1
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 PMCID: PMC11531848 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
2
|
Angelini L, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J. Bidirectional and Cross-Hemispheric Modulations of Face-Selective Neural Activity Induced by Electrical Stimulation within the Human Cortical Face Network. Brain Sci 2024; 14:906. [PMID: 39335402 PMCID: PMC11429542 DOI: 10.3390/brainsci14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
A major scientific objective of cognitive neuroscience is to define cortico-cortical functional connections supporting cognitive functions. Here, we use an original approach combining frequency-tagging and direct electrical stimulation (DES) to test for bidirectional and cross-hemispheric category-specific modulations within the human cortical face network. A unique patient bilaterally implanted with depth electrodes in multiple face-selective cortical regions of the ventral occipito-temporal cortex (VOTC) was shown 70 s sequences of variable natural object images at a 6 Hz rate, objectively identifying deviant face-selective neural activity at 1.2 Hz (i.e., every five images). Concurrent electrical stimulation was separately applied for 10 seconds on four independently defined face-selective sites in the right and left VOTC. Upon stimulation, we observed reduced or even abolished face-selective neural activity locally and, most interestingly, at distant VOTC recording sites. Remote DES effects were found up to the anterior temporal lobe (ATL) in both forward and backward directions along the VOTC, as well as across the two hemispheres. This reduction was specific to face-selective neural activity, with the general 6 Hz visual response being mostly unaffected. Overall, these results shed light on the functional connectivity of the cortical face-selective network, supporting its non-hierarchical organization as well as bidirectional effective category-selective connections between posterior 'core' regions and the ATL. They also pave the way for widespread and systematic development of this approach to better understand the functional and effective connectivity of human brain networks.
Collapse
Affiliation(s)
- Luna Angelini
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Corentin Jacques
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Louis Maillard
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
3
|
Fleury MN, Binding LP, Taylor P, Xiao F, Giampiccolo D, Caciagli L, Buck S, Winston GP, Thompson PJ, Baxendale S, Koepp MJ, Duncan JS, Sidhu MK. Predictors of long-term memory and network connectivity 10 years after anterior temporal lobe resection. Epilepsia 2024; 65:2641-2661. [PMID: 38990127 DOI: 10.1111/epi.18058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Anterior temporal lobe resection (ATLR) effectively controls seizures in medically refractory temporal lobe epilepsy but risks significant episodic memory decline. Beyond 1 year postoperatively, the influence of preoperative clinical factors on episodic memory and long-term network plasticity remain underexplored. Ten years post-ATLR, we aimed to determine biomarkers of successful memory network reorganization and establish presurgical features' lasting impact on memory function. METHODS Twenty-five ATLR patients (12 left-sided) and 10 healthy controls underwent a memory-encoding functional magnetic resonance imaging paradigm alongside neuropsychometry 10 years postsurgery. Generalized psychophysiological interaction analyses modeled network functional connectivity of words/faces remembered, seeding from the medial temporal lobes (MTLs). Differences in successful memory connectivity were assessed between controls and left/right ATLR. Multivariate regressions and mixed-effect models probed preoperative phenotypes' effects on long-term memory outcomes. RESULTS Ten years post-ATLR, lower baseline functioning (verbal and performance intelligence quotient) and a focal memory impairment preoperatively predicted worse long-term memory outcomes. Poorer verbal memory was significantly associated with longer epilepsy duration and earlier onset age. Relative to controls, successful word and face encoding involved increased functional connectivity from both or remnant MTL seeds and contralesional parahippocampus/hippocampus after left/right ATLR. Irrespective of surgical laterality, successful memory encoding correlated with increased MTL-seeded connectivity to frontal (bilateral insula, right anterior cingulate), right parahippocampal, and bilateral fusiform gyri. Ten years postsurgery, better memory performance was correlated with contralateral frontal plasticity, which was disrupted with longer epilepsy duration. SIGNIFICANCE Our findings underscore the enduring nature of functional network reorganizations to provide long-term cognitive support. Ten years post-ATLR, successful memory formation featured stronger connections near resected areas and contralateral regions. Preoperative network disruption possibly influenced effectiveness of postoperative plasticity. These findings are crucial for enhancing long-term memory prediction and strategies for lasting memory rehabilitation.
Collapse
Affiliation(s)
- Marine N Fleury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
| | - Lawrence P Binding
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
- Department of Computer Science, UCL Centre for Medical Image Computing, London, UK
| | - Peter Taylor
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, Newcastle, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Neurosurgery, Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy Center, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Buck
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Psychology Department, Epilepsy Society, Buckinghamshire, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Psychology Department, Epilepsy Society, Buckinghamshire, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Buckinghamshire, UK
| |
Collapse
|
4
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
5
|
Tavakol S, Kebets V, Royer J, Li Q, Auer H, DeKraker J, Jefferies E, Bernasconi N, Bernasconi A, Helmstaedter C, Arafat T, Armony J, Nathan Spreng R, Caciagli L, Frauscher B, Smallwood J, Bernhardt B. Differential relational memory impairment in temporal lobe epilepsy. Epilepsy Behav 2024; 155:109722. [PMID: 38643660 DOI: 10.1016/j.yebeh.2024.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.
Collapse
Affiliation(s)
- Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Qiongling Li
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Hans Auer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jordan DeKraker
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Thaera Arafat
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jorge Armony
- Department of Psychiatry, McGill University, Montreal, Canada.
| | - R Nathan Spreng
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Birgit Frauscher
- ANPHY Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
7
|
Wang F, Ren J, Cui W, Zhou Y, Yao P, Lai X, Pang Y, Chen Z, Lin Y, Liu H. Verbal memory network mapping in individual patients predicts postoperative functional impairments. Hum Brain Mapp 2024; 45:e26691. [PMID: 38703114 PMCID: PMC11069337 DOI: 10.1002/hbm.26691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Verbal memory decline is a significant concern following temporal lobe surgeries in patients with epilepsy, emphasizing the need for precision presurgical verbal memory mapping to optimize functional outcomes. However, the inter-individual variability in functional networks and brain function-structural dissociations pose challenges when relying solely on group-level atlases or anatomical landmarks for surgical guidance. Here, we aimed to develop and validate a personalized functional mapping technique for verbal memory using precision resting-state functional MRI (rs-fMRI) and neurosurgery. A total of 38 patients with refractory epilepsy scheduled for surgical interventions were enrolled and 28 patients were analyzed in the study. Baseline 30-min rs-fMRI scanning, verbal memory and language assessments were collected for each patient before surgery. Personalized verbal memory networks (PVMN) were delineated based on preoperative rs-fMRI data for each patient. The accuracy of PVMN was assessed by comparing post-operative functional impairments and the overlapping extent between PVMN and surgical lesions. A total of 14 out of 28 patients experienced clinically meaningful declines in verbal memory after surgery. The personalized network and the group-level atlas exhibited 100% and 75.0% accuracy in predicting postoperative verbal memory declines, respectively. Moreover, six patients with extra-temporal lesions that overlapped with PVMN showed selective impairments in verbal memory. Furthermore, the lesioned ratio of the personalized network rather than the group-level atlas was significantly correlated with postoperative declines in verbal memory (personalized networks: r = -0.39, p = .038; group-level atlas: r = -0.19, p = .332). In conclusion, our personalized functional mapping technique, using precision rs-fMRI, offers valuable insights into individual variability in the verbal memory network and holds promise in precision verbal memory network mapping in individuals.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | | | | | | | - Peisen Yao
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xuemiao Lai
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yue Pang
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhili Chen
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hesheng Liu
- Changping LaboratoryBeijingChina
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| |
Collapse
|
8
|
Ethofer S, Milian M, Erb M, Rona S, Honegger J, Ethofer T. Investigating the effect of hippocampal sclerosis on parietal memory network. Epilepsia Open 2024; 9:287-299. [PMID: 38017670 PMCID: PMC10839411 DOI: 10.1002/epi4.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE We aimed to investigate differences in episodic memory networks between patients with temporal lobe epilepsy (TLE) due to hippocampal sclerosis and healthy controls, especially with regards to the parietal memory network (PMN), as well as their relation to neuropsychological memory performance after mesial temporal resection. METHODS 28 healthy subjects as well as 21 patients with TLE (12 left, 9 right) were investigated using a spatial memory fMRI paradigm, which has been shown to activate the PMN. Regions of interest (ROI) were defined based on the results of the second-level analyses and activations within the predefined ROIs were compared across groups and correlated with postoperative verbal and nonverbal memory scores. RESULTS Healthy subjects showed activations within regions belonging to the dorsal visual stream and the PMN as well as the bilateral parahippocampal place area, the bilateral frontal eye field, and the bilateral middle frontal gyrus. Comparison between groups revealed that TLE patients activated significantly less in the left middle occipital gyrus and the right precuneus. The activation pattern in left TLE patients showed further reductions, mainly in areas belonging to the dorsal visual stream and the PMN within the left hemisphere. Activations within the left superior parietal lobulus, bilateral inferior parietal lobulus, bilateral middle temporal gyrus, left precuneus, left frontal eye field, and left middle frontal gyrus correlated significantly with postoperative verbal memory scores, and activations within the left superior parietal lobulus, left inferior parietal lobulus, left middle temporal gyrus, and left precuneus correlated significantly with higher performance in postoperative nonverbal memory scores. SIGNIFICANCE The PMN is involved in episodic memory encoding. Higher activations in areas belonging to the PMN and the dorsal visual stream, especially within the left hemisphere, before amygdalohippocampectomy may result in higher postoperative memory scores. PLAIN LANGUAGE SUMMARY This study aims to investigate the effects of epilepsy due to hippocampal sclerosis, i.e. scarring in the temporal lobe, on memory networks in the brain. We discovered that especially patients with left-sided hippocampal sclerosis show reduced brain activations in visual areas and memory networks within the left hemisphere of the brain during orientation in space. Importantly, higher activations within these areas may result in better memory after epilepsy surgery.
Collapse
Affiliation(s)
- Silke Ethofer
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
| | - Monika Milian
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
| | - Michael Erb
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingenGermany
| | - Sabine Rona
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
- Present address:
Klinik Lengg AG, Swiss Epilepsy ClinicZurichSwitzerland
| | - Jürgen Honegger
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
| | - Thomas Ethofer
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
9
|
Kokkinos V, Seimenis I. Concordance of verbal memory and language fMRI lateralization in people with epilepsy. J Neuroimaging 2024; 34:95-107. [PMID: 37968766 DOI: 10.1111/jon.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND AND PURPOSE This work investigates verbal memory functional MRI (fMRI) versus language fMRI in terms of lateralization, and assesses the validity of performing word recognition during the functional scan. METHODS Thirty patients with a diagnosis of epilepsy underwent verbal memory, visuospatial memory, and language fMRI. We used word encoding, word recognition, image encoding, and image recognition memory tasks, and semantic description, reading comprehension, and listening comprehension language tasks. We used three common lateralization metrics: network spatial distribution, maximum statistical value, and laterality index (LI). RESULTS Lateralization of signal spatial distribution resulted in poor similarity between verbal memory and language fMRI tasks. Signal maximum lateralization showed significant (>.8) but not perfect (1) similarity. Word encoding LI showed significant correlation only with listening comprehension LI (p = .016). Word recognition LI was significantly correlated with expressive language semantic description LI (p = .024) and receptive language reading and listening comprehension LIs (p = .015 and p = .019, respectively). There was no correlation between LIs of the visuospatial tasks and LIs of the language tasks. CONCLUSIONS Our results support the association between language and verbal memory lateralization, optimally determined by LI quantification, and the introduction of quantitative means for language fMRI interpretation in clinical settings where verbal memory lateralization is imperative.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupoli, Greece
| | - Ioannis Seimenis
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupoli, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Fallahi A, Hoseini-Tabatabaei N, Eivazi F, Mohammadi Mobarakeh N, Dehghani-Siahaki H, Alibiglou L, Rostami R, Mehvari Habibabadi J, Hashemi-Fesharaki SS, Joghataei MT, Nazem-Zadeh MR. Dynamic causal modeling of reorganization of memory and language networks in temporal lobe epilepsy. Ann Clin Transl Neurol 2023; 10:2238-2254. [PMID: 37776067 PMCID: PMC10723230 DOI: 10.1002/acn3.51908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE To evaluate the alterations of language and memory functions using dynamic causal modeling, in order to identify the epileptogenic hemisphere in temporal lobe epilepsy (TLE). METHODS Twenty-two patients with left TLE and 13 patients with right TLE underwent functional magnetic resonance imaging (fMRI) during four memory and four language mapping tasks. Dynamic causal modeling (DCM) was employed on fMRI data to examine effective directional connectivity in memory and language networks and the alterations in people with TLE compared to healthy individuals. RESULTS DCM analysis suggested that TLE can influence the memory network more widely compared to the language network. For memory mapping, it demonstrated overall hyperconnectivity from the left hemisphere to the other cranial regions in the picture encoding, and from the right hemisphere to the other cranial regions in the word encoding tasks. On the contrary, overall hypoconnectivity was seen from the brain hemisphere contralateral to the seizure onset in the retrieval tasks. DCM analysis further manifested hypoconnectivity between the brain's hemispheres in the language network in patients with TLE compared to controls. The CANTAB® neuropsychological test revealed a negative correlation for the left TLE and a positive correlation for the right TLE cohorts for the connections extracted by DCM that were significantly different between the left and right TLE cohorts. INTERPRETATION In this study, dynamic causal modeling evidenced the reorganization of language and memory networks in TLE that can be used for a better understanding of the effects of TLE on the brain's cognitive functions.
Collapse
Affiliation(s)
- Alireza Fallahi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | | | - Fatemeh Eivazi
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mohammadi Mobarakeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Dehghani-Siahaki
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Alibiglou
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | | | | | | | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Royer J, Larivière S, Rodriguez-Cruces R, Cabalo DG, Tavakol S, Auer H, Ngo A, Park BY, Paquola C, Smallwood J, Jefferies E, Caciagli L, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy. Brain 2023; 146:3923-3937. [PMID: 37082950 PMCID: PMC10473569 DOI: 10.1093/brain/awad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Casey Paquola
- Multiscale Neuroanatomy Lab, INM-1, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, MA 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
12
|
de Paula França Resende E, Lara VP, Santiago ALC, Friedlaender CV, Rosen HJ, Brown JA, Cobigo Y, Silva LLG, de Souza LC, Rincon L, Grinberg LT, Maciel FIP, Caramelli P. Literacy, but not memory, is associated with hippocampal connectivity in illiterate adults. RESEARCH SQUARE 2023:rs.3.rs-3053775. [PMID: 37398238 PMCID: PMC10312990 DOI: 10.21203/rs.3.rs-3053775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background The influence of hippocampal connectivity on memory performance is well established in individuals with high educational attainment. However, the role of hippocampal connectivity in illiterate populations remains poorly understood. Methods Thirty-five illiterate adults were administered a literacy assessment (Test of Functional Health Literacy in Adults - TOFHLA), structural and resting state functional MRI and an episodic memory test (Free and Cued Selective Reminding Test). Illiteracy was defined as a TOFHLA score below 53. We evaluated the correlation between hippocampal connectivity at rest and both free recall and literacy scores. Results Participants were mostly female (57.1%) and Black (84.8%), with a median age of 50 years. The median TOFHLA literacy score was 28.0 [21.0;42.5] out of 100 points and the median free recall score was 30.0 [26.2;35] out of 48 points. The median gray matter volume of both the left and right hippocampi was 2.3 [2.1; 2.4] cm3. We observed a significant connectivity between both hippocampi and the precuneus and the ventral medial prefrontal cortex. Interestingly, the right hippocampal connectivity positively correlated with the literacy scores (β = 0.58, p = 0.008). There was no significant association between episodic memory and hippocampal connectivity. Neither memory nor literacy scores correlated with hippocampal gray matter volume. Conclusions Low literacy levels correlate with hippocampal connectivity in illiterate adults. The lack of association with memory scores might be associated with low brain reserve in illiterate adults.
Collapse
|
13
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541934. [PMID: 37292996 PMCID: PMC10245853 DOI: 10.1101/2023.05.23.541934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Caciagli
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
15
|
Dasgupta D, Finn R, Chari A, Giampiccolo D, de Tisi J, O'Keeffe AG, Miserocchi A, McEvoy AW, Vos SB, Duncan JS. Hippocampal resection in temporal lobe epilepsy: Do we need to resect the tail? Epilepsy Res 2023; 190:107086. [PMID: 36709527 PMCID: PMC10626579 DOI: 10.1016/j.eplepsyres.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Anteromesial temporal lobe resection is the most common surgical technique used to treat drug-resistant mesial temporal lobe epilepsy, particularly when secondary to hippocampal sclerosis. Structural and functional imaging data suggest the importance of sparing the posterior hippocampus for minimising language and memory deficits. Recent work has challenged the view that maximal posterior hippocampal resection improves seizure outcome. This study was designed to assess whether resection of posterior hippocampal atrophy was associated with improved seizure outcome. METHODS Retrospective analysis of a prospective database of all anteromesial temporal lobe resections performed in individuals with hippocampal sclerosis at our epilepsy surgery centre, 2013-2021. Pre- and post-operative MRI were reviewed by 2 neurosurgical fellows to assess whether the atrophic segment, displayed by automated hippocampal morphometry, was resected, and ILAE seizure outcomes were collected at 1 year and last clinical follow-up. Data analysis used univariate and binary logistic regression. RESULTS Sixty consecutive eligible patients were identified of whom 70% were seizure free (ILAE Class 1 & 2) at one year. There was no statistically significant difference in seizure freedom outcomes in patients who had complete resection of atrophic posterior hippocampus or not (Fisher's Exact test statistic 0.69, not significant at p < .05) both at one year, and at last clinical follow-up. In the multivariate analysis only a history of status epilepticus (OR=0.2, 95%CI:0.042-0.955, p = .04) at one year, and pre-operative psychiatric disorder (OR=0.145, 95%CI:0.036-0.588, p = .007) at last clinical follow-up, were associated with a reduced chance of seizure freedom. SIGNIFICANCE Our data suggest that seizure freedom is not associated with whether or not posterior hippocampal atrophy is resected. This challenges the traditional surgical dogma of maximal posterior hippocampal resection in anteromesial temporal lobe resections and is a step further optimising this surgical procedure to maximise seizure freedom and minimise associated language and memory deficits.
Collapse
Affiliation(s)
- Debayan Dasgupta
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Roisin Finn
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Aswin Chari
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK; Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Institute of Neurosciences, Cleveland Clinic London, London, UK.
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Aidan G O'Keeffe
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK. aidan.o'
| | - Anna Miserocchi
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Andrew W McEvoy
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Sjoerd B Vos
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia.
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
16
|
He X, Caciagli L, Parkes L, Stiso J, Karrer TM, Kim JZ, Lu Z, Menara T, Pasqualetti F, Sperling MR, Tracy JI, Bassett DS. Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. SCIENCE ADVANCES 2022; 8:eabn2293. [PMID: 36351015 PMCID: PMC9645718 DOI: 10.1126/sciadv.abn2293] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
Network control theory is increasingly used to profile the brain's energy landscape via simulations of neural dynamics. This approach estimates the control energy required to simulate the activation of brain circuits based on structural connectome measured using diffusion magnetic resonance imaging, thereby quantifying those circuits' energetic efficiency. The biological basis of control energy, however, remains unknown, hampering its further application. To fill this gap, investigating temporal lobe epilepsy as a lesion model, we show that patients require higher control energy to activate the limbic network than healthy volunteers, especially ipsilateral to the seizure focus. The energetic imbalance between ipsilateral and contralateral temporolimbic regions is tracked by asymmetric patterns of glucose metabolism measured using positron emission tomography, which, in turn, may be selectively explained by asymmetric gray matter loss as evidenced in the hippocampus. Our investigation provides the first theoretical framework unifying gray matter integrity, metabolism, and energetic generation of neural dynamics.
Collapse
Affiliation(s)
- Xiaosong He
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire, UK
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Teresa M. Karrer
- Personalized Health Care, Product Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhixin Lu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tommaso Menara
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | | | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Psychiatry, and Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
17
|
Fleury M, Buck S, Binding LP, Caciagli L, Vos SB, Winston GP, Thompson P, Koepp MJ, Duncan JS, Sidhu MK. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia 2022; 63:2597-2622. [PMID: 35848050 PMCID: PMC9804196 DOI: 10.1111/epi.17370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.
Collapse
Affiliation(s)
- Marine Fleury
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Lawrence P. Binding
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of Computer Science, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Neuroradiological Academic Unit, University College London Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Division of Neurology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| |
Collapse
|
18
|
Tang T, Huang L, Zhang Y, Li Z, Liang S. Aberrant pattern of regional cerebral blood flow in mild cognitive impairment: A meta-analysis of arterial spin labeling magnetic resonance imaging. Front Aging Neurosci 2022; 14:961344. [PMID: 36118708 PMCID: PMC9475306 DOI: 10.3389/fnagi.2022.961344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In mild cognitive impairment (MCI), cognitive decline is associated with abnormal changes of cerebral blood flow (CBF). Arterial spin labeling magnetic resonance imaging (ASL-MRI) is an effective method for assessing regional cerebral blood flow (rCBF). However, the CBF estimated via ASL-MRI in MCI often differs between studies, and the consistency of CBF changes in MCI is unclear. In this study, 13 ASL-MRI studies with 495 MCI patients and 441 health controls were screened out from PubMed, Embase, Cochrane, Web of Science, Wanfang, and CNKI. An activation likelihood estimation (ALE) meta-analysis was performed to explore the brain regions with abnormal CBF in MCI. It showed that the decreased CBF in MCI was identified in the precuneus, inferior parietal lobule (IPL), superior occipital gyrus (SOG), middle temporal gyrus (MTG), and middle occipital gyrus (MOG), while the increased CBF in MCI was identified in the lentiform nucleus (LN) compared with healthy controls. The study characterized the abnormal pattern of regional CBF in MCI, which would promote our knowledge of MCI and might be used as a biomarker in clinic.
Collapse
Affiliation(s)
- Tong Tang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusi Zhang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Shengxiang Liang
| |
Collapse
|
19
|
Mock N, Balzer C, Gutbrod K, De Haan B, Jäncke L, Ettlin T, Trost W. Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction. Cortex 2022; 153:178-193. [DOI: 10.1016/j.cortex.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
20
|
Li H, Ding F, Chen C, Huang P, Xu J, Chen Z, Wang S, Zhang M. Dynamic functional connectivity in modular organization of the hippocampal network marks memory phenotypes in temporal lobe epilepsy. Hum Brain Mapp 2022; 43:1917-1929. [PMID: 34967488 PMCID: PMC8933317 DOI: 10.1002/hbm.25763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a network disorder with a high incidence of memory impairment. Memory processing ability highly depends on the dynamic coordination between distinct modules within the hippocampal network. Here, we investigate the relationship between memory phenotypes and modular alterations of dynamic functional connectivity (FC) in the hippocampal network in TLE patients. Then, 31 healthy controls and 66 TLE patients with hippocampal sclerosis were recruited. The patients were classified into memory-intact (MI, 35 cases) group and memory-deficit (MD, 31 cases) group, each based on individual's Wechsler Memory Scale-Revised score. The sliding-windows approach and graph theory analysis were used to analyze the hippocampal network based on resting state functional magnetic resonance imaging. Temporal properties and modular metrics were calculated. Two discrete and switchable states were revealed: a high modularized state (State I) and a low modularized state (State II), which corresponded to either anterior or posterior hippocampal network dominated pattern. TLE was prone to drive less State I but more State II, and the tendency was more obvious in TLE-MD. Additionally, TLE-MD showed more widespread alterations of modular properties compared with TLE-MI across two states. Furthermore, the dynamic modularity features had unique superiority in discriminating TLE-MD from TLE-MI. These findings demonstrated that state transitions and modular function of dissociable hippocampal networks were altered in TLE and more importantly, they could reflect different memory phenotypes. The trend revealed potential values of dynamic FC in elucidating the mechanism underlying memory impairments in TLE.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Ding
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Xu
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
21
|
Adotevi N, Kapur J. Focal impaired awareness seizures in a rodent model: A functional anatomy. Epilepsia Open 2022; 7:110-123. [PMID: 34822222 PMCID: PMC8886100 DOI: 10.1002/epi4.12563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Patients with temporal lobe epilepsy (TLE) frequently report debilitating comorbidities such as memory impairments, anxiety, and depression. An extensive neuronal network generates epileptic seizures and associated comorbidities, but a detailed description of this network is unavailable, which requires the generation of neuronal activation maps in experimental animals. METHODS We recorded electrographic seizures from the hippocampi during a kindling-evoked focal impaired awareness seizure with observed freezing, facial twitching, and involuntary head bobbing. We mapped seizure circuits activated during these seizures by permanently tagging neurons through activity-induced immediate early genes, combined with immunohistochemical approaches. RESULTS There was bilateral activation of circuits necessary for memory consolidation, including the hippocampal complex, entorhinal cortex, cingulate gyrus, retrosplenial cortex, piriform cortex, and septohippocampal complex in kindled animals compared with unstimulated awake behaving mice. Neuronal circuits in the ventral hippocampus, amygdala, and anterior cingulate cortex, which regulate the stress response of hypothalamic-pituitary-adrenal axis, were also markedly activated during a focal impaired awareness seizure. SIGNIFICANCE This study highlights neuronal circuits preferentially activated during a focal awareness impaired seizure in a rodent model. Many of the seizure-activated neuronal circuits are critical modulators of memory consolidation and long-term stress/depression response. The hijack of these memory and depression regulatory systems by a focal seizure could account for the frequent reports of comorbidities such as memory impairment and depression in many TLE patients.
Collapse
Affiliation(s)
- Nadia Adotevi
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
22
|
Spatial Binding Impairments in Visual Working Memory following Temporal Lobectomy. eNeuro 2022; 9:ENEURO.0278-21.2022. [PMID: 35168952 PMCID: PMC8906795 DOI: 10.1523/eneuro.0278-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Disorders of the medial temporal lobe (MTL) adversely affect visual working memory (vWM) performance, including feature binding. It is unclear whether these impairments generalize across visual dimensions or are specifically spatial. To address this issue, we compared performance in two tasks of 13 epilepsy patients, who had undergone a temporal lobectomy, and 15 healthy controls. In the vWM task, participants recalled the color of one of two polygons, previously displayed side by side. At recall, a location or shape probe identified the target. In the perceptual task, participants estimated the centroid of three visible disks. Patients recalled the target color less accurately than healthy controls because they frequently swapped the nontarget with the target color. Moreover, healthy controls and right temporal lobectomy patients made more swap errors following shape than space probes. Left temporal lobectomy patients, showed the opposite pattern of errors instead. Patients and controls performed similarly in the perceptual task. We conclude that left MTL damage impairs spatial binding in vWM, and that this impairment does not reflect a perceptual or attentional deficit.
Collapse
|
23
|
Rodriguez-Cruces R, Royer J, Larivière S, Bassett DS, Caciagli L, Bernhardt BC. Multimodal connectome biomarkers of cognitive and affective dysfunction in the common epilepsies. Netw Neurosci 2022; 6:320-338. [PMID: 35733426 PMCID: PMC9208009 DOI: 10.1162/netn_a_00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/02/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological conditions, traditionally defined as a disorder of recurrent seizures. Cognitive and affective dysfunction are increasingly recognized as core disease dimensions and can affect patient well-being, sometimes more than the seizures themselves. Connectome-based approaches hold immense promise for revealing mechanisms that contribute to dysfunction and to identify biomarkers. Our review discusses emerging multimodal neuroimaging and connectomics studies that highlight network substrates of cognitive/affective dysfunction in the common epilepsies. We first discuss work in drug-resistant epilepsy syndromes, that is, temporal lobe epilepsy, related to mesiotemporal sclerosis (TLE), and extratemporal epilepsy (ETE), related to malformations of cortical development. While these are traditionally conceptualized as ‘focal’ epilepsies, many patients present with broad structural and functional anomalies. Moreover, the extent of distributed changes contributes to difficulties in multiple cognitive domains as well as affective-behavioral challenges. We also review work in idiopathic generalized epilepsy (IGE), a subset of generalized epilepsy syndromes that involve subcortico-cortical circuits. Overall, neuroimaging and network neuroscience studies point to both shared and syndrome-specific connectome signatures of dysfunction across TLE, ETE, and IGE. Lastly, we point to current gaps in the literature and formulate recommendations for future research. Epilepsy is increasingly recognized as a network disorder characterized by recurrent seizures as well as broad-ranging cognitive difficulties and affective dysfunction. Our manuscript reviews recent literature highlighting brain network substrates of cognitive and affective dysfunction in common epilepsy syndromes, namely temporal lobe epilepsy secondary to mesiotemporal sclerosis, extratemporal epilepsy secondary to malformations of cortical development, and idiopathic generalized epilepsy syndromes arising from subcortico-cortical pathophysiology. We discuss prior work that has indicated both shared and distinct brain network signatures of cognitive and affective dysfunction across the epilepsy spectrum, improves our knowledge of structure-function links and interindividual heterogeneity, and ultimately aids screening and monitoring of therapeutic strategies.
Collapse
Affiliation(s)
- Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Stevens DA, Workman CI, Kuwabara H, Butters MA, Savonenko A, Nassery N, Gould N, Kraut M, Joo JH, Kilgore J, Kamath V, Holt DP, Dannals RF, Nandi A, Onyike CU, Smith GS. Regional amyloid correlates of cognitive performance in ageing and mild cognitive impairment. Brain Commun 2022; 4:fcac016. [PMID: 35233522 PMCID: PMC8882008 DOI: 10.1093/braincomms/fcac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Beta-amyloid deposition is one of the earliest pathological markers associated with Alzheimer's disease. Mild cognitive impairment in the setting of beta-amyloid deposition is considered to represent a preclinical manifestation of Alzheimer's disease. In vivo imaging studies are unique in their potential to advance our understanding of the role of beta-amyloid deposition in cognitive deficits in Alzheimer's disease and in mild cognitive impairment. Previous work has shown an association between global cortical measures of beta-amyloid deposition ('amyloid positivity') in mild cognitive impairment with greater cognitive deficits and greater risk of progression to Alzheimer's disease. The focus of the present study was to examine the relationship between the regional distribution of beta-amyloid deposition and specific cognitive deficits in people with mild cognitive impairment and cognitively normal elderly individuals. Forty-seven participants with multi-domain, amnestic mild cognitive impairment (43% female, aged 57-82 years) and 37 healthy, cognitively normal comparison subjects (42% female, aged 55-82 years) underwent clinical and neuropsychological assessments and high-resolution positron emission tomography with the radiotracer 11C-labelled Pittsburgh compound B to measure beta-amyloid deposition. Brain-behaviour partial least-squares analysis was conducted to identify spatial patterns of beta-amyloid deposition that correlated with the performance on neuropsychological assessments. Partial least-squares analysis identified a single significant (P < 0.001) latent variable which accounted for 80% of the covariance between demographic and cognitive measures and beta-amyloid deposition. Performance in immediate verbal recall (R = -0.46 ± 0.07, P < 0.001), delayed verbal recall (R = -0.39 ± 0.09, P < 0.001), immediate visual-spatial recall (R = -0.39 ± 0.08, P < 0.001), delayed visual-spatial recall (R = -0.45 ± 0.08, P < 0.001) and semantic fluency (R = -0.33 ± 0.11, P = 0.002) but not phonemic fluency (R = -0.05 ± 0.12, P < 0.705) negatively covaried with beta-amyloid deposition in the identified regions. Partial least-squares analysis of the same cognitive measures with grey matter volumes showed similar associations in overlapping brain regions. These findings suggest that the regional distribution of beta-amyloid deposition and grey matter volumetric decreases is associated with deficits in executive function and memory in mild cognitive impairment. Longitudinal analysis of these relationships may advance our understanding of the role of beta-amyloid deposition in relation to grey matter volumetric decreases in cognitive decline.
Collapse
Affiliation(s)
- Daniel A. Stevens
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Clifford I. Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meryl A. Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Najilla Nassery
- Department of General Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Neda Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Kraut
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Kilgore
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Vidya Kamath
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel P. Holt
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert F. Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gwenn S. Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Hu Q, Wang Q, Li Y, Xie Z, Lin X, Huang G, Zhan L, Jia X, Zhao X. Intrinsic Brain Activity Alterations in Patients With Mild Cognitive Impairment-to-Normal Reversion: A Resting-State Functional Magnetic Resonance Imaging Study From Voxel to Whole-Brain Level. Front Aging Neurosci 2022; 13:788765. [PMID: 35111039 PMCID: PMC8802752 DOI: 10.3389/fnagi.2021.788765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Mild cognitive impairment (MCI) reversion refers to patients with MCI who revert from MCI to a normal cognitive state. Exploring the underlying neuromechanism of MCI reverters may contribute to providing new insights into the pathogenesis of Alzheimer's disease and developing therapeutic interventions. Information on patients with MCI and healthy controls (HCs) was collected from the Alzheimer's Disease Neuroimaging Initiative database. We redefined MCI reverters as patients with MCI whose logical memory scores changed from MCI to normal levels using the logical memory criteria. We explored intrinsic brain activity alterations in MCI reverters from voxel, regional, and whole-brain levels by comparing resting-state functional magnetic resonance imaging metrics of the amplitude of low-frequency of fluctuation (ALFF), the fractional amplitude of low-frequency fluctuation (fALFF), percent amplitude of fluctuation (PerAF), regional homogeneity (ReHo), and degree centrality (DC) between MCI reverters and HCs. Finally, partial correlation analyses were conducted between cognitive scale scores and resting-state functional magnetic resonance imaging metrics of brain regions, revealing significant group differences. Thirty-two patients with MCI from the Alzheimer's Disease Neuroimaging Initiative database were identified as reverters. Thirty-seven age-, sex-, and education-matched healthy individuals were also enrolled. At the voxel level, compared with the HCs, MCI reverters had increased ALFF, fALFF, and PerAF in the frontal gyrus (including the bilateral orbital inferior frontal gyrus and left middle frontal gyrus), increased PerAF in the left fusiform gyrus, and decreased ALFF and fALFF in the right inferior cerebellum. Regarding regional and whole-brain levels, MCI reverters showed increased ReHo in the left fusiform gyrus and right median cingulate and paracingulate gyri; increased DC in the left inferior temporal gyrus and left medial superior frontal; decreased DC in the right inferior cerebellum and bilateral insular gyrus relative to HCs. Furthermore, significant correlations were found between cognitive performance and neuroimaging changes. These findings suggest that MCI reverters show significant intrinsic brain activity changes compared with HCs, potentially related to the cognitive reversion of patients with MCI. These results enhance our understanding of the underlying neuromechanism of MCI reverters and may contribute to further exploration of Alzheimer's disease.
Collapse
Affiliation(s)
- Qili Hu
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qianqian Wang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yunfei Li
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Xiaomei Lin
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - LinLin Zhan
- School of Western Language, Heilongjiang University, Heilongjiang, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xiaohu Zhao
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Banjac S, Roger E, Cousin E, Mosca C, Minotti L, Krainik A, Kahane P, Baciu M. Mapping of Language-and-Memory Networks in Patients With Temporal Lobe Epilepsy by Using the GE2REC Protocol. Front Hum Neurosci 2022; 15:752138. [PMID: 35069148 PMCID: PMC8772037 DOI: 10.3389/fnhum.2021.752138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Preoperative mapping of language and declarative memory functions in temporal lobe epilepsy (TLE) patients is essential since they frequently encounter deterioration of these functions and show variable degrees of cerebral reorganization. Due to growing evidence on language and declarative memory interdependence at a neural and neuropsychological level, we propose the GE2REC protocol for interactive language-and-memory network (LMN) mapping. GE2REC consists of three inter-related tasks, sentence generation with implicit encoding (GE) and two recollection (2REC) memory tasks: recognition and recall. This protocol has previously been validated in healthy participants, and in this study, we showed that it also maps the LMN in the left TLE (N = 18). Compared to healthy controls (N = 19), left TLE (LTLE) showed widespread inter- and intra-hemispheric reorganization of the LMN through reduced activity of regions engaged in the integration and the coordination of this meta-network. We also illustrated how this protocol could be implemented in clinical practice individually by presenting two case studies of LTLE patients who underwent efficient surgery and became seizure-free but showed different cognitive outcomes. This protocol can be advantageous for clinical practice because it (a) is short and easy to perform; (b) allows brain mapping of essential cognitive functions, even at an individual level; (c) engages language-and-memory interaction allowing to evaluate the integrative processes within the LMN; (d) provides a more comprehensive assessment by including both verbal and visual modalities, as well as various language and memory processes. Based on the available postsurgical data, we presented preliminary results obtained with this protocol in LTLE patients that could potentially inform the clinical practice. This implies the necessity to further validate the potential of GE2REC for neurosurgical planning, along with two directions, guiding resection and describing LMN neuroplasticity at an individual level.
Collapse
Affiliation(s)
- Sonja Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| | - Elise Roger
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| | - Emilie Cousin
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
- Université Grenoble Alpes, UMS IRMaGe CHU Grenoble, Grenoble, France
| | - Chrystèle Mosca
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Lorella Minotti
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Alexandre Krainik
- Université Grenoble Alpes, UMS IRMaGe CHU Grenoble, Grenoble, France
| | - Philippe Kahane
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Monica Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| |
Collapse
|
27
|
Shurtleff HA, Poliakov A, Barry D, Wright JN, Warner MH, Novotny EJ, Marashly A, Buckley R, Goldstein HE, Hauptman JS, Ojemann JG, Shaw DWW. A clinically applicable functional MRI memory paradigm for use with pediatric patients. Epilepsy Behav 2022; 126:108461. [PMID: 34896785 DOI: 10.1016/j.yebeh.2021.108461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clinically employable functional MRI (fMRI) memory paradigms are not yet established for pediatric patient epilepsy surgery workups. Seeking to establish such a paradigm, we evaluated the effectiveness of memory fMRI tasks we developed by quantifying individual activation in a clinical pediatric setting, analyzing patterns of activation relative to the side of temporal lobe (TL) pathology, and comparing fMRI and Wada test results. METHODS We retrospectively identified 72 patients aged 6.7-20.9 years with pathology (seizure focus and/or tumor) limited to the TL who had attempted memory and language fMRI tasks over a 9-year period as part of presurgical workups. Memory fMRI tasks required visualization of autobiographical memories in a block design alternating with covert counting. Language fMRI protocols involved verb and sentence generation. Scans were both qualitatively interpreted and quantitatively assessed for blood oxygenation level dependent (BOLD) signal change using region of interest (ROI) masks. We calculated the percentage of successfully scanned individual cases, compared 2 memory task activation masks in cases with left versus right TL pathology, and compared fMRI with Wada tests when available. Patients who had viable fMRI and Wada tests had generally concordant results. RESULTS Of the 72 cases, 60 (83%), aged 7.6-20.9 years, successfully performed the memory fMRI tasks and 12 (17%) failed. Eleven of 12 unsuccessful scans were due to motion and/or inability to perform the tasks, and the success of a twelfth was indeterminate due to orthodontic metal artifact. Seven of the successful 60 cases had distorted anatomy that precluded employing predetermined masks for quantitative analysis. Successful fMRI memory studies showed bilateral mesial temporal activation and quantitatively demonstrated: (1) left activation (L-ACT) less than right activation (R-ACT) in cases with left temporal lobe (L-TL) pathology, (2) nonsignificant R-ACT less than L-ACT in cases with right temporal lobe (R-TL) pathology, and (3) lower L-ACT plus R-ACT activation for cases with L-TL versus R-TL pathology. Patients who had viable fMRI and Wada tests had generally concordant results. SIGNIFICANCE This study demonstrates evidence of an fMRI memory task paradigm that elicits reliable activation at the individual level and can generally be accomplished in clinically involved pediatric patients. This autobiographical memory paradigm showed activation in mesial TL structures, and cases with left compared to right TL pathology showed differences in activation consistent with extant literature in TL epilepsy. Further studies will be required to assess outcome prediction.
Collapse
Affiliation(s)
- Hillary A Shurtleff
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States.
| | | | - Dwight Barry
- Clinical Analytics, Seattle Children's Hospital, United States
| | - Jason N Wright
- Radiology, Seattle Children's Hospital, United States; Department of Radiology, University of Washington School of Medicine, United States
| | - Molly H Warner
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States
| | - Edward J Novotny
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Neurology, Seattle Children's Hospital, United States; Department of Neurology, University of Washington School of Medicine, United States
| | - Ahmad Marashly
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Neurology, Seattle Children's Hospital, United States; Department of Neurology, University of Washington School of Medicine, United States
| | - Robert Buckley
- Department of Neurological Surgery, University of Washington School of Medicine, United States
| | - Hannah E Goldstein
- Neurosciences Institute, Seattle Children's Hospital, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Jason S Hauptman
- Neurosciences Institute, Seattle Children's Hospital, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Jeffrey G Ojemann
- Neurosciences Institute, Seattle Children's Hospital, United States; Center for Integrated Brain Research Seattle Children's, United States; Department of Neurological Surgery, University of Washington School of Medicine, United States; Neurological Surgery, Seattle Children's Hospital, United States
| | - Dennis W W Shaw
- Radiology, Seattle Children's Hospital, United States; Department of Radiology, University of Washington School of Medicine, United States
| |
Collapse
|
28
|
Resende EDPF, Hornberger M, Guimarães HC, Gambogi LB, Mariano LI, Teixeira AL, Caramelli P, de Souza LC. Different patterns of gray matter atrophy in behavioral variant frontotemporal dementia with and without episodic memory impairment. Int J Geriatr Psychiatry 2021; 36:1848-1857. [PMID: 33527441 DOI: 10.1002/gps.5503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Differentiating patients with behavioral variant frontotemporal dementia (bvFTD) from Alzheimer's disease (AD) is important as these two conditions have distinct treatment and prognosis. Using episodic impairment and medial temporal lobe atrophy as a tool to make this distinction has been debatable in the recent literature, as some patients with bvFTD can also have episodic memory impairment and medial temporal lobe atrophy early in the disease. OBJECTIVES To compare brain atrophy patterns of patients with bvFTD with and without episodic memory impairment to that of patients with AD. METHODS We analyzed 19 patients with bvFTD, 21 with AD and 21 controls, matched by age, sex, and years of education. They underwent brain MRI and the memory test from the Brief Cognitive Battery (BCB) to assess episodic memory. We then categorized the bvFTD group into amnestic (BCB delayed recall score <7) and non-amnestic. RESULTS The amnestic bvFTD group (n = 8) had significant gray matter atrophy in the left parahippocampal gyrus, right cingulate and precuneus regions compared with the nonamnestic group. Compared with AD, amnestic bvFTD had more atrophy in the left fusiform cortex, left insula, left inferior temporal gyrus and right temporal pole, whereas patients with AD had more atrophy in the left hippocampus, left frontal pole and left angular gyrus. CONCLUSIONS There is a group of amnestic bvFTD patients with episodic memory dysfunction and significant atrophy in medial temporal structures, which poses a challenge in considering only these features when differentiating bvFTD from AD clinically.
Collapse
Affiliation(s)
- Elisa de Paula França Resende
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências da, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Henrique Cerqueira Guimarães
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Boson Gambogi
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciano Inácio Mariano
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Paulo Caramelli
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências da, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Grupo de Neurologia Cognitiva e do Comportamento, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências da, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Sone D, Ahmad M, Thompson PJ, Baxendale S, Vos SB, Xiao F, de Tisi J, McEvoy AW, Miserocchi A, Duncan JS, Koepp MJ, Galovic M. Optimal Surgical Extent for Memory and Seizure Outcome in Temporal Lobe Epilepsy. Ann Neurol 2021; 91:131-144. [PMID: 34741484 PMCID: PMC8916104 DOI: 10.1002/ana.26266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Postoperative memory decline is an important consequence of anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), and the extent of resection may be a modifiable factor. This study aimed to define optimal resection margins for cognitive outcome while maintaining a high rate of postoperative seizure freedom. METHODS This cohort study evaluated the resection extent on postoperative structural MRI using automated voxel-based methods and manual measurements in 142 consecutive patients with unilateral drug refractory TLE (74 left, 68 right TLE) who underwent standard ATLR. RESULTS Voxel-wise analyses revealed that postsurgical verbal memory decline correlated with resections of the posterior hippocampus and inferior temporal gyrus, whereas larger resections of the fusiform gyrus were associated with worsening of visual memory in left TLE. Limiting the posterior extent of left hippocampal resection to 55% reduced the odds of significant postoperative verbal memory decline by a factor of 8.1 (95% CI 1.5-44.4, p = 0.02). Seizure freedom was not related to posterior resection extent, but to the piriform cortex removal after left ATLR. In right TLE, variability of the posterior extent of resection was not associated with verbal and visual memory decline or seizures after surgery. INTERPRETATION The extent of surgical resection is an independent and modifiable risk factor for cognitive decline and seizures after left ATLR. Adapting the posterior extent of left ATLR might optimize postoperative outcome, with reduced risk of memory impairment while maintaining comparable seizure-freedom rates. The current, more lenient, approach might be appropriate for right ATLR. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Maria Ahmad
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, UK.,Centre for Medical Image Computing (CMIC), University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, UK
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Strýček O, Lamoš M, Rektor I. Memory retrieval in temporal lobe epilepsy is related to functional segregation of the mesiotemporal structures. Epilepsy Behav 2021; 122:108196. [PMID: 34256340 DOI: 10.1016/j.yebeh.2021.108196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We analyzed the impact of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) on functional connectivity (FC) between mesiotemporal structures. Functional connectivity modifications related to word retrieval were investigated. METHODS High-density EEG of 21 patients with TLE with HS (12 left TLE and 9 right TLE) and 10 healthy controls (HCs) were recorded during a verbal subsequent memory paradigm. Electroencephalography data were reconstructed into the source space and FC was calculated from the source activity of regions of interest. RESULTS A significant decrease in FC between the right- and left-sided mesiotemporal structures in TLE was observed. The decrease was significant only with words that were correctly recognized. The decrease in interhemispheric FC between mesiotemporal structures was found in the 8- to 20-Hz frequency range in both left and right TLE. SIGNIFICANCE The decreased FC between the mesiotemporal structures in TLE is a condition for successful performance of a memory retrieval task. The successful memory retrieval in TLE is related to functional segregation of lesional from nonlesional mesiotemporal structures. This decrease was absent in non-successful responses.
Collapse
Affiliation(s)
- Ondřej Strýček
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Masaryk University, Brain and Mind Research Program, Brno, Czech Republic
| | - Martin Lamoš
- Central European Institute of Technology (CEITEC), Masaryk University, Brain and Mind Research Program, Brno, Czech Republic
| | - Ivan Rektor
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Masaryk University, Brain and Mind Research Program, Brno, Czech Republic.
| |
Collapse
|
31
|
Vallesi A. The Quest for Hemispheric Asymmetries Supporting and Predicting Executive Functioning. J Cogn Neurosci 2021; 33:1679-1697. [PMID: 33135967 DOI: 10.1162/jocn_a_01646] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This narrative review addresses the neural bases of two executive functions: criterion setting, that is, the capacity to flexibly set up and select task rules and associations between stimuli, responses, and nonresponses, and monitoring, that is, the process of continuously evaluating whether task rules are being applied optimally. There is a documented tendency for criterion setting and monitoring to differentially recruit left and right lateral prefrontal regions and connected networks, respectively, above and beyond the specific task context. This model, known as the ROtman-Baycrest Battery to Investigate Attention (ROBBIA) model, initially sprung from extensive neuropsychological work led by Don Stuss. In subsequent years, multimodal lines of empirical investigation on both healthy individuals and patients with brain damage, coming from functional neuroimaging, EEG, neurostimulation, individual difference approaches, and, again, neuropsychology, so to "complete the circle," corroborated the functional mapping across the two hemispheres as predicted by the model. More recent electrophysiological evidence has further shown that hemispheric differences in intrinsic prefrontal dynamics are able to predict cognitive performance in tasks tapping these domain-general functions. These empirical contributions will be presented together with contrasting evidence, limits, and possible future directions to better fine-tune this model and extend its scope to new fields.
Collapse
|
32
|
Banjac S, Roger E, Cousin E, Perrone-Bertolotti M, Haldin C, Pichat C, Lamalle L, Minotti L, Kahane P, Baciu M. Interactive mapping of language and memory with the GE2REC protocol. Brain Imaging Behav 2021; 15:1562-1579. [PMID: 32761343 PMCID: PMC8286228 DOI: 10.1007/s11682-020-00355-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have highlighted the importance of considering cognitive functions from a dynamic and interactive perspective and multiple evidence was brought for a language and memory interaction. In this study performed with healthy participants, we present a new protocol entitled GE2REC that interactively accesses the neural representation of language-and-memory network. This protocol consists of three runs related to each other, providing a link between tasks, in order to assure an interactive measure of linguistic and episodic memory processes. GE2REC consists of a sentence generation (GE) in the auditory modality and two recollecting (2REC) memory tasks, one recognition performed in the visual modality, and another one recall performed in the auditory modality. Its efficiency was evaluated in 20 healthy volunteers using a 3T MR imager. Our results corroborate the ability of GE2REC to robustly activate fronto-temporo-parietal language network as well as temporal mesial, prefrontal and parietal cortices in encoding during sentence generation and recognition. GE2REC is useful because it: (a) requires simultaneous and interactive language-and-memory processes and jointly maps their neural basis; (b) explores encoding and retrieval, managing to elicit activation of mesial temporal structures; (c) is easy to perform, hence being suitable for more restrictive settings, and (d) has an ecological dimension of tasks and stimuli. GE2REC may be useful for studying neuroplasticity of cognitive functions, especially in patients with temporal lobe epilepsy who show reorganization of both language and memory networks. Overall, GE2REC can provide valuable information in terms of the practical foundation of exploration language and memory interconnection.
Collapse
Affiliation(s)
- Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.,Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | | | - Célise Haldin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Cédric Pichat
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Laurent Lamalle
- Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | - Lorella Minotti
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.
| |
Collapse
|
33
|
Yu Q, Cheval B, Becker B, Herold F, Chan CCH, Delevoye-Turrell YN, Guérin SMR, Loprinzi P, Mueller N, Zou L. Episodic Memory Encoding and Retrieval in Face-Name Paired Paradigm: An fNIRS Study. Brain Sci 2021; 11:brainsci11070951. [PMID: 34356185 PMCID: PMC8305286 DOI: 10.3390/brainsci11070951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Episodic memory (EM) is particularly sensitive to pathological conditions and aging. In a neurocognitive context, the paired-associate learning (PAL) paradigm, which requires participants to learn and recall associations between stimuli, has been used to measure EM. The present study aimed to explore whether functional near-infrared spectroscopy (fNIRS) can be employed to determine cortical activity underlying encoding and retrieval. Moreover, we examined whether and how different aspects of task (i.e., novelty, difficulty) affects those cortical activities. Methods: Twenty-two male college students (age: M = 20.55, SD = 1.62) underwent a face-name PAL paradigm under 40-channel fNIRS covering fronto-parietal and middle occipital regions. Results: A decreased activity during encoding in a broad network encompassing the bilateral frontal cortex (Brodmann areas 9, 11, 45, and 46) was observed during the encoding, while an increased activity in the left orbitofrontal cortex (Brodmann area 11) was observed during the retrieval. Increased HbO concentration in the superior parietal cortices and decreased HbO concentration in the inferior parietal cortices were observed during encoding while dominant activation of left PFC was found during retrieval only. Higher task difficulty was associated with greater neural activity in the bilateral prefrontal cortex and higher task novelty was associated with greater activation in occipital regions. Conclusion: Combining the PAL paradigm with fNIRS provided the means to differentiate neural activity characterising encoding and retrieval. Therefore, the fNIRS may have the potential to complete EM assessments in clinical settings.
Collapse
Affiliation(s)
- Qian Yu
- Exercise Psychophysiology Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen 518060, China;
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland;
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, FPSE, University of Geneva, 1205 Geneva, Switzerland
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Xiyuan Ave 2006, Chengdu 611731, China;
| | - Fabian Herold
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Street 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
- German Center for Neurodegenerative Diseases (DZNE), Research Group Neuroprotection, Leipziger Street 44, 39120 Magdeburg, Germany
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong, China;
| | - Yvonne N. Delevoye-Turrell
- UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Université de Lille, F-59000 Lille, France; (Y.N.D.-T.); (S.M.R.G.)
| | - Ségolène M. R. Guérin
- UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Université de Lille, F-59000 Lille, France; (Y.N.D.-T.); (S.M.R.G.)
| | - Paul Loprinzi
- Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Notger Mueller
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Street 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
- German Center for Neurodegenerative Diseases (DZNE), Research Group Neuroprotection, Leipziger Street 44, 39120 Magdeburg, Germany
| | - Liye Zou
- Exercise Psychophysiology Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen 518060, China;
- Correspondence:
| |
Collapse
|
34
|
Zhen ZH, Guo MR, Li HM, Guo OY, Zhen JL, Fu J, Tan GJ. Normal and Abnormal Sharp Wave Ripples in the Hippocampal-Entorhinal Cortex System: Implications for Memory Consolidation, Alzheimer's Disease, and Temporal Lobe Epilepsy. Front Aging Neurosci 2021; 13:683483. [PMID: 34262446 PMCID: PMC8273653 DOI: 10.3389/fnagi.2021.683483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of hippocampal sharp wave ripples (SWRs) is an electrophysiological biomarker for episodic memory encoding and behavioral planning. Disturbed SWRs are considered a sign of neural network dysfunction that may provide insights into the structural connectivity changes associated with cognitive impairment in early-stage Alzheimer's disease (AD) and temporal lobe epilepsy (TLE). SWRs originating from hippocampus have been extensively studied during spatial navigation in rodents, and more recent studies have investigated SWRs in the hippocampal-entorhinal cortex (HPC-EC) system during a variety of other memory-guided behaviors. Understanding how SWR disruption impairs memory function, especially episodic memory, could aid in the development of more efficacious therapeutics for AD and TLE. In this review, we first provide an overview of the reciprocal association between AD and TLE, and then focus on the functions of HPC-EC system SWRs in episodic memory consolidation. It is posited that these waveforms reflect rapid network interactions among excitatory projection neurons and local interneurons and that these waves may contribute to synaptic plasticity underlying memory consolidation. Further, SWRs appear altered or ectopic in AD and TLE. These waveforms may thus provide clues to understanding disease pathogenesis and may even serve as biomarkers for early-stage disease progression and treatment response.
Collapse
Affiliation(s)
- Zhi-Hang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mo-Ran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - He-Ming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ou-Yang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Jun-Li Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
35
|
Doll A, Wegrzyn M, Benzait A, Mertens M, Woermann FG, Labudda K, Bien CG, Kissler J. Whole-brain functional correlates of memory formation in mesial temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2021; 31:102723. [PMID: 34147817 PMCID: PMC8220377 DOI: 10.1016/j.nicl.2021.102723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Large study of encoding and subsequent memory for words, faces, and scenes. Less ipsilateral mesial temporal activity in mesial temporal lobe epilepsy (mTLE). Extra-mTL activity in mTLE only partly relevant for memory formation. Across materials contralateral mTL decisive to maintain intact memory in mTLE. Left frontal activation correlates with better verbal memory only in left mTLE.
The mesial temporal lobe is a key region for episodic memory. Accordingly, memory impairment is frequent in patients with mesial temporal lobe epilepsy. However, the functional relevance of potentially epilepsy-induced reorganisation for memory formation is still not entirely clear. Therefore, we investigated whole-brain functional correlates of verbal and non-verbal memory encoding and subsequent memory formation in 56 (25 right sided) mesial temporal lobe epilepsy patients and 21 controls. We applied an fMRI task of learning scenes, faces, and words followed by an out-of-scanner recognition test. During encoding of faces and scenes left and right mesial temporal lobe epilepsy patients had consistently reduced activation in the epileptogenic mesial temporal lobe compared with controls. Activation increases in patients were apparent in extra-temporal regions, partly associated with subsequent memory formation (left frontal regions and basal ganglia), and patients had less deactivation in regions often linked to the default mode and auditory networks. The more specific subsequent memory contrast indicated only marginal group differences. Correlating patients’ encoding activation with memory performance both within the paradigm and with independent clinical measures demonstrated predominantly increased contralateral mesio-temporal activation supporting intact memory performance. In left temporal lobe epilepsy patients, left frontal activation was also correlated with better verbal memory performance. Taken together, our findings hint towards minor extra-temporal plasticity in mesial temporal lobe epilepsy patients, which is in line with pre-surgical impairment and post-surgical memory decline in many patients. Further, data underscore the importance of particularly the contralateral mesial temporal lobe itself, to maintain intact memory performance.
Collapse
Affiliation(s)
- Anna Doll
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany; Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Martin Wegrzyn
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Anissa Benzait
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany; Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Markus Mertens
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Friedrich G Woermann
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Kirsten Labudda
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Christian G Bien
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Maraweg 21, Bielefeld 33617, Germany
| | - Johanna Kissler
- Bielefeld University, Department of Psychology, Universitätsstraße 25, Bielefeld 33615, Germany; Center for Cognitive Interaction Technology (CITEC), University of Bielefeld, Inspiration 1, Bielefeld 33619, Germany
| |
Collapse
|
36
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
37
|
Jiang S, Li H, Liu L, Yao D, Luo C. Voxel-wise functional connectivity of the default mode network in epilepsies: a systematic review and meta-analysis. Curr Neuropharmacol 2021; 20:254-266. [PMID: 33823767 PMCID: PMC9199542 DOI: 10.2174/1570159x19666210325130624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Default Mode Network (DMN) is recognized to be involved in the generation and propagation of epileptic activities in various epilepsies. Converging evidence has suggested disturbed Functional Connectivity (FC) in epilepsies, which was inferred to be related to underlying pathological mechanisms. However, abnormal changes of FC in DMN revealed by different studies are controversial, which obscures the role of DMN in distinct epilepsies. Objective: The present work aims to investigate the voxel-wise FC in DMN across epilepsies. Methods: A systematic review was conducted on 22 published articles before October 2020, indexed in PubMed and Web of Science. A meta-analysis with a random-effect model was performed using the effect-size signed differential mapping approach. Subgroup analyses were performed in three groups: Idiopathic Generalized Epilepsy (IGE), mixed Temporal Lobe Epilepsy (TLE), and mixed Focal Epilepsy (FE) with different foci. Results: The meta-analysis suggested commonly decreased FC in mesial prefrontal cortices across different epilepsies. Additionally decreased FC in posterior DMN was observed in IGE. The TLE showed decreased FC in temporal lobe regions and increased FC in the dorsal posterior cingulate cortex. Interestingly, an opposite finding in the ventral and dorsal middle frontal gyrus was observed in TLE. The FE demonstrated increased FC in the cuneus.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Linli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| |
Collapse
|
38
|
Li Q, Tavakol S, Royer J, Larivière S, Vos De Wael R, Park BY, Paquola C, Zeng D, Caldairou B, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Smallwood J, Caciagli L, Li S, Bernhardt BC. Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain 2021; 144:2486-2498. [PMID: 33730163 DOI: 10.1093/brain/awab121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Episodic memory is the ability to accurately remember events from our past. The process of pattern separation is hypothesized to underpin this ability and is defined as the ability to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and the neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy (TLE) who present with hippocampal structural anomalies. In all participants, we measured neural activity using functional magnetic resonance imaging (fMRI) while they retrieved memorized items compared to lure items which share features with the target. Behaviorally, TLE patients were less able to exclude lures than controls, and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and the neocortex, we identified topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and identified the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded pattern of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In TLE patients, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person specific measures of concordance between task-related activity and connectivity gradients in patients and controls related to inter-individual differences in behavioral measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients captures the functional underpinnings of episodic memory processes in manner that is sensitive to their reorganization in pathology.
Collapse
Affiliation(s)
- Qiongling Li
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos De Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Debin Zeng
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
39
|
Tracy JI, Chaudhary K, Modi S, Crow A, Kumar A, Weinstein D, Sperling MR. Computational support, not primacy, distinguishes compensatory memory reorganization in epilepsy. Brain Commun 2021; 3:fcab025. [PMID: 34222865 PMCID: PMC8244645 DOI: 10.1093/braincomms/fcab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy is associated with impairment in episodic memory. A substantial subgroup, however, is able to maintain adequate memory despite temporal lobe pathology. Missing from prior work in cognitive reorganization is a direct comparison of temporal lobe epilepsy patients with intact status with those who are memory impaired. Little is known about the regional activations, functional connectivities and/or network reconfigurations that implement changes in primary computations or support functions that drive adaptive plasticity and compensated memory. We utilized task functional MRI on 54 unilateral temporal lobe epilepsy patients and 24 matched healthy controls during the performance of a paired-associate memory task to address three questions: (i) which regions implement paired-associate memory in temporal lobe epilepsy, and do they vary as a function of good versus poor performance, (ii) is there unique functional connectivity present during memory encoding that accounts for intact status by preservation of primary memory computations or the supportive computations that allow for intact memory responses and (iii) what features during memory encoding are most distinctive: is it the magnitude and location of regional activations, or the presence of enhanced functional connections to key structures such as the hippocampus? The study revealed non-dominant hemisphere regions (right posterior temporal regions) involving both increased regional activity and increased modulatory communication with the hippocampi as most important to intact memory in left temporal lobe epilepsy compared to impaired status. The profile involved areas that are neither contralateral homologues to left hemisphere memory areas, nor regions traditionally considered computationally primary for episodic memory. None of these areas of increased activation or functional connectivity were associated with advantaged memory in healthy controls. Our emphasis on different performance levels yielded insight into two forms of cognitive reorganization: computational primacy, where left temporal lobe epilepsy showed little change relative to healthy controls, and computational support where intact left temporal lobe epilepsy patients showed adaptive abnormalities. The analyses isolated the unique regional activations and mediating functional connectivity that implements truly compensatory reorganization in left temporal lobe epilepsy. The results provided a new perspective on memory deficits by making clear that they arise not just from the knockout of a functional hub, but from the failure to instantiate a complex set of reorganization responses. Such responses provided the computational support to ensure successful memory. We demonstrated that by keeping track of performance levels, we can increase understanding of adaptive brain responses and neuroplasticity in epilepsy.
Collapse
Affiliation(s)
- Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA,Correspondence to: Joseph I. Tracy, Department of Neurology, Thomas Jefferson University, 901 Walnut Street, Health Sciences Building, Suite 447, Philadelphia, PA 19107, USA. E-mail:
| | - Kapil Chaudhary
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shilpi Modi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Crow
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashith Kumar
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Weinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
40
|
Barrett Jones S, A Miller L, Kleitman S, Nikpour A, Lah S. Semantic and episodic memory in adults with temporal lobe epilepsy. APPLIED NEUROPSYCHOLOGY-ADULT 2021; 29:1352-1361. [PMID: 33595395 DOI: 10.1080/23279095.2021.1876692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The primary aims were to (1) identify the factor structure of tests thought to measure semantic and episodic memory and (2) examine whether patterns of impairment would show a double dissociation between these two memory systems at an individual level in patients with temporal lobe epilepsy (TLE). The secondary aim was to explore the impact of epilepsy-related variables on performance. This retrospective study involved a cohort of 54 adults who had been diagnosed with TLE and had undergone a neuropsychological assessment that included four memory tests traditionally used to measure either semantic memory (picture naming, animal fluency) or episodic memory (story recall, word list recall) at a single epilepsy surgery center in Australia. Principal component analysis revealed two factors albeit with unexpected loadings. Picture naming and story recall loaded on one factor. Animal fluency and word list recall loaded on another factor. There was no evidence of a double dissociation between semantic and episodic memory at an individual level. Left hemisphere seizure focus and early age of seizure onset related to worse performance on word list recall, picture naming and animal fluency, respectively. Our study highlights the importance of caution when interpreting the results of neuropsychological assessments, as not all putative tests of semantic and episodic memory may necessarily be measuring the same construct. Future directions for research are also considered.
Collapse
Affiliation(s)
| | - Laurie A Miller
- Central Clinical School, University of Sydney, New South Wales, Australia
| | - Sabina Kleitman
- School of Psychology, University of Sydney, Sydney, Australia
| | - Armin Nikpour
- Central Clinical School, University of Sydney, New South Wales, Australia.,University of Sydney, Sydney, Australia
| | - Suncica Lah
- School of Psychology, University of Sydney, Sydney, Australia
| |
Collapse
|
41
|
Li H, Liang Y, Yue Q, Zhang L, Ying K, Mei L. The contributions of the left fusiform subregions to successful encoding of novel words. Brain Cogn 2021; 148:105690. [PMID: 33494036 DOI: 10.1016/j.bandc.2021.105690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
The left fusiform cortex has been identified as a crucial structure in visual word learning and memory. Nevertheless, the specific roles of the fusiform subregions in word memory and their consistency across different writings have not been elaborated. To address these questions, the present study performed two experiments, in which study-test paradigm was used. Participants' brain activity was measured with fMRI while memorizing novel logographic words in Experiment 1 and novel alphabetic words in Experiment 2. A post-scan recognition memory test was then administered to acquire the memory performance. Results showed that, neural responses in the left anterior and middle fusiform subregions during encoding were positively correlated with recognition memory of novel words. Moreover, the positive brain-behavior correlations in the left anterior and middle fusiform cortex were evident for both logographic and alphabetic writings. The present findings clarify the relationship between the left fusiform subregions and novel word memory.
Collapse
Affiliation(s)
- Huiling Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Yumin Liang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qingxin Yue
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Lei Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Kangli Ying
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Leilei Mei
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
42
|
Caciagli L, Allen LA, He X, Trimmel K, Vos SB, Centeno M, Galovic M, Sidhu MK, Thompson PJ, Bassett DS, Winston GP, Duncan JS, Koepp MJ, Sperling MR. Thalamus and focal to bilateral seizures: A multiscale cognitive imaging study. Neurology 2020; 95:e2427-e2441. [PMID: 32847951 PMCID: PMC7682917 DOI: 10.1212/wnl.0000000000010645] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the functional correlates of recurrent secondarily generalized seizures in temporal lobe epilepsy (TLE) using task-based fMRI as a framework to test for epilepsy-specific network rearrangements. Because the thalamus modulates propagation of temporal lobe onset seizures and promotes cortical synchronization during cognition, we hypothesized that occurrence of secondarily generalized seizures, i.e., focal to bilateral tonic-clonic seizures (FBTCS), would relate to thalamic dysfunction, altered connectivity, and whole-brain network centrality. METHODS FBTCS occur in a third of patients with TLE and are a major determinant of disease severity. In this cross-sectional study, we analyzed 113 patients with drug-resistant TLE (55 left/58 right), who performed a verbal fluency fMRI task that elicited robust thalamic activation. Thirty-three patients (29%) had experienced at least one FBTCS in the year preceding the investigation. We compared patients with TLE-FBTCS to those without FBTCS via a multiscale approach, entailing analysis of statistical parametric mapping (SPM) 12-derived measures of activation, task-modulated thalamic functional connectivity (psychophysiologic interaction), and graph-theoretical metrics of centrality. RESULTS Individuals with TLE-FBTCS had less task-related activation of bilateral thalamus, with left-sided emphasis, and left hippocampus than those without FBTCS. In TLE-FBTCS, we also found greater task-related thalamotemporal and thalamomotor connectivity, and higher thalamic degree and betweenness centrality. Receiver operating characteristic curves, based on a combined thalamic functional marker, accurately discriminated individuals with and without FBTCS. CONCLUSIONS In TLE-FBTCS, impaired task-related thalamic recruitment coexists with enhanced thalamotemporal connectivity and whole-brain thalamic network embedding. Altered thalamic functional profiles are proposed as imaging biomarkers of active secondary generalization.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA.
| | - Luke A Allen
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Xiaosong He
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Karin Trimmel
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Sjoerd B Vos
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Maria Centeno
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Marian Galovic
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Meneka K Sidhu
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Pamela J Thompson
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Danielle S Bassett
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Gavin P Winston
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - John S Duncan
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Matthias J Koepp
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Michael R Sperling
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
43
|
Caciagli L, Wandschneider B, Centeno M, Vollmar C, Vos SB, Trimmel K, Long L, Xiao F, Lowe AJ, Sidhu MK, Thompson PJ, Winston GP, Duncan JS, Koepp MJ. Motor hyperactivation during cognitive tasks: An endophenotype of juvenile myoclonic epilepsy. Epilepsia 2020; 61:1438-1452. [PMID: 32584424 PMCID: PMC7681252 DOI: 10.1111/epi.16575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Juvenile myoclonic epilepsy (JME) is the most common genetic generalized epilepsy syndrome. Myoclonus may relate to motor system hyperexcitability and can be provoked by cognitive activities. To aid genetic mapping in complex neuropsychiatric disorders, recent research has utilized imaging intermediate phenotypes (endophenotypes). Here, we aimed to (a) characterize activation profiles of the motor system during different cognitive tasks in patients with JME and their unaffected siblings, and (b) validate those as endophenotypes of JME. METHODS This prospective cross-sectional investigation included 32 patients with JME, 12 unaffected siblings, and 26 controls, comparable for age, sex, handedness, language laterality, neuropsychological performance, and anxiety and depression scores. We investigated patterns of motor system activation during episodic memory encoding and verb generation functional magnetic resonance imaging (fMRI) tasks. RESULTS During both tasks, patients and unaffected siblings showed increased activation of motor system areas compared to controls. Effects were more prominent during memory encoding, which entailed hand motion via joystick responses. Subgroup analyses identified stronger activation of the motor cortex in JME patients with ongoing seizures compared to seizure-free patients. Receiver-operating characteristic curves, based on measures of motor activation, accurately discriminated both patients with JME and their siblings from healthy controls (area under the curve: 0.75 and 0.77, for JME and a combined patient-sibling group against controls, respectively; P < .005). SIGNIFICANCE Motor system hyperactivation represents a cognitive, domain-independent endophenotype of JME. We propose measures of motor system activation as quantitative traits for future genetic imaging studies in this syndrome.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Britta Wandschneider
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Maria Centeno
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Epilepsy UnitHospital Clínic de BarcelonaBarcelonaSpain
| | - Christian Vollmar
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyLondonUK
| | - Karin Trimmel
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Lili Long
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyXiangya Hospital of Central South UniversityChangshaChina
| | - Fenglai Xiao
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduChina
| | - Alexander J. Lowe
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyQueen's UniversityKingstonONCanada
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| |
Collapse
|
44
|
Postma TS, Cury C, Baxendale S, Thompson PJ, Cano-López I, de Tisi J, Burdett JL, Sidhu MK, Caciagli L, Winston GP, Vos SB, Thom M, Duncan JS, Koepp MJ, Galovic M. Hippocampal Shape Is Associated with Memory Deficits in Temporal Lobe Epilepsy. Ann Neurol 2020; 88:170-182. [PMID: 32379905 PMCID: PMC8432153 DOI: 10.1002/ana.25762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022]
Abstract
Objective Cognitive problems, especially disturbances in episodic memory, and hippocampal sclerosis are common in temporal lobe epilepsy (TLE), but little is known about the relationship of hippocampal morphology with memory. We aimed to relate hippocampal surface‐shape patterns to verbal and visual learning. Methods We analyzed hippocampal surface shapes on high‐resolution magnetic resonance images and the Adult Memory and Information Processing Battery in 145 unilateral refractory TLE patients undergoing epilepsy surgery, a validation set of 55 unilateral refractory TLE patients, and 39 age‐ and sex‐matched healthy volunteers. Results Both left TLE (LTLE) and right TLE (RTLE) patients had lower verbal (LTLE 44 ± 11; RTLE 45 ± 10) and visual learning (LTLE 34 ± 8, RTLE 30 ± 8) scores than healthy controls (verbal 58 ± 8, visual 39 ± 6; p < 0.001). Verbal learning was more impaired the greater the atrophy of the left superolateral hippocampal head. In contrast, visual memory was worse with greater bilateral inferomedial hippocampal atrophy. Postsurgical verbal memory decline was more common in LTLE than in RTLE (reliable change index in LTLE 27% vs RTLE 7%, p = 0.006), whereas there were no differences in postsurgical visual memory decline between those groups. Preoperative atrophy of the left hippocampal tail predicted postsurgical verbal memory decline. Interpretation Memory deficits in TLE are associated with specific morphological alterations of the hippocampus, which could help stratify TLE patients into those at high versus low risk of presurgical or postsurgical memory deficits. This knowledge could improve planning and prognosis of selective epilepsy surgery and neuropsychological counseling in TLE. ANN NEUROL 2020 ANN NEUROL 2020;88:170–182
Collapse
Affiliation(s)
- Tjardo S Postma
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom.,GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands
| | - Claire Cury
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,University of Rennes, Inria, Inserm, CNRS, IRISA UMR 6074, Empenn team ERL U 1228, F-35000, Rennes, France.,Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Irene Cano-López
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Valencian International University, Valencia, Spain
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Jane L Burdett
- MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom.,Department of Medicine, Division of Neurology, Queen's University, Kingston, Canada
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom.,Department of Medicine, Division of Neurology, Queen's University, Kingston, Canada
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Chaudhary K, Tripathi M, Chandra PS, Nehra A, Kumaran SS. Evaluation of memory in persons with mesial temporal lobe sclerosis: A combined fMRI and VBM study. J Biosci 2020. [DOI: 10.1007/s12038-020-00041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Pajkert A, Ploner CJ, Lehmann TN, Witte VA, Oltmanns F, Sommer W, Holtkamp M, Heekeren HR, Finke C. Early volumetric changes of hippocampus and medial prefrontal cortex following medial temporal lobe resection. Eur J Neurosci 2020; 52:4375-4384. [PMID: 32421911 DOI: 10.1111/ejn.14784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that cognitive demands and physical exercise stimulate adult neurogenesis in the dentate gyrus and hippocampus. Recent observations in healthy humans and patients with mild cognitive impairment moreover suggest that training-induced increases in hippocampal volume may be associated with improved memory performance. The corresponding plasticity processes in hippocampal volume may occur on timescales of months to years. For patients with focal lesions in this region, previous functional imaging studies suggest that increased recruitment of the contralateral hippocampus and extratemporal regions may be an important part of the reorganization of episodic memory. However, it is currently unclear whether focal damage to the medial temporal lobe (MTL) induces gray matter (GM) volume changes in the intact contralateral hippocampus and in connected network regions on a shorter timescale. We therefore investigated whether unilateral resection of the MTL, including the hippocampus, induces measurable volumetric changes in the contralateral hippocampus and in the default mode network (DMN). We recruited 31 patients with unilateral left (N = 19) or right (N = 12) hippocampal sclerosis undergoing MTL resection for treatment of drug-resistant epilepsy. Structural MRI was acquired immediately before and 3 months after surgery. Longitudinal voxel-based morphometry (VBM) analysis revealed a significant increase of right hippocampal volume following resection of the left anterior MTL. Furthermore, this patient group showed GM volume increases in the DMN. These results demonstrate significant structural plasticity of the contralateral hippocampus, even in patients with a long-standing unilateral hippocampal dysfunction and structural reorganization processes extending to distant, but functionally connected brain regions.
Collapse
Affiliation(s)
- Anna Pajkert
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph J Ploner
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Veronica A Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Berlin, Germany
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind & Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Foit NA, Bernasconi A, Bernasconi N. Functional Networks in Epilepsy Presurgical Evaluation. Neurosurg Clin N Am 2020; 31:395-405. [PMID: 32475488 DOI: 10.1016/j.nec.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Continuing advancements in neuroimaging methodology allow for increasingly detailed in vivo characterization of structural and functional brain networks, leading to the recognition of epilepsy as a disorder of large-scale networks. In surgical candidates, analysis of functional networks has proved invaluable for the identification of eloquent brain areas, such as hemispherical language dominance. More recently, connectome-based biomarkers have demonstrated potential to further inform clinical decision making in drug-refractory epilepsy. This article summarizes current evidence on epilepsy as a network disorder, emphasizing potential benefits of network analysis techniques for preoperative assessments and resection planning.
Collapse
Affiliation(s)
- Niels Alexander Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, 3801 Rue Université, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
48
|
Wagner K, Gau K, Metternich B, Geiger MJ, Wendling AS, Kadish NE, Reuner G, Mayer H, Mader I, Beck J, Zentner J, Urbach H, Schulze-Bonhage A, Kaller CP, Foit NA. Effects of hippocampus-sparing resections in the temporal lobe: Hippocampal atrophy is associated with a decline in memory performance. Epilepsia 2020; 61:725-734. [PMID: 32162320 DOI: 10.1111/epi.16473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In patients with temporal lobe epilepsy (TLE) with a nonlesional and nonepileptogenic hippocampus (HC), in order to preserve functionally intact brain tissue, the HC is not resected. However, some patients experience postoperative memory decline, possibly due to disruption of the extrahippocampal memory network and secondary hippocampal volume (HV) loss. The purpose of this study was to determine the extent of hippocampal atrophy ipsilateral and contralateral to the side of the surgery and its relation to memory outcomes. METHODS Hippocampal volume and verbal as well as visual memory performance were retrospectively examined in 55 patients (mean age ± standard deviation [SD] 30 ± 15 years, 25 female, 31 left) before and 5 months after surgery within the temporal lobe that spared the entire HC. HV was extracted based on prespecified templates, and resection volumes were also determined. RESULTS HV loss was found both ipsilateral and contralateral to the side of surgery (P < .001). Postoperative left HV loss was a significant predictor of postoperative verbal memory deterioration after left-sided surgery (P < .01). Together with the preoperative verbal memory performance, postoperative left HV explained almost 60% of the variance (P < .0001). However, right HV was not a clear predictor of visual memory performance. Larger resection volumes were associated with smaller postoperative HV, irrespective of side of surgery (left: P < .05, right: P < .01). SIGNIFICANCE A disruption of the memory network by any resection within the TL, especially within the language-dominant hemisphere, may lead to HC atrophy and memory decline. These findings may further improve the counseling of patients concerning their postoperative memory outcome before TL resections sparing the entire HC.
Collapse
Affiliation(s)
- Kathrin Wagner
- Epilepsy Centre, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| | - Karin Gau
- Epilepsy Centre, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| | - Birgitta Metternich
- Epilepsy Centre, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| | - Maximilian J Geiger
- Epilepsy Centre, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Navah E Kadish
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany.,Department of Medical Psychology and Medical Sociology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Gitta Reuner
- Institute for Education Studies, Heidelberg University, Heidelberg, Germany.,Division of Neuropediatrics and Metabolic Medicine, Clinic I, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans Mayer
- Epilepsy Centre Kork, Kehl-Kork, Germany
| | - Irina Mader
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Josef Zentner
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Centre, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany
| | - Christoph P Kaller
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Neuroradiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Niels A Foit
- Freiburg Brain Imaging, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Buck S, Sidhu MK. A Guide to Designing a Memory fMRI Paradigm for Pre-surgical Evaluation in Temporal Lobe Epilepsy. Front Neurol 2020; 10:1354. [PMID: 31998216 PMCID: PMC6962296 DOI: 10.3389/fneur.2019.01354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/09/2019] [Indexed: 12/05/2022] Open
Abstract
There has been increasing interest in the clinical and experimental use of memory functional Magnetic Resonance Imaging (fMRI). The 2017 American Academy of Neurology practice guidelines on the use of pre-surgical cognitive fMRI suggests that verbal memory fMRI could be used to lateralize memory functions in people with Temporal Lobe Epilepsy (TLE) and should be used to predict post-operative verbal memory outcome. There are however technical and methodological considerations, to optimize both the sensitivity and specificity of this imaging modality. Below we discuss these constraints and suggest recommendations to consider when designing a memory fMRI paradigm.
Collapse
Affiliation(s)
- Sarah Buck
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont Saint Peter, United Kingdom
| | - Meneka K. Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology of Neurology, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont Saint Peter, United Kingdom
| |
Collapse
|
50
|
Liu J, Zhou X, Zhang Z, Qin L, Ye W, Zheng J. Disrupted functional network in patients with temporal lobe epilepsy with impaired alertness. Epilepsy Behav 2019; 101:106573. [PMID: 31677580 DOI: 10.1016/j.yebeh.2019.106573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
Abstract
Cognitive impairment is common in patients with temporal lobe epilepsy (TLE). Alertness is an important subfunction of cognition, but it is poorly understood in TLE. We hypothesized that disruptions to underlying brain networks may affect alertness in patients with TLE. Patients with unilateral TLE were grouped into low-alertness and high-alertness groups, and they were matched with healthy controls (HCs) (n = 20 each). Functional magnetic resonance imaging (fMRI) was used to construct functional brain networks, and graph theory was used to identify topological parameters of the networks. At the global level, patients with low alertness had networks with less small-worldness and less normalized clustering than HCs. At the nodal level, patients with low alertness exhibited decreased centrality of the bilateral parahippocampal gyrus compared with HCs and increased centrality of the right postcentral gyrus compared with patients with high alertness. This study reveals a decreased separation, tending toward randomization, of the functional network in patients with TLE with impaired alertness. Our results also suggest that the parahippocampal gyrus may contribute to impaired alertness and the right postcentral gyrus plays an important role in the modulation of alertness in patients with TLE.
Collapse
Affiliation(s)
- Jinping Liu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xia Zhou
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhao Zhang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lu Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Ye
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinou Zheng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|