1
|
Viramontes KM, Thone MN, DeRogatis JM, Neubert EN, Henriquez ML, De La Torre JJ, Tinoco R. Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection. Immunohorizons 2025; 9:vlae002. [PMID: 39846843 DOI: 10.1093/immhor/vlae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/11/2024] [Indexed: 01/24/2025] Open
Abstract
The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model. Our findings reveal that Prnp-/- mice exhibit a robust expansion of virus-specific CD8+ T cells, with similar activation profiles as wild-type mice during the early stages of infection. However, Prnp-/- mice had higher frequencies and numbers of virus-specific memory CD8+ T cells, along with altered differentiation profiles characterized by increased central and effector memory subsets. Despite similar proliferation rates early during infection, Prnp-/- memory CD8+ T cells had decreased proliferation compared with their wild-type counterparts. Additionally, Prnp-/- mice had higher numbers of cytokine-producing memory CD8+ T cells, indicating a more robust functional response. Furthermore, Prnp-/- mice had increased virus-specific CD4+ T cell responses, suggesting a broader impact of PrPc deficiency on T cell immunity. These results unveil a previously unrecognized role for PrPc in regulating the differentiation, proliferation, and functionality of virus-specific T cells, providing valuable insights into immune system regulation by prion proteins during viral infections.
Collapse
Affiliation(s)
- Karla M Viramontes
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Melissa N Thone
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Julia M DeRogatis
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Emily N Neubert
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Monique L Henriquez
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jamie-Jean De La Torre
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Roberto Tinoco
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Cheon YP, Ryou C, Svedružić ŽM. Roles of prion proteins in mammalian development. Anim Cells Syst (Seoul) 2024; 28:551-566. [PMID: 39664939 PMCID: PMC11633422 DOI: 10.1080/19768354.2024.2436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Prion protein (PrP) is highly conserved and is expressed in most tissues in a developmental stage-specific manner. Glycosylated cellular prion protein (PrPC) is found in most cells and subcellular areas as a physiological regulating molecule. On the other hand, the amyloid form of PrPC, scrapie PrP (PrPSC), causes transmissible pathogenesis in the central nervous system and induces degeneration of the nervous system. Although many amyloids are reversible and critical in determining the fate, differentiation, and physiological functions of cells, thus far, PrPSC originating from PrPC is not. Although many studies have focused on disorders involving PrPC and the deletion mammalian models for PrPC have no severe phenotype, it has been suggested that PrPC has a role in normal development. It is conserved and expressed from gametes to adult somatic cells. In addition, severe developmental phenotypes appear in PrP null zebrafish embryos and in various mammalian cell model systems. In addition, it has been well established that PrPC is strongly involved in the stemness and differentiation of embryonic stem cells and progenitors. Thus far, many studies on PrPC have focused mostly on disease-associated conditions with physiological roles as a complex platform but not on development. The known roles of PrPC depend on the interacting molecules through its flexible tail and domains. PrPC interacts with membrane, and various intracellular and extracellular molecules. In addition, PrPC and amyloid can stimulate signaling pathways differentially. In this review, we summarize the function of prion protein and discuss its role in development.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Department of Biotechnology, Institute for Basic Sciences, Sungshin University, Seoul, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, ekcho Ansan, Korea
| | | |
Collapse
|
3
|
Willows SD, Vliagoftis H, Sim VL, Kulka M. PrP is cleaved from the surface of mast cells by ADAM10 and proteases released during degranulation. J Leukoc Biol 2024; 116:838-853. [PMID: 38725289 DOI: 10.1093/jleuko/qiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 10/03/2024] Open
Abstract
While several functions of the endogenous prion protein have been studied, the homeostatic function of prion protein is still debated. Notably, prion protein is highly expressed on mast cells, granular immune cells that regulate inflammation. When activated, mast cells shed prion protein, although the mechanism and consequences of this are not yet understood. First, we tested several mast cell lines and found that, while prion protein was almost always present, the total amount differed greatly. Activation of mast cells induced a cleavage of the N-terminal region of prion protein, and this was reduced by protease inhibitors. Exogenous mast cell proteases caused a similar loss of the prion protein N-terminus. Additionally, mast cells shed prion protein in an ADAM10-dependent fashion, even in the absence of activation. Our results suggest that prion protein is cleaved from resting mast cells by ADAM10 and from activated mast cells by mast cell proteases. Prion protein also appears to affect mast cell function, as Prnp-/- bone marrow-derived mast cells showed lower levels of degranulation and cytokine release, as well as lower levels of both FcεRI and CD117. Finally, we sought to provide clinical relevance by measuring the levels of prion protein in bodily fluids of asthmatic patients, a disease that involves the activation of mast cells. We found an N-terminal fragment of prion protein could be detected in human sputum and serum, and the amount of this prion protein fragment was decreased in the serum of patients with asthma.
Collapse
Affiliation(s)
- Steven D Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, Alberta, T6G 2M9, Canada
| | - Harissios Vliagoftis
- Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, 11350 83rd Ave, T6G 2G3, Canada
| | - Valerie L Sim
- Department of Medicine, and Neurosciences and Mental Health Institute, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, T6G 2E1, Canada
- Centre for Prions & Protein Folding Diseases, University of Alberta, 8710 - 112 St NW, Edmonton, Alberta, T6G 2M8, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, Alberta, T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
4
|
Karner D, Kvestak D, Kucan Brlic P, Cokaric Brdovcak M, Lisnic B, Brizic I, Juranic Lisnic V, Golemac M, Tomac J, Krmpotic A, Karkeni E, Libri V, Mella S, Legname G, Altmeppen HC, Hasan M, Jonjic S, Lenac Rovis T. Prion protein alters viral control and enhances pathology after perinatal cytomegalovirus infection. Nat Commun 2024; 15:7754. [PMID: 39237588 PMCID: PMC11377837 DOI: 10.1038/s41467-024-51931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Cytomegalovirus (CMV) infection poses risks to newborns, necessitating effective therapies. Given that the damage includes both viral infection of brain cells and immune system-related damage, here we investigate the involvement of cellular prion protein (PrP), which plays vital roles in neuroprotection and immune regulation. Using a murine model, we show the role of PrP in tempering neonatal T cell immunity during CMV infection. PrP-null mice exhibit enhanced viral control through elevated virus-specific CD8 T cell responses, leading to reduced viral titers and pathology. We further unravel the molecular mechanisms by showing CMV-induced upregulation followed by release of PrP via the metalloproteinase ADAM10, impairing CD8 T cell response specifically in neonates. Additionally, we confirm PrP downregulation in human CMV (HCMV)-infected fibroblasts, underscoring the broader relevance of our observations beyond the murine model. Furthermore, our study highlights how PrP, under the stress of viral pathogenesis, reveals its impact on neonatal immune modulation.
Collapse
Affiliation(s)
- Dubravka Karner
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Daria Kvestak
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Paola Kucan Brlic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | | | - Berislav Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Ilija Brizic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotic
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esma Karkeni
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Giuseppe Legname
- Department of Neuroscience, Prion Biology Laboratory, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Stipan Jonjic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
5
|
Silva De Castro I, Granato A, Mariante RM, Lima MA, Leite ACC, Espindola ODM, Pise-Masison CA, Franchini G, Linden R, Echevarria-Lima J. HTLV-1 p12 modulates the levels of prion protein (PrP C) in CD4 + T cells. Front Microbiol 2023; 14:1175679. [PMID: 37637115 PMCID: PMC10449582 DOI: 10.3389/fmicb.2023.1175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Infection with human T cell lymphotropic virus type 1 (HTLV-1) is endemic in Brazil and is linked with pro-inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neuroinflammatory incapacitating disease that culminates in loss of motor functions. The mechanisms underlying the onset and progression of HAM/TSP are incompletely understood. Previous studies have demonstrated that inflammation and infectious agents can affect the expression of cellular prion protein (PrPC) in immune cells. Methods Here, we investigated whether HTLV-1 infection affected PrPC content in cell lines and primary CD4+cells in vitro using flow cytometry and western blot assays. Results We found that HTLV-1 infection decreased the expression levels of PrPC and HTLV-1 Orf I encoded p12, an endoplasmic reticulum resident protein also known to affect post-transcriptionally cellular proteins such as MHC-class I and the IL-2 receptor. In addition, we observed a reduced percentage of CD4+ T cells from infected individuals expressing PrPC, which was reflected by IFN type II but not IL-17 expression. Discussion These results suggested that PrPC downregulation, linked to both HTLV-1 p12 and IFN-γ expression in CD4+ cells, may play a role in the neuropathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Isabela Silva De Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Alessandra Granato
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Meyer Mariante
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Leite
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espindola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rafael Linden
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Grimaldi I, Leser FS, Janeiro JM, da Rosa BG, Campanelli AC, Romão L, Lima FRS. The multiple functions of PrP C in physiological, cancer, and neurodegenerative contexts. J Mol Med (Berl) 2022; 100:1405-1425. [PMID: 36056255 DOI: 10.1007/s00109-022-02245-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer's and Parkinson's diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bárbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Clara Campanelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luciana Romão
- Cell Morphogenesis Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
Microglia in Prion Diseases: Angels or Demons? Int J Mol Sci 2020; 21:ijms21207765. [PMID: 33092220 PMCID: PMC7589037 DOI: 10.3390/ijms21207765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood. During this review, we summarize and discuss controversial findings, both in patient and animal models, suggesting a neuroprotective role of microglia in prion disease pathogenesis and progression, or—conversely—a microglia-mediated exacerbation of neurotoxicity in later stages of disease. We also will consider the active participation of PrPC in microglial functions, by discussing previous reports, but also by presenting unpublished results that support a role for PrPC in cytokine secretion by activated primary microglia.
Collapse
|
9
|
Zhang B, Shen P, Yin X, Dai Y, Ding M, Cui L. Expression and functions of cellular prion proteins in immunocytes. Scand J Immunol 2019; 91:e12854. [PMID: 31785109 DOI: 10.1111/sji.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Prion diseases are fatal neurodegenerative processes caused by the accumulation of the pathological prion protein, PrPSc . While pathological lesions are limited to the central nervous system (CNS), disease-specific proteins accumulate and replicate in secondary lymphoid organs prior to neuroinvasion, and their replication there depends on the abundance of cellular prion protein (PrPC ). PrPC is expressed in both central and peripheral lymphoid tissues, and up- or downregulates innate and adaptive immune responses. In addition to prion diseases, PrPC is also immunologically involved in other neurological disorders and infectious diseases, including Alzheimer's disease and human immunodeficiency virus infection. Herein, we summarize the expression and functions of PrPC in various immunocytes, as well as its immunological and pathological roles in neurodegeneration and infection.
Collapse
Affiliation(s)
- Baizhuo Zhang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pingping Shen
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanyuan Dai
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingxuan Ding
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
10
|
Kong C, Xie H, Gao Z, Shao M, Li H, Shi R, Cai L, Gao S, Sun T, Li C. Binding between Prion Protein and Aβ Oligomers Contributes to the Pathogenesis of Alzheimer's Disease. Virol Sin 2019; 34:475-488. [PMID: 31093882 DOI: 10.1007/s12250-019-00124-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease (AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein (PrPC) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrPC contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrPC, which lead to high affinity binding between Aβ oligomers and PrPC. The interaction between PrPC and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system (CNS). Thus, silencing PrPC expression may turn out be an effective treatment for PrPC dependent AD.
Collapse
Affiliation(s)
- Chang Kong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenxing Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Run Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shanshan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
11
|
Salvesen Ø, Tatzelt J, Tranulis MA. The prion protein in neuroimmune crosstalk. Neurochem Int 2018; 130:104335. [PMID: 30448564 DOI: 10.1016/j.neuint.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
The cellular prion protein (PrPC) is a medium-sized glycoprotein, attached to the cell surface by a glycosylphosphatidylinositol anchor. PrPC is encoded by a single-copy gene, PRNP, which is abundantly expressed in the central nervous system and at lower levels in non-neuronal cells, including those of the immune system. Evidence from experimental knockout of PRNP in rodents, goats, and cattle and the occurrence of a nonsense mutation in goat that prevents synthesis of PrPC, have shown that the molecule is non-essential for life. Indeed, no easily recognizable phenotypes are associate with a lack of PrPC, except the potentially advantageous trait that animals without PrPC cannot develop prion disease. This is because, in prion diseases, PrPC converts to a pathogenic "scrapie" conformer, PrPSc, which aggregates and eventually induces neurodegeneration. In addition, endogenous neuronal PrPC serves as a toxic receptor to mediate prion-induced neurotoxicity. Thus, PrPC is an interesting target for treatment of prion diseases. Although loss of PrPC has no discernable effect, alteration of its normal physiological function can have very harmful consequences. It is therefore important to understand cellular processes involving PrPC, and research of this topic has advanced considerably in the past decade. Here, we summarize data that indicate the role of PrPC in modulating immune signaling, with emphasis on neuroimmune crosstalk both under basal conditions and during inflammatory stress.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany.
| | - Michael A Tranulis
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
12
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
13
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
14
|
Monzón M. Approaches to therapy against prion diseases focused on the individual defence system. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Ribes S, Nessler S, Heide EC, Malzahn D, Perske C, Brück W, Nau R. The Early Adaptive Immune Response in the Pathophysiological Process of Pneumococcal Meningitis. J Infect Dis 2016; 215:150-158. [PMID: 27803171 DOI: 10.1093/infdis/jiw517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The adaptive immune system has been considered to play a minimal role in the early host response during bacterial meningitis. METHODS We investigated the progression and outcome of pneumococcal meningitis in Rag1-/- mice lacking functional B and T cells by assessing overall and symptom-free survival, bacteriological and histological studies, as well as flow cytometry and measurements of proinflammatory mediators. RESULTS The intracerebral injection of S. pneumoniae D39 induced the recruitment of B and T cells (CD4+, γδ and natural killer) into the brain of wild-type mice. Mice with no functional B and T cells developed clinical symptoms and succumbed to the infection earlier than the wild-type group. In the CNS, Rag1-/- mice showed lower levels of interleukin 1β, reduced microglial proliferation, and impaired granulocyte recruitment with an earlier spread of pneumococci into the bloodstream, compared with wild-type mice. Lack of B and T cells resulted in a severe impairment of bacterial clearance in blood, spleen, and liver and an exaggerated systemic inflammatory response. CONCLUSIONS B and T cells are important effector cells delaying the spread of pneumococci from the brain to the systemic circulation and shaping the immune response, thereby prolonging the survival of the host in the absence of antibiotic treatment.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Ev-Christin Heide
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August University
| | - Christina Perske
- Institute of Pathology, University Medical Center Göttingen, Georg-August University
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Georg-August University.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Germany
| |
Collapse
|
16
|
Genetic background modulates outcome of therapeutic amyloid peptides in treatment of neuroinflammation. J Neuroimmunol 2016; 298:42-50. [PMID: 27609274 DOI: 10.1016/j.jneuroim.2016.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/27/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022]
Abstract
Amyloid hexapeptide molecules are effective in the treatment of the murine model of neuroinflammation, known as experimental autoimmune encephalomyelitis (EAE). Efficacy however differs between two inbred mouse strains, C57BL/6J (B6) and C57BL/10SnJ (B10). Amyloid hexapeptide treatments improved the clinical outcomes of B6, but not B10 mice, indicating that genetic background influences therapeutic efficacy. Moreover, although previous studies indicated that prion protein deficiency results in more severe EAE in B6 mice, we observed no such effect in B10 mice. In addition, we found that amyloid hexapeptide treatments of B10 and B6 mice elicited differential IL4 responses. Thus, the modulatory potential of prion protein and related treatments with other amyloid hexapeptides in EAE depends on mouse strain.
Collapse
|
17
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
18
|
Bakkebø MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J, Tranulis MA. The Cellular Prion Protein: A Player in Immunological Quiescence. Front Immunol 2015; 6:450. [PMID: 26388873 PMCID: PMC4557099 DOI: 10.3389/fimmu.2015.00450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.
Collapse
Affiliation(s)
- Maren K. Bakkebø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Wilfred Goldmann
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jörg Tatzelt
- Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway,*Correspondence: Michael A. Tranulis, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Campus Adamstuen, Oslo 0033, Norway,
| |
Collapse
|
19
|
Schmitz M, Hermann P, Oikonomou P, Stoeck K, Ebert E, Poliakova T, Schmidt C, Llorens F, Zafar S, Zerr I. Cytokine profiles and the role of cellular prion protein in patients with vascular dementia and vascular encephalopathy. Neurobiol Aging 2015; 36:2597-606. [PMID: 26170132 DOI: 10.1016/j.neurobiolaging.2015.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/28/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Understanding inflammatory mechanisms in vascular dementia (VD) is pivotal for achieving better insights into changes in brain metabolism. We performed cytokine profiling and measured levels of the cellular prion protein (PrP(C)) in serum and cerebrospinal fluid (CSF) samples from patients with VD and with vascular encephalopathy (VE). Significant changes were observed for interleukin (IL)-1β, IL-4, IL-5, tumor necrosis factor alpha, interferon gamma, granulocyte-colony stimulating factor, monocyte chemotactic protein 1, and macrophage inflammatory protein 1 beta in serum and for IL-6 and granulocyte macrophage colony-stimulating factor in CSF of VD and VE patients, suggesting that most of immune markers depend on vascular lesions, while only IL-6 was related to dementia. In VD patients, the severity of dementia as defined by the Mini-Mental Status Test or Cambridge Cognitive Examination battery test was significantly correlated with the levels of IL-8 (CSF) and macrophage inflammatory protein 1 beta (serum and CSF). Additionally, in CSF of VD patients, our data revealed a correlation between immune and neurodegenerative marker proteins. Both indicate an association of neuroinflammation and cognitive decline. Levels of PrP(C) were regulated differentially in VD and VE patients compared with Alzheimer's disease patients and controls. Moreover, we observed a significant negative correlation between cytokine levels and PrP(C) in VD patients in CSF and serum, as well as a correlation between PrP(C) expression with levels of neurodegenerative marker proteins in CSF (in VD and VE patients). Our data suggest that immunological modifiers play a role in VD and VE patients and provide evidence for an association of PrP(C) with immune and neurodegenerative markers.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany.
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Pantelis Oikonomou
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Katharina Stoeck
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Elisabeth Ebert
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | | | - Christian Schmidt
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Trovato A, Panelli S, Strozzi F, Cambulli C, Barbieri I, Martinelli N, Lombardi G, Capoferri R, Williams JL. Expression of genes involved in the T cell signalling pathway in circulating immune cells of cattle 24 months following oral challenge with Bovine Amyloidotic Spongiform Encephalopathy (BASE). BMC Vet Res 2015; 11:105. [PMID: 25956229 PMCID: PMC4424883 DOI: 10.1186/s12917-015-0412-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
Background Bovine Amyloidotic Spongiform Encephalopathy (BASE) is a variant of classical BSE that affects cows and can be transmitted to primates and mice. BASE is biochemically different from BSE and shares some molecular and histo-pathological features with the MV2 sub-type of human sporadic Creutzfeld Jakob Disease (sCJD). Results The present work examined the effects of BASE on gene expression in circulating immune cells. Ontology analysis of genes differentially expressed between cattle orally challenged with brain homogenate from cattle following intracranial inoculation with BASE and control cattle identified three main pathways which were affected. Within the immune function pathway, the most affected genes were related to the T cell receptor-mediated T cell activation pathways. The differential expression of these genes in BASE challenged animals at 10,12 and 24 months following challenge, vs unchallenged controls, was investigated by real time PCR. Conclusions The results of this study show that the effects of prion diseases are not limited to the CNS, but involve the immune system and particularly T cell signalling during the early stage following challenge, before the appearance of clinical signs.
Collapse
Affiliation(s)
- Andrea Trovato
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy.
| | - Simona Panelli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | | | - Caterina Cambulli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Nicola Martinelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Rossana Capoferri
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - John L Williams
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy. .,Present address: School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| |
Collapse
|
21
|
Scalabrino G, Veber D, De Giuseppe R, Roncaroli F. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord. Neuroscience 2015; 298:293-301. [PMID: 25888933 DOI: 10.1016/j.neuroscience.2015.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
We have previously demonstrated that multiple sclerosis (MS) patients have abnormal cerebrospinal fluid (CSF) levels of the key myelin-related molecules cobalamin (Cbl), epidermal growth factor (EGF), and normal cellular prions (PrP(C)s), thus confirming that some CSF abnormalities may be co-responsible for remyelination failure. We determined the levels of these three molecules in post-mortem spinal cord (SC) samples taken from MS patients and control patients. The control SC samples, almost all of which came from non-neurological patients, did not show any microscopic lesions of any type. All of the samples were supplied by the U.K. MS Tissue Bank. The Cbl, EGF, and PrP(C) levels were determined using enzyme-linked immunosorbent assays. The SC total homocysteine level was determined using a competitive immunoenzymatic assay. CSF samples, taken from a further group of MS patients, were used for the assay of holo-transcobalamin (holo-TC) levels. The Cbl, EGF, and PrP(C) levels were significantly decreased in MS SCs in comparison with controls and, paradoxically, the decreased Cbl levels were associated with decreased SC levels of homocysteine, a biochemical marker of Cbl deficiency. The trends of EGF and PrP(C) levels paralleled those previously found in CSF, whereas that of Cbl was the opposite. There was no significant difference in CSF holo-TC levels between the MS patients and the controls. Given that we have previously demonstrated that Cbl positively regulates central nervous system EGF levels, it is conceivable that the low EGF levels in the MS SC may be causally related to a local decrease in Cbl levels. Only PrP(C) levels were invariably decreased in both the SC and CSF regardless of the clinical course of the disease. These findings suggest that the simultaneous lack of Cbl, EGF, and PrP(C)s may greatly hamper the remyelination process in MS patients, because they are key molecules of the machinery for remyelination.
Collapse
Affiliation(s)
- G Scalabrino
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milan, Italy.
| | - D Veber
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milan, Italy
| | - R De Giuseppe
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - F Roncaroli
- Division of Brain Sciences, Imperial College, London W12 0NN, UK
| |
Collapse
|
22
|
Onodera T, Sakudo A, Tsubone H, Itohara S. Review of studies that have used knockout mice to assess normal function of prion protein under immunological or pathophysiological stress. Microbiol Immunol 2015; 58:361-74. [PMID: 24866463 DOI: 10.1111/1348-0421.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022]
Abstract
Deletion of cellular isoform of prion protein (PrP(C)) increases neuronal predisposition to damage by modulating apoptosis and the negative consequences of oxidative stress. In vivo studies have demonstrated that PrP(C)-deficient mice are more prone to seizure, depression, and induction of epilepsy and experience extensive cerebral damage following ischemic challenge or viral infection. In addition, adenovirus-mediated overexpression of PrP(C) reduces brain damage in rat models of cerebral ischemia. In experimental autoimmune encephalomyelitis, PrP(C)-deficient mice reportedly have a more aggressive disease onset and less clinical improvement during the chronic phase than wild-type mice mice. In mice given oral dextran sulfate, PrP(C) has a potential protective role against inflammatory bowel disease. PrP(C)-deficient mice demonstrate significantly greater increases in blood glucose concentrations after intraperitoneal injection of glucose than wild-type mice. Further in vivo challenges to PrP gene-deficient models and conditional knockout models with siRNA and in vivo administration of PrP-ligating agents may assist in refining knowledge of the lymphoid function of PrP(C) and predicting the effects of anti-PrP treatment on the immune system. Together, these findings indicate that PrP(C) may have multiple neuroprotective and anti-inflammatory roles, which explains why this protein is so widely expressed.
Collapse
Affiliation(s)
- Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657
| | | | | | | |
Collapse
|
23
|
Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, Hanisch UK, Triebel J, Bollheimer LC, Sieber C, Nau R. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation 2015; 12:208. [PMID: 25563481 PMCID: PMC4302429 DOI: 10.1186/s12974-014-0208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022] Open
Abstract
Background Meningoencephalitis caused by Escherichia coli is associated with high rates of mortality and risk of neurological sequelae in newborns and infants and in older or immunocompromised adults. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Methods In vivo, we studied the effects of vitamin D3 on survival and the host’s immune response in experimental bacterial meningoencephalitis in mice after intracerebral E. coli infection. To produce different systemic vitamin D3 concentrations, mice received a low, standard, or high dietary vitamin D3 supplementation. Bacterial titers in blood, spleen, and brain homogenates were determined. Leukocyte infiltration was assessed by histological scores, and tissue cytokine or chemokine concentrations were measured. Results Mice fed a diet with low vitamin D3 concentration died earlier than control animals after intracerebral infection. Vitamin D deficiency did not inhibit leukocyte recruitment into the subarachnoid space and did not lead to an increased density of bacteria in blood, spleen, or brain homogenates. The release of proinflammatory interleukin (IL)-6 was decreased and the release of anti-inflammatory IL-10 was increased in mice fed a diet with high vitamin D3 supplementation. Conclusion Our observations suggest a detrimental role of vitamin D deficiency in bacterial central nervous system infections. Vitamin D may exert immune regulatory functions.
Collapse
Affiliation(s)
- Marija Djukic
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany. .,Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany.
| | - Nadine Sostmann
- Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany.
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany.
| | - Marianne Mecke
- Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany.
| | - Stefan Nessler
- Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany.
| | - Anja Manig
- Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany.
| | - Uwe-Karsten Hanisch
- Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany.
| | - Jakob Triebel
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany.
| | - L Cornelius Bollheimer
- Institute for Biomedicine of Aging (IBA), Friedrich-Alexander Universität Erlangen-Nürnberg, Nuremberg, Germany. .,Hospital of the Order of St. John of God, Regensburg, Regensburg, Germany.
| | - Cornel Sieber
- Institute for Biomedicine of Aging (IBA), Friedrich-Alexander Universität Erlangen-Nürnberg, Nuremberg, Germany. .,Hospital of the Order of St. John of God, Regensburg, Regensburg, Germany.
| | - Roland Nau
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany. .,Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany.
| |
Collapse
|
24
|
Stoeck K, Schmitz M, Ebert E, Schmidt C, Zerr I. Immune responses in rapidly progressive dementia: a comparative study of neuroinflammatory markers in Creutzfeldt-Jakob disease, Alzheimer's disease and multiple sclerosis. J Neuroinflammation 2014; 11:170. [PMID: 25315814 PMCID: PMC4207356 DOI: 10.1186/s12974-014-0170-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
Immunological responses may contribute to disease progression and clinical heterogeneity in neurodegenerative dementia, for example, Alzheimer's disease (AD) and Creutzfeldt-Jakob disease (CJD). Recently, a rapidly progressive form of AD (rpAD) has been described. On neuropathological grounds classical AD and rpAD are not distinguishable at present. All those protein aggregopathies show a state of chronic inflammation with microglia activation and production of proinflammatory cytokines. In this context, it is hypothesized that the severity of the surrounding inflammation substantially contributes to disease progression and accelerated disease courses as seen in rpAD.
Collapse
|
25
|
Ribes S, Meister T, Ott M, Redlich S, Janova H, Hanisch UK, Nessler S, Nau R. Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection. J Neuroinflammation 2014; 11:14. [PMID: 24456653 PMCID: PMC3906862 DOI: 10.1186/1742-2094-11-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/12/2014] [Indexed: 12/28/2022] Open
Abstract
Background Prophylaxis with unmethylated cytosine phosphate guanidine (CpG) oligodeoxynucleotides (ODN) protects against several systemic experimental infections. Escherichia coli is a major cause of Gram-negative neonatal bacterial meningitis and also causes meningitis and meningoencephalitis in older and immunocompromised patients. Methods Wild-type (wt) and Toll-like receptor 9 (TLR9)-deficient mice were rendered neutropenic by intraperitoneal administration of the anti-Ly-6G monoclonal antibody. Immunocompetent and neutropenic mice received intraperitoneal CpG ODN or vehicle 72 h prior to induction of E. coli K1 meningoencephalitis. Results Pre-treatment with CpG ODN significantly increased survival of neutropenic wt mice from 33% to 75% (P = 0.0003) but did not protect neutropenic TLR9-/- mice. The protective effect of CpG ODN was associated with an enhanced production of interleukin (IL)-12/IL-23p40 with sustained increased levels in serum and spleen at least for 17 days after conditioning compared to buffer-treated animals. CpG-treated neutropenic wt mice showed reduced bacterial concentrations and increased recruitment of Ly6ChighCCR2+ monocytes in brain and spleen 42 h after infection. The levels of macrophage inflammatory protein 1α (MIP-1α) and interferon gamma (IFN-γ) in spleen were higher 42 h after infection in CpG-treated compared to buffer-treated neutropenic animals. In immunocompetent mice, prophylaxis with CpG ODN did not significantly increase survival compared to the buffer group (60% vs. 45%, P = 0.2). Conclusions These findings suggest that systemic administration of CpG ODN may help to prevent bacterial CNS infections in immunocompromised individuals.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bribián A, Fontana X, Llorens F, Gavín R, Reina M, García-Verdugo JM, Torres JM, de Castro F, del Río JA. Role of the cellular prion protein in oligodendrocyte precursor cell proliferation and differentiation in the developing and adult mouse CNS. PLoS One 2012; 7:e33872. [PMID: 22529900 PMCID: PMC3329524 DOI: 10.1371/journal.pone.0033872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/18/2012] [Indexed: 11/18/2022] Open
Abstract
There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells.
Collapse
Affiliation(s)
- Ana Bribián
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Xavier Fontana
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
| | - Franc Llorens
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rosalina Gavín
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Manuel Reina
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cabanillas de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Fernando de Castro
- GNDe-Grupo de Neurobiología del Desarrollo, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos, Toledo, Spain
- Instituto Cajal-CSIC, Madrid, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- * E-mail:
| |
Collapse
|
27
|
Stys PK, You H, Zamponi GW. Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. J Physiol 2012; 590:1357-68. [PMID: 22310309 PMCID: PMC3382327 DOI: 10.1113/jphysiol.2011.225276] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/03/2012] [Indexed: 12/22/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors mediate a wide range of important nervous system functions. Conversely, excessive NMDA receptor activity leads to cytotoxic calcium overload and neuronal damage in a wide variety of CNS disorders. It is well established that NMDA receptors are tightly regulated by a number of cell signalling pathways. Recently, it has been shown that NMDA receptor activity is modulated by cellular prion protein (PrP(C)) in a copper-dependent manner. Here we give an overview of the current state of knowledge concerning the novel concept of potent modulation of this receptor's kinetics by copper ions, and the interplay between NMDA receptors and PrP(C) in the context of neurological diseases such as Alzheimer's disease, epilepsy, pain and depression.
Collapse
Affiliation(s)
- Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
28
|
Gourdain P, Ballerini C, Nicot AB, Carnaud C. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system. J Neuroinflammation 2012; 9:25. [PMID: 22281016 PMCID: PMC3305405 DOI: 10.1186/1742-2094-9-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/26/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The cellular prion protein (PrPc) is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc) initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE) is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered. METHOD To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS) were generated. Mice were subsequently challenged with MOG35-55 peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells. RESULTS First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells. CONCLUSIONS In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not synergize for disease worsening. These conclusions highlight the critical role of PrPc in maintaining the integrity of the CNS in situations of stress, especially during a neuroinflammatory insult.
Collapse
Affiliation(s)
- Pauline Gourdain
- INSERM, UMR S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
29
|
Fujita K, Yuasa T, Takahashi Y, Tanaka K, Hashiguchi S, Adachi K, Izumi Y, Kaji R. Detection of anti-glutamate receptor ε2 and anti-N-methyl-d-aspartate receptor antibodies in a patient with sporadic Creutzfeldt–Jakob disease. J Neurol 2011; 259:985-8. [DOI: 10.1007/s00415-011-6291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/08/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
|
30
|
Williams SK, Fairless R, Weise J, Kalinke U, Schulz-Schaeffer W, Diem R. Neuroprotective effects of the cellular prion protein in autoimmune optic neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2823-31. [PMID: 21641403 DOI: 10.1016/j.ajpath.2011.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 02/15/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Although the pathologic role of the prion protein in transmissible spongiform encephalopathic diseases has been widely investigated, the physiologic role of the cellular prion protein (PrP(C)) is not known. Among the many functions attributed to PrP(C), there is increasing evidence that it is involved in cell survival and mediates neuroprotection. A potential role in the immune response has also been suggested. However, how these two functions interplay in autoimmune disease is unclear. To address this, autoimmune optic neuritis, a model of multiple sclerosis, was induced in C57Bl/6 mice, and up-regulation of PrP(C) was observed throughout the disease course. In addition, compared with wild-type mice, in PrP(C)-deficient mice and mice overexpressing PrP(C), histopathologic analysis demonstrated that optic neuritis was exacerbated, as indicated by axonal degeneration, inflammatory infiltration, and demyelination. However, significant neuroprotection of retinal ganglion cells, the axons of which form the optic nerve, was observed in mice that overexpressed PrP(C). Conversely, mice lacking PrP(C) demonstrated significantly more neurodegeneration. This suggests that PrP(C) may have a neuroprotective function independent of its role in regulating the immune response.
Collapse
Affiliation(s)
- Sarah K Williams
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Martin GR, Keenan CM, Sharkey KA, Jirik FR. Endogenous prion protein attenuates experimentally induced colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2290-301. [PMID: 21924230 DOI: 10.1016/j.ajpath.2011.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 02/07/2023]
Abstract
Although the cellular prion protein (PrP(C)) is expressed in the enteric nervous system and lamina propria, its function(s) in the gut is unknown. Because PrP(C) may exert a cytoprotective effect in response to various physiologic stressors, we hypothesized that PrP(C) expression levels might modulate the severity of experimental colitis. We evaluated the course of dextran sodium sulfate (DSS)-induced colitis in hemizygous Tga20 transgenic mice (approximately sevenfold overexpression of PrP(C)), Prnp(-/-) mice, and wild-type mice. On day 7, colon length, disease severity, and histologic activity indices were determined. Unlike DSS-treated wild-type and Prnp(-/-) animals, PrP(C) overexpressing mice were resistant to colitis induction, exhibited much milder histopathologic features, and did not exhibit weight loss or colonic shortening. In keeping with these results, pro-survival molecule expression and/or phosphorylation levels were elevated in DSS-treated Tga20 mice, whereas pro-inflammatory cytokine production and pSTAT3 levels were reduced. In contrast, DSS-treated Prnp(-/-) mice exhibited increased BAD protein expression and a cytokine expression profile predicted to favor inflammation and differentiation. PrP(C) expression from both the endogenous Prnp locus or the Tga20 transgene was increased in the colons of DSS-treated mice. Considered together, these findings demonstrate that PrP(C) has a previously unrecognized cytoprotective and/or anti-inflammatory function within the murine colon.
Collapse
Affiliation(s)
- Gary R Martin
- Department of Biochemistry and Molecular Biology and the McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
32
|
The cellular prion protein in multiple sclerosis: A potential target for neurotherapeutics? Transl Neurosci 2011. [DOI: 10.2478/s13380-011-0042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMultiple sclerosis (MS) is a debilitating disease that affects millions. There is no known cure for the disease and neither is the cause of the disease known. Recent studies have indicated that it is a multi-factorial disease with several genes involved. Importantly, sunlight and vitamin D have been implicated in the progression of the disease. The pathogenesis of MS chiefly involves loss of oligodendrocytes, which in addition to being killed by inflammatory mediators in the CNS, also succumbs to loss of trophic support from astrocytes. Neurotrophins play an important role in myelination and the cellular prion protein (PrPC) is a key player in this process. Although the physiological roles of PrPC remain to be fully understood, increasing evidence suggests multiple roles for PrPC in regulation of cellular immunity and for its interaction with several neurotrophins that are necessary for homeostasis of the nervous system. This mini-review focuses on the findings establishing a crucial role for PrPC in the neuropathogenesis of MS, emphasizing its neuroprotective role. Since MS is a multi-factorial disease with unknown etiology and no cure, this review aims to highlight endogenous repair mechanisms mediated by PrPC that might contribute to functional recovery in MS patients.
Collapse
|
33
|
In Brief. Nat Rev Neurosci 2010. [DOI: 10.1038/nrn2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|