1
|
Durmaz Celik N, Ozben S, Ozben T. Unveiling Parkinson's disease through biomarker research: current insights and future prospects. Crit Rev Clin Lab Sci 2024; 61:529-545. [PMID: 38529882 DOI: 10.1080/10408363.2024.2331471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by the gradual depletion of dopaminergic neurons in the substantia nigra. Despite substantial strides in comprehending potential causative mechanisms, the validation of biomarkers with unequivocal evidence for routine clinical application remains elusive. Consequently, the diagnosis heavily relies on patients' clinical assessments and medical backgrounds. The imperative need for diagnostic and prognostic biomarkers arises due to the prevailing limitations of treatments, which predominantly address symptoms without modifying the disease course. This comprehensive review aims to elucidate the existing landscape of diagnostic and prognostic biomarkers for PD, drawing insights from contemporary literature.
Collapse
Affiliation(s)
- Nazlı Durmaz Celik
- Department of Neurology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Serkan Ozben
- Department of Neurology, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Bhandari UR, Danish SM, Ahmad S, Ikram M, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. New opportunities for antioxidants in amelioration of neurodegenerative diseases. Mech Ageing Dev 2024; 221:111961. [PMID: 38960099 DOI: 10.1016/j.mad.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.
Collapse
Affiliation(s)
- Uttam Raj Bhandari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Maddocks GM, Eisenstein M, Soh HT. Biosensors for Parkinson's Disease: Where Are We Now, and Where Do We Need to Go? ACS Sens 2024; 9:4307-4327. [PMID: 39189973 DOI: 10.1021/acssensors.4c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's Disease is the second most common neurological disease in the United States, yet there is no cure, no pinpointed cause, and no definitive diagnostic procedure. Parkinson's is typically diagnosed when patients present with motor symptoms such as slowness of movement and tremors. However, none of these are specific to Parkinson's, and a confident diagnosis of Parkinson's is typically only achieved when 60-80% of dopaminergic neurons are no longer functioning, at which point much of the damage to the brain is irreversible. This Perspective details ongoing efforts and accomplishments in biosensor research with the goal of overcoming these issues for Parkinson's diagnosis and care, with a focus on the potential impact of early diagnosis and associated opportunities to pinpoint a cause and a cure. We critically analyze the strengths and shortcomings of current technologies and discuss the ideal characteristics of a diagnostic technology toolbox to guide future research decisions in this space. Finally, we assess what role biosensors can play in facilitating precision medicine for Parkinson's patients.
Collapse
Affiliation(s)
- Grace M Maddocks
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - M Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
5
|
Wang AY, Hu HY, Sun Y, Ou YN, Ma YH, Li M, Li QY, Tan L. Association between air pollution and cerebrospinal fluid alpha-synuclein in urban elders: the CABLE study. Front Aging Neurosci 2024; 16:1422772. [PMID: 39280698 PMCID: PMC11392785 DOI: 10.3389/fnagi.2024.1422772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Increasing evidence suggests that air pollution has a significant impact on the development of synucleinopathies, but the potential neurobiological mechanisms are unknown. We aimed to explore the associations of air pollution (including ozone [O3], nitrogen dioxide [NO2], and particulate matter [PM2.5]) with CSF α-syn levels in urban older adults. Methods We included 933 urban participants from the Chinese Alzheimer's Biomarker and LifestylE study. The 5-year average levels of air pollution exposure were estimated in the areas of residence. Multivariate linear regression was conducted to detect the correlation of air pollution with CSF α-syn levels. Subgroup analyses by age, gender, season, and history of coronary heart disease (CHD) were performed. Moreover, restricted cubic spline (RCS) models were applied to explore the potential nonlinear relationships. Results We found a significant correlation of CSF α-syn level with PM2.5 in urban participants. Specifically, multiple linear regression showed a significant negative association between PM2.5 and CSF α-syn level (p = 0.029), which was more significant in female, midlife, non-CHD, and cold season subgroups. Besides, RCS models showed that O3 had an inverse J-shaped association with CSF α-syn levels in urban participants (p for nonlinearity = 0.040), and the harmful effect possibly appeared when O3 was above 37.9 ppb. Discussion Long-term exposure to air pollution was associated with lower CSF α-syn levels, which may offer a new direction for exploring and preventing synucleinopathies.
Collapse
Affiliation(s)
- An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Lu Z, Yu X, Li P, Wang Y, Deng Y, Li X, Wang C, Yu S. Correlations of erythrocytic oligomer α-synuclein levels with age, sex and clinical variables in patients with Parkinson's disease. Front Aging Neurosci 2024; 16:1437622. [PMID: 39144258 PMCID: PMC11322579 DOI: 10.3389/fnagi.2024.1437622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Oligomeric alpha-synuclein in red blood cells (RBC-o-α-Syn) has been shown to be increased in patients with Parkinson's disease (PD). However, factors that affect RBC-o-α-Syn levels remain to be elucidated. The aim of this study is to analyze the correlations between RBC-o-α-Syn levels and the age, sex and different clinical variables of patients with PD. Methods 167 patients with PD and 119 healthy controls (HC) were enrolled in this study. The patients with PD were diagnosed based on the MDS clinical diagnostic criteria for PD. All participants were evaluated for their clinical characteristics. Western blot analysis was used to examine the molecular sizes of RBC-o-α-Syn. A newly established chemiluminescent immunoassay was used to measure RBC-o-α-Syn levels. Results Higher RBC-o-α-Syn levels were detected in PD patients than in HC subjects. The receiver operating characteristic (ROC) curve indicated that a cut off value of 55.29 ng/mg discriminated well between PD patients and HC subjects, with a sensitivity of 67.66% (95% CI: 60.24-74.29%), a specificity of 88.24% (95% CI: 81.22-92.86%), and an area under the curve (AUC) of 0.857. The levels of RBC-o-α-Syn were higher in female than male patients (p = 0.033). For different subtypes, the levels of RBC-o-α-Syn were higher in the MIX subtype than the tremor-dominant (TD) PD. In addition, the levels of RBC-o-α-Syn were higher in patients with than without cognitive impairment (p = 0.016), and negatively correlated with Mini-Mental State Examination (MMSE) scores (r = -0.156, p = 0.044). Conclusion Our study demonstrates that RBC-o-α-Syn levels in patients with PD are higher than those in HC subjects and affected by the sex and the severity of cognitive impairment.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiaohan Yu
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Pengjie Li
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yiming Wang
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yeyun Deng
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Li
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chaodong Wang
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shun Yu
- Department of Neurobiology and National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Hong J, Li Y, Chen L, Han D, Li Y, Mi X, Liu K, Wang Q, Song Y, Liu T, Yang N, Liu Y, Li Z, Guo X. A53T α-synuclein mutation increases susceptibility to postoperative delayed neurocognitive recovery via hippocampal Ang-(1-7)/MasR axis. Biochem Pharmacol 2024; 224:116261. [PMID: 38705534 DOI: 10.1016/j.bcp.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.
Collapse
Affiliation(s)
- Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
9
|
Blacher C, Abramov-Harpaz K, Miller Y. Primary Nucleation of Polymorphic α-Synuclein Dimers Depends on Copper Concentrations and Definite Copper-Binding Site. Biomolecules 2024; 14:627. [PMID: 38927031 PMCID: PMC11201572 DOI: 10.3390/biom14060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The primary nucleation process of α-synuclein (AS) that forms toxic oligomeric species is the early stage of the pathological cause of Parkinson's disease. It is well-known that copper influences this primary nucleation process. While significant efforts have been made to solve the structures of polymorphic AS fibrils, the structures of AS oligomers and the copper-bound AS oligomers at the molecular level and the effect of copper concentrations on the primary nucleation are elusive. Here, we propose and demonstrate new molecular mechanism pathways of primary nucleation of AS that are tuned by distinct copper concentrations and by a specific copper-binding site. We present the polymorphic AS dimers bound to different copper-binding sites at the atomic resolution in high- and low-copper concentrations, using extensive molecular dynamics simulations. Our results show the complexity of the primary nucleation pathways that rely on the copper concentrations and the copper binding site. From a broader perspective, our study proposes a new strategy to control the primary nucleation of other toxic amyloid oligomers in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmia Blacher
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| |
Collapse
|
10
|
Crapnell RD, Banks CE. Electroanalysis overview: additive manufactured biosensors using fused filament fabrication. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2625-2634. [PMID: 38639065 DOI: 10.1039/d4ay00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Additive manufacturing (3D-printing), in particular fused filament fabrication, presents a potential paradigm shift in the way electrochemical based biosensing platforms are produced, giving rise to a new generation of personalized and on-demand biosensors. The use of additive manufactured biosensors is unparalleled giving rise to unique customization, facile miniaturization, ease of use, economical but yet, still providing sensitive and selective approaches towards the target analyte. In this mini review, we focus on the use of fused filament fabrication additive manufacturing technology alongside different biosensing approaches that exclusively use antibodies, enzymes and associated biosensing materials (mediators) providing an up-to-date overview with future considerations to expand the additive manufacturing biosensors field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
11
|
Dhinesh Kumar M, Karthikeyan M, Kaniraja G, Muthukumar K, Muneeswaran G, Karunakaran C. Computational modelling and optimization studies of electropentamer for molecular imprinting of DJ-1. J Mol Graph Model 2024; 128:108715. [PMID: 38306790 DOI: 10.1016/j.jmgm.2024.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is the most prevalent type of incurable movement disorder. Recent research findings propose that the familial PD-associated molecule DJ-1 exists in cerebrospinal fluid (CSF) and that its levels may be altered as Parkinson's disease advances. By using a molecularly imprinted polymer (MIP) as an artificial receptor, it becomes possible to create a functional MIP with predetermined selectivity for various templates, particularly for the DJ-1 biomarker associated with Parkinson's disease. It mostly depends on molecular recognition via interactions between functional monomers and template molecules. So, the computational methods for the appropriate choice of functional monomers for creating molecular imprinting electropolymers (MIEPs) with particular recognition for the detection of DJ-1, a pivotal biomarker involved in PD, are undertaken in this study. Here, molecular docking, molecular dynamics simulations (MD), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods, and quantum mechanical calculation have been applied to investigate the intermolecular interaction between DJ-1 and several functional electropentamers, viz., polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(o-aminophenol) (POAP), and polythiophene (PTS). In this context, the electropentamers were selected to mimic the imprinted electropolymer system. We analyzed the most stable configurations of the formed complexes involving DJ-1 and electropentamers as a model system for MIEPs. Among these, PEDOT exhibited a more uniform arrangement around DJ-1, engaging in numerous van der Waals, H-bond, electrostatic, and hydrophobic interactions. Hence, it can be regarded as a preferable choice for synthesizing a MIP for DJ-1 recognition. Thus, it will aid in selecting a suitable functional monomer, which is of greater significance in the design and development of selective DJ-1/MIP sensors.
Collapse
Affiliation(s)
- Marimuthu Dhinesh Kumar
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India
| | - Murugesan Karthikeyan
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India
| | - Ganesan Kaniraja
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India
| | | | - Gurusamy Muneeswaran
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chandran Karunakaran
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar, 626 001, Tamil Nadu, India.
| |
Collapse
|
12
|
Faizan M, Sachan N, Verma O, Sarkar A, Rawat N, Pratap Singh M. Cerebrospinal fluid protein biomarkers in Parkinson's disease. Clin Chim Acta 2024; 556:117848. [PMID: 38417781 DOI: 10.1016/j.cca.2024.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Proteomic profiling is an effective way to identify biomarkers for Parkinson's disease (PD). Cerebrospinal fluid (CSF) has direct connectivity with the brain and could be a source of finding biomarkers and their clinical implications. Comparative proteomic profiling has shown that a group of differentially displayed proteins exist. The studies performed using conventional and classical tools also supported the occurrence of these proteins. Many studies have highlighted the potential of CSF proteomic profiling for biomarker identification and their clinical applications. Some of these proteins are useful for disease diagnosis and prediction. Proteomic profiling of CSF also has immense potential to distinguish PD from similar neurodegenerative disorders. A few protein biomarkers help in fundamental knowledge generation and clinical interpretation. However, the specific biomarker of PD is not yet known. The use of proteomic approaches in clinical settings is also rare. A large-scale, multi-centric, multi-population and multi-continental study using multiple proteomic tools is warranted. Such a study can provide valuable, comprehensive and reliable information for a better understanding of PD and the development of specific biomarkers. The current article sheds light on the role of CSF proteomic profiling in identifying biomarkers of PD and their clinical implications. The article also explains the achievements, obstacles and hopes for future directions of this approach.
Collapse
Affiliation(s)
- Mohd Faizan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Nidhi Sachan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Oyashvi Verma
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Alika Sarkar
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Neeraj Rawat
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Capacity Building and Knowledge Services, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
13
|
Li M, Ma YH, Guo Y, Liu JY, Tan L. Associations of cerebrospinal fluid complement proteins with Alzheimer's pathology, cognition, and brain structure in non-dementia elderly. Alzheimers Res Ther 2024; 16:12. [PMID: 38238858 PMCID: PMC10795368 DOI: 10.1186/s13195-023-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) complement activation is a key part of neuroinflammation that occurs in the early stages of Alzheimer's disease (AD). However, the associations of CSF complement proteins with AD pathology, cognition, and structural neuroimaging biomarkers for AD have been rarely investigated. METHODS A total of 210 participants (125 mild cognitive impairment [MCI] patients and 85 normal controls) were included from Alzheimer's Disease Neuroimaging Initiative (ADNI) database who measured AD pathology, cognition, and neuroimaging at baseline and every 12 months. The mixed-effect linear models were utilized to investigate longitudinal associations of CSF complement proteins with AD pathology, cognition, and neuroimaging in cognitively normal (CN) and mild cognitive impairment (MCI) subjects. Causal mediation analyses were conducted to explore the potential mediators between CSF complement proteins and cognitive changes. RESULTS We found that the subjects with low CSF complement protein levels at baseline had worse outcomes in AD pathology, indicated by their lowest concentrations observed in A + and A + T + individuals. The reduced CSF complement proteins were associated with faster accumulation of tau among CN subjects and with cognitive decline and greater brain atrophy of specific regions among MCI subjects. Furthermore, mediation analyses showed that the effects of CSF complement proteins on cognitive performance were partially mediated by regional brain structures (mediation proportions range from 19.78 to 94.92%; p < 0.05). CONCLUSIONS This study demonstrated that CSF complement proteins were involved in the early progression of AD. Our results indicated that regional brain atrophy might be a plausible way to connect CSF complement protein levels and cognition.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jia-Yao Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Luo S, Wang D, Zhang Z. Post-translational modification and mitochondrial function in Parkinson's disease. Front Mol Neurosci 2024; 16:1329554. [PMID: 38273938 PMCID: PMC10808367 DOI: 10.3389/fnmol.2023.1329554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with currently no cure. Most PD cases are sporadic, and about 5-10% of PD cases present a monogenic inheritance pattern. Mutations in more than 20 genes are associated with genetic forms of PD. Mitochondrial dysfunction is considered a prominent player in PD pathogenesis. Post-translational modifications (PTMs) allow rapid switching of protein functions and therefore impact various cellular functions including those related to mitochondria. Among the PD-associated genes, Parkin, PINK1, and LRRK2 encode enzymes that directly involved in catalyzing PTM modifications of target proteins, while others like α-synuclein, FBXO7, HTRA2, VPS35, CHCHD2, and DJ-1, undergo substantial PTM modification, subsequently altering mitochondrial functions. Here, we summarize recent findings on major PTMs associated with PD-related proteins, as enzymes or substrates, that are shown to regulate important mitochondrial functions and discuss their involvement in PD pathogenesis. We will further highlight the significance of PTM-regulated mitochondrial functions in understanding PD etiology. Furthermore, we emphasize the potential for developing important biomarkers for PD through extensive research into PTMs.
Collapse
Affiliation(s)
- Shishi Luo
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Danling Wang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Chopra A, Outeiro TF. Aggregation and beyond: alpha-synuclein-based biomarkers in synucleinopathies. Brain 2024; 147:81-90. [PMID: 37526295 DOI: 10.1093/brain/awad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
Parkinson's disease is clinically known for the loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of intraneuronal cytoplasmic inclusions rich in alpha-synuclein called 'Lewy bodies' and 'Lewy neurites'. Together with dementia with Lewy bodies and multiple system atrophy, Parkinson's disease is part of a group of disorders called synucleinopathies. Currently, diagnosis of synucleinopathies is based on the clinical assessment which often takes place in advanced disease stages. While the causal role of alpha-synuclein aggregates in these disorders is still debatable, measuring the levels, types or seeding properties of different alpha-synuclein species hold great promise as biomarkers. Recent studies indicate significant differences in peptide, protein and RNA levels in blood samples from patients with Parkinson's disease. Seed amplification assays using CSF, blood, skin biopsy, olfactory swab samples show great promise for detecting synucleinopathies and even for discriminating between different synucleinopathies. Interestingly, small extracellular vesicles, such as exosomes, display differences in their cargoes in Parkinson's disease patients versus controls. In this update, we focus on alpha-synuclein aggregation and possible sources of disease-related species released in extracellular vesicles, which promise to revolutionize the diagnosis and the monitoring of disease progression.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
16
|
Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM. Inflammation as common link to progressive neurological diseases. Arch Toxicol 2024; 98:95-119. [PMID: 37964100 PMCID: PMC10761431 DOI: 10.1007/s00204-023-03628-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
17
|
Quesnel A, Martin LD, Tarzi C, Lenis VP, Coles N, Islam M, Angione C, Outeiro TF, Khundakar AA, Filippou PS. Uncovering potential diagnostic and pathophysiological roles of α-synuclein and DJ-1 in melanoma. Cancer Med 2024; 13:e6900. [PMID: 38189631 PMCID: PMC10807602 DOI: 10.1002/cam4.6900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Melanoma, the most lethal skin cancer type, occurs more frequently in Parkinson's disease (PD), and PD is more frequent in melanoma patients, suggesting disease mechanisms overlap. α-synuclein, a protein that accumulates in PD brain, and the oncogene DJ-1, which is associated with PD autosomal recessive forms, are both elevated in melanoma cells. Whether this indicates melanoma progression or constitutes a protective response remains unclear. We hereby investigated the molecular mechanisms through which α-synuclein and DJ-1 interact, suggesting novel biomarkers and targets in melanoma. METHODS The Cancer Genome Atlas (TCGA) expression profiles derived from UCSC Xena were used to obtain α-synuclein and DJ-1 expression and correlated with survival in skin cutaneous melanoma (SKCM). Immunohistochemistry determined the expression in metastatic melanoma lymph nodes. Protein-protein interactions (PPIs) and molecular docking assessed protein binding and affinity with chemotherapeutic drugs. Further validation was performed using in vitro cellular models and ELISA immunoassays. RESULTS α-synuclein and DJ-1 were upregulated in primary and metastatic SKCM. Aggregated α-synuclein was selectively detected in metastatic melanoma lymph nodes. α-synuclein overexpression in SK-MEL-28 cells induced the expression of DJ-1, supporting PPI and a positive correlation in melanoma patients. Molecular docking revealed a stable protein complex, with differential binding to chemotherapy drugs such as temozolomide, dacarbazine, and doxorubicin. Parallel reduction of both proteins in temozolomide-treated SK-MEL-28 spheroids suggests drug binding may affect protein interaction and/or stability. CONCLUSION α-synuclein, together with DJ-1, may play a role in melanoma progression and chemosensitivity, constituting novel targets for therapeutic intervention, and possible biomarkers for melanoma.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Leya Danielle Martin
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
| | - Vasileios P. Lenis
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Nathan Coles
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Meez Islam
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| | - Claudio Angione
- National Horizons CentreTeesside UniversityDarlingtonUK
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
| | - Tiago F. Outeiro
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical CenterGöttingenGermany
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | - Ahmad A. Khundakar
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Panagiota S. Filippou
- School of Health & Life SciencesTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| |
Collapse
|
18
|
Zheng Y, Li S, Yang C, Yu Z, Jiang Y, Feng T. Comparison of biospecimens for α-synuclein seed amplification assays in Parkinson's disease: A systematic review and network meta-analysis. Eur J Neurol 2023; 30:3949-3967. [PMID: 37573472 DOI: 10.1111/ene.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND AND PURPOSE Alpha-synuclein seed amplification assays (α-syn SAAs) are promising diagnostic methods for Parkinson's disease (PD) and other synucleinopathies. However, there is limited consensus regarding the diagnostic and differential diagnostic performance of α-syn SAAs on biofluids and peripheral tissues. METHODS A comprehensive research was performed in PubMed, Web of Science, Embase and Cochrane Library. Meta-analysis was performed using a random-effects model. A network meta-analysis based on an ANOVA model was conducted to compare the relative accuracy of α-syn SAAs with different specimens. RESULTS The pooled sensitivity and specificity of α-syn SAAs in distinguishing PD from healthy controls or non-neurodegenerative neurological controls were 0.91 (95% confidence interval [CI] 0.89-0.92) and 0.95 (95% CI 0.94-0.96) for cerebrospinal fluid (CSF); 0.91 (95% CI 0.86-0.94) and 0.92 (95% CI 0.87-0.95) for skin; 0.80 (95% CI 0.66-0.89) and 0.87 (95% CI 0.69-0.96) for submandibular gland; 0.44 (95% CI 0.30-0.59) and 0.92 (95% CI 0.79-0.98) for gastrointestinal tract; 0.79 (95% CI 0.70-0.86) and 0.88 (95% CI 0.77-0.95) for saliva; and 0.51 (95% CI 0.39-0.62) and 0.91 (95% CI 0.84-0.96) for olfactory mucosa (OM). The pooled sensitivity and specificity were 0.91 (95% CI 0.89-0.93) and 0.50 (95% CI 0.44-0.55) for CSF, 0.92 (95% CI 0.83-0.97) and 0.22 (95% CI 0.06-0.48) for skin, and 0.55 (95% CI 0.42-0.68) and 0.50 (95% CI 0.35-0.65) for OM in distinguishing PD from multiple system atrophy. The pooled sensitivity and specificity were 0.92 (95% CI 0.89-0.94) and 0.84 (95% CI 0.73-0.91) for CSF, 0.92 (95% CI 0.83-0.97) and 0.88 (95% CI 0.64-0.99) for skin and 0.63 (95% CI 0.52-0.73) and 0.86 (95% CI 0.64-0.97) for OM in distinguishing PD from progressive supranuclear palsy. The pooled sensitivity and specificity were 0.94 (95% CI 0.90-0.97) and 0.95 (95% CI 0.77-1.00) for CSF and 0.94 (95% CI 0.84-0.99) and 0.86 (95% CI 0.42-1.00) for skin in distinguishing PD from corticobasal degeneration. CONCLUSIONS α-Synuclein SAAs of CSF, skin, saliva, submandibular gland, gastrointestinal tract and OM are promising diagnostic assays for PD, with CSF and skin α-syn SAAs demonstrating higher diagnostic performance.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Ying Jiang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
19
|
Taha HB, Ati SS. Evaluation of α-synuclein in CNS-originating extracellular vesicles for Parkinsonian disorders: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3741-3755. [PMID: 37416941 PMCID: PMC10651986 DOI: 10.1111/cns.14341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND & AIMS Parkinsonian disorders, such as Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), share early motor symptoms but have distinct pathophysiology. As a result, accurate premortem diagnosis is challenging for neurologists, hindering efforts for disease-modifying therapeutic discovery. Extracellular vesicles (EVs) contain cell-state-specific biomolecules and can cross the blood-brain barrier to the peripheral circulation, providing a unique central nervous system (CNS) insight. This meta-analysis evaluated blood-isolated neuronal and oligodendroglial EVs (nEVs and oEVs) α-synuclein levels in Parkinsonian disorders. METHODS Following PRISMA guidelines, the meta-analysis included 13 studies. An inverse-variance random-effects model quantified effect size (SMD), QUADAS-2 assessed risk of bias and publication bias was evaluated. Demographic and clinical variables were collected for meta-regression. RESULTS The meta-analysis included 1,565 patients with PD, 206 with MSA, 21 with DLB, 172 with PSP, 152 with CBS and 967 healthy controls (HCs). Findings suggest that combined concentrations of nEVs and oEVs α-syn is higher in patients with PD compared to HCs (SMD = 0.21, p = 0.021), while nEVs α-syn is lower in patients with PSP and CBS compared to patients with PD (SMD = -1.04, p = 0.0017) or HCs (SMD = -0.41, p < 0.001). Additionally, α-syn in nEVs and/or oEVs did not significantly differ in patients with PD vs. MSA, contradicting the literature. Meta-regressions show that demographic and clinical factors were not significant predictors of nEVs or oEVs α-syn concentrations. CONCLUSION The results highlight the need for standardized procedures and independent validations in biomarker studies and the development of improved biomarkers for distinguishing Parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Shomik S. Ati
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
20
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
21
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
22
|
Xylaki M, Chopra A, Weber S, Bartl M, Outeiro TF, Mollenhauer B. Extracellular Vesicles for the Diagnosis of Parkinson's Disease: Systematic Review and Meta-Analysis. Mov Disord 2023; 38:1585-1597. [PMID: 37449706 DOI: 10.1002/mds.29497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023] Open
Abstract
Parkinson's disease (PD) biomarkers are needed by both clinicians and researchers (for diagnosis, identifying study populations, and monitoring therapeutic response). Imaging, genetic, and biochemical biomarkers have been widely studied. In recent years, extracellular vesicles (EVs) have become a promising material for biomarker development. Proteins and molecular material from any organ, including the central nervous system, can be packed into EVs and transported to the periphery into easily obtainable biological specimens like blood, urine, and saliva. We performed a systematic review and meta-analysis of articles (published before November 15, 2022) reporting biomarker assessment in EVs in PD patients and healthy controls (HCs). Biomarkers were analyzed using random effects meta-analysis and the calculated standardized mean difference (Std.MD). Several proteins and ribonucleic acids have been identified in EVs in PD patients, but only α-synuclein (aSyn) and leucine-rich repeat kinase 2 (LRRK2) were reported in sufficient studies (n = 24 and 6, respectively) to perform a meta-analysis. EV aSyn was significantly increased in neuronal L1 cell adhesion molecule (L1CAM)-positive blood EVs in PD patients compared to HCs (Std.MD = 1.84, 95% confidence interval = 0.76-2.93, P = 0.0009). Further analysis of the biological sample and EV isolation method indicated that L1CAM-IP (immunoprecipitation) directly from plasma was the best isolation method for assessing aSyn in PD patients. Upcoming neuroprotective clinical trials immediately need peripheral biomarkers for identifying individuals at risk of developing PD. Overall, the improved sensitivity of assays means they can identify biomarkers in blood that reflect changes in the brain. CNS-derived EVs in blood will likely play a major role in biomarker development in the coming years. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, Upon Tyne, United Kingdom
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
23
|
Kandeel M, Morsy MA, Alkhodair KM, Alhojaily S. Mesenchymal Stem Cell-Derived Extracellular Vesicles: An Emerging Diagnostic and Therapeutic Biomolecules for Neurodegenerative Disabilities. Biomolecules 2023; 13:1250. [PMID: 37627315 PMCID: PMC10452295 DOI: 10.3390/biom13081250] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of versatile adult stem cells present in various organs. These cells give rise to extracellular vesicles (EVs) containing a diverse array of biologically active elements, making them a promising approach for therapeutics and diagnostics. This article examines the potential therapeutic applications of MSC-derived EVs in addressing neurodegenerative disorders such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Furthermore, the present state-of-the-art for MSC-EV-based therapy in AD, HD, PD, ALS, and MS is discussed. Significant progress has been made in understanding the etiology and potential treatments for a range of neurodegenerative diseases (NDs) over the last few decades. The contents of EVs are carried across cells for intercellular contact, which often results in the control of the recipient cell's homeostasis. Since EVs represent the therapeutically beneficial cargo of parent cells and are devoid of many ethical problems connected with cell-based treatments, they offer a viable cell-free therapy alternative for tissue regeneration and repair. Developing innovative EV-dependent medicines has proven difficult due to the lack of standardized procedures in EV extraction processes as well as their pharmacological characteristics and mechanisms of action. However, recent biotechnology and engineering research has greatly enhanced the content and applicability of MSC-EVs.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Khalid M. Alkhodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sameer Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
24
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Salaramoli S, Joshaghani HR, Hashemy SI. Salivary Biomarkers: Noninvasive Ways for Diagnosis of Parkinson's Disease. Neurol Res Int 2023; 2023:3555418. [PMID: 37434876 PMCID: PMC10332915 DOI: 10.1155/2023/3555418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Finding reliable biomarkers has a crucial role in Parkinson's disease (PD) assessments. Saliva is a bodily fluid, which might be used as a source of biomarkers for PD. Our article has reviewed several publications on salivary proteins in PD patients and their potential as biomarkers. We find out that α-Syn's proportion in oligomeric form is higher in PD patients' saliva, which is potent to use as a biomarker for PD. The salivary concentration of DJ-1 and alpha-amylase is lower in PD patients. Also, substance P level is more moderate in PD patients. Although salivary flow rate is decreased in PD patients, high levels of heme oxygenase and acetylcholinesterase might be used as noninvasive biomarkers. Salivary miRNAs (miR-153, miR-223, miR-874, and miR-145-3p) are novel diagnostic biomarkers that should be given more attention.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Cabrera Ranaldi EDLRM, Nuytemans K, Martinez A, Luca CC, Keane RW, de Rivero Vaccari JP. Proof-of-Principle Study of Inflammasome Signaling Proteins as Diagnostic Biomarkers of the Inflammatory Response in Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:883. [PMID: 37375830 DOI: 10.3390/ph16060883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the death of dopaminergic neurons in the midbrain, the accumulation of α-synuclein aggregates, and motor deficits. A major contributor to dopaminergic neuronal loss is neuroinflammation. The inflammasome is a multiprotein complex that perpetuates neuroinflammation in neurodegenerative disorders including PD. Increases in inflammasome proteins are associated with worsened pathology. Thus, the inhibition of inflammatory mediators has the potential to aid in PD treatment. Here, we investigated inflammasome signaling proteins as potential biomarkers of the inflammatory response in PD. Plasma from PD subjects and healthy age-matched controls were evaluated for levels of the inflammasome protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin (IL)-18. This was carried out using Simple Plex technology to identify changes in inflammasome proteins in the blood of PD subjects. The area under the curve (AUC) was obtained through calculation of the receiver operating characteristics (ROC) to obtain information on biomarker reliability and traits. Additionally, we completed a stepwise regression selected from the lowest Akaike information criterion (AIC) to assess how the inflammasome proteins caspase-1 and ASC contribute to IL-18 levels in people with PD. PD subjects demonstrated elevated caspase-1, ASC, and IL-18 levels when compared to controls; each of these proteins were found to be promising biomarkers of inflammation in PD. Furthermore, inflammasome proteins were determined to significantly contribute to and predict IL-18 levels in subjects with PD. Thus, we demonstrated that inflammasome proteins serve as reliable biomarkers of inflammation in PD and that inflammasome proteins provide significant contributions to IL-18 levels in PD.
Collapse
Affiliation(s)
- Erika D L R M Cabrera Ranaldi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karen Nuytemans
- The Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anisley Martinez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Corneliu C Luca
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
28
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Meneri M, Abati E, Gagliardi D, Faravelli I, Parente V, Ratti A, Verde F, Ticozzi N, Comi GP, Ottoboni L, Corti S. Identification of Novel Biomarkers of Spinal Muscular Atrophy and Therapeutic Response by Proteomic and Metabolomic Profiling of Human Biological Fluid Samples. Biomedicines 2023; 11:1254. [PMID: 37238925 PMCID: PMC10215459 DOI: 10.3390/biomedicines11051254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
30
|
Zhang Q, Lin Z, He Y, Jiang J, Hu D. Mendelian Randomization Analysis Reveals No Causal Relationship Between Plasma α-Synuclein and Parkinson's Disease. Mol Neurobiol 2023; 60:2268-2276. [PMID: 36640248 DOI: 10.1007/s12035-023-03206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
So far, the studies exploring plasma α-synuclein as a biomarker of Parkinson's disease (PD) have provided contradictory results. Here, we first employed the Mendelian randomization (MR) approach to elucidate their potential causal relationship. Five genetic instrumental variables of plasma α-synuclein were acquired from two publicly available datasets. Three independent genome-wide association studies of PD were used as outcome cohorts (PD cohorts 1, 2, and 3). Two-sample MR analyses were conducted using inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode, and leave-one-out methods. Though the IVW approach demonstrated positive plasma α-synuclein effect on the PD risk in three outcome cohorts (OR = 1.134, 1.164, and 1.189, respectively), the P values were all larger than 0.05. The conclusions were robust under complementary sensitivity analyses. Our results did not support the causal relationship between plasma α-synuclein and PD.
Collapse
Affiliation(s)
- Qi Zhang
- The Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Zenan Lin
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yan He
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Junhong Jiang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Di Hu
- Children's Hospital of Fudan University, No.399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
31
|
Pingle SC, Lin F, Anekoji MS, Patro CK, Datta S, Jones LD, Kesari S, Ashili S. Exploring the role of cerebrospinal fluid as analyte in neurologic disorders. Future Sci OA 2023; 9:FSO851. [PMID: 37090492 PMCID: PMC10116372 DOI: 10.2144/fsoa-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
The cerebrospinal fluid (CSF) is a clear ultrafiltrate of blood that envelopes and protects the central nervous system while regulating neuronal function through the maintenance of interstitial fluid homeostasis in the brain. Due to its anatomic location and physiological functions, the CSF can provide a reliable source of biomarkers for the diagnosis and treatment monitoring of different neurological diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and primary and secondary brain malignancies. The incorporation of CSF biomarkers into the drug discovery and development can improve the efficiency of drug development and increase the chances of success. This review aims to consolidate the current use of CSF biomarkers in clinical practice and explore future perspectives for the field.
Collapse
Affiliation(s)
- Sandeep C Pingle
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Feng Lin
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
- Author for correspondence:
| | - Misa S Anekoji
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - C Pawan K Patro
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Souvik Datta
- Rhenix Lifesciences, 237 Vengal Rao Nagar, Hyderabad, TG, 500038, India
| | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Santosh Kesari
- Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center & Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| |
Collapse
|
32
|
Dabiri S, Ramírez Ruiz MI, Jean-Louis G, Ntekim OE, Obisesan TO, Campbell AL, Mwendwa DT. The Mediating Role of Inflammation in the Relationship Between α-Synuclein and Cognitive Functioning. J Gerontol A Biol Sci Med Sci 2023; 78:206-212. [PMID: 36269624 PMCID: PMC10215981 DOI: 10.1093/gerona/glac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that α-synuclein plays a role in the pathophysiology of Alzheimer's disease (AD). This study examined whether α-synuclein level in cerebrospinal fluid (CSF) was associated with cognitive functioning among older adults. We also explored whether this relationship was mediated by proinflammatory cytokines TNF-α and IL-6, along with sIL-6R and vascular endothelial growth factor (VEGF). Using a cross-sectional Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 148) sample, we examined the relationship between α-synuclein and participants' performance on Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog 13) at baseline. Mediation analyses were utilized, adjusting for age, education, APOEe4, and Geriatric Depression Scale scores. All biological markers were measured in CSF. Participants in the current sample were 58.3% males, 41.7% females, and Caucasian (95.5%); their average education and age were 15.5 (standard deviation [SD] = 2.97) and 74.4 (SD = 7.51) years, respectively. Higher accumulation of α-synuclein was associated with poorer MMSE scores (β = -0.41, standard error [SE] = 1.54, p < .001). This relationship appeared to be mediated by VEGF (β = 0.27, SE = 2.15, p = .025) and IL-6r (β = 0.22, SE = 1.66, p < .026). In addition, α-synuclein was associated with poorer performance on the ADAS-Cog 13 (β = 0.34, p = .005) and mediated by VEGF (β = -0.19, SE = 4.13, p = .025) after adjusting for age, education, APOEe4, and depressive symptoms. α-Synuclein may serve as an additional biomarker for determining poor cognitive functioning. VEGF and IL-6 soluble receptors were significant mediators of the relationship between α-synuclein and cognitive functioning. If confirmed in prospective analyses, these findings can further inform the pathologic cascade and early diagnosis of AD.
Collapse
Affiliation(s)
- Sanaz Dabiri
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Mara I Ramírez Ruiz
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Girardin Jean-Louis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Oyonumo E Ntekim
- Department of Graduate Nutritional Sciences, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Thomas O Obisesan
- Division of Geriatrics, Department of Medicine, Howard University Hospital, Washington, District of Columbia, Washington, DC, USA
| | - Alfonso L Campbell
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Denée T Mwendwa
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | | |
Collapse
|
33
|
An Update on Peripheral Blood Extracellular Vesicles as Biomarkers for Parkinson's Disease Diagnosis. Neuroscience 2023; 511:131-146. [PMID: 36435476 DOI: 10.1016/j.neuroscience.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the world's second primary neurodegenerative disease, and the diagnosis and treatment of PD have become mainstream research. Over the past decades, several studies have identified potential biomarkers for diagnosing PD. Among them, extracellular vesicles (EVs) can carry specific biomarkers reflecting the physiological and pathological state of the body. Due to the blood-brain barrier (BBB) limitation, peripheral blood is limited in diagnosing neurodegenerative diseases. With the increasing research on EVs, their ability to pass through BBB indicated that peripheral blood could depict disease status like cerebrospinal fluid (CSF). Peripheral blood is a clinically available sample and has recently been widely used by researchers in various studies. In this review, we summarized previous studies on PD diagnosis biomarkers in peripheral blood EVs and evaluated their diagnostic value. Some EV surface markers were also described, which can extract EVs from specific cell origins. In addition, the combination of several biomarkers demonstrated good diagnostic performance in PD diagnosis compared with a single biomarker, suggesting the focus of future research.
Collapse
|
34
|
Thermodynamic Signatures of Blood Plasma Proteome in Neurodegenerative Pathologies. Int J Mol Sci 2023; 24:ijms24010789. [PMID: 36614231 PMCID: PMC9821040 DOI: 10.3390/ijms24010789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Discovery of diagnostic biomarkers for age-related neurodegenerative pathologies (NDDs) is essential for accurate diagnosis, following disease progression and drug development. Blood plasma and blood cells are important peripheral sources for NDDs' biomarkers that, although present in lower concentrations than in cerebrospinal fluid, would allow noninvasive diagnostics. To identify new biomarkers for Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), in this work we have evaluated the modifications in the thermodynamic behavior of blood plasma proteome exploring differential scanning calorimetry. The plasma thermodynamics reflected the complexity and heterogeneity of the two pathologies. The unfolding temperature of the most abundant plasma protein albumin and the weighted average center of the calorimetric profile appeared as the two thermodynamic signatures that reflected modifications of the plasma proteome, i.e., strong thermal stabilization of albumin and plasma proteins' interaction network, related to both pathologies. Based on those two signatures, both PD and ALS patients were stratified in two sets, except several cases with thermodynamic parameters that strongly differed from those of the calorimetric sets. Along with modifications of the plasma thermodynamic behavior, we found altered globulin levels in all PD and ALS patients' plasma (higher level of α- and β-globulin fractions and lower level of γ-globulin fraction than the respective reference values) employing capillary electrophoresis. The presented results reveal the potential of calorimetry to indirectly identify NDDs' biomarkers in blood plasma.
Collapse
|
35
|
Jang Y, Pletnikova O, Troncoso JC, Pantelyat AY, Dawson TM, Rosenthal LS, Na CH. Mass Spectrometry-Based Proteomics Analysis of Human Substantia Nigra From Parkinson's Disease Patients Identifies Multiple Pathways Potentially Involved in the Disease. Mol Cell Proteomics 2023; 22:100452. [PMID: 36423813 PMCID: PMC9792365 DOI: 10.1016/j.mcpro.2022.100452] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient's brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag-based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein-protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Yura Jang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander Y Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA; Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, USA.
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
36
|
Brumm MC, Siderowf A, Simuni T, Burghardt E, Choi SH, Caspell-Garcia C, Chahine LM, Mollenhauer B, Foroud T, Galasko D, Merchant K, Arnedo V, Hutten SJ, O’Grady AN, Poston KL, Tanner CM, Weintraub D, Kieburtz K, Marek K, Coffey CS. Parkinson's Progression Markers Initiative: A Milestone-Based Strategy to Monitor Parkinson's Disease Progression. JOURNAL OF PARKINSON'S DISEASE 2023; 13:899-916. [PMID: 37458046 PMCID: PMC10578214 DOI: 10.3233/jpd-223433] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Identifying a meaningful progression metric for Parkinson's disease (PD) that reflects heterogeneity remains a challenge. OBJECTIVE To assess the frequency and baseline predictors of progression to clinically relevant motor and non-motor PD milestones. METHODS Using data from the Parkinson's Progression Markers Initiative (PPMI) de novo PD cohort, we monitored 25 milestones across six domains ("walking and balance"; "motor complications"; "cognition"; "autonomic dysfunction"; "functional dependence"; "activities of daily living"). Milestones were intended to be severe enough to reflect meaningful disability. We assessed the proportion of participants reaching any milestone; evaluated which occurred most frequently; and conducted a time-to-first-event analysis exploring whether baseline characteristics were associated with progression. RESULTS Half of participants reached at least one milestone within five years. Milestones within the cognitive, functional dependence, and autonomic dysfunction domains were reached most often. Among participants who reached a milestone at an annual follow-up visit and remained active in the study, 82% continued to meet criteria for any milestone at one or more subsequent annual visits and 55% did so at the next annual visit. In multivariable analysis, baseline features predicting faster time to reaching a milestone included age (p < 0.0001), greater MDS-UPDRS total scores (p < 0.0001), higher GDS-15 depression scores (p = 0.0341), lower dopamine transporter binding (p = 0.0043), and lower CSF total α-synuclein levels (p = 0.0030). Symptomatic treatment was not significantly associated with reaching a milestone (p = 0.1639). CONCLUSION Clinically relevant milestones occur frequently, even in early PD. Milestones were significantly associated with baseline clinical and biological markers, but not with symptomatic treatment. Further studies are necessary to validate these results, further assess the stability of milestones, and explore translating them into an outcome measure suitable for observational and therapeutic studies.
Collapse
Affiliation(s)
- Michael C. Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elliot Burghardt
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Lana M. Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena Klinik, Kassel, Germany
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, CA, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vanessa Arnedo
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Samantha J. Hutten
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Alyssa N. O’Grady
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, SanFrancisco, CA, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Daniel Weintraub
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departmentof Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Christopher S. Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - on behalf of the Parkinson’s Progression Markers Initiative
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of California, San Diego, CA, USA
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, SanFrancisco, CA, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Departmentof Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
37
|
Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer's disease. Alzheimers Res Ther 2022; 14:201. [PMID: 36587215 PMCID: PMC9805257 DOI: 10.1186/s13195-022-01150-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is considered the main pathophysiological protein component of Lewy bodies in synucleinopathies. α-Syn is an intrinsically disordered protein (IDP), and several types of structural conformations have been reported, depending on environmental factors. Since IDPs may have distinctive functions depending on their structures, α-syn can play different roles and interact with several proteins, including amyloid-beta (Aβ) and tau, in Alzheimer's disease (AD) and other neurodegenerative disorders. MAIN BODY In previous studies, α-syn aggregates in AD brains suggested a close relationship between AD and α-syn. In addition, α-syn directly interacts with Aβ and tau, promoting mutual aggregation and exacerbating the cognitive decline. The interaction of α-syn with Aβ and tau presented different consequences depending on the structural forms of the proteins. In AD, α-syn and tau levels in CSF were both elevated and revealed a high positive correlation. Especially, the CSF α-syn concentration was significantly elevated in the early stages of AD. Therefore, it could be a diagnostic marker of AD and help distinguish AD from other neurodegenerative disorders by incorporating other biomarkers. CONCLUSION The overall physiological and pathophysiological functions, structures, and genetics of α-syn in AD are reviewed and summarized. The numerous associations of α-syn with Aβ and tau suggested the significance of α-syn, as a partner of the pathophysiological roles in AD. Understanding the involvements of α-syn in the pathology of Aβ and tau could help address the unresolved issues of AD. In particular, the current status of the CSF α-syn in AD recommends it as an additional biomarker in the panel for AD diagnosis.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Young Chul Youn
- grid.411651.60000 0004 0647 4960Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seong Soo A. An
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - SangYun Kim
- grid.412480.b0000 0004 0647 3378Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-Si, Gyeonggi-Do Republic of Korea
| |
Collapse
|
38
|
Dhinesh Kumar M, Karthikeyan M, Sharma N, Raju V, Vatsalarani J, Kalivendi SV, Karunakaran C. Molecular imprinting synthetic receptor based sensor for determination of Parkinson's disease biomarker DJ-1. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Chen WR, Chen JC, Chang SY, Chao CT, Wu YR, Chen CM, Chou C. Phosphorylated α-synuclein in diluted human serum as a biomarker for Parkinson's disease. Biomed J 2022; 45:914-922. [PMID: 34974168 PMCID: PMC9795354 DOI: 10.1016/j.bj.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, which characterized by increased pathological marker protein, α-synuclein (α-syn) and phosphorylated-Ser129-α-syn in the extracellular fluids. Current methods of measuring the p-Ser129-α-syn concentration in cerebrospinal fluid for PD are based on ELISA method, however, the amount of area under the curve (AUC) to predict PD is around 0.7-0.8. Higher confidence level of AUC in p-Ser129-α-syn quantification for the early diagnosis of PD would be essential. METHODS Detection of p-Ser129-α-syn in diluted human serum for diagnosis of PD was investigated by a modified paired surface plasma wave biosensor (PSPWB) using a quarter wave plate for better detection performance. The method combining an immunoassay and non-labeled technique measures the p-Ser129-α-syn level with high sensitivity and specificity. Ten patients with PD at early stage (Hohn & Yahr stage I and II) and 11 age-matched healthy control participants were recruited for measurement of serum p-Ser129-α-syn. RESULTS AUC of the p-Ser129-α-syn in diluted human serum was 0.92 and it shows that p-Ser129-α-syn in diluted human serum could be used as a sensitive biomarker for the diagnosis of PD in clinics. Results clearly show that the measured p-Ser129-α-syn concentration in diluted human serum displays a statistical significance between health control subjects and PD patients. CONCLUSIONS P-Ser129-α-syn has low abundance in human serum, high detection sensitivity and specificity are critical to the success of the diagnosis of PD in clinics. In this study, a modified PSPWB was developed that the limit of detection at 1 ng/mL for p-Ser129-α-syn (standard) spiked into diluted human serum of a healthy control was performed. This result shows that the modified PSPWB can be used as a platform for detecting p-Ser129-α-syn in diluted human serum as a potential biomarker for PD.
Collapse
Affiliation(s)
- Wei-Ru Chen
- PhD Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Institute of Biomedical Science, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yi Chang
- PhD Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan,The General Education Center, Ming Chi University of Technology, Taipei, Taiwan
| | - Chi-Tse Chao
- Graduate Institute of Electro-optical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital at Linkou, Taoyuan, Taiwan,College of Medicine, Chang-Gung University, Taoyuan, Taiwan,Corresponding author. Department of Neurology, Chang-Gung Memorial Hospital at Linkou, 5, Fusing St., Gueishan, Taoyuan 333 Taiwan.
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital at Linkou, Taoyuan, Taiwan,College of Medicine, Chang-Gung University, Taoyuan, Taiwan,Corresponding author. Department of Neurology, Chang-Gung Memorial Hospital at Linkou, 5, Fusing St., Gueishan, Taoyuan 333 Taiwan.
| | - Chien Chou
- PhD Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan,Graduate Institute of Electro-optical Engineering, Chang Gung University, Taoyuan, Taiwan,Corresponding author. PhD Program in Biomedical Engineering, Chang Gung University, 259, Wenhua 1st Rd., Gueishan, Taoyuan 333, Taiwan.
| |
Collapse
|
40
|
D’Ascenzo N, Antonecchia E, Angiolillo A, Bender V, Camerlenghi M, Xie Q, Di Costanzo A. Metabolomics of blood reveals age-dependent pathways in Parkinson’s Disease. Cell Biosci 2022; 12:102. [PMID: 35794650 PMCID: PMC9258166 DOI: 10.1186/s13578-022-00831-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background Parkinson’s Disease (PD) is the second most frequent degenerative disorder, the risk of which increases with age. A preclinical PD diagnostic test does not exist. We identify PD blood metabolites and metabolic pathways significantly correlated with age to develop personalized age-dependent PD blood biomarkers. Results We found 33 metabolites producing a receiver operating characteristic (ROC) area under the curve (AUC) value of 97%. PCA revealed that they belong to three pathways with distinct age-dependent behavior: glycine, threonine and serine metabolism correlates with age only in PD patients; unsaturated fatty acids biosynthesis correlates with age only in a healthy control group; and, finally, tryptophan metabolism characterizes PD but does not correlate with age. Conclusions The targeted analysis of the blood metabolome proposed in this paper allowed to find specific age-related metabolites and metabolic pathways. The model offers a promising set of blood biomarkers for a personalized age-dependent approach to the early PD diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00831-5.
Collapse
|
41
|
Zheng Y, Cai H, Zhao J, Yu Z, Feng T. Alpha-Synuclein species in oral mucosa as potential biomarkers for multiple system atrophy. Front Aging Neurosci 2022; 14:1010064. [PMID: 36304930 PMCID: PMC9592697 DOI: 10.3389/fnagi.2022.1010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background The definitive diagnosis of Multiple system atrophy (MSA) requires the evidence of abnormal deposition of α-Synuclein (α-Syn) through brain pathology which is unable to achieve in vivo. Deposition of α-Syn is not limited to the central nervous system (CNS), but also extended to peripheral tissues. Detection of pathological α-Syn deposition in extracerebral tissues also contributes to the diagnosis of MSA. We recently reported the increased expressions of α-Syn, phosphorylated α-Synuclein at Ser129 (pS129), and α-Syn aggregates in oral mucosal cells of Parkinson’s disease (PD), which serve as potential biomarkers for PD. To date, little is known about the α-Syn expression pattern in oral mucosa of MSA which is also a synucleinopathy. Here, we intend to investigate whether abnormal α-Syn deposition occurs in oral mucosal cells of MSA, and to determine whether α-Syn, pS129, and α-Syn aggregates in oral mucosa are potential biomarkers for MSA. Methods The oral mucosal cells were collected by using cytobrush from 42 MSA patients (23 MSA-P and 19 MSA-C) and 47 age-matched healthy controls (HCs). Immunofluorescence analysis was used to investigate the presence of α-Syn, pS129, and α-Syn aggregates in the oral mucosal cells. Then, the concentrations of α-Syn species in oral mucosa samples were measured using electrochemiluminescence assays. Results Immunofluorescence images indicated elevated α-Syn, pS129, and α-Syn aggregates levels in oral mucosal cells of MSA than HCs. The concentrations of three α-Syn species were significantly higher in oral mucosal cells of MSA than HCs (α-Syn, p < 0.001; pS129, p = 0.042; α-Syn aggregates, p < 0.0001). In MSA patients, the oral mucosa α-Syn levels negatively correlated with disease duration (r = −0.398, p = 0.009). The area under curve (AUC) of receiver operating characteristic (ROC) analysis using an integrative model including age, gender, α-Syn, pS129, and α-Syn aggregates for MSA diagnosis was 0.825, with 73.8% sensitivity and 78.7% specificity. Conclusion The α-Syn levels in oral mucosal cells elevated in patients with MSA, which may be promising biomarkers for MSA.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajia Zhao
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing, China
- *Correspondence: Zhenwei Yu,
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tao Feng,
| |
Collapse
|
42
|
Chen JW, Guan Y, Zheng YL, Zhu K. Research trends and frontiers in exercise for movement disorders: A bibliometric analysis of global research from 2010 to 2021. Front Aging Neurosci 2022; 14:977100. [PMID: 36158546 PMCID: PMC9491729 DOI: 10.3389/fnagi.2022.977100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo conduct a bibliometric analysis of trends and frontiers on exercise-based non-pharmacological treatments for movement disorders published between 2010 and 2021.MethodsThe Web of Science (WOS) Core Collection database was searched for articles published between 2010 and 2021. The CiteSpace software was used for in-depth analysis of the countries, institutions, journals, and collaboration networks among authors and their types of articles, developmental directions, references, and hot keywords of published articles.ResultsA total of 2,626 published articles were retrieved by search formula and included in the analysis. The number of publications fluctuated during this period, with 96 countries, 3,058 institutions, and 886 academic journals having published articles in this area, with subject classifications that focused on Clinical Neurology and Neurosciences. The United States has maintained its dominant and most influential position in exercise-based non-pharmacological research on movement disorders. Among research institutions and journals, the League of European Research Universities and Movement Disorders journals published the highest number of academic articles. In the last five years, the hot research topics by burst keyword analysis, are focused on treatments, research advances, and clinical treatments.ConclusionResearch on exercise-based non-pharmacological treatments for movement disorders is generally on the rise from 2010 to 2021. The bibliometric analysis of this area will help provide potential collaborations among researchers, frontiers, and directions for development.
Collapse
Affiliation(s)
- Ji-Wei Chen
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Yue Guan
- Shanghai Sports University Library, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- *Correspondence: Yi-Li Zheng,
| | - Kun Zhu
- School of Physical Education, Shanghai University of Sport, Shanghai, China
- Kun Zhu,
| |
Collapse
|
43
|
Yan YQ, Pu JL, Zheng R, Fang Y, Gu LY, Tao-Guo, Si XL, Cheng-Zhou, Ying-Chen, Yi-Liu, Guan XJ, Xu XJ, Yan YP, Yin XZ, Zhang MM, Tao ZH, Zhang BR. Different patterns of exosomal α-Synuclein between Parkinson's disease and probable rapid eye movement sleep behavior disorder. Eur J Neurol 2022; 29:3590-3599. [PMID: 36047985 DOI: 10.1111/ene.15537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/18/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The insidious onset of Parkinson's disease (PD) makes early diagnosis difficult. Notably, idiopathic rapid eye movement sleep behavior disorder (iRBD) was reported as a prodrome of PD, which may represent a breakthrough for the early diagnosis of PD. However, currently there is no reliable biomarker for PD diagnosis. OBJECTIVES Considering that α-synuclein (α-Syn) and neuroinflammation are known to develop prior to the onset of clinical symptoms in PD, we hypothesized that plasma total exosomal α-Syn (t-exo α-Syn), neural-derived exosomal α-Syn (n-exo α-Syn), and exosomal apoptosis-associated speck-like protein containing a CARD (ASC) may be potential biomarkers of PD. METHODS In this study, we recruited 78 PD patients, 153 probable iRBD patients (pRBD), and 63 healthy controls (HCs). α-Syn concentrations were measured using a one-step paramagnetic particle-based chemiluminescence immunoassay (MPs-CILA), and ASC levels were measured using the Ella system. RESULTS We found that t-exo α-Syn was significantly increased in the PD group compared to the pRBD and HC groups (p<0.0001), while n-exo α-Syn levels were significantly increased in both the PD and pRBD groups compared to HC (p<0.0001). Furthermore, although no difference was found in ASC levels between the PD and pRBD groups, there was a positive correlation between ASC and α-Syn in exosomes. CONCLUSIONS Our results suggest that both t-exo α-Syn and n-exo α-Syn were elevated in the PD group, while only n-exo α-Syn was elevated in the pRBD group. Additionally, the adaptor protein of inflammasome ASC is correlated with α-Syn and may facilitate synucleinopathy.
Collapse
Affiliation(s)
- Yi-Qun Yan
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Zheng
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Fang
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu-Yan Gu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao-Guo
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Li Si
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng-Zhou
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Chen
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Liu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Jun Guan
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Jun Xu
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ping Yan
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Zhen Yin
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Ming Zhang
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Hua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Arena G, Sharma K, Agyeah G, Krüger R, Grünewald A, Fitzgerald JC. Neurodegeneration and Neuroinflammation in Parkinson's Disease: a Self-Sustained Loop. Curr Neurol Neurosci Rep 2022; 22:427-440. [PMID: 35674870 PMCID: PMC9174445 DOI: 10.1007/s11910-022-01207-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Neuroinflammation plays a significant role in Parkinson's disease (PD) etiology along with mitochondrial dysfunction and impaired proteostasis. In this context, mechanisms related to immune response can act as modifiers at different steps of the neurodegenerative process and justify the growing interest in anti-inflammatory agents as potential disease-modifying treatments in PD. The discovery of inherited gene mutations in PD has allowed researchers to develop cellular and animal models to study the mechanisms of the underlying biology, but the original cause of neuroinflammation in PD is still debated to date. RECENT FINDINGS Cell autonomous alterations in neuronal cells, including mitochondrial damage and protein aggregation, could play a role, but recent findings also highlighted the importance of intercellular communication at both local and systemic level. This has given rise to debate about the role of non-neuronal cells in PD and reignited intense research into the gut-brain axis and other non-neuronal interactions in the development of the disease. Whatever the original trigger of neuroinflammation in PD, what appears quite clear is that the aberrant activation of glial cells and other components of the immune system creates a vicious circle in which neurodegeneration and neuroinflammation nourish each other. In this review, we will provide an up-to-date summary of the main cellular alterations underlying neuroinflammation in PD, including those induced by environmental factors (e.g. the gut microbiome) and those related to the genetic background of affected patients. Starting from the lesson provided by familial forms of PD, we will discuss pathophysiological mechanisms linked to inflammation that could also play a role in idiopathic forms. Finally, we will comment on the potential clinical translatability of immunobiomarkers identified in PD patient cohorts and provide an update on current therapeutic strategies aimed at overcoming or preventing inflammation in PD.
Collapse
Affiliation(s)
- G Arena
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - K Sharma
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - G Agyeah
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - R Krüger
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - A Grünewald
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - J C Fitzgerald
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson's disease and other synucleinopathies. NPJ Parkinsons Dis 2022; 8:93. [PMID: 35869066 PMCID: PMC9307631 DOI: 10.1038/s41531-022-00357-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disease, develops and progresses for 10–15 years before the clinical diagnostic symptoms of the disease are manifested. Furthermore, several aspects of PD pathology overlap with other neurodegenerative diseases (NDDs) linked to alpha-synuclein (aSyn) aggregation, also called synucleinopathies. Therefore, there is an urgent need to discover and validate early diagnostic and prognostic markers that reflect disease pathophysiology, progression, severity, and potential differences in disease mechanisms between PD and other NDDs. The close association between aSyn and the development of pathology in synucleinopathies, along with the identification of aSyn species in biological fluids, has led to increasing interest in aSyn species as potential biomarkers for early diagnosis of PD and differentiate it from other synucleinopathies. In this review, we (1) provide an overview of the progress toward mapping the distribution of aSyn species in the brain, peripheral tissues, and biological fluids; (2) present comparative and critical analysis of previous studies that measured total aSyn as well as other species such as modified and aggregated forms of aSyn in different biological fluids; and (3) highlight conceptual and technical gaps and challenges that could hinder the development and validation of reliable aSyn biomarkers; and (4) outline a series of recommendations to address these challenges. Finally, we propose a combined biomarker approach based on integrating biochemical, aggregation and structure features of aSyn, in addition to other biomarkers of neurodegeneration. We believe that capturing the diversity of aSyn species is essential to develop robust assays and diagnostics for early detection, patient stratification, monitoring of disease progression, and differentiation between synucleinopathies. This could transform clinical trial design and implementation, accelerate the development of new therapies, and improve clinical decisions and treatment strategies.
Collapse
|
46
|
Supersaturation-Dependent Formation of Amyloid Fibrils. Molecules 2022; 27:molecules27144588. [PMID: 35889461 PMCID: PMC9321232 DOI: 10.3390/molecules27144588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute’s concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Collapse
|
47
|
Petricca L, Chiki N, Hanna-El-Daher L, Aeschbach L, Burai R, Stoops E, Fares MB, Lashuel HA. Comparative Analysis of Total Alpha-Synuclein (αSYN) Immunoassays Reveals That They Do Not Capture the Diversity of Modified αSYN Proteoforms. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1449-1462. [PMID: 35527570 PMCID: PMC9398082 DOI: 10.3233/jpd-223285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: The development of therapeutics for Parkinson’s disease (PD) requires the establishment of biomarker assays to enable stratifying patients, monitoring disease progression, and assessing target engagement. Attempts to develop diagnostic assays based on detecting levels of the α-synuclein (αSYN) protein, a central player in the pathogenesis of PD, have yielded inconsistent results. Objective: To determine whether the three commercial kits that have been extensively used for total αSYN quantification in human biological fluids (from Euroimmun, MSD, and Biolegend) are capable of capturing the diversity and complexity of relevant αSYN proteoforms. Methods: We investigated and compared the ability of the different assays to detect the diversity of αSYN proteoforms using a library of αSYN proteins that comprise the majority of disease-relevant αSYN variants and post-translational modifications (PTMs). Results: Our findings showed that none of the three tested immunoassays accurately capture the totality of relevant αSYN species, and that these assays are unable to recognize most disease-associated C-terminally truncated variants of αSYN. Moreover, several N-terminal truncations and phosphorylation/nitration PTMs differentially modify the level of αSYN detection and recovery by different immunoassays, and a CSF matrix effect was observed for most of the αSYN proteoforms analyzed by the three immunoassays. Conclusion: Our results show that the tested immunoassays do not capture the totality of the relevant αSYN species and therefore may not be appropriate tools to provide an accurate measure of total αSYN levels in samples containing modified forms of the protein. This highlights the need for next generation αSYN immunoassays that capture the diversity of αSYN proteoforms.
Collapse
Affiliation(s)
| | - Nour Chiki
- ND Biosciences SA, Epalinges, Switzerland
| | - Layane Hanna-El-Daher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorène Aeschbach
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences NV, Technologiepark 94 - Bio Incubator, Gent, Belgium
| | | | - Hilal A Lashuel
- ND Biosciences SA, Epalinges, Switzerland.,Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
48
|
Nwabufo CK, Aigbogun OP. Diagnostic and therapeutic agents that target alpha-synuclein in Parkinson's disease. J Neurol 2022; 269:5762-5786. [PMID: 35831620 PMCID: PMC9281355 DOI: 10.1007/s00415-022-11267-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
The development of disease-modifying drugs and differential diagnostic agents is an urgent medical need in Parkinson’s disease. Despite the complex pathophysiological pathway, the misfolding of alpha-synuclein has been identified as a putative biomarker for detecting the onset and progression of the neurodegeneration associated with Parkinson’s disease. Identifying the most appropriate alpha-synuclein-based diagnostic modality with clinical translation will revolutionize the diagnosis of Parkinson’s. Likewise, molecules that target alpha-synuclein could alter the disease pathway that leads to Parkinson’s and may serve as first-in class therapeutics compared to existing treatment options such as levodopa and dopamine agonist that do not necessarily modify the disease pathway. Notwithstanding the promising benefits that alpha-synuclein presents to therapeutics and diagnostics development for Parkinson’s disease, finding ways to address potential challenges such as inadequate preclinical models, safety and efficacy will be paramount to achieving clinical translation. In this comprehensive review paper, we described the role of alpha-synuclein in the pathogenesis of Parkinson’s disease, as well as how its structure and function relationship delineate disease onset and progression. We further discussed different alpha-synuclein-based diagnostic modalities including biomolecular assays and molecular imaging. Finally, we presented current small molecules and biologics that are being developed as disease-modifying drugs or positron emission tomography imaging probes for Parkinson’s disease.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Omozojie P Aigbogun
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
49
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
50
|
Neural stem cell secretome exerts a protective effect on damaged neuron mitochondria in Parkinson's disease model. Brain Res 2022; 1790:147978. [PMID: 35690143 DOI: 10.1016/j.brainres.2022.147978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The main pathological changes are the loss of dopaminergic neurons and the formation of Lewy bodies. There is still no effective cure for PD, and cell replacement therapy has entered a bottleneck period due to tumorigenicity and rejection. Therefore, stem cell secretome has received widespread attention. However, the exploration of the secretome components of neural stem cells (NSCs) is still in its infancy. In this study, 6-hydroxydopamine (6-OHDA) was used to establish a PD rat model in vito and the PC12 cell-damaged model in vitro. The results indicated that the injection of neural stem cell-conditioned medium (NSC-CM) into the striatum and substantia nigra could improve the motor and non-motor deficits of PD rats and rescue the loss of dopaminergic neurons. In addition, NSC-CM alleviated 6-OHDA-induced apoptosis of PC12 cells, reduced the level of oxidative stress, and improved mitochondrial dysfunction in vitro. Parkinson disease protein 7 (Park7) was found in NSC-CM by Liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it may be related to the protective effect of NSC-CM on 6-OHDA-injured neurons through Sirt1 pathway. In conclusion, NSC secretome might provide new ideas for the treatment of PD.
Collapse
|