tensor imaging (DTI) sequences. Brain tissues were collected for Luxol Fast Blue staining and immunofluorescence staining to analyze the changes in the myelin sheath. Artificially sketched regions of interest (ROI) (corpus callosum, hippocampus, and thalamus) were used to calculate the GluCEST value, fractional anisotropy (FA), and T2 value. Compared with the control group, the GluCEST value in the ROIs of CUMS mice significantly decreased. Similarly, the FA value in ROIs was lower in the CUMS group than in the CTRL group, but the T2 value did not differ significantly between the two groups. The histological results showed that ROIs in the CUMS group had demyelination compared with the CTRL group, indicating that DTI was more sensitive than T2 mapping in detecting myelin abnormalities. Furthermore, the GluCEST value in the ROIs correlates positively with the FA value. These findings suggest that altered glutamate metabolism may be one of the important factors leading to demyelination in depression, and GluCEST is expected to serve as an imaging biological marker for the diagnosis of demyelination in depression.
Collapse
Affiliation(s)
- Kai Qi
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Wei Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Junhui Wei
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China.
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
5
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
6
|
Alavi MS, Al-Asady AM, Abbasinezhad-Moud F, Rajabian A, Rastegartizabi Z, Sadeghnia HR. Oligoprotective Activity of Levetiracetam against Glutamate Toxicity: An In vitro Study. Curr Pharm Des 2025; 31:57-64. [PMID: 39279708 DOI: 10.2174/0113816128327215240827071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION The role of glutamate in the development of some brain pathological conditions, such as multiple sclerosis, has been well described. Levetiracetam (LEV), a new broad-spectrum antiseizure medicine, is widely used to control certain types of seizures. Apart from its anti-seizure activity, LEV exerts neuroprotection via anti-inflammatory, antioxidant, and antiapoptotic effects. The current study was designed to evaluate the protective potential of LEV against glutamate-induced injury in OLN-93 oligodendrocytes. METHODS At first, the potential negative impact of LEV on OLN-93 viability was evaluated. After that, the cells were concurrently treated with LEV (0-100 μM) and glutamate (8 mM) for 24 h. The viability, redox status, and the rate of apoptosis of OLN-93 cells were then assessed using 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyl-2H-tetrazolium bromide (MTT), 2',7' dichlorodihydrofluorescein diacetate (H2DCFDA), 2-thiobarbituric acid reactive substances (TBARS) and annexin V/propidium iodide (PI) assays, respectively. Moreover, caspase-3 expression, as a marker of cell apoptosis, was evaluated by Western blotting. RESULTS LEV at 1-800 μM did not have any negative effect on cell survival. Treatment with LEV (50 and 100 μM) substantially enhanced the cell viability following glutamate insult. The cytoprotective activity of LEV (50 and 100 μM) against glutamate toxicity was accompanied by reduced reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) level. Moreover, 100 μM of LEV inhibited apoptosis and decreased the expression level of cleaved caspase-3 following glutamate exposure. CONCLUSION Taken together, the results suggested that LEV has protective effects against glutamate-mediated cytotoxicity in OLN-93 cells. The oligoprotective action of LEV was shown to be exerted via inhibition of oxidative stress and cellular apoptosis.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
| | | | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rastegartizabi
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
8
|
Mey GM, Evonuk KS, Shelestak J, Irfan M, Wolfe LM, Laye SE, Schafer DP, DeSilva TM. Inhibiting AMPA receptor signaling in oligodendrocytes rescues synapse loss in a model of autoimmune demyelination. iScience 2024; 27:111226. [PMID: 39569383 PMCID: PMC11577175 DOI: 10.1016/j.isci.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/15/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Multiple sclerosis (MS) is initially characterized by myelin and axonal damage in central nervous system white matter lesions, but their causal role in synapse loss remains undefined. Gray matter atrophy is also present early in MS, making it unclear if synaptic alterations are driven by white matter demyelinating lesions or primary gray matter damage. Furthermore, whether axonal pathology occurs secondary to or independent of demyelination to drive synaptic changes is not clear. Here, we address whether reducing demyelination by selectively manipulating glutamatergic signaling in mature oligodendrocytes (OLs) preserves synapses in experimental autoimmune encephalomyelitis (EAE), a preclinical model of demyelinating disease. We demonstrate that inducible reduction of the GluA4 AMPA-type glutamate receptor subunit selectively in mature (OLs) reduces demyelination and axonal injury, preserves synapses, and improves visual function during EAE. These data link demyelination to the pathophysiology of synaptic loss with therapeutic implications for both motor and cognitive disability in MS.
Collapse
Affiliation(s)
- Gabrielle M Mey
- Department of Neurosciences, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Kirsten S Evonuk
- Department of Neurosciences, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - John Shelestak
- Department of Neurosciences, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Muhammad Irfan
- Department of Neurosciences, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Laura M Wolfe
- Department of Neurosciences, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Sophia E Laye
- Department of Neurosciences, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tara M DeSilva
- Department of Neurosciences, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
El Samad A, Jaffal J, Ibrahim DR, Schwarz K, Schmitz F. Decreased Expression of the EAAT5 Glutamate Transporter at Photoreceptor Synapses in Early, Pre-Clinical Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2545. [PMID: 39595111 PMCID: PMC11591696 DOI: 10.3390/biomedicines12112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis. METHODOLOGY In the present study, we analyzed with qualitative and quantitative immunofluorescence microscopy and Western blot analyses whether alterations in the EAAT5 (SLC1A7) glutamate transporter could be involved in the previously observed alterations in structure and function of glutamatergic photoreceptor ribbon synapses in the EAE mouse model of MS. EAAT5 is a presynaptic glutamate transporter located near the presynaptic release sites. RESULTS We found that EAAT5 was strongly reduced at the photoreceptor synapses of EAE retinas in comparison to the photoreceptor synapses of the respective control retinas as early as day 9 post-immunization. The Western blot analyses demonstrated a decreased EAAT5 expression in EAE retinas. CONCLUSIONS Our data illustrate early alterations of the EAAT5 glutamate transporter in the early pre-clinical phase of EAE/MS and suggest an involvement of EAAT5 in the previously observed early synaptic changes at photoreceptor synapses. The precise mechanisms need to be elucidated by future investigations.
Collapse
Affiliation(s)
| | | | | | | | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (A.E.S.); (J.J.); (D.R.I.); (K.S.)
| |
Collapse
|
10
|
Tisell A, Söderberg K, Link Y, Lundberg P, Mellergård J. Diffuse white matter pathology in multiple sclerosis during treatment with dimethyl fumarate-An observational study of changes in normal-appearing white matter using proton magnetic resonance spectroscopy. PLoS One 2024; 19:e0309547. [PMID: 39432495 PMCID: PMC11493296 DOI: 10.1371/journal.pone.0309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory demyelinating disease with neurodegenerative features causing risk for neurologic irreversible disability over time. Examination of normal-appearing white matter (NAWM) changes in MS by proton magnetic resonance spectroscopy (1H-MRS), may detect diffuse white matter pathology that is associated with neurodegeneration. METHODS In this observational study of in total twenty-six patients with MS, starting treatment with dimethyl fumarate (DMF), we measured the absolute concentration of metabolites in periventricular NAWM using 1H-MRS at baseline and after one and three years of treatment. Metabolite concentrations were analyzed both cross-sectionally, in relation to 10 controls and longitudinally in relation to disease activity. RESULTS Patients with MS had higher concentrations of myo-inositol (mIns) in NAWM at baseline compared with controls (mean 5.98 ± 1.37 (SD) and 4.32 ± 1.16 (SD), p<0.01, independent samples t-test). The disease duration was inversely correlated with concentrations of total N-acetylaspartate and N-acetylaspartylglutamate (tNA) (r = -0.62, p<0.01) in NAWM as well as positively to the ratio of mIns and tNA (r = 0.51, p = 0.03). Metabolite concentrations during one-year (n = 19) and three-years (n = 11) follow-up were generally stable. The dropouts were caused by treatment switch after one year, mainly due to new MRI activity. Cross-sectional analyses showed that there was an inverse correlation between concentrations of tNA and mIns at both baseline and at 1 and 3-years follow-up (r = -0.44 to -0.65, p = 0.04 to 0.004). Metabolite concentrations were stable during 1-year follow-up independently of disease activity. CONCLUSIONS Higher concentrations of the astrogliosis marker mIns in MS compared to controls, the inverse relation between MS disease duration and the neuroaxonal integrity marker tNA, as well as the consistent inverse relation between these two metabolites during follow-up, showed that non-lesional white matter pathology is present in this cohort of MS patients in early disease stages. However, metabolite concentrations during follow-up were generally stable and did not reflect differences in disease activity among patients.
Collapse
Affiliation(s)
- Anders Tisell
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Kristina Söderberg
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Yumin Link
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Johan Mellergård
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Yagin FH, Aygun U, Algarni A, Colak C, Al-Hashem F, Ardigò LP. Platelet Metabolites as Candidate Biomarkers in Sepsis Diagnosis and Management Using the Proposed Explainable Artificial Intelligence Approach. J Clin Med 2024; 13:5002. [PMID: 39274215 PMCID: PMC11395774 DOI: 10.3390/jcm13175002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Sepsis is characterized by an atypical immune response to infection and is a dangerous health problem leading to significant mortality. Current diagnostic methods exhibit insufficient sensitivity and specificity and require the discovery of precise biomarkers for the early diagnosis and treatment of sepsis. Platelets, known for their hemostatic abilities, also play an important role in immunological responses. This study aims to develop a model integrating machine learning and explainable artificial intelligence (XAI) to identify novel platelet metabolomics markers of sepsis. Methods: A total of 39 participants, 25 diagnosed with sepsis and 14 control subjects, were included in the study. The profiles of platelet metabolites were analyzed using quantitative 1H-nuclear magnetic resonance (NMR) technology. Data were processed using the synthetic minority oversampling method (SMOTE)-Tomek to address the issue of class imbalance. In addition, missing data were filled using a technique based on random forests. Three machine learning models, namely extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and kernel tree boosting (KTBoost), were used for sepsis prediction. The models were validated using cross-validation. Clinical annotations of the optimal sepsis prediction model were analyzed using SHapley Additive exPlanations (SHAP), an XAI technique. Results: The results showed that the KTBoost model (0.900 accuracy and 0.943 AUC) achieved better performance than the other models in sepsis diagnosis. SHAP results revealed that metabolites such as carnitine, glutamate, and myo-inositol are important biomarkers in sepsis prediction and intuitively explained the prediction decisions of the model. Conclusion: Platelet metabolites identified by the KTBoost model and XAI have significant potential for the early diagnosis and monitoring of sepsis and improving patient outcomes.
Collapse
Affiliation(s)
- Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye
| | - Umran Aygun
- Department of Anesthesiology and Reanimation, Malatya Yesilyurt Hasan Calık State Hospital, Malatya 44929, Türkiye
| | - Abdulmohsen Algarni
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 0166 Oslo, Norway
| |
Collapse
|
12
|
Madsen MA, Považan M, Wiggermann V, Lundell H, Blinkenberg M, Romme Christensen J, Sellebjerg F, Siebner HR. Association of Cortical Lesions With Regional Glutamate, GABA, N-Acetylaspartate, and Myoinositol Levels in Patients With Multiple Sclerosis. Neurology 2024; 103:e209543. [PMID: 38870443 PMCID: PMC11244746 DOI: 10.1212/wnl.0000000000209543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cortical lesions contribute to disability in multiple sclerosis (MS), but their impact on regional neurotransmitter levels remains to be clarified. We tested the hypothesis that cortical lesions are associated with regional glutamate and gamma-aminobutyric acid (GABA) concentrations within the affected cortical region. METHODS In this cross-sectional study, we used structural 7T MRI to segment cortical lesions and 7T proton MR-spectroscopy of the bilateral sensorimotor hand areas to quantify regional GABA, glutamate, N-acetylaspartate, and myoinositol concentrations in patients with MS (inclusion criteria: diagnosis of relapsing-remitting [RR] or secondary progressive MS [SPMS]; age 18-80 years) and age and sex-matched healthy controls. Data were collected at a single center between August 2018 and September 2020. Linear mixed-effects models were used to test for associations between metabolite concentrations and cortical lesion volumes within the same MR-spectroscopy voxel. RESULTS Forty-seven patients with MS (34 RRMS, 13 SPMS; 45.1 ± 12.5 years; 31 women) and 23 healthy controls (44.4 ± 13 years, 15 women) were studied. In patients, higher regional glutamate and lower regional GABA concentrations were associated with larger cortical lesion volume within the MR-spectroscopy voxel [glutamate: 0.61 (95% CI 0.19-1.03) log(mm3), p = 0.005, GABA: -0.71 (-1.24 to -0.18) log(mm3), p = 0.01]. In addition, lower N-acetylaspartate levels [-0.37 (-0.67 to -0.07) log(mm3), p = 0.016] and higher myoinositol levels [0.48 (0.03-0.93) log(mm3), p = 0.037] were associated with a larger regional cortical lesion volume. Furthermore, glutamate concentrations were reduced in patients with SPMS compared with healthy participants [-0.75 (-1.3 to -0.19) mM, p = 0.005] and patients with RRMS [-0.55 (-1.07 to -0.02) mM, p = 0.04]. N-acetylaspartate levels were lower in both patients with RRMS [-0.81 (-1.39 to -0.24) mM, p = 0.003] and SPMS [-1.31 (-2.07 to -0.54) mM, p < 0.001] when compared with healthy controls. Creatine-normalized N-acetylaspartate levels were associated with performance in the 9-hole peg test of the contralateral hand [-0.004 (-0.007 to -0.002) log(s), p = 0.002], and reduced mean creatine-normalized glutamate was associated with increased Expanded Disability Status Scale (R = -0.39, p = 0.02). DISCUSSION Cortical lesions are associated with local increases in glutamate and a reduction in GABA concentration within the lesional or perilesional tissue. Further studies are needed to investigate the causal relationship between cortical lesions and changes in neurotransmitter concentrations.
Collapse
Affiliation(s)
- Mads A Madsen
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michal Považan
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Vanessa Wiggermann
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Lundell
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten Blinkenberg
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jeppe Romme Christensen
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Finn Sellebjerg
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hartwig R Siebner
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
14
|
Woo MS, Bal LC, Winschel I, Manca E, Walkenhorst M, Sevgili B, Sonner JK, Di Liberto G, Mayer C, Binkle-Ladisch L, Rothammer N, Unger L, Raich L, Hadjilaou A, Noli B, Manai AL, Vieira V, Meurs N, Wagner I, Pless O, Cocco C, Stephens SB, Glatzel M, Merkler D, Friese MA. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis. J Clin Invest 2024; 134:e177692. [PMID: 39145444 PMCID: PMC11324305 DOI: 10.1172/jci177692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C. Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias Manca
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bachar Sevgili
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Hadjilaou
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Barbara Noli
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio L. Manai
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Samuel B. Stephens
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
John NA, Solanky BS, De Angelis F, Parker RA, Weir CJ, Stutters J, Carrasco FP, Schneider T, Doshi A, Calvi A, Williams T, Plantone D, Monteverdi A, MacManus D, Marshall I, Barkhof F, Gandini Wheeler-Kingshott CAM, Chataway J. Longitudinal Metabolite Changes in Progressive Multiple Sclerosis: A Study of 3 Potential Neuroprotective Treatments. J Magn Reson Imaging 2024; 59:2192-2201. [PMID: 37787109 DOI: 10.1002/jmri.29017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND 1H-magnetic resonance spectroscopy (1H-MRS) may provide a direct index for the testing of medicines for neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and processing speed in secondary progressive MS (SPMS). PURPOSE To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1H-MRS and their association with clinical disability in SPMS. STUDY-TYPE Longitudinal. POPULATION 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4), 61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%]. FIELD STRENGTH/SEQUENCE 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1. ASSESSMENT Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks. STATISTICAL TESTS Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite differences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered statistically significant. RESULTS In the placebo arm, tCho increased in GM (mean difference = -0.32 IU) but decreased in NAWM (mean difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (β = -0.21); in the riluzole arm, GM Glx (β = -0.25) and Glx/tCr (β = -0.29) were reduced. Baseline tNAA(β = 0.22) and tNAA/tCr (β = 0.23) in NAWM were associated with 9HPT scores at 96-weeks. DATA CONCLUSION 1H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distinguished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole, respectively. Data show tNAA is a potential marker for upper limb function. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Nevin A John
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Neurology, Monash Health, Melbourne, Australia
| | - Bhavana S Solanky
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados Carrasco
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Torben Schneider
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases (imaginEM), Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Anita Monteverdi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - David MacManus
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
16
|
Mishra S, Bapuraj J, Srinivasan A. Multiple Sclerosis Part 2: Advanced Imaging and Emerging Techniques. Magn Reson Imaging Clin N Am 2024; 32:221-231. [PMID: 38555138 DOI: 10.1016/j.mric.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Multiple advanced imaging methods for multiple sclerosis (MS) have been in investigation to identify new imaging biomarkers for early disease detection, predicting disease prognosis, and clinical trial endpoints. Multiple techniques probing different aspects of tissue microstructure (ie, advanced diffusion imaging, magnetization transfer, myelin water imaging, magnetic resonance spectroscopy, glymphatic imaging, and perfusion) support the notion that MS is a global disease with microstructural changes evident in normal-appearing white and gray matter. These global changes are likely better predictors of disability compared with lesion load alone. Emerging techniques in glymphatic and molecular imaging may improve understanding of pathophysiology and emerging treatments.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA.
| | - Jayapalli Bapuraj
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA
| |
Collapse
|
17
|
D'Souza P, Farmer C, Johnston J, Han ST, Adams D, Hartman AL, Zein W, Huryn LA, Solomon B, King K, Jordan C, Myles J, Nicoli ER, Rothermel CE, Algarin YM, Huang R, Quimby R, Zainab M, Bowden S, Crowell A, Buckley A, Brewer C, Regier D, Brooks B, Baker E, Vézina G, Thurm A, Tifft CJ. GM1 Gangliosidosis Type II: Results of a 10-Year Prospective Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.04.24300778. [PMID: 38313286 PMCID: PMC10836125 DOI: 10.1101/2024.01.04.24300778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Purpose GM1 gangliosidosis (GM1) is an ultra-rare lysosomal storage disease caused by pathogenic variants in galactosidase beta 1 (GLB1; NM_000404), primarily characterized by neurodegeneration, often in children. There are no approved treatments for GM1, but clinical trials using gene therapy (NCT03952637, NCT04713475) and small molecule substrate inhibitors (NCT04221451) are ongoing. Understanding the natural history of GM1 is essential for timely diagnosis, facilitating better supportive care, and contextualizing the results of therapeutic trials. Methods Forty-one individuals with type II GM1 (n=17 late infantile and n=24 juvenile onset) participated in a single-site prospective observational study. Here, we describe the results of extensive multisystem assessment batteries, including clinical labs, neuroimaging, physiological exams, and behavioral assessments. Results Classification of 37 distinct variants in this cohort was performed according to ACMG criteria and resulted in the upgrade of six and the submission of four new variants to pathogenic or likely pathogenic. In contrast to type I infantile, children with type II disease exhibited normal or near normal hearing and did not have cherry red maculae or significant hepatosplenomegaly. Some older children with juvenile onset developed thickened aortic and/or mitral valves with regurgitation. Serial MRIs demonstrated progressive brain atrophy that were more pronounced in those with late infantile onset. MR spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale and progress more rapidly in late infantile than juvenile onset disease. Conclusion The comprehensive serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies some common misconceptions about type II patients. Findings from this 10-year endeavor are a pivotal step toward more timely diagnosis and better supportive care for patients. The wealth of data amassed through this effort will serve as a robust comparator for ongoing and future therapeutic trials.
Collapse
Affiliation(s)
- Precilla D'Souza
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, 10 Center Drive, Bethesda MD USA
| | - Jean Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Sangwoo T Han
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - David Adams
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Adam L Hartman
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, 6001 Executive Blvd, Rockville, MD, USA
| | - Wadih Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, 10 Center Drive, Bethesda MD, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, 10 Center Drive, Bethesda MD, USA
| | - Beth Solomon
- Speech Language Pathology Section, Rehabilitation Medicine Department, Warren Grant Magnuson Clinical Research Center, 10 Center Drive Bethesda MD USA
| | - Kelly King
- Neurotology Branch, Division of Intramural Research, National Institute on Deafness and Other Communication Disorders, 10 Center Drive, Bethesda, MD USA
| | - Christopher Jordan
- Inova Children's Cardiology, 8260 Willow Oaks Corporate Drive; suite 400; Fairfax, VA, 22031
| | - Jennifer Myles
- Nutrition Department, Warren Grant Magnuson Clinical Research Center, 10 Center Drive Bethesda MD USA
| | - Elena-Raluca Nicoli
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Caroline E Rothermel
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Yoliann Mojica Algarin
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Reyna Huang
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Rachel Quimby
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Mosufa Zainab
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Sarah Bowden
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Anna Crowell
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Ashura Buckley
- Sleep and Neurodevelopment Service, National Institute of Mental Health, 10 Center Drive, Bethesda MD USA
| | - Carmen Brewer
- Neurotology Branch, Division of Intramural Research, National Institute on Deafness and Other Communication Disorders, 10 Center Drive, Bethesda, MD USA
| | - Deborah Regier
- Genetics and Metabolism, Children's National Hospital, 111 Michigan Avenue NW, Washington DC USA
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, 10 Center Drive, Bethesda MD, USA
| | - Eva Baker
- Department of Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Research Center, 10 Center Drive, Bethesda, MD, USA
| | - Gilbert Vézina
- Program in Neuroradiology, Children's National Hospital, 111 Michigan Avenue NW, Washington DC USA; Radiology and Pediatrics, The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington DC USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, 10 Center Drive, Bethesda MD USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| |
Collapse
|
18
|
Husseini L, Geladaris A, Weber MS. Toward identifying key mechanisms of progression in multiple sclerosis. Trends Neurosci 2024; 47:58-70. [PMID: 38102058 DOI: 10.1016/j.tins.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
A major therapeutic goal in the treatment of multiple sclerosis (MS) is to prevent the accumulation of disability over an often decades-long disease course. Disability progression can result from acute relapses as well as from CNS intrinsic parenchymal disintegration without de novo CNS lesion formation. Research focus has shifted to progression not associated with acute inflammation, as it is not sufficiently controlled by currently available treatments. This review outlines how recent advances in the understanding of the pathogenesis of progressive MS have been facilitated by the development of more precise, less static pathogenetic concepts of progressive MS, as well as by new techniques for the analysis of region-specific proteomic and transcriptomic signatures in the human CNS. We highlight key drivers of MS disease progression and potential targets in its treatment.
Collapse
Affiliation(s)
- Leila Husseini
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany
| | - Martin S Weber
- Department of Neurology, University Medical Center, Göttingen, Germany; Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany.
| |
Collapse
|
19
|
Židó M, Kačer D, Valeš K, Zimová D, Štětkářová I. Metabolomics of Cerebrospinal Fluid Amino and Fatty Acids in Early Stages of Multiple Sclerosis. Int J Mol Sci 2023; 24:16271. [PMID: 38003464 PMCID: PMC10671192 DOI: 10.3390/ijms242216271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.
Collapse
Affiliation(s)
- Michal Židó
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - David Kačer
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
| | - Karel Valeš
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Denisa Zimová
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| |
Collapse
|
20
|
Chen X, Huang Z, Wu X, Han S, Wu P, Li Y. Assessment of neurotransmitter imbalances within the anterior cingulate cortex in women with primary dysmenorrhea: An initial proton magnetic resonance spectroscopy study. Eur J Radiol 2023; 167:111079. [PMID: 37683332 DOI: 10.1016/j.ejrad.2023.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
PURPOSE The neural pathophysiology underlying primary dysmenorrhea (PDM), which leads to poor mode and changes in central pain modulatory systems, remains largely unknown. The objective of this study was to investigate the changes in glutamate/glutamine (Glx) and gamma-aminobutyric acid (GABA+) levels within anterior cingulate cortex (ACC), and their associations with clinical indicators in PDM women. METHODS Using 3 T proton magnetic resonance spectroscopy (1H-MRS), we acquired and compared ACC-Glx and ACC-GABA+ levels in PDMs (N = 41) and age- and education-matched healthy controls (HCs) (N = 39) during both the menstrual and periovulatory phases, and between menstrual and periovulatory phases within each group. Total creatine (Cr referencing) level was used as an endogenous reference. The correlations of ACC-neurotransmitter levels with clinical characteristics and the correlations of ACC-Glx with ACC-GABA+ levels in the two groups were analyzed. RESULTS Compared to HCs or the periovulatory phase, PDMs exhibited significantly increased ACC-Glx levels (p < 0.05) during the menstrual phase. Positive correlations between GABA+ and Glx levels (r = 0.385, p = 0.025) were found in PDMs during the menstrual phase. ACC-GABA+ levels were associated with self-rating distress scale (SDS) scores (GABA+/Cr: r = 0.369, p = 0.045) and pain catastrophizing scale (PCS) scores (GABA+/Cr: r = 0.373, p = 0.042) in PDM group in only the menstrual phase. CONCLUSION Our study represents the first report of ACC-GABA+/Glx imbalances in PDMs during the menstrual phase, which may underlie the mechanisms mediating depression and painful catastrophic symptoms.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, China; Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province 215002, China
| | - Zhou Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, China
| | - Xiaojuan Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, China
| | - Shuting Han
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, China
| | - Peng Wu
- Philips Healthcare, Shanghai 200072, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, China; Institute of Medical Imaging, Soochow University, Suzhou City, Jiangsu Province 215000, China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215000, China.
| |
Collapse
|
21
|
Zhang Y, Shen J. Quantification of spatially localized MRS by a novel deep learning approach without spectral fitting. Magn Reson Med 2023; 90:1282-1296. [PMID: 37183798 PMCID: PMC10524908 DOI: 10.1002/mrm.29711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE To propose a novel end-to-end deep learning model to quantify absolute metabolite concentrations from in vivo J-point resolved spectroscopy (JPRESS) without using spectral fitting. METHODS A novel encoder-decoder-style neural network was created, which was trained to predict metabolite concentrations and individual component signals concurrently from 3T JPRESS data in the time domain. The training data set contained 100 000 samples created by spin-density simulations using experimentally used RF pulses. Concentrations, phase, frequencies, linewidths, and T2 relaxation times in the training data set were varied over a large range with uniform distributions. Random synthesized noise and extraneous signals were added to the data set. Two thousand validation samples were created similarly to the training data set but with mean concentrations close to in vivo values. An in vivo test was conducted with 20 samples acquired from the human brain. RESULTS Both validation and in vivo test results showed that the proposed model successfully predicted metabolite concentrations as well as individual metabolite signals without involving spectral fitting, while extraneous peaks or unregistered signals were filtered out. Compared with the short-TE spectral fitting by LCModel, the proposed method had the advantage that the undesired correlations between the estimated concentrations and noise levels and between metabolites were eliminated or substantially reduced. CONCLUSION The proposed method provides a working deep learning model that directly maps in vivo JPRESS data to metabolite concentrations. Because spectral fitting is not used, the trained model does not depend on the assumptions associated with parameter tuning when applied to in vivo data.
Collapse
Affiliation(s)
- Yan Zhang
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|
23
|
Zerimech S, Nguyen H, Vandenbark AA, Offner H, Baltan S. Novel therapeutic for multiple sclerosis protects white matter function in EAE mouse model. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1237078. [PMID: 37933270 PMCID: PMC10627517 DOI: 10.3389/fmmed.2023.1237078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease with prominent axon dysfunction. Our previous studies in an MS mouse model, experimental autoimmune encephalomyelitis (EAE), demonstrated that major histocompatibility complex Class II constructs can reverse clinical signs of EAE. These constructs block binding and downstream signaling of macrophage migration inhibitory factors (MIF-1/2) through CD74, thereby inhibiting phosphorylation of extracellular signal-regulated kinase (ERK) activation and tissue inflammation and promoting remyelination. To directly assess the effects of a novel third generation construct, DRhQ, on axon integrity in EAE, we compared axon conduction properties using electrophysiology on corpus callosum slices and optic nerves. By using two distinct white matter (WM) tracts, we aimed to assess the impact of the EAE and the benefit of DRhQ on myelinated and unmyelinated axons as well as to test the clinical value of DRhQ on demyelinating lesions in CC and optic myelitis. Our study found that EAE altered axon excitability, delayed axon conduction and slowed spatiotemporal summation correlated with diffuse astrocyte and microglia activation. Because MS predisposes patients to stroke, we also investigated and showed that vulnerability to WM ischemia is increased in the EAE MS mouse model. Treatment with DRhQ after the onset of EAE drastically inhibited microglial and astrocyte activation, improved functional integrity of the myelinated axons and enhanced recovery after ischemia. These results demonstrate that DRhQ administered after the onset of EAE promotes WM integrity and function, and reduces subsequent vulnerability to ischemic injury, suggesting important therapeutic potential for treatment of progressive MS.
Collapse
Affiliation(s)
- Sarah Zerimech
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| | - Hung Nguyen
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| | - Arthur A. Vandenbark
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Selva Baltan
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
24
|
Deelchand DK, Eberly LE, McCarten JR, Hemmy LS, Auerbach EJ, Marjańska M. Scyllo-inositol: Transverse relaxation time constant at 3 T and concentration changes associated with aging and alcohol use. NMR IN BIOMEDICINE 2023; 36:e4929. [PMID: 36940048 DOI: 10.1002/nbm.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The goals of this study were to measure the apparent transverse relaxation time constant, T2 , of scyllo-inositol (sIns) in young and older healthy adults' brains and to investigate the effect of alcohol usage on sIns in young and older healthy adults' brains, using proton magnetic resonance spectroscopy (MRS) at 3 T. Twenty-nine young adults (age 21 ± 1 years) and 24 older adults (age 74 ± 3 years) participated in this study. MRS data were acquired from two brain regions (the occipital cortex and posterior cingulate cortex) at 3 T. The T2 of sIns was measured using a localization by adiabatic selective refocusing (LASER) sequence at various echo times, while the sIns concentrations were measured using a short-echo-time stimulated echo acquisition mode (STEAM) sequence. A trend towards lower T2 relaxation values of sIns in older adults was observed, although these were not significant. sIns concentration was higher with age in both brain regions and was significantly higher in the young when considering alcohol consumption of more than two drinks per week. This study shows that differences in sIns can be found in two distinct regions of the brain across two age groups, potentially reflecting normal aging. In addition, it is important to take into account alcohol consumption when reporting the sIns level in the brain.
Collapse
Affiliation(s)
- Dinesh K Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Lynn E Eberly
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - J Riley McCarten
- Geriatric Research, Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Laura S Hemmy
- Geriatric Research, Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Tzanetakos D, Kyrozis A, Karavasilis E, Velonakis G, Tzartos JS, Toulas P, Sotirli SA, Evdokimidis I, Tsivgoulis G, Potagas C, Kilidireas C, Andreadou E. Early metabolic alterations in the normal‑appearing grey and white matter of patients with clinically isolated syndrome suggestive of multiple sclerosis: A proton MR spectroscopic study. Exp Ther Med 2023; 26:349. [PMID: 37324507 PMCID: PMC10265702 DOI: 10.3892/etm.2023.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is an advanced method of examining metabolic profiles. The present study aimed to assess in vivo metabolite levels in areas of normal-appearing grey (thalamus) and white matter (centrum semiovale) using 1H-MRS in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis and compare them to healthy controls (HCs). Data from 35 patients with CIS (CIS group), of which 23 were untreated (CIS-untreated group) and 12 were treated (CIS-treated group) with disease-modifying-therapies (DMTs) at the time of 1H-MRS, and from 28 age- and sex-matched HCs were collected using a 3.0 T MRI and single-voxel 1H-MRS (point resolved spectroscopy sequence; repetition time, 2,000 msec; time to echo, 35 msec). Concentrations and ratios of total N-acetyl aspartate (tNAA), total creatine (tCr), total choline (tCho), myoinositol, glutamate (Glu), glutamine (Gln), Glu + Gln (Glx) and glutathione (Glth) were estimated in the thalamic-voxel (th) and centrum semiovale-voxel (cs). For the CIS group, the median duration from the first clinical attack to 1H-MRS was 102 days (interquartile range, 89.5.-131.5). Compared with HCs, significantly lower Glx(cs) (P=0.014) and ratios of tCho/tCr(th) (P=0.026), Glu/tCr(cs) (P=0.040), Glx/tCr(cs) (P=0.004), Glx/tNAA(th) (P=0.043) and Glx/tNAA(cs) (P=0.015) were observed in the CIS group. No differences in tNAA levels were observed between the CIS and the HC groups; however, tNAA(cs) was higher in the CIS-treated than in the CIS-untreated group (P=0.028). Compared with those in HC group, decreased Glu(cs) (P=0.019) and Glx(cs) levels (P=0.014) and lower ratios for tCho/tCr(th) (P=0.015), Gln/tCr(th) (P=0.004), Glu/tCr(cs) (P=0.021), Glx/tCr(th) (P=0.041), Glx/tCr(cs) (P=0.003), Glx/tNAA(th) (P=0.030) and Glx/tNAA(cs) (P=0.015) were found in the CIS-untreated group. The present findings showed alterations in the normal-appearing grey and white matter of patients with CIS; moreover, the present results suggested an early indirect treatment effect of DMTs on the brain metabolic profile of these patients.
Collapse
Affiliation(s)
- Dimitrios Tzanetakos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Andreas Kyrozis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Efstratios Karavasilis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 68100 Alexandroupoli, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - John S. Tzartos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Stefania Alexia Sotirli
- MS Center and Other Neurodegenerative diseases, Metropolitan General Hospital, 15562 Holargos, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Constantin Potagas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Costantinos Kilidireas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Elisabeth Andreadou
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
26
|
Lee DW, Kwon JI, Heo H, Woo CW, Yu NH, Kim KW, Woo DC. Cerebral Glutamate Alterations Using Chemical Exchange Saturation Transfer Imaging in a Rat Model of Lipopolysaccharide-Induced Sepsis. Metabolites 2023; 13:metabo13050636. [PMID: 37233677 DOI: 10.3390/metabo13050636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Glutamate-weighted chemical exchange saturation transfer (GluCEST) is a useful imaging tool to detect glutamate signal alterations caused by neuroinflammation. This study aimed to visualize and quantitatively evaluate hippocampal glutamate alterations in a rat model of sepsis-induced brain injury using GluCEST and proton magnetic resonance spectroscopy (1H-MRS). Twenty-one Sprague Dawley rats were divided into three groups (sepsis-induced groups (SEP05, n = 7 and SEP10, n = 7) and controls (n = 7)). Sepsis was induced through a single intraperitoneal injection of lipopolysaccharide (LPS) at a dose of 5 mg/kg (SEP05) or 10 mg/kg (SEP10). GluCEST values and 1H-MRS concentrations in the hippocampal region were quantified using conventional magnetization transfer ratio asymmetry and a water scaling method, respectively. In addition, we examined immunohistochemical and immunofluorescence staining to observe the immune response and activity in the hippocampal region after LPS exposure. The GluCEST and 1H-MRS results showed that GluCEST values and glutamate concentrations were significantly higher in sepsis-induced rats than those in controls as the LPS dose increased. GluCEST imaging may be a helpful technique for defining biomarkers to estimate glutamate-related metabolism in sepsis-associated diseases.
Collapse
Affiliation(s)
- Do-Wan Lee
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jae-Im Kwon
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
- Nonclinical Research Center, QuBEST BIO Inc., Giheung-gu, Yongin-si 17015, Gyeonggi-do, Republic of Korea
| | - Hwon Heo
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Na Hee Yu
- Nonclinical Research Center, QuBEST BIO Inc., Giheung-gu, Yongin-si 17015, Gyeonggi-do, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Cheol Woo
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| |
Collapse
|
27
|
Akyuz E, Celik BR, Aslan FS, Sahin H, Angelopoulou E. Exploring the Role of Neurotransmitters in Multiple Sclerosis: An Expanded Review. ACS Chem Neurosci 2023; 14:527-553. [PMID: 36724132 DOI: 10.1021/acschemneuro.2c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Betul Rana Celik
- Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Feyza Sule Aslan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Humeyra Sahin
- School of Medicine, Bezmialem Vakif University, Istanbul, Turkey, 34093
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 115 27
| |
Collapse
|
28
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
29
|
Antunes FTT, De Souza AH, Figueira J, Binda NS, Carvalho VPR, Vieira LB, Gomez MV. Targeting N-type calcium channels in young-onset of some neurological diseases. Front Cell Dev Biol 2022; 10:1090765. [PMID: 36601540 PMCID: PMC9806183 DOI: 10.3389/fcell.2022.1090765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca 2+) is an important second messenger in charge of many critical processes in the central nervous system (CNS), including membrane excitability, neurotransmission, learning, memory, cell proliferation, and apoptosis. In this way, the voltage-gated calcium channels (VGCCs) act as a key supply for Ca2+ entry into the cytoplasm and organelles. Importantly, the dysregulation of these channels has been reported in many neurological diseases of young-onset, with associated genetic factors, such as migraine, multiple sclerosis, and Huntington's disease. Notably, the literature has pointed to the role of N-type Ca2+ channels (NTCCs) in controlling a variety of processes, including pain, inflammation, and excitotoxicity. Moreover, several Ca2+ channel blockers that are used for therapeutic purposes have been shown to act on the N-type channels. Therefore, this review provides an overview of the NTCCs in neurological disorders focusing mainly on Huntington's disease, multiple sclerosis, and migraine. It will discuss possible strategies to generate novel therapeutic strategies.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alessandra Hubner De Souza
- Post-Graduate Program of Health Sciences, Faculdade de Ciências Médicas de, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| | - Juliana Figueira
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nancy Scardua Binda
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Pharmacology Departament, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Faculty Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| |
Collapse
|
30
|
Panigrahy A, Jakacki RI, Pollack IF, Ceschin R, Okada H, Nelson MD, Kohanbash G, Dhall G, Bluml S. Magnetic Resonance Spectroscopy Metabolites as Biomarkers of Disease Status in Pediatric Diffuse Intrinsic Pontine Gliomas (DIPG) Treated with Glioma-Associated Antigen Peptide Vaccines. Cancers (Basel) 2022; 14:5995. [PMID: 36497477 PMCID: PMC9739009 DOI: 10.3390/cancers14235995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Diffuse intrinsic pontine gliomas (DIPG) are highly aggressive tumors with no currently available curative therapy. This study evaluated whether measurements of in vivo cell metabolites using magnetic resonance spectroscopy (MRS) may serve as biomarkers of response to therapy, including progression. METHODS Single-voxel MR spectra were serially acquired in two cohorts of patients with DIPG treated with radiation therapy (RT) with or without concurrent chemotherapy and prior to progression: 14 participants were enrolled in a clinical trial of adjuvant glioma-associated antigen peptide vaccines and 32 patients were enrolled who did not receive adjuvant vaccine therapy. Spearman correlations measured overall survival associations with absolute metabolite concentrations of myo-inositol (mI), creatine (Cr), and n-acetyl-aspartate (NAA) and their ratios relative to choline (Cho) during three specified time periods following completion of RT. Linear mixed-effects regression models evaluated the longitudinal associations between metabolite ratios and time from death (terminal decline). RESULTS Overall survival was not associated with metabolite ratios obtained shortly after RT (1.9-3.8 months post-diagnosis) in either cohort. In the vaccine cohort, an elevated mI/Cho ratio after 2-3 doses (3.9-5.2 months post-diagnosis) was associated with longer survival (rho = 0.92, 95% CI 0.67-0.98). Scans performed up to 6 months before death showed a terminal decline in the mI/Cho ratio, with an average of 0.37 ratio/month in vaccine patients (95% CI 0.11-0.63) and 0.26 (0.04-0.48) in the non-vaccine cohort. CONCLUSION Higher mI/Cho ratios following RT, consistent with less proliferate tumors and decreased cell turnover, were associated with longer survival, suggesting that this ratio can serve as a biomarker of prognosis following RT. This finding was seen in both cohorts, although the association with OS was detected earlier in the vaccine cohort. Increased mI/Cho (possibly reflecting immune-effector cell influx into the tumor as a mechanism of tumor response) requires further study.
Collapse
Affiliation(s)
- Ashok Panigrahy
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Regina I. Jakacki
- Department of Hematology Oncology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 9, Pittsburgh, PA 15224, USA
| | - Ian F. Pollack
- Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Rafael Ceschin
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Hideho Okada
- Department of Neurological Surgery, Box 0112 505 Parnassus Ave, University of California San Francisco, Room M779, San Francisco, CA 94143, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, Box 0981 UCSF, San Francisco, CA 94143-0981, USA
| | - Marvin D. Nelson
- Department of Radiology, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, 1441 Eastlake Ave # 2315, Los Angeles, CA 90089, USA
| | - Gary Kohanbash
- Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Girish Dhall
- Department of Pediatrics, University of Alabama at Birmingham, 1600 7 th Ave S, Birmingham, AL 35233, USA
| | - Stefan Bluml
- Keck School of Medicine, University of Southern California, 1441 Eastlake Ave # 2315, Los Angeles, CA 90089, USA
| |
Collapse
|
31
|
Schroeter CB, Rolfes L, Gothan KSS, Gruchot J, Herrmann AM, Bock S, Fazio L, Henes A, Narayanan V, Pfeuffer S, Nelke C, Räuber S, Huntemann N, Duarte-Silva E, Dobelmann V, Hundehege P, Wiendl H, Raba K, Küry P, Kremer D, Ruck T, Müntefering T, Budde T, Cerina M, Meuth SG. Cladribine treatment improves cortical network functionality in a mouse model of autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:270. [DOI: 10.1186/s12974-022-02588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood–brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice.
Methods
In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo.
Results
Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient.
Conclusions
Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood–brain barrier independently of its peripheral immunosuppressant action.
Collapse
|
32
|
Cacciaguerra L, Sechi E, Rocca MA, Filippi M, Pittock SJ, Flanagan EP. Neuroimaging features in inflammatory myelopathies: A review. Front Neurol 2022; 13:993645. [PMID: 36330423 PMCID: PMC9623025 DOI: 10.3389/fneur.2022.993645] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Spinal cord involvement can be observed in the course of immune-mediated disorders. Although multiple sclerosis (MS) represents the leading cause of inflammatory myelopathy, an increasing number of alternative etiologies must be now considered in the diagnostic work-up of patients presenting with myelitis. These include antibody-mediated disorders and cytotoxic T cell-mediated diseases targeting central nervous system (CNS) antigens, and systemic autoimmune conditions with secondary CNS involvement. Even though clinical features are helpful to orient the diagnostic suspicion (e.g., timing and severity of myelopathy symptoms), the differential diagnosis of inflammatory myelopathies is often challenging due to overlapping features. Moreover, noninflammatory etiologies can sometimes mimic an inflammatory process. In this setting, magnetic resonance imaging (MRI) is becoming a fundamental tool for the characterization of spinal cord damage, revealing a pictorial scenario which is wider than the clinical manifestations. The characterization of spinal cord lesions in terms of longitudinal extension, location on axial plane, involvement of the white matter and/or gray matter, and specific patterns of contrast enhancement, often allows a proper differentiation of these diseases. For instance, besides classical features, such as the presence of longitudinally extensive spinal cord lesions in patients with aquaporin-4-IgG positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), novel radiological signs (e.g., H sign, trident sign) have been recently proposed and successfully applied for the differential diagnosis of inflammatory myelopathies. In this review article, we will discuss the radiological features of spinal cord involvement in autoimmune disorders such as MS, AQP4+NMOSD, myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and other recently characterized immune-mediated diseases. The identification of imaging pitfalls and mimics that can lead to misdiagnosis will also be examined. Since spinal cord damage is a major cause of irreversible clinical disability, the recognition of these radiological aspects will help clinicians achieve a correct and prompt diagnosis, treat early with disease-specific treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elia Sechi
- Neurology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sean J. Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Eoin P. Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Al-Iedani O, Lea R, Ribbons K, Ramadan S, Lechner-Scott J. Neurometabolic changes in multiple sclerosis: Fingolimod versus beta interferon or glatiramer acetate therapy. J Neuroimaging 2022; 32:1109-1120. [PMID: 35922880 DOI: 10.1111/jon.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Fingolimod has been shown to be more effective in reducing relapse rate and disability than injectable therapies in clinical trials. An increase in N-acetylaspartate (NAA) as measured by MR spectroscopy is correlated with maintaining axonal metabolic functions. This study compared the neurometabolic and volumetric changes in relapsing-remitting multiple sclerosis (RRMS) patients on fingolimod or injectable therapies with healthy controls (HCs). METHODS Ninety-eight RRMS (52 on fingolimod, 46 on injectable therapies (27 on glatiramer acetate and 19 on interferon) were age and sex-matched to 51 HCs. RRMS patients underwent cognitive, fatigue, and mental health assessments, as well as an Expanded disability status scale (EDSS). MRI/S was acquired from the hippocampus, posterior cingulate gyrus (PCG), and prefrontal cortex (PFC). Volumetric and neurometabolic measures were compared across cohorts using a univariate general linear model and correlated with clinical severity and neuropsychological scores. RESULTS Clinical parameters, MR-volumetric, and neurometabolic profiles showed no differences between treatment groups (p > .05). Compared to HCs, both RRMS cohorts showed volume changes in white matter (-13%), gray matter (-16%), and cerebral spinal fluid (CSF) (+17-23%), as well as reduced NAA (-17%, p = .001, hippocampus), (-7%, p = .001, PCG), and (-9%, p = .001, PFC). MRI/S metrics in three regions were moderately correlated with cognition and fatigue functions. CONCLUSION While both treatment arms showed overall similar volumetric and neurometabolic profiles, longitudinal studies are warranted to clarify neurometabolic changes and associations with treatment efficacy.
Collapse
Affiliation(s)
- Oun Al-Iedani
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Rodney Lea
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Ribbons
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Saadallah Ramadan
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
34
|
Wang B, Li X, Li H, Xiao L, Zhou Z, Chen K, Gui L, Hou X, Fan R, Chen K, Wu W, Li H, Hu X. Clinical, Radiological and Pathological Characteristics Between Cerebral Small Vessel Disease and Multiple Sclerosis: A Review. Front Neurol 2022; 13:841521. [PMID: 35812110 PMCID: PMC9263123 DOI: 10.3389/fneur.2022.841521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) and multiple sclerosis (MS) are a group of diseases associated with small vessel lesions, the former often resulting from the vascular lesion itself, while the latter originating from demyelinating which can damage the cerebral small veins. Clinically, CSVD and MS do not have specific signs and symptoms, and it is often difficult to distinguish between the two from the aspects of the pathology and imaging. Therefore, failure to correctly identify and diagnose the two diseases will delay early intervention, which in turn will affect the long-term functional activity for patients and even increase their burden of life. This review has summarized recent studies regarding their similarities and difference of the clinical manifestations, pathological features and imaging changes in CSVD and MS, which could provide a reliable basis for the diagnosis and differentiation of the two diseases in the future.
Collapse
Affiliation(s)
- Bijia Wang
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuegang Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haoyi Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Xiao
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhenhua Zhou
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kangning Chen
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Gui
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianhua Hou
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rong Fan
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kang Chen
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjing Wu
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haitao Li
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Haitao Li
| | - Xiaofei Hu
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Xiaofei Hu
| |
Collapse
|
35
|
Thomas AM, Yang E, Smith MD, Chu C, Calabresi PA, Glunde K, van Zijl PCM, Bulte JWM. CEST MRI and MALDI imaging reveal metabolic alterations in the cervical lymph nodes of EAE mice. J Neuroinflammation 2022; 19:130. [PMID: 35659311 PMCID: PMC9164344 DOI: 10.1186/s12974-022-02493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease, wherein aberrant immune cells target myelin-ensheathed nerves. Conventional magnetic resonance imaging (MRI) can be performed to monitor damage to the central nervous system that results from previous inflammation; however, these imaging biomarkers are not necessarily indicative of active, progressive stages of the disease. The immune cells responsible for MS are first activated and sensitized to myelin in lymph nodes (LNs). Here, we present a new strategy for monitoring active disease activity in MS, chemical exchange saturation transfer (CEST) MRI of LNs. METHODS AND RESULTS We studied the potential utility of conventional (T2-weighted) and CEST MRI to monitor changes in these LNs during disease progression in an experimental autoimmune encephalomyelitis (EAE) model. We found CEST signal changes corresponded temporally with disease activity. CEST signals at the 3.2 ppm frequency during the active stage of EAE correlated significantly with the cellular (flow cytometry) and metabolic (mass spectrometry imaging) composition of the LNs, as well as immune cell infiltration into brain and spinal cord tissue. Correlating primary metabolites as identified by matrix-assisted laser desorption/ionization (MALDI) imaging included alanine, lactate, leucine, malate, and phenylalanine. CONCLUSIONS Taken together, we demonstrate the utility of CEST MRI signal changes in superficial cervical LNs as a complementary imaging biomarker for monitoring disease activity in MS. CEST MRI biomarkers corresponded to disease activity, correlated with immune activation (surface markers, antigen-stimulated proliferation), and correlated with LN metabolite levels.
Collapse
Affiliation(s)
- Aline M Thomas
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan Yang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Robinson EJ, Lyne TC, Blaise BJ. Safety of general anaesthetics on the developing brain: are we there yet? BJA OPEN 2022; 2:100012. [PMID: 37588272 PMCID: PMC10430845 DOI: 10.1016/j.bjao.2022.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/11/2022] [Indexed: 08/18/2023]
Abstract
Thirty years ago, neurotoxicity induced by general anaesthetics in the developing brain of rodents was observed. In both laboratory-based and clinical studies, many conflicting results have been published over the years, with initial data confirming both histopathological and neurodevelopmental deleterious effects after exposure to general anaesthetics. In more recent years, animal studies using non-human primates and new human cohorts have identified some specific deleterious effects on neurocognition. A clearer pattern of neurotoxicity seems connected to exposure to repeated general anaesthesia. The biochemistry involved in this neurotoxicity has been explored, showing differential effects of anaesthetic drugs between the developing and developed brains. In this narrative review, we start with a comprehensive description of the initial concerning results that led to recommend that any non-essential surgery should be postponed after the age of 3 yr and that research into this subject should be stepped up. We then focus on the neurophysiology of the developing brain under general anaesthesia, explore the biochemistry of the observed neurotoxicity, before summarising the main scientific and clinical reports investigating this issue. We finally discuss the GAS trial, the importance of its results, and some potential limitations that should not undermine their clinical relevance. We finally suggest some key points that could be shared with parents, and a potential research path to investigate the biochemical effects of general anaesthesia, opening up perspectives to understand the neurocognitive effects of repetitive exposures, especially in at-risk children.
Collapse
Affiliation(s)
- Emily J. Robinson
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Tom C. Lyne
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Benjamin J. Blaise
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Paediatric Anaesthetics, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Židó M, Kačer D, Valeš K, Svobodová Z, Zimová D, Štětkárová I. Metabolomics of Cerebrospinal Fluid in Multiple Sclerosis Compared With Healthy Controls: A Pilot Study. Front Neurol 2022; 13:874121. [PMID: 35693010 PMCID: PMC9178205 DOI: 10.3389/fneur.2022.874121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) leading to the loss of myelin and axons. Diagnosis is based on clinical findings, MRI, and analysis of cerebrospinal fluid (CSF). CSF is an ultrafiltrate of plasma and reflects inflammatory processes in the CNS. The aim of this study was to perform metabolomics analysis of CSF in patients after the first attack of MS and healthy controls and try to find new specific analytes for MS including those potentially predicting disease activities at the onset. Methods We collected CSF from 19 patients (16 females, aged 19–55 years) after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS and CSF of 19 controls (16 females, aged 19–50 years). Analyses of CSF samples were provided using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector (TripleTOF 5600, AB Sciex, Canada). Results Approximately 130 selected analytes were identified, and 30 of them were verified. During the targeted analysis, a significant decrease in arginine and histidine and a less significant decrease in the levels of asparagine, leucine/isoleucine, and tryptophan, together with a significant increase of palmitic acid in the patient group, were found. Conclusion We observed significant differences in amino and fatty acids in the CSF of newly diagnosed patients with MS in comparison with controls. The most significant changes were observed in levels of arginine, histidine, and palmitic acid that may predict inflammatory disease activity. Further studies are necessary to support these findings as potential biomarkers of MS.
Collapse
Affiliation(s)
- Michal Židó
- Department of Neurology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
| | - David Kačer
- National Institute of Mental Health, Klecany, Czechia
| | - Karel Valeš
- National Institute of Mental Health, Klecany, Czechia
- Institute of Physiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Zuzana Svobodová
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
| | - Denisa Zimová
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
| | - Ivana Štětkárová
- Department of Neurology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
- *Correspondence: Ivana Štětkárová
| |
Collapse
|
38
|
Abhari AP, Etemadifar M, Yazdanpanah N, Rezaei N. N-Methyl-D-Aspartate (NMDA)-Type Glutamate Receptors and Demyelinating Disorders: A Neuroimmune Perspective. Mini Rev Med Chem 2022; 22:2624-2640. [PMID: 35507747 DOI: 10.2174/1389557522666220504135853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors, highly important in regulating substantial physiologic processes in the brain and the nervous system, and disturbance in their function could contribute to different pathologies. Overstimulation and hyperactivity of NMDARs, termed as glutamate toxicity, could promote cell death and apoptosis. Meanwhile, their blockade could lead to dysfunction of the brain and nervous system as well. A growing body of evidence has demonstrated the prominent role of NMDARs in demyelinating disorders and anti-NMDAR encephalitis. Herein, we provide an overview of the role of NMDARs' dysfunction in the physiopathology of demyelinating disorders such as multiple sclerosis and neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- Amir Parsa Abhari
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran.,School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Ghirotto B, Oliveira DF, Cipelli M, Basso PJ, de Lima J, Breda CNS, Ribeiro HC, Silva CCC, Sertié AL, Oliveira AER, Hiyane MI, Caldini EG, Sussulini A, Nakaya HI, Kowaltowski AJ, Oliveira EML, Zatz M, Câmara NOS. MS-driven metabolic alterations are recapitulated in iPSC-derived astrocytes. Ann Neurol 2022; 91:652-669. [PMID: 35226368 PMCID: PMC9310856 DOI: 10.1002/ana.26336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
Abstract
Objective Astrocytes play a significant role in the pathology of multiple sclerosis (MS). Nevertheless, for ethical reasons, most studies in these cells were performed using the Experimental Autoimmune Encephalomyelitis model. As there are significant differences between human and mouse cells, we aimed here to better characterize astrocytes from patients with MS (PwMS), focusing mainly on mitochondrial function and cell metabolism. Methods We obtained and characterized induced pluripotent stem cell (iPSC)‐derived astrocytes from three PwMS and three unaffected controls, and performed electron microscopy, flow cytometry, cytokine and glutamate measurements, gene expression, in situ respiration, and metabolomics. We validated our findings using a single‐nuclei RNA sequencing dataset. Results We detected several differences in MS astrocytes including: (i) enrichment of genes associated with neurodegeneration, (ii) increased mitochondrial fission, (iii) increased production of superoxide and MS‐related proinflammatory chemokines, (iv) impaired uptake and enhanced release of glutamate, (v) increased electron transport capacity and proton leak, in line with the increased oxidative stress, and (vi) a distinct metabolic profile, with a deficiency in amino acid catabolism and increased sphingolipid metabolism, which have already been linked to MS. Interpretation Here we describe the metabolic profile of iPSC‐derived astrocytes from PwMS and validate this model as a very powerful tool to study disease mechanisms and to perform non‐invasive drug targeting assays in vitro. Our findings recapitulate several disease features described in patients and provide new mechanistic insights into the metabolic rewiring of astrocytes in MS, which could be targeted in future therapeutic studies. ANN NEUROL 2022;91:652–669
Collapse
Affiliation(s)
- Bruno Ghirotto
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Danyllo F Oliveira
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Marcella Cipelli
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Paulo J Basso
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Jean de Lima
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Cristiane N S Breda
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Henrique C Ribeiro
- Laboratory of Bioanalytics and Integrated Omics, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Camille C C Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Andrea L Sertié
- Hospital Israelita Albert Einstein, São Paulo, SP, 05652-900, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | - Meire I Hiyane
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Elia G Caldini
- Cell Biology Laboratory, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, 01246903, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Helder I Nakaya
- Hospital Israelita Albert Einstein, São Paulo, SP, 05652-900, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Enedina M L Oliveira
- Neuroimmunology Clinic, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, 04039-002, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Niels O S Câmara
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
40
|
O'Grady KP, Satish S, Owen QR, Box BA, Bagnato F, Combes AJE, Cook SR, Westervelt HJ, Feiler HR, Lawless RD, Sarma A, Malone SD, Ndolo JM, Yoon K, Dortch RD, Rogers BP, Smith SA. Relaxation-Compensated Chemical Exchange Saturation Transfer MRI in the Brain at 7T: Application in Relapsing-Remitting Multiple Sclerosis. Front Neurol 2022; 13:764690. [PMID: 35299614 PMCID: PMC8923037 DOI: 10.3389/fneur.2022.764690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can probe tissue biochemistry in vivo with high resolution and sensitivity without requiring exogenous contrast agents. Applying CEST MRI at ultrahigh field provides advantages of increasing spectral resolution and improving sensitivity to metabolites with faster proton exchange rates such as glutamate, a critical neurotransmitter in the brain. Prior magnetic resonance spectroscopy and CEST MRI studies have revealed altered regulation of glutamate in patients with multiple sclerosis (MS). While CEST imaging facilitates new strategies for investigating the pathology underlying this complex and heterogeneous neurological disease, CEST signals are contaminated or diluted by concurrent effects (e.g., semi-solid magnetization transfer (MT) and direct water saturation) and are scaled by the T1 relaxation time of the free water pool which may also be altered in the context of disease. In this study of 20 relapsing-remitting MS patients and age- and sex-matched healthy volunteers, glutamate-weighted CEST data were acquired at 7.0 T. A Lorentzian fitting procedure was used to remove the asymmetric MT contribution from CEST z-spectra, and the apparent exchange-dependent relaxation (AREX) correction was applied using an R1 map derived from an inversion recovery sequence to further isolate glutamate-weighted CEST signals from concurrent effects. Associations between AREX and cognitive function were examined using the Minimal Assessment of Cognitive Function in MS battery. After isolating CEST effects from MT, direct water saturation, and T1 effects, glutamate-weighted AREX contrast remained higher in gray matter than in white matter, though the difference between these tissues decreased. Glutamate-weighted AREX in normal-appearing gray and white matter in MS patients did not differ from healthy gray and white matter but was significantly elevated in white matter lesions. AREX in some cortical regions and in white matter lesions correlated with disability and measures of cognitive function in MS patients. However, further studies with larger sample sizes are needed to confirm these relationships due to potential confounding effects. The application of MT and AREX corrections in this study demonstrates the importance of isolating CEST signals for more specific characterization of the contribution of metabolic changes to tissue pathology and symptoms in MS.
Collapse
Affiliation(s)
- Kristin P. O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sanjana Satish
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Quinn R. Owen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bailey A. Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francesca Bagnato
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN, United States
| | - Anna J. E. Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sarah R. Cook
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Holly James Westervelt
- Division of Behavioral and Cognitive Neurology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Haley R. Feiler
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard D. Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Asha Sarma
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Shekinah D. Malone
- School of Medicine, Meharry Medical College, Nashville, TN, United States
| | - Josephine M. Ndolo
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Keejin Yoon
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard D. Dortch
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
41
|
Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:839887. [PMID: 35281259 PMCID: PMC8904904 DOI: 10.3389/fmolb.2022.839887] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Jana Vitku,
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radmila Kancheva
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
42
|
Mueller C, Baird JF, Motl RW. Whole-Brain Metabolic Abnormalities Are Associated With Mobility in Older Adults With Multiple Sclerosis. Neurorehabil Neural Repair 2022; 36:286-297. [PMID: 35164595 DOI: 10.1177/15459683221076461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Older adults with multiple sclerosis (MS) experience mobility impairments, but conventional brain imaging is a poor predictor of walking abilities in this population. OBJECTIVE To test whether brain metabolites measured with Magnetic Resonance Spectroscopy (MRS) are associated with walking performance in older adults with MS. METHODS Fifteen older adults with MS (mean age: 60.9, SD: 5.1) and 22 age-matched healthy controls (mean age: 64.2, SD: 5.7) underwent whole-brain MRS and mobility testing. Levels of N-acetylaspartate (NAA), myo-inositol (MI), choline (CHO), and temperature in 47 brain regions were compared between groups and correlated with walking speed (Timed 25 Foot Walk) and walking endurance (Six-Minute Walk). RESULTS Older adults with MS had higher MI in 23 areas, including the bilateral frontal (right: t (21.449) = -2.605, P = .016; left: t (35) = -2.434, P = .020), temporal (right: t (35) = -3.063, P = .004; left: t (35) = -3.026, P = .005), and parietal lobes (right: t (21.100) = -2.886, P = .009; left: t (35) = -2.507, P = .017), and right thalamus (t (35) = -2.840, P = .007). MI in eleven regions correlated with walking speed, and MI in twelve regions correlated with walking endurance. NAA was lower in MS in the bilateral thalami (right: t (35) = 3.449, P < .001; left: t (35) = 2.061, P = .047), caudate nuclei (right: t (33) = 2.828, P = .008; left: t (32) = 2.132, P = .041), and posterior cingulum (right: t (35) = 3.077, P = .004; left: t (35) = 2.972, P = .005). NAA in four regions correlated with walking speed and endurance. Brain temperature was higher in MS patients in four regions, but did not correlate with mobility measures. There were no group differences in CHO. CONCLUSION MI and NAA may be useful imaging end-points for walking ability as a clinical outcome in older adults with MS.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, 9967University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica F Baird
- Department of Physical Therapy, 9968University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert W Motl
- Department of Physical Therapy, 9968University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
43
|
No Changes in Functional Connectivity After Dimethyl Fumarate Treatment in Multiple Sclerosis. Neurol Ther 2022; 11:471-479. [PMID: 35119678 PMCID: PMC8857342 DOI: 10.1007/s40120-022-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/19/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Despite the increased availability of disease-modifying therapies (DMTs) for treating relapsing-remitting multiple sclerosis (RR-MS), only a few studies have evaluated DMT-associated brain functional changes. Methods We investigated whether significant resting-state functional connectivity (FC) changes occurred in RR-MS patients after 6 and 12 months of dimethyl fumarate (DMF) treatment using both a seed-based and data-driven approach. Results Thirty patients were followed up after 6 months of therapy, and 27 of them reached a 12-month follow-up. Three patients at baseline and only one after 12 months showed gadolinium-enhancing lesions. We did not find any significant FC changes after therapy at either time point. After 12 months of DMF, we observed relatively modest brain volume loss and a significant improvement in Paced Auditory Serial Addition Test 3 s and 25-Foot Walk Test scores. Conclusion The absence of FC changes could be due to the low degree of baseline inflammation in our patients, though we cannot exclude that more time may be required to observe such changes. No FC changes may reflect a beneficial effect of DMF therapy, as supported by conventional MRI findings and clinical improvement.
Collapse
|
44
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
45
|
Schoedel KA, Kolly C, Gardin A, Neelakantham S, Shakeri-Nejad K. Abuse and dependence potential of sphingosine-1-phosphate (S1P) receptor modulators used in the treatment of multiple sclerosis: a review of literature and public data. Psychopharmacology (Berl) 2022; 239:1-13. [PMID: 34773483 PMCID: PMC8770388 DOI: 10.1007/s00213-021-06011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022]
Abstract
Abuse and misuse of prescription drugs remains an ongoing concern in the USA and worldwide; thus, all centrally active new drugs must be assessed for abuse and dependence potential. Sphingosine-1-phosphate (S1P) receptor modulators are used primarily in the treatment of multiple sclerosis. Among the new S1P receptor modulators, siponimod, ozanimod, and ponesimod have recently been approved in the USA, European Union (EU), and other countries. This review of literature and other public data has been undertaken to assess the potential for abuse of S1P receptor modulators, including ozanimod, siponimod, ponesimod, and fingolimod, as well as several similar compounds in development. The S1P receptor modulators have not shown chemical or pharmacological similarity to known drugs of abuse; have not shown abuse or dependence potential in animal models for subjective effects, reinforcement, or physical dependence; and do not have adverse event profiles demonstrating effects of interest to individuals who abuse drugs (such as sedative, stimulant, mood-elevating, or hallucinogenic effects). In addition, no reports of actual abuse, misuse, or dependence were identified in the scientific literature for fingolimod, which has been on the market since 2010 (USA) and 2011 (EU). Overall, the data suggest that S1P receptor modulators are not associated with significant potential for abuse or dependence, consistent with their unscheduled status in the USA and internationally.
Collapse
Affiliation(s)
| | - Carine Kolly
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Anne Gardin
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Srikanth Neelakantham
- grid.464975.d0000 0004 0405 8189Novartis Institutes for Biomedical Research, Novartis Healthcare Pvt Ltd, Hyderabad, India
| | - Kasra Shakeri-Nejad
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
46
|
Alifirova V, Kamenskikh E, Koroleva E, Kolokolova E, Petrakovich A. Prognostic markers of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:22-27. [DOI: 10.17116/jnevro202212202122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Age-related changes in multiple sclerosis and experimental autoimmune encephalomyelitis. Semin Immunol 2022; 59:101631. [PMID: 35752572 DOI: 10.1016/j.smim.2022.101631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
A better understanding of the pathological mechanisms that drive neurodegeneration in people living with multiple sclerosis (MS) is needed to design effective therapies to treat and/or prevent disease progression. We propose that CNS-intrinsic inflammation and re-modelling of the sub-arachnoid space of the leptomeninges sets the stage for neurodegeneration from the earliest stages of MS. While neurodegenerative processes are clinically silent early in disease, ageing results in neurodegenerative changes that become clinically manifest as progressive disability. Here we review pathological correlates of MS disease progression, highlight emerging mouse models that mimic key progressive changes in MS, and provide new perspectives on therapeutic approaches to protect against MS-associated neurodegeneration.
Collapse
|
48
|
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010474. [PMID: 35008899 PMCID: PMC8745199 DOI: 10.3390/ijms23010474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.
Collapse
|
49
|
Myelin-associated glycoprotein activation triggers glutamate uptake by oligodendrocytes in vitro and contributes to ameliorate glutamate-mediated toxicity in vivo. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166324. [PMID: 34954343 DOI: 10.1016/j.bbadis.2021.166324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Myelin-associated glycoprotein (MAG) is a key molecule involved in the nurturing effect of myelin on ensheathed axons. MAG also inhibits axon outgrowth after injury. In preclinical stroke models, administration of a function-blocking anti-MAG monoclonal antibody (mAb) aimed to improve axon regeneration demonstrated reduced lesion volumes and a rapid clinical improvement, suggesting a mechanism of immediate neuroprotection rather than enhanced axon regeneration. In addition, it has been reported that antibody-mediated crosslinking of MAG can protect oligodendrocytes (OLs) against glutamate (Glu) overload by unknown mechanisms. PURPOSE To unravel the molecular mechanisms underlying the protective effect of anti-MAG therapy with a focus on neuroprotection against Glu toxicity. RESULTS MAG activation (via antibody crosslinking) triggered the clearance of extracellular Glu by its uptake into OLs via high affinity excitatory amino acid transporters. This resulted not only in protection of OLs but also nearby neurons. MAG activation led to a PKC-dependent activation of factor Nrf2 (nuclear-erythroid related factor-2) leading to antioxidant responses including increased mRNA expression of metabolic enzymes from the glutathione biosynthetic pathway and the regulatory chain of cystine/Glu antiporter system xc- increasing reduced glutathione (GSH), the main antioxidant in cells. The efficacy of early anti-MAG mAb administration was demonstrated in a preclinical model of excitotoxicity induced by intrastriatal Glu administration and extended to a model of Experimental Autoimmune Encephalitis showing axonal damage secondary to demyelination. CONCLUSIONS MAG activation triggers Glu uptake into OLs under conditions of Glu overload and induces a robust protective antioxidant response.
Collapse
|
50
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|