1
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Unveiling the therapeutic prospects of EGFR inhibition in rotenone-mediated parkinsonism in rats: Modulation of dopamine D3 receptor. Brain Res 2024; 1834:148893. [PMID: 38554797 DOI: 10.1016/j.brainres.2024.148893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCβII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biologicals, Innovative Products, and Clinical Studies, Egyptian Drug Authority, EDA, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Spencer H, Anderton RS. Trait Impulsivity as a Feature of Parkinson's Disease Treatment and Progression. PARKINSON'S DISEASE 2024; 2024:8770997. [PMID: 38766569 PMCID: PMC11102119 DOI: 10.1155/2024/8770997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Heightened trait impulsivity in both subclinical and pathological senses is becoming increasingly recognised in Parkinson's disease (PD). Impulsive behaviours and impulse control disorders (ICDs) are a consequence of perturbation to the rewards pathway leading individuals to conduct activities in a repetitive, excessive, and maladaptive fashion. Commonly linked to PD, heightened trait impulsivity has been found to primarily manifest in the forms of hypersexuality, pathological gambling, compulsive shopping, and binge eating, all of which may significantly impact social and financial standing. Subsequent burden to quality of life for both individuals with PD and caregivers are common. Although risk factors and indicators for ICDs in PD are currently lacking, it is recognised that the condition is often precipitated by dopamine replacement therapies, primarily dopamine agonist administration. While this nonmotor symptom is being increasingly diagnosed in PD populations, it remains relatively elusive in comparison to its motor counterparts. Through discussion of impulsivity characteristics, neuroanatomy, and neurochemistry, in addition to reviewing existing research on the potential contributing factors to impulsivity in PD, this review highlights impulsivity as a significant and detrimental PD symptom. Thus, emphasising the imperative need to establish efficacious diagnostic tools and treatments.
Collapse
Affiliation(s)
- Holly Spencer
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ryan S. Anderton
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
3
|
Batzu L, Podlewska A, Gibson L, Chaudhuri KR, Aarsland D. A general clinical overview of the non-motor symptoms in Parkinson's disease: Neuropsychiatric symptoms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 174:59-97. [PMID: 38341232 DOI: 10.1016/bs.irn.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The heterogeneity of non-motor features observed in people with Parkinson's disease (PD) is often dominated by one or more symptoms belonging to the neuropsychiatric spectrum, such as cognitive impairment, psychosis, depression, anxiety, and apathy. Due to their high prevalence in people with PD (PwP) and their occurrence in every stage of the disease, from the prodromal to the advanced stage, it is not surprising that PD can be conceptualised as a complex neuropsychiatric disorder. Despite progress in understanding the pathophysiological mechanisms underlying the neuropsychiatric signs and symptoms in PD, and better identification and diagnosis of these symptoms, effective treatments are still a major unmet need. The impact of these symptoms on the quality of life of PwP and caregivers, as well as their contribution to the overall non-motor symptom burden can be greater than that of motor symptoms and require a personalised, holistic approach. In this chapter, we provide a general clinical overview of the major neuropsychiatric symptoms of PD.
Collapse
Affiliation(s)
- Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Aleksandra Podlewska
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Lucy Gibson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
4
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Béreau M, Van Waes V, Servant M, Magnin E, Tatu L, Anheim M. Apathy in Parkinson's Disease: Clinical Patterns and Neurobiological Basis. Cells 2023; 12:1599. [PMID: 37371068 DOI: 10.3390/cells12121599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Apathy is commonly defined as a loss of motivation leading to a reduction in goal-directed behaviors. This multidimensional syndrome, which includes cognitive, emotional and behavioral components, is one of the most prevalent neuropsychiatric features of Parkinson's disease (PD). It has been established that the prevalence of apathy increases as PD progresses. However, the pathophysiology and anatomic substrate of this syndrome remain unclear. Apathy seems to be underpinned by impaired anatomical structures that link the prefrontal cortex with the limbic system. It can be encountered in the prodromal stage of the disease and in fluctuating PD patients receiving bilateral chronic subthalamic nucleus stimulation. In these stages, apathy may be considered as a disorder of motivation that embodies amotivational behavioral syndrome, is underpinned by combined dopaminergic and serotonergic denervation and is dopa-responsive. In contrast, in advanced PD patients, apathy may be considered as cognitive apathy that announces cognitive decline and PD dementia, is underpinned by diffuse neurotransmitter system dysfunction and Lewy pathology spreading and is no longer dopa-responsive. In this review, we discuss the clinical patterns of apathy and their treatment, the neurobiological basis of apathy, the potential role of the anatomical structures involved and the pathways in motivational and cognitive apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Vincent Van Waes
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Mathieu Servant
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Eloi Magnin
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Laurent Tatu
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
- Laboratoire d'Anatomie, Université de Franche-Comté, 25000 Besançon, France
| | - Mathieu Anheim
- Département de Neurologie, CHU de Strasbourg, 67200 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- Institut de génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), INSERM-U964, CNRS-UMR7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
6
|
Xu J. Dopamine D3 Receptor in Parkinson Disease: A Prognosis Biomarker and an Intervention Target. Curr Top Behav Neurosci 2023; 60:89-107. [PMID: 35711029 PMCID: PMC10034716 DOI: 10.1007/7854_2022_373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Parkinson disease (PD) dementia, pathologically featured as nigrostriatal dopamine (DA) neuronal loss with motor and non-motor manifestations, leads to substantial disability and economic burden. DA therapy targets the DA D3 receptor (D3R) with high affinity and selectivity. The pathological involvement of D3R is evidenced as an effective biomarker for disease progression and DA agnostic interventions, with compensations of increased DA, decreased aggregates of α-synuclein (α-Syn), enhanced secretion of brain-derived neurotrophic factors (BDNF), attenuation of neuroinflammation and oxidative damage, and promoting neurogenesis in the brain. D3R also interacts with D1R to reduce PD-associated motor symptoms and alleviate the side effects of levodopa (L-DOPA) treatment. We recently found that DA D2 receptor (D2R) density decreases in the late-stage PDs, while high D3R or DA D1 receptor (D1R) + D3R densities in the postmortem PD brains correlate with survival advantages. These new essential findings warrant renewed investigations into the understanding of D3R neuron populations and their cross-sectional and longitudinal regulations in PD progression.
Collapse
Affiliation(s)
- Jinbin Xu
- Division of Radiological Sciences, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
8
|
Song AK, Hay KR, Trujillo P, Aumann M, Stark AJ, Yan Y, Kang H, Donahue MJ, Zald DH, Claassen DO. Amphetamine-induced dopamine release and impulsivity in Parkinson's disease. Brain 2022; 145:3488-3499. [PMID: 34951464 DOI: 10.1093/brain/awab487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Impulsive-compulsive behaviours manifest in a substantial proportion of subjects with Parkinson's disease. Reduced ventral striatum dopamine receptor availability, and increased dopamine release is noted in patients with these symptoms. Prior studies of impulsivity suggest that midbrain D2 autoreceptors regulate striatal dopamine release in a feedback inhibitory manner, and in healthy populations, greater impulsivity is linked to poor proficiency of this inhibition. This has not been assessed in a Parkinson's disease population. Here, we applied 18F-fallypride PET studies to assess striatal and extrastriatal D2-like receptor uptake in a placebo-controlled oral dextroamphetamine sequence. We hypothesized that Parkinson's disease patients with impulsive-compulsive behaviours would have greater ventral striatal dopaminergic response to dextroamphetamine, and that an inability to attenuate ventral striatal dopamine release via midbrain D2 autoreceptors would underlie this response. Twenty patients with Parkinson's disease (mean age = 64.1 ± 5.8 years) both with (n = 10) and without (n = 10) impulsive-compulsive behaviours, participated in a single-blind dextroamphetamine challenge (oral; 0.43 mg/kg) in an OFF dopamine state. All completed PET imaging with 18F-fallypride, a high-affinity D2-like receptor ligand, in the placebo and dextroamphetamine state. Both voxelwise and region of interest analyses revealed dextroamphetamine-induced endogenous dopamine release localized to the ventral striatum, and the caudal-medial orbitofrontal cortex. The endogenous dopamine release observed in the ventral striatum correlated positively with patient-reported participation in reward-based behaviours, as quantified by the self-reported Questionnaire for Impulsivity in Parkinson's disease Rating Scale. In participants without impulsive-compulsive behaviours, baseline midbrain D2 receptor availability negatively correlated with ventral striatal dopamine release; however, this relationship was absent in those with impulsive-compulsive behaviours. These findings emphasize that reward-based behaviours in Parkinson's disease are regulated by ventral striatal dopamine release, and suggest that loss of inhibitory feedback from midbrain autoreceptors may underlie the manifestation of impulsive-compulsive behaviours.
Collapse
Affiliation(s)
- Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Brain Institute, Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam J Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.,Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Prange S, Klinger H, Laurencin C, Danaila T, Thobois S. Depression in Patients with Parkinson's Disease: Current Understanding of its Neurobiology and Implications for Treatment. Drugs Aging 2022; 39:417-439. [PMID: 35705848 PMCID: PMC9200562 DOI: 10.1007/s40266-022-00942-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/11/2022]
Abstract
Depression is one of the most frequent and burdensome non-motor symptoms in Parkinson’s disease (PD), across all stages. Even when its severity is mild, PD depression has a great impact on quality of life for these patients and their caregivers. Accordingly, accurate diagnosis, supported by validated scales, identification of risk factors, and recognition of motor and non-motor symptoms comorbid to depression are critical to understanding the neurobiology of depression, which in turn determines the effectiveness of dopaminergic drugs, antidepressants and non-pharmacological interventions. Recent advances using in vivo functional and structural imaging demonstrate that PD depression is underpinned by dysfunction of limbic networks and monoaminergic systems, depending on the stage of PD and its associated symptoms, including apathy, anxiety, rapid eye movement sleep behavior disorder (RBD), cognitive impairment and dementia. In particular, the evolution of serotonergic, noradrenergic, and dopaminergic dysfunction and abnormalities of limbic circuits across time, involving the anterior cingulate and orbitofrontal cortices, amygdala, thalamus and ventral striatum, help to delineate the variable expression of depression in patients with prodromal, early and advanced PD. Evidence is accumulating to support the use of dual serotonin and noradrenaline reuptake inhibitors (desipramine, nortriptyline, venlafaxine) in patients with PD and moderate to severe depression, while selective serotonin reuptake inhibitors, repetitive transcranial magnetic stimulation and cognitive behavioral therapy may also be considered. In all patients, recent findings advocate that optimization of dopamine replacement therapy and evaluation of deep brain stimulation of the subthalamic nucleus to improve motor symptoms represents an important first step, in addition to physical activity. Overall, this review indicates that increasing understanding of neurobiological changes help to implement a roadmap of tailored interventions for patients with PD and depression, depending on the stage and comorbid symptoms underlying PD subtypes and their prognosis.
Collapse
Affiliation(s)
- Stéphane Prange
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France. .,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France. .,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Hélène Klinger
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France
| | - Chloé Laurencin
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France.,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France
| | - Teodor Danaila
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France.,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France
| | - Stéphane Thobois
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, NS-PARK/FCRIN Network, 59 Boulevard Pinel, 69500, Bron, France. .,Physiopathology of the Basal Ganglia Team, Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, 67 Boulevard Pinel, 69675, Bron, France. .,Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Univ Lyon, Université Claude Bernard Lyon 1, Oullins, France.
| |
Collapse
|
10
|
Cools R, Tichelaar JG, Helmich RCG, Bloem BR, Esselink RAJ, Smulders K, Timmer MHM. Role of dopamine and clinical heterogeneity in cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:309-343. [PMID: 35248200 DOI: 10.1016/bs.pbr.2022.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is commonly treated with dopaminergic medication, which enhances some, while impairing other cognitive functions. It can even contribute to impulse control disorder and addiction. We describe the history of research supporting the dopamine overdose hypothesis, which accounts for the large within-patient variability in dopaminergic medication effects across different tasks by referring to the spatially non-uniform pattern of dopamine depletion in dorsal versus ventral striatum. However, there is tremendous variability in dopaminergic medication effects not just within patients across distinct tasks, but also across different patients. In the second part of this chapter we review recent studies addressing the large individual variability in the negative side effects of dopaminergic medication on functions that implicate dopamine, such as value-based learning and choice. These studies begin to unravel the mechanisms of dopamine overdosing, thus revising the strict version of the overdose hypothesis. For example, the work shows that the canonical boosting of reward-versus punishment-based choice by medication is greater in patients with depression and a non-tremor phenotype, which both implicate, among other pathology, more rather than less severe dysregulation of the mesolimbic dopamine system. Future longitudinal cohort studies are needed to identify how to optimally combine different clinical, personality, cognitive, neural, genetic and molecular predictors of detrimental medication effects in order to account for as much of the relevant variability as possible. This will provide a useful tool for precision neurology, allowing individual and contextual tailoring of (the dose of) dopaminergic medication in order to maximize its cognitive benefits, yet minimize its side effects.
Collapse
Affiliation(s)
- Roshan Cools
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Jorryt G Tichelaar
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rick C G Helmich
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Katrijn Smulders
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Gurevich EV. Location, Location, Location: The Expression of D3 Dopamine Receptors in the Nervous System. Curr Top Behav Neurosci 2022; 60:29-45. [PMID: 35505061 DOI: 10.1007/7854_2022_314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When the rat D3 dopamine receptor (D3R) was cloned and the distribution of its mRNA examined in 1990-1991, it attracted attention due to its peculiar distribution in the brain quite different from that of its closest relative, the D2 receptor. In the rat brain, the D3R mRNA is enriched in the limbic striatum as opposed to the D2 receptor, which is highly expressed in the motor striatal areas. Later studies in the primate and human brain confirmed relative enrichment of the D3R in the limbic striatum but also demonstrated higher abundance of the D3R in the primate as compared to the rodent brain. Additionally, in the rodent brain, the D3R in the dorsal striatum appears to be co-expressed with the D1 dopamine receptor-bearing striatal neurons giving rise to the direct output striatal pathway, although the picture is less clear with respect to the nucleus accumbens. In contrast, in the primate striatum, the D3R co-localizes with the D2 receptor throughout the basal ganglia as well as in extrastriatal brain areas. The relative abundance of the D3R in the limbic striatum, its output structures, secondary targets, and some of the other connected limbic territories may underpin its role in reward, drug dependence, and impulse control. Selective expression of D3R in the brain proliferative areas may point to its important role in the neural development as well as in neurodevelopmental abnormalities associated with schizophrenia and other developmental brain disorders.
Collapse
|
12
|
D3 Receptors and PET Imaging. Curr Top Behav Neurosci 2022; 60:251-275. [PMID: 35711027 DOI: 10.1007/7854_2022_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter encapsulates a short introduction to positron emission tomography (PET) imaging and the information gained by using this technology to detect changes of the dopamine 3 receptor (D3R) at the molecular level in vivo. We will discuss available D3R radiotracers, emphasizing [11C]PHNO. The focus, however, will be on PET findings in conditions including substance abuse, obesity, traumatic brain injury, schizophrenia, Parkinson's disease, and aging. Finally, there is a discussion about progress in producing next-generation selective D3R radiotracers.
Collapse
|
13
|
Sokoloff P, Le Foll B. A Historical Perspective on the Dopamine D3 Receptor. Curr Top Behav Neurosci 2022; 60:1-28. [PMID: 35467293 DOI: 10.1007/7854_2022_315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Before 1990, the multiplicity of dopamine receptors beyond D1 and D2 had remained a controversial concept, despite its substantial clinical implications, at a time when it was widely accepted that dopamine interacted with only two receptor subtypes, termed D1 and D2, differing one from the other by their pharmacological specificity and opposite effects on adenylyl cyclase. It was also generally admitted that the therapeutic efficacy of antipsychotics resulted from blockade of D2 receptors. Thanks to molecular biology techniques, the D3 receptor could be characterized as a distinct molecular entity having a restricted anatomical gene expression and different signaling, which could imply peculiar functions in controlling cognitive and emotional behaviors. Due to the structural similarities of D2 and D3 receptors, the search for D3-selective compounds proved to be difficult, but nevertheless led to the identification of fairly potent and in vitro and in vivo selective compounds. The latter permitted to confirm a role of D3 receptors in motor functions, addiction, cognition, and schizophrenia, which paved the way for the development of new drugs for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada. .,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Departments of Family and Community Medicine, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada. .,Waypoint Research Institute, Waypoint Centre for Mental Health Care, 5, Penetanguishene, ON, Canada.
| |
Collapse
|
14
|
Martín-Bastida A, Delgado-Alvarado M, Navalpotro-Gómez I, Rodríguez-Oroz MC. Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease. Front Neurol 2021; 12:733570. [PMID: 34803882 PMCID: PMC8602579 DOI: 10.3389/fneur.2021.733570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.
Collapse
Affiliation(s)
- Antonio Martín-Bastida
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Impairment and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain.,Clinical and Biological Research in Neurodegenerative Diseases, Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Chukwueke CC, Nona CN, McPhee MD, Mansouri E, Rubin-Kahana DS, Martinez D, Boileau I, Hendershot CS, Le Foll B. Exploring regulation and function of dopamine D3 receptors in alcohol use disorder. A PET [ 11C]-(+)-PHNO study. Neuropsychopharmacology 2021; 46:2112-2120. [PMID: 34349232 PMCID: PMC8336665 DOI: 10.1038/s41386-021-01095-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Preclinical studies support an important role of dopamine D3 receptors (DRD3s) in alcohol use disorder (AUD). In animals, voluntary alcohol consumption increases DRD3 expression, and pharmacological blockade of DRD3s attenuates alcohol self-administration and reinstatement of alcohol seeking. However, these findings have yet to be translated in humans. This study used positron emission tomography (PET) and [11C]-(+)-PHNO to compare receptor levels in several dopamine D2 receptor (DRD2) and DRD3 regions of interest between AUD subjects in early abstinence (n = 17; 6.59 ± 4.14 days of abstinence) and healthy controls (n = 18). We recruited non-treatment seeking subjects meeting DSM-5 criteria for AUD. We examined the relationship between DRD2/3 levels and both alcohol craving and alcohol motivation/wanting, using a cue reactivity procedure and an intravenous alcohol self-administration (IVASA) paradigm, respectively. [11C]-(+)-PHNO binding levels in AUD subjects were significantly lower than binding in HCs when looking at all DRD2/3 ROIs jointly (Wilk's Λ = .58, F(6,28) =3.33, p = 0.013, η2p = 0.42), however there were no region-specific differences. Binding values demonstrate -12.3% and -16.1% lower [11C]-(+)-PHNO binding in the SMST and SN respectively, though these differences did not withstand Bonferroni corrections. There was a positive association between [11C]-(+)-PHNO binding in the SN (almost exclusively reflective of DRD3) and alpha (lower values reflect higher alcohol demand) in the APT after Bonferroni corrections (r = 0.66, p = 0.0080). This demonstrates that AUD subjects with lower DRD3 levels in the SN exhibit increased demand for alcohol. These results replicate previous findings demonstrating reduced DRD2/3 levels while also supporting a lack of DRD3 upregulation and potential downregulation in early abstinent AUD. Furthermore, the finding that binding in the SN is associated with alcohol demand warrants further examination.
Collapse
Affiliation(s)
- Chidera C Chukwueke
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | | | - Matthew D McPhee
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Esmaeil Mansouri
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Dafna S Rubin-Kahana
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Diana Martinez
- Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Christian S Hendershot
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Maillet A, Météreau E, Tremblay L, Favre E, Klinger H, Lhommée E, Le Bars D, Castrioto A, Prange S, Sgambato V, Broussolle E, Krack P, Thobois S. Serotonergic and Dopaminergic Lesions Underlying Parkinsonian Neuropsychiatric Signs. Mov Disord 2021; 36:2888-2900. [PMID: 34494685 DOI: 10.1002/mds.28722] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by heterogeneous motor and nonmotor manifestations related to alterations in monoaminergic neurotransmission systems. Nevertheless, the characterization of concomitant dopaminergic and serotonergic dysfunction after different durations of Parkinson's disease, as well as their respective involvement in the expression and severity of neuropsychiatric signs, has gained little attention so far. METHODS To fill this gap, we conducted a cross-sectional study combining clinical and dual-tracer positron emission tomography (PET) neuroimaging approaches, using radioligands of dopamine ([11 C]-N-(3-iodoprop-2E-enyl)-2-beta-carbomethoxy-3-beta-(4-methylphenyl)-nortropane) ([11 C]PE2I) and serotonin ([11 C]-N,N-dimethyl-2-(-2-amino-4-cyanophenylthio)-benzylamine) ([11 C]DASB) reuptake, after different durations of Parkinson's disease (ie, in short-disease duration drug-naive de novo (n = 27, 0-2 years-duration), suffering from apathy (n = 14) or not (n = 13); intermediate-disease duration (n = 15, 4-7 years-duration) and long-disease duration, non-demented (n = 15, 8-10 years-duration) patients). Fifteen age-matched healthy subjects were also enrolled. RESULTS The main findings are threefold: (1) both dopaminergic and serotonergic lesions worsen with the duration of Parkinson's disease, spreading from midbrain/subcortical to cortical regions; (2) the presence of apathy at PD onset is associated with more severe cortical and subcortical serotonergic and dopaminergic disruption, similar to the denervation pattern observed in intermediate-disease duration patients; and (3) the severity of parkinsonian apathy, depression, and trait-anxiety appears primarily related to serotonergic alteration within corticostriatal limbic areas. CONCLUSIONS Altogether, these findings highlight the prominent role of serotonergic degeneration in the expression of several neuropsychiatric symptoms occurring after different durations of Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Audrey Maillet
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France.,Université Claude Bernard Lyon I, Lyon, France
| | - Elise Météreau
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France.,Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Lyon, France
| | - Léon Tremblay
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France.,Université Claude Bernard Lyon I, Lyon, France
| | - Emilie Favre
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Lyon, France.,Genopsy, Centre Hospitalier Le Vinatier, Lyon, France
| | - Hélène Klinger
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Lyon, France
| | - Eugénie Lhommée
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Inserm U1216, Grenoble, France.,Unité des Troubles du Mouvement, Département de Neurologie, CHU de Grenoble, Grenoble, France
| | - Didier Le Bars
- CERMEP, Imagerie du Vivant, Lyon, France.,Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Anna Castrioto
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Inserm U1216, Grenoble, France.,Unité des Troubles du Mouvement, Département de Neurologie, CHU de Grenoble, Grenoble, France
| | - Stéphane Prange
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France.,Université Claude Bernard Lyon I, Lyon, France.,Faculté de médecine Lyon Sud Charles Mérieux, Univ Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Véronique Sgambato
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France.,Université Claude Bernard Lyon I, Lyon, France
| | - Emmanuel Broussolle
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France.,Université Claude Bernard Lyon I, Lyon, France.,Faculté de médecine Lyon Sud Charles Mérieux, Univ Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Paul Krack
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Inserm U1216, Grenoble, France.,Unité des Troubles du Mouvement, Département de Neurologie, CHU de Grenoble, Grenoble, France.,Department of Neurology, Center for Parkinson's Disease and Movement Disorders, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stéphane Thobois
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France.,Université Claude Bernard Lyon I, Lyon, France.,Faculté de médecine Lyon Sud Charles Mérieux, Univ Lyon, Université Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
18
|
Lin M, Mackie PM, Shaerzadeh F, Gamble-George J, Miller DR, Martyniuk CJ, Khoshbouei H. In Parkinson's patient-derived dopamine neurons, the triplication of α-synuclein locus induces distinctive firing pattern by impeding D2 receptor autoinhibition. Acta Neuropathol Commun 2021; 9:107. [PMID: 34099060 PMCID: PMC8185945 DOI: 10.1186/s40478-021-01203-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pathophysiological changes in dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease (PD). Intracellular pathological inclusions of the protein α-synuclein within dopaminergic neurons are a cardinal feature of PD, but the mechanisms by which α-synuclein contributes to dopaminergic neuron vulnerability remain unknown. The inaccessibility to diseased tissue has been a limitation in studying progression of pathophysiology prior to degeneration of dopamine neurons. To address these issues, we differentiated induced pluripotent stem cells (iPSCs) from a PD patient carrying the α-synuclein triplication mutation (AST) and an unaffected first-degree relative (NAS) into dopaminergic neurons. In human-like dopamine neurons α-synuclein overexpression reduced the functional availability of D2 receptors, resulting in a stark dysregulation in firing activity, dopamine release, and neuronal morphology. We back-translated these findings into primary mouse neurons overexpressing α-synuclein and found a similar phenotype, supporting the causal role for α-synuclein. Importantly, application of D2 receptor agonist, quinpirole, restored the altered firing activity of AST-derived dopaminergic neurons to normal levels. These results provide novel insights into the pre-degenerative pathophysiological neuro-phenotype induced by α-synuclein overexpression and introduce a potential mechanism for the long-established clinical efficacy of D2 receptor agonists in the treatment of PD.
Collapse
Affiliation(s)
- Min Lin
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Phillip M Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Fatima Shaerzadeh
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | | | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Chris J Martyniuk
- Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
19
|
Ren X, Butterfield DA. Fidelity of the PINK1 knockout rat to oxidative stress and other characteristics of Parkinson disease. Free Radic Biol Med 2021; 163:88-101. [PMID: 33321180 DOI: 10.1016/j.freeradbiomed.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
Parkinson disease (PD) is the second most common age-related neurodegenerative disease in the world, and PD significantly impacts the quality of life, especially as in general people are living longer. Because of the numerous and complex features of sporadic PD that progressively develops, it is difficult to build an ideal animal model for PD research. Genetically modified PD rodent animal models are considered as a major tool with which to study the mechanisms and potential therapeutic targets for PD. Up to now, none of the rodent animal models displays all PD characteristics. The Michael J. Fox Foundation for Parkinson's Research (MJFF) funded SAGE Laboratories to generate a PTEN-induced putative kinase-1 (PINK1) knockout (KO) rat model for familial PD using zinc finger nuclease (ZFN) technology. In the current paper, we review all papers from PubMed that report studies with PINK1 KO rats, presenting the research results, and discussing the fidelity of this rat model to PD according to its phenotypes studied by several laboratories. This review will serve as a critical reference for future studies with this rodent model, providing a better understanding of PD etiology, pathology, and potential treatment strategies.
Collapse
Affiliation(s)
- Xiaojia Ren
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506, USA
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
20
|
Yang P, Knight WC, Li H, Guo Y, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D1 + D3 receptor density may correlate with parkinson disease clinical features. Ann Clin Transl Neurol 2020; 8:224-237. [PMID: 33348472 PMCID: PMC7818081 DOI: 10.1002/acn3.51274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Dopamine D2‐like receptors – mainly dopamine D2 receptors (D2R) and dopamine D3 receptors (D3R) – are believed to be greatly involved in the pathology of Parkinson disease (PD) progression. However, these receptors have not been precisely examined in PD patients. Our aim was to quantitatively calculate the exact densities of dopamine D1 receptors (D1R), D2R, and D3R in control, Alzheimer disease (AD), and Lewy body disease (LBD) patients (including PD, Dementia with Lewy bodies, and Parkinson disease dementia); and analyze the relationship between dopamine receptors and clinical PD manifestations. Methods We analyzed the densities of D1R, D2R, and D3R in the striatum and substantia nigra (SN) using a novel quantitative autoradiography procedure previously developed by our group. We also examined the expression of D2R and D3R mRNA in the striatum by in situ hybridization. Results The results showed that although no differences of striatal D1R were found among all groups; D2R was significantly decreased in the striatum of PD patients when compared with control and AD patients. Some clinical manifestations: age of onset, PD stage, dopamine responsiveness, and survival time after onset; showed a better correlation with striatal D1R + D3R densities combined compared to D1R or D3R alone. Interpretation There is a possibility that we may infer the results in diagnosis, treatment, and prognosis of PD by detecting D1R + D3R as opposed to using dopamine D1 or D3 receptors alone. This is especially true for elderly patients with low D2R expression as is common in this disease.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - William C Knight
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Huifangjie Li
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Yingqiu Guo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|
21
|
An integrative model of Parkinson's disease treatment including levodopa pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor action throughout disease progression. J Pharmacokinet Pharmacodyn 2020; 48:133-148. [PMID: 33084988 DOI: 10.1007/s10928-020-09723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Levodopa is considered the gold standard treatment of Parkinson's disease. Although very effective in alleviating symptoms at their onset, its chronic use with the progressive neuronal denervation in the basal ganglia leads to a decrease in levodopa's effect duration and to the appearance of motor complications. This evolution challenges the establishment of optimal regimens to manage the symptoms as the disease progresses. Based on up-to-date pathophysiological and pharmacological knowledge, we developed an integrative model for Parkinson's disease to evaluate motor function in response to levodopa treatment as the disease progresses. We combined a pharmacokinetic model of levodopa to a model of dopamine's kinetics and a neurocomputational model of basal ganglia. The parameter values were either measured directly or estimated from human and animal data. The concentrations and behaviors predicted by our model were compared to available information and data. Using this model, we were able to predict levodopa plasma concentration, its related dopamine concentration in the brain and the response performance of a motor task for different stages of disease.
Collapse
|
22
|
D3 dopamine receptors and a missense mutation of fatty acid amide hydrolase linked in mouse and men: implication for addiction. Neuropsychopharmacology 2020; 45:745-752. [PMID: 31775159 PMCID: PMC7075906 DOI: 10.1038/s41386-019-0580-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022]
Abstract
The endocannabinoid and dopaminergic systems have independently been implicated in substance use disorder and obesity. We investigated a potential interaction between genetically inherited variation in fatty acid amide hydrolase (FAAH, C385A), which metabolizes the cannabis-like endocannabinoid anandamide, and dopaminergic system, measured by dopamine receptor levels and mRNA. Binding of the dopamine D3 preferring probe [C-11]-(+)-PHNO was measured with positron emission tomography (PET) in 79 human subjects genotyped for the FAAH C385A polymorphism (36/79 AC + AA). Autoradiography with [H-3]-(+)-PHNO and in situ hybridization with a D3-specific S-35 riboprobe were carried out in 30 knock-in mice with the FAAH C385A polymorphism (20/30 AC + AA). We found that the FAAH genetic variant C385A was associated with significantly higher (+)-PHNO binding in both humans and in knock-in mice, and this effect was restricted to D3 selective brain regions (limbic striatum, globus pallidus, and ventral pallidum (9-14%; p < 0.04) in humans and Islands of Calleja (28%; p = 0.036) in mice). In situ hybridization with a D3-specific S-35 riboprobe in FAAH knock-in C385A mice confirmed significantly increased D3 receptor mRNA across examined regions (7-44%; p < 0.02). The association of reduced FAAH function with higher dopamine D3 receptors in human and mouse brain provide a mechanistic link between two brain systems that have been implicated in addiction-risk. This may explain the greater vulnerability for addiction and obesity in individuals with C385A genetic variant and by extension, suggest that a D3 antagonism strategy in substance use disorders should consider FAAH C385A polymorphism.
Collapse
|
23
|
Smart K, Gallezot JD, Nabulsi N, Labaree D, Zheng MQ, Huang Y, Carson RE, Hillmer AT, Worhunsky PD. Separating dopamine D 2 and D 3 receptor sources of [ 11C]-(+)-PHNO binding potential: Independent component analysis of competitive binding. Neuroimage 2020; 214:116762. [PMID: 32201327 DOI: 10.1016/j.neuroimage.2020.116762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Development of medications selective for dopamine D2 or D3 receptors is an active area of research in numerous neuropsychiatric disorders including addiction and Parkinson's disease. The positron emission tomography (PET) radiotracer [11C]-(+)-PHNO, an agonist that binds with high affinity to both D2 and D3 receptors, has been used to estimate relative receptor subtype occupancy by drugs based on a priori knowledge of regional variation in the expression of D2 and D3 receptors. The objective of this work was to use a data-driven independent component analysis (ICA) of receptor blocking scans to separate D2-and D3-related signal in [11C]-(+)-PHNO binding data in order to improve the precision of subtype specific measurements of binding and occupancy. Eight healthy volunteers underwent [11C]-(+)-PHNO PET scans at baseline and at two time points following administration of the D3-preferring antagonist ABT-728 (150-1000 mg). Parametric binding potential (BPND) images were analyzed as four-dimensional image series using ICA to extract two independent sources of variation in [11C]-(+)-PHNO BPND. Spatial source maps for each component were consistent with respective regional patterns of D2-and D3-related binding. ICA-derived occupancy estimates from each component were similar to D2-and D3-specific occupancy estimated from a region-based approach (intraclass correlation coefficients > 0.95). ICA-derived estimates of D3 receptor occupancy improved quality of fit to a single site binding model. Furthermore, ICA-derived estimates of the regional fraction of [11C]-(+)-PHNO binding related to D3 receptors was generated for each subject and values showed good agreement with region-based model estimates and prior literature values. In summary, ICA successfully separated D2-and D3-related components of the [11C]-(+)-PHNO binding signal, establishing this approach as a powerful data-driven method to quantify distinct biological features from PET data composed of mixed data sources.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Nabeel Nabulsi
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - David Labaree
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Yiyun Huang
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
24
|
Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, Henry S, Pittman B, Ropchan J, Nabulsi N, Suridjan I, Comley RA, Huang Y, Finnema SJ, Carson RE. Synaptic Changes in Parkinson Disease Assessed with in vivo Imaging. Ann Neurol 2020; 87:329-338. [PMID: 31953875 PMCID: PMC7065227 DOI: 10.1002/ana.25682] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Parkinson disease is characterized by motor and nonmotor symptoms, reduced striatal dopamine signaling, and loss of dopamine neurons in the substantia nigra. It is now known that the pathological process in Parkinson disease may begin decades before the clinical diagnosis and include a variety of neuronal alterations in addition to the dopamine system. METHODS This study examined the density of all synapses with synaptic vesicle glycoprotein 2A (SV2A) in Parkinson disease subjects with mild bilateral disease (n = 12) and matched normal controls (n = 12) using in vivo high-resolution positron emission tomographic imaging as well as postmortem autoradiography in an independent sample with Parkinson disease (n = 15) and normal controls (n = 13) in the substantia nigra and putamen. RESULTS A group-by-brain region interaction effect (F10, 22 = 3.52, p = 0.007) was observed in the primary brain areas with in vivo SV2A binding. Post hoc analyses revealed that the Parkinson disease group exhibited lower SV2A in the substantia nigra (-45%; p < 0.001), red nucleus (-31%; p = 0.03), and locus coeruleus (-17%; p = 0.03). Exploratory analyses also revealed lower SV2A binding in clinically relevant cortical areas. Using autoradiography, we confirmed lower SV2A in the substantia nigra (-17%; p < 0.005) and nonsignificant findings in the putamen (-4%; p = 0.06). INTERPRETATION This work provides the first evidence of synaptic loss in brainstem nuclei involved in the pathogenesis of Parkinson disease in living patients. SV2A imaging holds promise for understanding synaptic changes central to the disease. Ann Neurol 2020;87:329-338.
Collapse
Affiliation(s)
- David Matuskey
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
- Department of PsychiatryYale UniversityNew HavenCT
- Department of NeurologyYale UniversityNew HavenCT
| | - Sule Tinaz
- Department of NeurologyYale UniversityNew HavenCT
| | - Kyle C. Wilcox
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Mika Naganawa
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Takuya Toyonaga
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Mark Dias
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Shannan Henry
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | | | - Jim Ropchan
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Nabeel Nabulsi
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Ivonne Suridjan
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Robert A. Comley
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Yiyun Huang
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Sjoerd J. Finnema
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Richard E. Carson
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| |
Collapse
|
25
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
27
|
Cho SS, Christopher L, Koshimori Y, Li C, Lang AE, Houle S, Strafella AP. Decreased pallidal vesicular monoamine transporter type 2 availability in Parkinson's disease: The contribution of the nigropallidal pathway. Neurobiol Dis 2019; 124:176-182. [DOI: 10.1016/j.nbd.2018.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
|
28
|
Radiotracers for imaging of Parkinson's disease. Eur J Med Chem 2019; 166:75-89. [DOI: 10.1016/j.ejmech.2019.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/12/2019] [Accepted: 01/13/2019] [Indexed: 12/22/2022]
|
29
|
Di Ciano P, Le Foll B. The Rat Gambling Task as a model for the preclinical development of treatments for gambling disorder. INTERNATIONAL GAMBLING STUDIES 2018. [DOI: 10.1080/14459795.2018.1448428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
| | - Bernard Le Foll
- Addiction Division, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
- Departments of Pharmacology and Toxicology, Psychiatry, Family and Community Medicine, Institute of Medical Sciences, University of Toronto , Toronto, Canada
| |
Collapse
|
30
|
Abstract
Dopamine D3 receptors have key roles in behavioral reward, addiction, Parkinson's disease, and schizophrenia, and there is interest in studying their role in these disorders using PET. However, current PET radiotracers for studying D3 receptors in humans all bind to both D2 and D3 due to similarities between the two receptors. Selective D2 and D3 radioligands would aid investigation of the differences between D2 and D3 circuitry in the central nervous system. While there are currently in vitro measures of ligand D3/D2 selectivity, there is a need for an in vivo PET measure of D3/D2 selectivity. This review discusses current PET imaging of dopamine D2/D3 receptors and proposes methodology for quantitating in vivo selectivity of probes for PET imaging of dopamine D3 receptors.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle J Labban
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Stark AJ, Smith CT, Petersen KJ, Trujillo P, van Wouwe NC, Donahue MJ, Kessler RM, Deutch AY, Zald DH, Claassen DO. [ 18F]fallypride characterization of striatal and extrastriatal D 2/3 receptors in Parkinson's disease. Neuroimage Clin 2018; 18:433-442. [PMID: 29541577 PMCID: PMC5849871 DOI: 10.1016/j.nicl.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [18F]fallypride, a high affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BPND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D2/3 receptors, where reduced BPND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.
Collapse
Affiliation(s)
- Adam J Stark
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Kalen J Petersen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula Trujillo
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nelleke C van Wouwe
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert M Kessler
- Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ariel Y Deutch
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - David H Zald
- Psychology, Vanderbilt University, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel O Claassen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
32
|
de Natale ER, Niccolini F, Wilson H, Politis M. Molecular Imaging of the Dopaminergic System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:131-172. [DOI: 10.1016/bs.irn.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Abstract
This study reviews previous studies that employ positron emission tomography (PET) imaging assessments in Parkinson's disease (PD) patients with and without Impulsive Compulsive Behaviours (ICB). This begins with a summary of the potential benefits and limitations of commonly utilized ligands, specifically D2/3 receptor and dopamine transporter ligands. Since previous findings emphasize the role of the ventral striatum in the manifestation of ICBs, this study attempts to relate these imaging findings to changes in behaviour, especially emphasizing work performed in substance abuse and addiction. Next, it reviews how increasing disease duration in PD can influence dopamine receptor expression, with an emphasis on differential striatal and extra-striatal changes that occur along the course of PD. Finally, it focuses on how extra-striatal changes, particularly in the orbitofrontal cortex, amygdala, and anterior cingulate, may influence the proficiency of behavioural regulation in PD. The discussion emphasizes the interaction of disease and medication effects on network-wide changes that occur in PD, and how these changes may result in behavioural dysregulation.
Collapse
Affiliation(s)
- Adam J. Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN,Corresponding Author: Daniel O. Claassen, MD, Department of Neurology, Vanderbilt University Medical Center, 1161 21st Ave South A-0118, Nashville, TN, 37232, Tel: 615-936-1007, Fax: 615-343-3946,
| |
Collapse
|
34
|
Thobois S, Prange S, Sgambato-Faure V, Tremblay L, Broussolle E. Imaging the Etiology of Apathy, Anxiety, and Depression in Parkinson's Disease: Implication for Treatment. Curr Neurol Neurosci Rep 2017; 17:76. [PMID: 28822071 DOI: 10.1007/s11910-017-0788-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apathy, depression, and anxiety are among the most important non-motor signs of Parkinson's disease (PD). This may be encountered at early stages of illness and represent a major source of burden. Understanding their pathophysiology is a major prerequisite for efficient therapeutic strategies. Anatomical and metabolic imaging studies have enabled a breakthrough by demonstrating that widespread abnormalities within the limbic circuits notably the orbitofrontal and anterior cingulate cortices, amygdala, thalamus, and ventral striatum are involved in the pathophysiology of depression, anxiety, and apathy in PD. Functional imaging has further shown that mesolimbic dopaminergic but also serotonergic lesions play a major role in the mechanisms of these three neuropsychiatric manifestations, which has direct therapeutic implications.
Collapse
Affiliation(s)
- Stephane Thobois
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux, Lyon, France. .,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de neurologie C, Centre Expert Parkinson, Lyon, France. .,Université de Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.
| | - Stephane Prange
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de neurologie C, Centre Expert Parkinson, Lyon, France.,Université de Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
| | - Véronique Sgambato-Faure
- Université de Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
| | - Léon Tremblay
- Université de Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
| | - Emmanuel Broussolle
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux, Lyon, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de neurologie C, Centre Expert Parkinson, Lyon, France.,Université de Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
| |
Collapse
|
35
|
Sil’kis IG, Markevich VA. The influence of acetylcholine, dopamine, and GABA on the functioning of the corticostriatal neuronal network in Alzheimer’s and Parkinson’s diseases: A hypothetical mechanism. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712416040103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Politis M, Pagano G, Niccolini F. Imaging in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:233-274. [DOI: 10.1016/bs.irn.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Heightened Dopaminergic Response to Amphetamine at the D 3 Dopamine Receptor in Methamphetamine Users. Neuropsychopharmacology 2016; 41:2994-3002. [PMID: 27353309 PMCID: PMC5101546 DOI: 10.1038/npp.2016.108] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 02/05/2023]
Abstract
Neuroimaging studies in stimulant use (eg, cocaine, methamphetamine) disorders show that diminished dopamine release by dopamine-elevating drugs is a potential marker of relapse and suggest that increasing dopamine at the D2/3 receptors may be therapeutically beneficial. In contrast, recent investigations indicate heightened D3 receptor levels in stimulant users prompting the view that D3 antagonism may help prevent relapse. Here we tested whether a 'blunted' response to amphetamine in methamphetamine (MA) users extends to D3-rich brain areas. Fourteen MA users and 15 healthy controls completed two positron emission tomographic scans with a D3-preferring probe [11C]-(+)-PHNO at baseline and after amphetamine (0.4 mg/kg). Relative to healthy controls, MA users had greater decreases in [11C]-(+)-PHNO binding (increased dopamine release) after amphetamine in D3-rich substantia nigra (36 vs 20%, p=0.03) and globus pallidus (30 vs 17%, p=0.06), which correlated with self-reported 'drug wanting'. We did not observe a 'blunted' dopamine response to amphetamine in D2-rich striatum; however, drug use severity was negatively associated with amphetamine-induced striatal changes in [11C]-(+)-PHNO binding. Our study provides evidence that dopamine transmission in extrastriatal 'D3-areas' is not blunted but rather increased in MA users. Together with our previous finding of elevated D3 receptor level in MA users, the current observation suggests that greater dopaminergic transmission at the D3 dopamine receptor may contribute to motivation to use drugs and argues in favor of D3 antagonism as a possible therapeutic tool to reduce craving and relapse in MA addiction.
Collapse
|
38
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|
39
|
Maillet A, Krack P, Lhommée E, Météreau E, Klinger H, Favre E, Le Bars D, Schmitt E, Bichon A, Pelissier P, Fraix V, Castrioto A, Sgambato-Faure V, Broussolle E, Tremblay L, Thobois S. The prominent role of serotonergic degeneration in apathy, anxiety and depression inde novoParkinson’s disease. Brain 2016; 139:2486-502. [DOI: 10.1093/brain/aww162] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/27/2016] [Indexed: 01/09/2023] Open
|
40
|
Castrioto A, Thobois S, Carnicella S, Maillet A, Krack P. Emotional manifestations of PD: Neurobiological basis. Mov Disord 2016; 31:1103-13. [DOI: 10.1002/mds.26587] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anna Castrioto
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GINGrenoble France
- InsermU1216Grenoble France
- Movement Disorders Unit, Neurology Department, CHU de GrenobleGrenoble France
| | - Stéphane Thobois
- CNRS, UMR 5229, Centre de Neurosciences CognitivesBron France
- Hospices Civils de Lyon, Hôpital Neurologique, Neurologie C; Université Lyon I, Faculté de Médecine et de Maïeutique Lyon Sud Charles MérieuxLyon France
| | - Sebastien Carnicella
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GINGrenoble France
- InsermU1216Grenoble France
| | - Audrey Maillet
- CNRS, UMR 5229, Centre de Neurosciences CognitivesBron France
| | - Paul Krack
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GINGrenoble France
- InsermU1216Grenoble France
- Movement Disorders Unit, Neurology Department, CHU de GrenobleGrenoble France
| |
Collapse
|
41
|
Matuskey D, Worhunksy P, Correa E, Pittman B, Gallezot JD, Nabulsi N, Ropchan J, Sreeram V, Gudepu R, Gaiser E, Cosgrove K, Ding YS, Potenza MN, Huang Y, Malison RT, Carson RE. Age-related changes in binding of the D2/3 receptor radioligand [(11)C](+)PHNO in healthy volunteers. Neuroimage 2016; 130:241-247. [PMID: 26876475 DOI: 10.1016/j.neuroimage.2016.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Previous imaging studies with positron emission tomography (PET) have reliably demonstrated an age-associated decline in the dopamine system. Most of these studies have focused on the densities of dopamine receptor subtypes D2/3R (D2R family) in the striatum using antagonist radiotracers that are largely nonselective for D2R vs. D3R subtypes. Therefore, less is known about any possible age effects in D3-rich extrastriatal areas such as the substantia nigra/ventral tegmental area (SN/VTA) and hypothalamus. This study sought to investigate whether the receptor availability measured with [(11)C](+)PHNO, a D3R-preferring agonist radiotracer, also declines with age. METHODS Forty-two healthy control subjects (9 females, 33 males; age range 19-55 years) were scanned with [(11)C](+)PHNO using a High Resolution Research Tomograph (HRRT). Parametric images were computed using the simplified reference tissue model (SRTM2) with cerebellum as the reference region. Binding potentials (BPND) were calculated for the amygdala, caudate, hypothalamus, pallidum, putamen, SN/VTA, thalamus, and ventral striatum and then confirmed at the voxel level with whole-brain parametric images. RESULTS Regional [(11)C](+)PHNO BPND displayed a negative correlation between receptor availability and age in the caudate (r=-0.56, corrected p=0.0008) and putamen (r=-0.45, corrected p=0.02) in healthy subjects (respectively 8% and 5% lower per decade). No significant correlations with age were found between age and other regions (including the hypothalamus and SN/VTA). Secondary whole-brain voxel-wise analysis confirmed these ROI findings of negative associations and further identified a positive correlation in midbrain (SN/VTA) regions. CONCLUSION In accordance with previous studies, the striatum (an area rich in D2R) is associated with age-related declines of the dopamine system. We did not initially find evidence of changes with age in the SN/VTA and hypothalamus, areas previously found to have a predominantly D3R signal as measured with [(11)C](+)PHNO. A secondary analysis did find a significant positive correlation in midbrain (SN/VTA) regions, indicating that there may be differential effects of aging, whereby D2R receptor availability decreases with age while D3R availability stays unchanged or is increased.
Collapse
Affiliation(s)
- David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Patrick Worhunksy
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Elizabeth Correa
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Venkatesh Sreeram
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Rohit Gudepu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Edward Gaiser
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kelly Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Neurobiology, Yale University, New Haven, CT, USA; Department ofChild Study Center, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
42
|
Le Foll B. What does addiction medicine expect from neuroscience? From genes and neurons to treatment responses. PROGRESS IN BRAIN RESEARCH 2016; 224:419-47. [DOI: 10.1016/bs.pbr.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Houeto JL, Magnard R, Dalley JW, Belin D, Carnicella S. Trait Impulsivity and Anhedonia: Two Gateways for the Development of Impulse Control Disorders in Parkinson's Disease? Front Psychiatry 2016; 7:91. [PMID: 27303314 PMCID: PMC4884740 DOI: 10.3389/fpsyt.2016.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/03/2022] Open
Abstract
Apathy and impulsivity are two major comorbid syndromes of Parkinson's disease (PD) that may represent two extremes of a behavioral spectrum modulated by dopamine-dependent processes. PD is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta to which are attributed the cardinal motor symptoms of the disorder. Dopamine replacement therapy (DRT), used widely to treat these motor symptoms, is often associated with deficits in hedonic processing and motivation, including apathy and depression, as well as impulse control disorders (ICDs). ICDs comprise pathological gambling, hypersexuality, compulsive shopping, binge eating, compulsive overuse of dopaminergic medication, and punding. More frequently observed in males with early onset PD, ICDs are associated not only with comorbid affective symptoms, such as depression and anxiety, but also with behavioral traits, such as novelty seeking and impulsivity, as well as with personal or familial history of alcohol use. This constellation of associated risk factors highlights the importance of inter-individual differences in the vulnerability to develop comorbid psychiatric disorders in PD patients. Additionally, withdrawal from DRT in patients with ICDs frequently unmasks a severe apathetic state, suggesting that apathy and ICDs may be caused by overlapping neurobiological mechanisms within the cortico-striato-thalamo-cortical networks. We suggest that altered hedonic and impulse control processes represent distinct prodromal substrates for the development of these psychiatric symptoms, the etiopathogenic mechanisms of which remain unknown. Specifically, we argue that deficits in hedonic and motivational states and impulse control are mediated by overlapping, yet dissociable, neural mechanisms that differentially interact with DRT to promote the emergence of ICDs in vulnerable individuals. Thus, we provide a novel heuristic framework for basic and clinical research to better define and treat comorbid ICDs in PD.
Collapse
Affiliation(s)
- Jean-Luc Houeto
- Service de Neurologie, CIC-INSERM 1402, CHU de Poitiers, Université de Poitiers , Poitiers , France
| | - Robin Magnard
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University Grenoble Alpes , Grenoble , France
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University Grenoble Alpes , Grenoble , France
| |
Collapse
|
44
|
Payer DE, Guttman M, Kish SJ, Tong J, Adams JR, Rusjan P, Houle S, Furukawa Y, Wilson AA, Boileau I. D3 dopamine receptor-preferring [11C]PHNO PET imaging in Parkinson patients with dyskinesia. Neurology 2015; 86:224-30. [PMID: 26718579 DOI: 10.1212/wnl.0000000000002285] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/10/2015] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To investigate whether levodopa-induced dyskinesias (LID) are associated with D3 overexpression in levodopa-treated humans with Parkinson disease (PD). METHODS In this case-control study, we used PET with the D3-preferring radioligand [(11)C]-(+)-PHNO to estimate D2/3 receptor binding in patients with levodopa-treated PD with LID (n = 12) and without LID (n = 12), and healthy control subjects matched for age, sex, education, and mental status (n = 18). RESULTS Compared to nondyskinetic patients, those with LID showed heightened [(11)C]-(+)-PHNO binding in the D3-rich globus pallidus. Both PD groups also showed higher binding than controls in the sensorimotor division of the striatum. In contrast, D2/3 binding in the ventral striatum was lower in patients with LID than without, possibly reflecting higher dopamine levels. CONCLUSIONS Dopaminergic abnormalities contributing to LID may include elevated D2/3 binding in globus pallidus, perhaps reflecting D3 receptor upregulation. The findings support therapeutic strategies that target and diminish activity at D3 to prevent LID.
Collapse
Affiliation(s)
- Doris E Payer
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Mark Guttman
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Stephen J Kish
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Junchao Tong
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - John R Adams
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Pablo Rusjan
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Sylvain Houle
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Yoshiaki Furukawa
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Alan A Wilson
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada
| | - Isabelle Boileau
- From the Addictions Program (D.E.P., I.B.), the Research Imaging Centre (D.E.P., S.J.K., J.T., P.R., S.H., A.A.W., I.B.), and the Human Brain Laboratory (M.G., S.J.K., Y.F.), Centre for Addiction and Mental Health, Toronto; Campbell Family Mental Health Research Institute (S.J.K., J.T., P.R., S.H., A.A.W., I.B.), Toronto; the Departments of Psychiatry (D.E.P., S.J.K., J.T., A.A.W., I.B.) and Pharmacology (S.J.K.), University of Toronto; and the Centre for Movement Disorders (M.G., J.R.A.), Markham, Canada.
| |
Collapse
|
45
|
Hints on the Lateralization of Dopamine Binding to D1 Receptors in Rat Striatum. Mol Neurobiol 2015; 53:5436-45. [DOI: 10.1007/s12035-015-9468-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 10/23/2022]
|
46
|
Aguiar AS, Lopes SC, Tristão FSM, Rial D, de Oliveira G, da Cunha C, Raisman-Vozari R, Prediger RD. Exercise Improves Cognitive Impairment and Dopamine Metabolism in MPTP-Treated Mice. Neurotox Res 2015; 29:118-25. [DOI: 10.1007/s12640-015-9566-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/11/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
|
47
|
Aracil-Bolaños I, Strafella AP. Molecular imaging and neural networks in impulse control disorders in Parkinson's disease. Parkinsonism Relat Disord 2015; 22 Suppl 1:S101-5. [PMID: 26298389 DOI: 10.1016/j.parkreldis.2015.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022]
Abstract
Impulse control disorders (ICDs) may arise in Parkinson's disease (PD) in relation to the use of dopamine agonists (DA). A dysfunction of reward circuits is considered the main underlying mechanism. Neuroimaging has been largely used in this setting to understand the structure of the reward system and its abnormalities brought by exogenous stimulation in PD. Dopaminergic changes, such as increased dopamine release, reduced dopamine transporter activity and other changes, have been shown to be a consistent feature of ICDs in PD. Beyond the striatum, alterations of prefrontal cortical function may also impact an individuals' propensity for impulsivity. Neuroimaging is advancing our knowledge of the mechanisms involved in the development of these behavioral addictions. An increased understanding of these disorders may lead to the discovery of new therapeutic targets, or the identification of risk factors for the development of these disorders.
Collapse
Affiliation(s)
- I Aracil-Bolaños
- Morton and Gloria Shulman Movement Disorder Unit & Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, UHN, University of Toronto, Ontario, Canada
| | - A P Strafella
- Morton and Gloria Shulman Movement Disorder Unit & Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, UHN, University of Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Niccolini F, Rocchi L, Politis M. Molecular imaging of levodopa-induced dyskinesias. Cell Mol Life Sci 2015; 72:2107-17. [PMID: 25681866 PMCID: PMC11113208 DOI: 10.1007/s00018-015-1854-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/15/2022]
Abstract
Levodopa-induced dyskinesias (LIDs) occur in the majority of patients with Parkinson's disease (PD) following years of levodopa treatment. The pathophysiology underlying LIDs in PD is poorly understood, and current treatments generate only minor benefits for the patients. Studies with positron emission tomography (PET) molecular imaging have demonstrated that in advanced PD patients, levodopa administration induces sharp increases in striatal dopamine levels, which correlate with LIDs severity. Fluctuations in striatal dopamine levels could be the result of the attenuated buffering ability in the dopaminergically denervated striatum. Lines of evidence from PET studies indicate that serotonergic terminals could also be responsible for the development of LIDs in PD by aberrantly processing exogenous levodopa and by releasing dopamine in a dysregulated manner from the serotonergic terminals. Additionally, other downstream mechanisms involving glutamatergic, cannabinoid, opioid, cholinergic, adenosinergic, and noradrenergic systems may contribute in the development of LIDs. In this article, we review the findings from preclinical, clinical, and molecular imaging studies, which have contributed to our understanding the pathophysiology of LIDs in PD.
Collapse
Affiliation(s)
- Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, SE5 8AF UK
| | - Lorenzo Rocchi
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, SE5 8AF UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, SE5 8AF UK
| |
Collapse
|
49
|
Payer DE, Guttman M, Kish SJ, Tong J, Strafella A, Zack M, Adams JR, Rusjan P, Houle S, Furukawa Y, Wilson AA, Boileau I. [11
C]-(+)-PHNO PET imaging of dopamine D2/3
receptors in Parkinson's disease with impulse control disorders. Mov Disord 2015; 30:160-6. [DOI: 10.1002/mds.26135] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Doris E. Payer
- Addictions Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Mark Guttman
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Centre for Movement Disorders; Markham Ontario Canada
| | - Stephen J. Kish
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
- Department of Pharmacology; University of Toronto; Toronto Ontario Canada
| | - Junchao Tong
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| | - Antonio Strafella
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Movement Disorder Unit & E.J. Safra Parkinson Disease Program; Toronto Western Hospital, UHN, University of Toronto; Ontario Canada
- Division of Brain, Imaging and Behaviour-Systems Neuroscience; Toronto Western Research Institute, UHN, University of Toronto; Ontario Canada
| | - Martin Zack
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
- Department of Pharmacology; University of Toronto; Toronto Ontario Canada
- Clinical Neuroscience Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - John R. Adams
- Centre for Movement Disorders; Markham Ontario Canada
| | - Pablo Rusjan
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
| | - Yoshiaki Furukawa
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Alan A. Wilson
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| | - Isabelle Boileau
- Addictions Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
50
|
Carcenac C, Favier M, Vachez Y, Lacombe E, Carnicella S, Savasta M, Boulet S. Subthalamic deep brain stimulation differently alters striatal dopaminergic receptor levels in rats. Mov Disord 2015; 30:1739-49. [DOI: 10.1002/mds.26146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Affiliation(s)
- Carole Carcenac
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Mathieu Favier
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Yvan Vachez
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Emilie Lacombe
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Sébastien Carnicella
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Marc Savasta
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
- Centre Hospitalier Universitaire de Grenoble; Grenoble France
| | - Sabrina Boulet
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| |
Collapse
|