1
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
2
|
Meloni A, Paribello P, Pinna M, Contu M, Ardau R, Chillotti C, Congiu D, Gennarelli M, Minelli A, Buson L, Severino G, Pisanu C, Manchia M, Squassina A. Mitochondrial DNA copy number is significantly increased in bipolar disorder patients and is correlated with long-term lithium treatment. Eur Neuropsychopharmacol 2025; 91:37-44. [PMID: 39612728 DOI: 10.1016/j.euroneuro.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Mitochondrial dysfunctions have been reported in bipolar disorder (BD), but their role in the etiopathogenesis of BD as well as their implications in modulating response to pharmacological treatments with psychotropic medications have been scarcely explored. Mitochondrial DNA copy number (mtDNA-cn) has been linked to mitochondria functioning, and, despite some degree of inconsistence, previous findings showed that BD patients present significant differences in mtDNA-cn compared to healthy controls. Here we measured mtDNA-cn in a sample of 89 patients with BD and 78 healthy controls (HC). Patients in the BD sample were treated either with lithium (n = 47) and characterized as responders (n = 22) or non-responders (n = 25), or with other mood stabilizers (n = 42). BD patients had larger mtDNA-cn compared to HC (adjusted model: F2=9.832; p = 0.000095; contribution of diagnosis F1= 10.798; p = 0.001). When the BD sample was stratified for treatment exposure, mtDNA-cn was lower in patients treated with lithium compared to those treated with other mood stabilizers (adjusted model: F4=23.770, p = 7.0929E-13; contribution of treatment: F1=54.300, p = 1.55E-10). Moreover mtDNA-cn was higher in patients treated with other mood stabilizers compared to controls and Li-treated BD patients (F3=28.125, p = 1.36E-14; contribution of groups F2=36.156, p = 1.25E-13). Finally, there was no difference in mtDNA-cn levels in lithium responders compared to non-responders and neither between the two diagnostic groups (BD type 1 and 2). Our findings suggest that BD may be associated with mitochondrial dysfunctions, and that exposure to lithium but not to other mood stabilizers may restore these abnormalities, though this does not appear correlated with the clinical efficacy of lithium.
Collapse
Affiliation(s)
- Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Martina Contu
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Lisa Buson
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
3
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol 2025; 32:e70014. [PMID: 39831374 PMCID: PMC11744304 DOI: 10.1111/ene.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration. METHODS Medline, Embase, Scopus and Web of Science were searched for articles published from inception until October 2023. Studies focused on mtDNA haplogroups or hereditary pathogenic variants were excluded. Critical appraisal was performed using the Quality Assessment for Diagnostic Accuracy Studies criteria. RESULTS Fifty-nine original studies met our a priori-defined inclusion criteria. The majority of CSF-focused studies showed (i) decreased mtDNA levels in PD and AD; (ii) increased levels in MS compared to controls. No studies evaluated CSF mtDNA in ALS. Results focused on blood cell-free and intracellular mtDNA were contradictory, even within studies evaluating the same disease. This poor reproducibility is likely due to the lack of consideration of the many factors known to affect mtDNA levels. mtDNA damage and methylation levels were increased and reduced in patients compared to controls, respectively. A few studies investigated the correlation between mtDNA and disease severity, with conflicting results. CONCLUSIONS Additional well-designed studies are needed to evaluate CSF and blood mtDNA profiles as putative biomarkers in neurodegenerative diseases. The identification of "mitochondrial subtypes" of disease may enable novel precision medicine strategies to counteract neurodegeneration.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Giada Cuconato
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Alessandro Padovani
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Unit of NeurologyASST Spedali CiviliBresciaItaly
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Massimiliano Filosto
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
5
|
Shi Y, Xie J, Jiang J, Yan X, Chen X, Hong S, Liu J, Xu G, Su H, Chen W, Wang N, Lin X. A Homoplasmic MT-TV Mutation Associated with Mitochondrial Inheritance of Hereditary Spastic Paraplegia. Mov Disord 2025; 40:168-173. [PMID: 39468830 DOI: 10.1002/mds.30048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb weakness and spasticity, with unknown genetic cause in many cases. OBJECTIVES To identify novel genetic causes of HSP. METHODS Phenotypic characterization, genetic screening, transcriptome sequencing, and peroneal nerve biopsy were conducted in a Chinese HSP family. RESULTS We found a homoplasmic MT-TV (mitochondrial tRNAVal) mutation, m.1661A > G, present in all affected individuals across four generations of a family with complex HSP. Fourth-generation affected individuals displayed earlier onset, likely due to presumptive anticipation, and greater symptom severity, potentially caused by decreased mitochondrial DNA (mtDNA) copy number. Upregulation of mitochondrial autophagy genes in these patients suggested that MT-TV mutations could lead to reduced mtDNA copy number. Neural biopsies revealed ultrastructural abnormalities in myelin and mitochondria. CONCLUSIONS The rare MT-TV m.1661A > G mutation is associated with HSP. Variations in mtDNA copy number may play a causal role in differences among clinical phenotypes. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yan Shi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Junhao Xie
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junyi Jiang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Yan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuejiao Chen
- Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Shunyan Hong
- Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Jiyuan Liu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huizhen Su
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Xuan D, Qiang F, Xu H, Wang L, Xia Y. Screening for Mitochondrial tRNA Variants in 200 Patients with Systemic Lupus Erythematosus. Hum Hered 2024; 89:84-97. [PMID: 39536732 DOI: 10.1159/000542357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a common autoimmune disease with unknown etiology. Recently, a growing number of evidence suggested that mitochondrial dysfunctions played active roles in the pathogenesis of SLE, but its detailed mechanism remains largely undetermined. The aim of this study was to analyze the frequencies of mitochondrial tRNA (mt-tRNA) variants in Chinese individuals with SLE. METHODS We carried out a mutational screening of mt-tRNA variants in a cohort of 200 patients with SLE and 200 control subjects by PCR-Sanger sequencing. The potential pathogenicity of mt-tRNA variants was evaluated by phylogenetic conservation and haplogroup analyses. In addition, trans-mitochondrial cybrid cell lines were established, and mitochondrial functions including ATP, reactive oxygen species (ROS), mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential (MMP), superoxide dismutase (SOD), and mt-RNA transcription were analyzed in cybrids with and without these putative pathogenic mt-tRNA variants. RESULTS We identified five possible pathogenic variants: tRNAVal G1606A, tRNALeu(UUR) A3243G, tRNAIle A4295G, tRNAGly T9997C, and tRNAThr A15924G that only found in SLE patients but were absent in controls. Interestingly, these variants were located at extremely conserved nucleotides of the corresponding tRNAs and may alter tRNAs' structure and function. Furthermore, cells carrying these tRNA variants had much lower levels of ATP, mtDNA copy number, MMP, and SOD than controls; by contrast, the levels of ROS increased significantly (p < 0.05 for all). Furthermore, a significant reduction in mt-ND1, ND2, ND3, ND5, and A6 mRNA expression was observed in cells with these mt-tRNA variants, while compared with controls. Thus, failures in tRNA metabolism caused by these variants would impair mitochondrial translation and subsequently lead to mitochondrial dysfunction that was involved in the progression and pathogenesis of SLE. CONCLUSIONS Our study suggested that mt-tRNA variants were important causes for SLE, and screening for mt-tRNA pathogenic variants was recommended for early detection and prevention for this disorder.
Collapse
Affiliation(s)
- Dan Xuan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Fuyong Qiang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hui Xu
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Li Wang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yonghui Xia
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Bureau J, Manero F, Baris O, Bodin A, Verny C, Chevrollier A, Lenaers G, Codron P. Opa1 and MT-Nd6 mutations induce early mitochondrial changes in the retina and prelaminar optic nerve of hereditary optic neuropathy mouse models. Brain Commun 2024; 6:fcae404. [PMID: 39659974 PMCID: PMC11630736 DOI: 10.1093/braincomms/fcae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Hereditary optic neuropathies, including dominant optic atrophy and Leber's hereditary optic neuropathy, are genetic disorders characterized by retinal ganglion cell degeneration leading to vision loss, mainly associated with mitochondrial dysfunction. In this study, we analysed mitochondrial distribution and ultrastructure in the retina and longitudinal optic nerve sections of pre-symptomatic hereditary optic neuropathies mouse models with Opa1 and Nd6 deficiency to identify early mitochondrial changes. Our results show significant mitochondrial fragmentation and increased mitophagy in Opa1+/- mice, indicating early mitochondrial changes prior to neuronal loss. Conversely, Nd6P25L mice exhibited mitochondrial hypertrophy, suggesting an adaptive response to compensate for altered energy metabolism. These pre-symptomatic mitochondrial changes were mainly observed in the unmyelinated portion of the retinal ganglion cell axons, where the transmission of the visual information requires high energy expenditure, constituting the specific point of vulnerability in hereditary optic neuropathies. These findings highlight early focal mitochondrial changes prior to neuronal loss in hereditary optic neuropathies and provide insight into pre-symptomatic therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Bureau
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Florence Manero
- University of Angers, SCIAM Microscopy Core Facility, SFR ICAT, F-49000, 49933 Angers, France
| | - Olivier Baris
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Alexia Bodin
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Christophe Verny
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
- Service de neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Guy Lenaers
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
- Service de neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
| | - Philippe Codron
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
- Service de neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
| |
Collapse
|
8
|
Paß T, Ricke KM, Hofmann P, Chowdhury RS, Nie Y, Chinnery P, Endepols H, Neumaier B, Carvalho A, Rigoux L, Steculorum SM, Prudent J, Riemer T, Aswendt M, Liss B, Brachvogel B, Wiesner RJ. Preserved striatal innervation maintains motor function despite severe loss of nigral dopaminergic neurons. Brain 2024; 147:3189-3203. [PMID: 38574200 DOI: 10.1093/brain/awae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Konrad M Ricke
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Pierre Hofmann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Roy S Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Yu Nie
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Patrick Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - André Carvalho
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Trine Riemer
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Bent Brachvogel
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
9
|
Zhao T, Li A, Reese B, Cong Q, Corwin EJ, Taylor SN, Matson A, Chen MH, Alder NN, Cong X. Association between mitochondrial DNA copy number and neurodevelopmental outcomes among black and white preterm infants up to two years of age. INTERDISCIPLINARY NURSING RESEARCH 2024; 3:149-156. [PMID: 39554223 PMCID: PMC11567671 DOI: 10.1097/nr9.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
Objectives Mitochondrial DNA copy number (mtDNAcn) is associated with mitochondrial function, with abnormal copy numbers having been linked to various disease states. Our study aims to understand the association between infant mtDNAcn and infant neurodevelopment, as well as the association with racial disparities. Methods A longitudinal study was conducted with 55 preterm infants from whom a single blood sample was collected during their Neonatal intensive care unit (NICU) stay and used to analyze mtDNAcn. In addition, the NICU Network Neurobehavioral Scale at 36-38 postmenstrual age (PMA) and the Bayley Scale of Infant and Toddler Development (Bayley) Edition III at 1 and 2 years of corrected age were both conducted. Linear regression models were performed to investigate the relationship between infant clinical characteristics, infant neurobehavioral outcomes, and mtDNAcn. Results The majority of infants studied were white (72.73%), non-Hispanic (70.91%), males (54.55%), delivered through C-section (72.73%), and without preterm premature rupture of membrane (76.36%). Increased mtDNAcn was associated with younger birth gestational age (<30.57 wk, P < 0.001). In addition, the opposite associations between mtDNAcn and neurodevelopmental outcomes were observed between white and black infants up to 1 year of gestational age. Conclusions Increased mtDNAcn in white infants, and decreased mtDNAcn in black infants may be considered significant predictors of poor early-life neurodevelopmental outcomes in infants. A better understanding of the underlying mechanisms contributing to infant disparity in mtDNAcn and how low or high copy number impacts infant outcomes is essential.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Nursing, Yale University, Orange, CT, USA
- School of Nursing, Columbia University, New York, NY, USA
| | - Aolan Li
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Bo Reese
- Center for Genome Innovation, University of Connecticut, Storrs, CT, USA
| | - Qianzi Cong
- School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Sarah N. Taylor
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Adam Matson
- Division of Neonatology, Connecticut Children’s Medical Center, Hartford, CT, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Xiaomei Cong
- School of Nursing, Yale University, Orange, CT, USA
| |
Collapse
|
10
|
Pasqualotto BA, Nelson A, Deheshi S, Sheldon CA, Vogl AW, Rintoul GL. Impaired mitochondrial morphological plasticity and failure of mitophagy associated with the G11778A mutation of LHON. Biochem Biophys Res Commun 2024; 721:150119. [PMID: 38768545 DOI: 10.1016/j.bbrc.2024.150119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Mitochondrial dynamics were examined in human dermal fibroblasts biopsied from a confirmed Leber's Hereditary Optic Neuropathy (LHON) patient with a homoplasmic G11778A mutation of the mitochondrial genome. Expression of the G11778A mutation did not impart any discernible difference in mitochondrial network morphology using widefield fluorescence microscopy. However, at the ultrastructural level, cells expressing this mutation exhibited an impairment of mitochondrial morphological plasticity when forced to utilize oxidative phosphorylation (OXPHOS) by transition to glucose-free, galactose-containing media. LHON fibroblasts also displayed a transient increase in mitophagy upon transition to galactose media. These results provide new insights into the consequences of the G11778A mutation of LHON and the pathological mechanisms underlying this disease.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Alexa Nelson
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Samineh Deheshi
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Claire A Sheldon
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute and the Department of Cellular & Physiological Sciences, University of British Columbia, Canada
| | - Gordon L Rintoul
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
11
|
Lambiri DW, Levin LA. Maculopapillary Bundle Degeneration in Optic Neuropathies. Curr Neurol Neurosci Rep 2024; 24:203-218. [PMID: 38833037 DOI: 10.1007/s11910-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Degeneration of the maculopapillary bundle (MPB) is a prominent feature in a spectrum of optic neuropathies. MPB-selective degeneration is seen in specific conditions, such as nutritional and toxic optic neuropathies, Leber hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA). Despite their distinct etiologies and clinical presentations, which encompass variations in age of incidence and monocular or binocular onset, these disorders share a core molecular mechanism: compromised mitochondrial homeostasis. This disruption is characterized by dysfunctions in mitochondrial metabolism, biogenesis, and protein synthesis. This article provides a comprehensive understanding of the MPB's role in optic neuropathies, emphasizing the importance of mitochondrial mechanisms in the pathogenesis of these conditions. RECENT FINDINGS Optical coherence tomography studies have characterized the retinal nerve fiber layer changes accompanying mitochondrial-affiliated optic neuropathies. Selective thinning of the temporal optic nerve head is preceded by thickening in early stages of these disorders which correlates with reductions in macular ganglion cell layer thinning and vascular atrophy. A recently proposed mechanism underpinning the selective atrophy of the MPB involves the positive feedback of reactive oxygen species generation as a common consequence of mitochondrial dysfunction. Additionally, new research has revealed that the MPB can undergo degeneration in the early stages of glaucoma, challenging the historically held belief that this area was not involved in this common optic neuropathy. A variety of anatomical risk factors influence the propensity of glaucomatous MPB degeneration, and cases present distinct patterns of ganglion cell degeneration that are distinct from those observed in mitochondria-associated diseases. This review synthesizes clinical and molecular research on primary MPB disorders, highlighting the commonalities and differences in their pathogenesis. KEY POINTS (BOX) 1. Temporal degeneration of optic nerve fibers accompanied by cecocentral scotoma is a hallmark of maculopapillary bundle (MPB) degeneration. 2. Mechanisms of MPB degeneration commonly implicate mitochondrial dysfunction. 3. Recent research challenges the traditional belief that the MPB is uninvolved in glaucoma by showing degeneration in the early stages of this common optic neuropathy, yet with features distinct from other MPB-selective neuropathies. 4. Reactive oxygen species generation is a mechanism linking mitochondrial mechanisms of MPB-selective optic neuropathies, but in-vivo and in-vitro studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Darius W Lambiri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
12
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
13
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
14
|
Pasqualotto BA, Tegeman C, Frame AK, McPhedrain R, Halangoda K, Sheldon CA, Rintoul GL. Galactose-replacement unmasks the biochemical consequences of the G11778A mitochondrial DNA mutation of LHON in patient-derived fibroblasts. Exp Cell Res 2024; 439:114075. [PMID: 38710404 DOI: 10.1016/j.yexcr.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Carina Tegeman
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ariel K Frame
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan McPhedrain
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kolitha Halangoda
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Claire A Sheldon
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gordon L Rintoul
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
15
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Prenatal arsenic metabolite exposure is associated with increased newborn mitochondrial DNA copy number: evidence from a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38142-38152. [PMID: 38789711 DOI: 10.1007/s11356-024-32933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 05/26/2024]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhangpeng Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
17
|
Coe JL, Daniels T, Huffhines L, Seifer R, Marsit CJ, Kao HT, Porton B, Parade SH, Tyrka AR. Examining the Biological Impacts of Parent-Child Relationship Dynamics on Preschool-Aged Children who have Experienced Adversity. Dev Psychobiol 2024; 66:e22463. [PMID: 38601953 PMCID: PMC11003752 DOI: 10.1002/dev.22463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2024] [Indexed: 04/12/2024]
Abstract
Parent-child relationship dynamics have been shown to predict socioemotional and behavioral outcomes for children, but little is known about how they may affect biological development. The aim of this study was to test if observational assessments of parent-child relationship dynamics (cohesion, enmeshment, and disengagement) were associated with three biological indices of early life adversity and downstream health risk: (1) methylation of the glucocorticoid receptor gene (NR3C1), (2) telomere attrition, and (3) mitochondrial biogenesis, indexed by mitochondrial DNA copy number (mtDNAcn), all of which were measured in children's saliva. We tested hypotheses using a sample of 254 preschool-aged children (M age = 51.04 months) with and without child welfare-substantiated maltreatment (52% with documented case of moderate-severe maltreatment) who were racially and ethnically diverse (17% Black, 40% White, 23% biracial, and 20% other races; 45% Hispanic) and from primarily low-income backgrounds (91% qualified for public assistance). Results of path analyses revealed that: (1) higher parent-child cohesion was associated with lower levels of methylation of NR3C1 exon 1D and longer telomeres, and (2) higher parent-child disengagement was associated with higher levels of methylation of NR3C1 exon 1D and shorter telomeres. Results suggest that parent-child relationship dynamics may have distinct biological effects on children.
Collapse
Affiliation(s)
- Jesse L. Coe
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Teresa Daniels
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Lindsay Huffhines
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ronald Seifer
- Frank Porter Graham Child Development Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
18
|
Vallbona-Garcia A, Lindsey PJ, Kamps R, Stassen APM, Nguyen N, van Tienen FHJ, Hamers IHJ, Hardij R, van Gisbergen MW, Benedikter BJ, de Coo IFM, Webers CAB, Gorgels TGMF, Smeets HJM. Mitochondrial DNA D-loop variants correlate with a primary open-angle glaucoma subgroup. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1309836. [PMID: 38983060 PMCID: PMC11182222 DOI: 10.3389/fopht.2023.1309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/29/2023] [Indexed: 07/11/2024]
Abstract
Introduction Primary open-angle glaucoma (POAG) is a characteristic optic neuropathy, caused by degeneration of the optic nerve-forming neurons, the retinal ganglion cells (RGCs). High intraocular pressure (IOP) and aging have been identified as major risk factors; yet the POAG pathophysiology is not fully understood. Since RGCs have high energy requirements, mitochondrial dysfunction may put the survivability of RGCs at risk. We explored in buffy coat DNA whether mtDNA variants and their distribution throughout the mtDNA could be risk factors for POAG. Methods The mtDNA was sequenced from age- and sex-matched study groups, being high tension glaucoma (HTG, n=71), normal tension glaucoma patients (NTG, n=33), ocular hypertensive subjects (OH, n=7), and cataract controls (without glaucoma; n=30), all without remarkable comorbidities. Results No association was found between the number of mtDNA variants in genes encoding proteins, tRNAs, rRNAs, and in non-coding regions in the different study groups. Next, variants that controls shared with the other groups were discarded. A significantly higher number of exclusive variants was observed in the D-loop region for the HTG group (~1.23 variants/subject), in contrast to controls (~0.35 variants/subject). In the D-loop, specifically in the 7S DNA sub-region within the Hypervariable region 1 (HV1), we found that 42% of the HTG and 27% of the NTG subjects presented variants, while this was only 14% for the controls and OH subjects. As we have previously reported a reduction in mtDNA copy number in HTG, we analysed if specific D-loop variants could explain this. While the majority of glaucoma patients with the exclusive D-loop variants m.72T>C, m.16163 A>G, m.16186C>T, m.16298T>C, and m.16390G>A presented a mtDNA copy number below controls median, no significant association between these variants and low copy number was found and their possible negative role in mtDNA replication remains uncertain. Approximately 38% of the HTG patients with reduced copy number did not carry any exclusive D-loop or other mtDNA variants, which indicates that variants in nuclear-encoded mitochondrial genes, environmental factors, or aging might be involved in those cases. Conclusion In conclusion, we found that variants in the D-loop region may be a risk factor in a subgroup of POAG, possibly by affecting mtDNA replication.
Collapse
Affiliation(s)
- Antoni Vallbona-Garcia
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Patrick J Lindsey
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rick Kamps
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nhan Nguyen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Florence H J van Tienen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ilse H J Hamers
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rianne Hardij
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Marike W van Gisbergen
- Department of Dermatology, Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
19
|
Ma Q, Sun Y, Lei K, Luo W. Progress in diagnosis and treatment of Leber's hereditary optic neuropathy. J Mol Med (Berl) 2024; 102:1-10. [PMID: 37982904 DOI: 10.1007/s00109-023-02389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial genetic disease with central vision loss as the main symptom. It is one of the diseases that cause vision loss and optic atrophy in young and middle-aged people. The mutations of these three primary mitochondrial mutations, m.11778G>A, m.14484T>C, and m.3460G>A, are the main molecular basis, but their pathogenesis is also affected by nuclear genes, mitochondrial genetic background, and environmental factors. This article summarizes the research progress on molecular pathogenesis, clinical symptoms, and treatment of LHON in recent years, aiming to summarize the genetic pathogenesis and clinical treatment points of LHON.
Collapse
Affiliation(s)
- Qingyue Ma
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Sun
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wenjuan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Vacchiano V, Palombo F, Ormanbekova D, Fiorini C, Fiorentino A, Caporali L, Mastrangelo A, Valentino ML, Capellari S, Liguori R, Carelli V. The genetic puzzle of a SOD1-patient with ocular ptosis and a motor neuron disease: a case report. Front Genet 2023; 14:1322067. [PMID: 38152653 PMCID: PMC10751346 DOI: 10.3389/fgene.2023.1322067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a complex genetic architecture, showing monogenic, oligogenic, and polygenic inheritance. In this study, we describe the case of a 71 years-old man diagnosed with ALS with atypical clinical features consisting in progressive ocular ptosis and sensorineural deafness. Genetic analyses revealed two heterozygous variants, in the SOD1 (OMIM*147450) and the TBK1 (OMIM*604834) genes respectively, and furthermore mitochondrial DNA (mtDNA) sequencing identified the homoplasmic m.14484T>C variant usually associated with Leber's Hereditary Optic Neuropathy (LHON). We discuss how all these variants may synergically impinge on mitochondrial function, possibly contributing to the pathogenic mechanisms which might ultimately lead to the neurodegenerative process, shaping the clinical ALS phenotype enriched by adjunctive clinical features.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessia Fiorentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
21
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Altered cord blood mitochondrial DNA content and prenatal exposure to arsenic metabolites in low-arsenic areas. RESEARCH SQUARE 2023:rs.3.rs-3414865. [PMID: 37961501 PMCID: PMC10635372 DOI: 10.21203/rs.3.rs-3414865/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether arsenic metabolism in different trimesters was related to cord blood mtDNAcn alteration. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters using HPLC-ICPMS. We decided on cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each two-fold increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the 3rd trimester were related to 8.43% (95% CI: 1.13%, 16.26%) and 12.15% (95% CI:4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the 3rd trimester with mtDNAcn. These findings may prove the relationships between arsenic species and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Xin Wang
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhenxian Jia
- Huazhong University of Science and Technology Tongji Medical College
| | - Yujie He
- Huazhong University of Science and Technology Tongji Medical College
| | - Yi Wu
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhangpeng Li
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Wei Xia
- Huazhong University of Science and Technology Tongji Medical College
| | - Shunqing Xu
- Huazhong University of Science and Technology Tongji Medical College
| | - Yuanyuan Li
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College
| |
Collapse
|
22
|
Petrovic Pajic S, Fakin A, Sustar Habjan M, Jarc-Vidmar M, Hawlina M. Leber Hereditary Optic Neuropathy (LHON) in Patients with Presumed Childhood Monocular Amblyopia. J Clin Med 2023; 12:6669. [PMID: 37892808 PMCID: PMC10607696 DOI: 10.3390/jcm12206669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Most Leber hereditary optic neuropathy (LHON) cases are bilateral and sequential; however, there are rare unilateral examples, or those in which the delay of onset of vision loss between one and the other eye is longer. In the case of presumed childhood amblyopia in one eye, vision loss in the good eye may be the only symptom of bilateral disease, which was unnoticed in the previously amblyopic eye, or a preexisting episode of LHON in the "amblyopic" eye. The clinical decision in such cases may be difficult and suggestive of other forms of atypical optic neuropathy until confirmed by genetic testing. CASE SERIES We present three genetically confirmed (MT-ND1:m.3700G>A, MT-ND6:m14484 T>C, and MT-ND4:m.11778G>A) patients with subacute vision loss in the previously good eye, with the other eye believed to be amblyopic from childhood and their features different from what would be expected in true amblyopia. In all, electrophysiology testing showed a bilaterally reduced amplitude of PERG with low VEP P100 wave amplitudes and prolonged peak time in both eyes, also unusual for amblyopia. During follow-up, the pallor of the optic discs progressed in all eyes. Significant thinning of the peripapillary retinal nerve fiber layer (pRNFL; retinal nerve fiber layer around the optic disc) and ganglion cell complex (GCC) in the macular region was present. All three patients had a peculiar history. The first patient was treated for presumed hyperopic amblyopia that did not improve since childhood, experienced visual loss in the good eye at the age of 17, and was negative for the three typical LHON mutations. Extended testing confirmed an atypical pathogenic variant MT-ND1:m.3700G>A in homoplasmy. The second patient with presumed strabismic amblyopia had an unusual presentation of vision loss only at the age of 61, and after the exclusion of other causes, a typical MT-ND4:m.11778G>A pathogenic variant was found in homoplasmy. The third case was peculiar as he had presumed strabismic amblyopia since childhood and had some degree of disc pallor in the amblyopic eye upon presenting with loss of vision in the good eye at the age of 21, and a typical pathogenic variant m14484 T>C, p.Met64Val was subsequently confirmed. However, one year after disease onset, he started to experience significant spontaneous functional improvement in the non-amblyopic up to 1.0 Snellen whilst improvement in the presumed amblyopic eye was modest, suggesting preexisting amblyopia. This interestingly extensive improvement was carefully followed by electrophysiology as well as visual acuity and fields. CONCLUSIONS This report shows three different scenarios of presentation of LHON in patients with presumed uniocular amblyopia from childhood. In such cases, the diagnosis may be difficult, and detailed structural and functional evaluation of the optic nerve head is necessary to assess whether an earlier LHON episode was misdiagnosed as amblyopia or whether LHON presented bilaterally on both eyes whilst only being noticed in the previously good eye.
Collapse
Affiliation(s)
- Sanja Petrovic Pajic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (S.P.P.); (A.F.); (M.S.H.); (M.J.-V.)
- Clinic for Eye Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (S.P.P.); (A.F.); (M.S.H.); (M.J.-V.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Sustar Habjan
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (S.P.P.); (A.F.); (M.S.H.); (M.J.-V.)
| | - Martina Jarc-Vidmar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (S.P.P.); (A.F.); (M.S.H.); (M.J.-V.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (S.P.P.); (A.F.); (M.S.H.); (M.J.-V.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Hong S, Kim S, Kim K, Lee H. Clinical Approaches for Mitochondrial Diseases. Cells 2023; 12:2494. [PMID: 37887337 PMCID: PMC10605124 DOI: 10.3390/cells12202494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform 'oxidative phosphorylation (OX PHOS)', which are expressed by the mitochondria's self-contained DNA. Mitochondrial DNA (mtDNA) also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously, independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively passing from mother to children. Numerous studies have identified mtDNA mutation-related genetic diseases. The consequences of various types of mtDNA mutations, including insertions, deletions, and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases. Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement, and allotropic expression of defective enzymes. This review provides detailed information on two topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current treatments for mitochondrial diseases and clinical trials.
Collapse
Affiliation(s)
- Seongho Hong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea;
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| |
Collapse
|
24
|
Tessema B, Haag J, Sack U, König B. The Determination of Mitochondrial Mass Is a Prerequisite for Accurate Assessment of Peripheral Blood Mononuclear Cells' Oxidative Metabolism. Int J Mol Sci 2023; 24:14824. [PMID: 37834272 PMCID: PMC10573504 DOI: 10.3390/ijms241914824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mitochondria are responsible for ATP synthesis through oxidative phosphorylation in cells. However, there are limited data on the influence of mitochondrial mass (MM) in the adequate assessment of cellular stress assay (CSA) results in human peripheral blood mononuclear cells (PBMCs). Therefore, the aim of this study was to determine MM in PBMCS and assess its influence on the results of CSA measurements. Blood samples were collected and sent to the laboratory for MM and CSA measurements during different seasons of the year. The mitochondrial mass was determined based on the mtDNA:nDNA ratio in PBMCs using quantitative real-time PCR (qRT-PCR). CSA was measured using Seahorse technology. The MM was significantly lower during summer and autumn compared to winter and spring (p < 0.0001). On the contrary, we found that the maximal respiration per mitochondrion (MP) was significantly higher in summer and autumn compared to winter and spring (p < 0.0001). The estimated effect of MM on mitochondrial performance was -0.002 pmol/min/mitochondrion (p < 0.0001) and a correlation coefficient (r) of -0.612. Similarly, MM was negatively correlated with maximal respiration (r = -0.12) and spare capacity (in % r = -0.05, in pmol/min r = -0.11). In conclusion, this study reveals that MM changes significantly with seasons and is negatively correlated with CSA parameters and MP. Our findings indicate that the mitochondrial mass is a key parameter for determination of mitochondrial fitness. Therefore, we recommend the determination of MM during the measurement of CSA parameters for the correct interpretation and assessment of mitochondrial function.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Janine Haag
- Magdeburg Molecular Diagnostics GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Magdeburg Molecular Diagnostics GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
25
|
O'Brien K, Wang Y. The Placenta: A Maternofetal Interface. Annu Rev Nutr 2023; 43:301-325. [PMID: 37603428 DOI: 10.1146/annurev-nutr-061121-085246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The placenta is the gatekeeper between the mother and the fetus. Over the first trimester of pregnancy, the fetus is nourished by uterine gland secretions in a process known as histiotrophic nutrition. During the second trimester of pregnancy, placentation has evolved to the point at which nutrients are delivered to the placenta via maternal blood (hemotrophic nutrition). Over gestation, the placenta must adapt to these variable nutrient supplies, to alterations in maternal physiology and blood flow, and to dynamic changes in fetal growth rates. Numerous questions remain about the mechanisms used to transport nutrients to the fetus and the maternal and fetal determinants of this process. Growing data highlight the ability of the placenta to regulate this process. As new technologies and omics approaches are utilized to study this maternofetal interface, greater insight into this unique organ and its impact on fetal development and long-term health has been obtained.
Collapse
Affiliation(s)
- Kimberly O'Brien
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| | - Yiqin Wang
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| |
Collapse
|
26
|
Mercuţ MF, Tănasie CA, Nicolcescu AM, Ică OM, Mocanu CL, Dan AO. Letter to the Editor: Retinal morphological and functional response to Idebenone therapy in Leber hereditary optic neuropathy. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:443-444. [PMID: 37867363 PMCID: PMC10720927 DOI: 10.47162/rjme.64.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Affiliation(s)
- Maria Filofteia Mercuţ
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Cornelia Andreea Tănasie
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Andreea Mihaela Nicolcescu
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Oana Maria Ică
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Carmen Luminiţa Mocanu
- Department of Ophthalmology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Alexandra Oltea Dan
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
27
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Leeuwenburgh C, Bucci C, Marzetti E. The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp Gerontol 2023; 178:112203. [PMID: 37172915 DOI: 10.1016/j.exger.2023.112203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
28
|
Vallbona-Garcia A, Hamers IHJ, van Tienen FHJ, Ochoteco-Asensio J, Berendschot TTJM, de Coo IFM, Benedikter BJ, Webers CAB, Smeets HJM, Gorgels TGMF. Low mitochondrial DNA copy number in buffy coat DNA of primary open-angle glaucoma patients. Exp Eye Res 2023; 232:109500. [PMID: 37178956 DOI: 10.1016/j.exer.2023.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Primary open-angle glaucoma (POAG) is characterized by optic nerve degeneration and irreversible loss of retinal ganglion cells (RGCs). The pathophysiology is not fully understood. Since RGCs have a high energy demand, suboptimal mitochondrial function may put the survival of these neurons at risk. In the present study, we explored whether mtDNA copy number or mtDNA deletions could reveal a mitochondrial component in POAG pathophysiology. Buffy coat DNA was isolated from EDTA blood of age- and sex-matched study groups, namely POAG patients with high intraocular pressure (IOP) at diagnosis (high tension glaucoma: HTG; n = 97), normal tension glaucoma patients (NTG, n = 37), ocular hypertensive controls (n = 9), and cataract controls (without glaucoma; n = 32), all without remarkable comorbidities. The number of mtDNA copies was assessed through qPCR quantification of the mitochondrial D-loop and nuclear B2M gene. Presence of the common 4977 base pair mtDNA deletion was assessed by a highly sensitive breakpoint PCR. Analysis showed that HTG patients had a lower number of mtDNA copies per nuclear DNA than NTG patients (p-value <0.01, Dunn test) and controls (p-value <0.001, Dunn test). The common 4977 base pair mtDNA deletion was not detected in any of the participants. A lower mtDNA copy number in blood of HTG patients suggests a role for a genetically defined, deficient mtDNA replication in the pathology of HTG. This may cause a low number of mtDNA copies in RGCs, which together with aging and high IOP, may lead to mitochondrial dysfunction, and contribute to glaucoma pathology.
Collapse
Affiliation(s)
- Antoni Vallbona-Garcia
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Ilse H J Hamers
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Florence H J van Tienen
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
29
|
Smith AR, Hinojosa Briseño A, Picard M, Cardenas A. The prenatal environment and its influence on maternal and child mitochondrial DNA copy number and methylation: A review of the literature. ENVIRONMENTAL RESEARCH 2023; 227:115798. [PMID: 37001851 PMCID: PMC10164709 DOI: 10.1016/j.envres.2023.115798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is sensitive to environmental stressors and associated with human health. We reviewed epidemiological literature examining associations between prenatal environmental, dietary, and social exposures and alterations in maternal/child mtDNA copy number (mtDNAcn) and mtDNA methylation. Evidence exists that prenatal maternal exposures are associated with alterations in mtDNAcn for air pollution, chemicals (e.g. metals), cigarette smoke, human immunodeficiency virus (HIV) infection and treatment. Evidence for their associations with mtDNA methylation was limited. Given its potential implications as a disease pathway biomarker, studies with sufficient biological specificity should examine the long-term implications of prenatal and early-life mtDNA alterations in response to prenatal exposures.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Alejandra Hinojosa Briseño
- Department of Environmental and Occupational Health, California State University, Northridge, Northridge, CA, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA.
| |
Collapse
|
30
|
Miao Q, Cheng Y, Zheng H, Yuan J, Chen C. PhNR and Peripapillary RNFL Changes in Leber Hereditary Optic Neuropathy With m.G11778A Mutation. Mitochondrion 2023; 70:111-117. [PMID: 37127073 DOI: 10.1016/j.mito.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE To analyze the functional and structural changes in retinal ganglion cells (RGCs) and their axons that occur during Leber's hereditary optic neuropathy (LHON) using photopic negative response (PhNR) and spectral domain optical coherence tomography (SD-OCT). METHODS Individuals diagnosed with LHON and their family members were invited to participate in this cross-sectional study. PhNR and OCT were used. The PhNR amplitude and peripapillary retinal nerve fiber layer (pRNFL) thicknesses were compared among the three groups. In addition, affected individuals were divided into subacute, dynamic and chronic phases based on disease duration in order to evaluate the decay in RGCs function and structure. RESULTS 73 affected and 30 carriers with a m.11778G>A mutation were included. PhNR amplitude and the thickness of pRNFL significantly decreased in affected individuals and carriers compared to that of the controls (P<0.001). However, there was no difference between the carriers and the controls (P>0.05). There was no difference in the PhNR amplitude of different phases (P=0.464). In the subacute phase, only temporal pRNFL thickness decreased significantly (P<0.001). PRNFL thickness decreased significantly in dynamic phase (P<0.001). Temporal pRNFL thickness continued to decrease in the chronic phase (P=0.042). CONCLUSION In the subacute phase, the function of RGCs was severely impaired. Thickness of pRNFL decreased significantly in four quadrants during disease progression. In the chronic phase, pRNFL thickness decreased slightly. Carriers have shown RGCs dysfunction before pathological changes occur, suggesting subclinical abnormalities.
Collapse
Affiliation(s)
- Qingmei Miao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yufang Cheng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongmei Zheng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiajia Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
31
|
Raggio V, Graña M, Winiarski E, Mansilla S, Simoes C, Rodríguez S, Brandes M, Tapié A, Rodríguez L, Cibils L, Alonso M, Martínez J, Fernández-Calero T, Domínguez F, Mezquida MR, Castro L, Cerisola A, Naya H, Cassina A, Quijano C, Spangenberg L. Computational and mitochondrial functional studies of novel compound heterozygous variants in SPATA5 gene support a causal link with epileptogenic encephalopathy. Hum Genomics 2023; 17:14. [PMID: 36849973 PMCID: PMC9972848 DOI: 10.1186/s40246-023-00463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.
Collapse
Affiliation(s)
- Víctor Raggio
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martín Graña
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Erik Winiarski
- grid.11630.350000000121657640Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mansilla
- grid.11630.350000000121657640Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Camila Simoes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Soledad Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Brandes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandra Tapié
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Cibils
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martina Alonso
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tamara Fernández-Calero
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XDepartment of Exact and Natural Sciences, Universidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Fernanda Domínguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XUniversidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Melania Rosas Mezquida
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alfredo Cerisola
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Naya
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Celia Quijano
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
32
|
Cheng ML, Yang CH, Wu PT, Li YC, Sun HW, Lin G, Ho HY. Malonyl-CoA Accumulation as a Compensatory Cytoprotective Mechanism in Cardiac Cells in Response to 7-Ketocholesterol-Induced Growth Retardation. Int J Mol Sci 2023; 24:ijms24054418. [PMID: 36901848 PMCID: PMC10002498 DOI: 10.3390/ijms24054418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The major oxidized product of cholesterol, 7-Ketocholesterol (7KCh), causes cellular oxidative damage. In the present study, we investigated the physiological responses of cardiomyocytes to 7KCh. A 7KCh treatment inhibited the growth of cardiac cells and their mitochondrial oxygen consumption. It was accompanied by a compensatory increase in mitochondrial mass and adaptive metabolic remodeling. The application of [U-13C] glucose labeling revealed an increased production of malonyl-CoA but a decreased formation of hydroxymethylglutaryl-coenzyme A (HMG-CoA) in the 7KCh-treated cells. The flux of the tricarboxylic acid (TCA) cycle decreased, while that of anaplerotic reaction increased, suggesting a net conversion of pyruvate to malonyl-CoA. The accumulation of malonyl-CoA inhibited the carnitine palmitoyltransferase-1 (CPT-1) activity, probably accounting for the 7-KCh-induced suppression of β-oxidation. We further examined the physiological roles of malonyl-CoA accumulation. Treatment with the inhibitor of malonyl-CoA decarboxylase, which increased the intracellular malonyl-CoA level, mitigated the growth inhibitory effect of 7KCh, whereas the treatment with the inhibitor of acetyl-CoA carboxylase, which reduced malonyl-CoA content, aggravated such a growth inhibitory effect. Knockout of malonyl-CoA decarboxylase gene (Mlycd-/-) alleviated the growth inhibitory effect of 7KCh. It was accompanied by improvement of the mitochondrial functions. These findings suggest that the formation of malonyl-CoA may represent a compensatory cytoprotective mechanism to sustain the growth of 7KCh-treated cells.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Cheng-Hung Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Pei-Ting Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yi-Chin Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hao-Wei Sun
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Correspondence: ; Tel.: +886-(3)-2118800 (ext. 3318)
| |
Collapse
|
33
|
Khozhukhar N, Spadafora D, Rodriguez Rodriguez YA, Fayzulin R, Alexeyev M. Generation of Mammalian Cells Devoid of Mitochondrial DNA (ρ 0 cells). Curr Protoc 2023; 3:e679. [PMID: 36809687 PMCID: PMC10151036 DOI: 10.1002/cpz1.679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
To cope with DNA damage, mitochondria have developed a pathway whereby severely damaged or unrepairable mitochondrial DNA (mtDNA) molecules can be discarded and degraded, after which new molecules are synthesized using intact templates. In this unit, we describe a method that harnesses this pathway to eliminate mtDNA from mammalian cells by transiently overexpressing the Y147A mutant of human uracil-N-glycosylase (mUNG1) in mitochondria. We also provide alternate protocols for mtDNA elimination using either combined treatment with ethidium bromide (EtBr) and dideoxycytidine (ddC) or clustered regulatory interspersed short palindromic repeat (CRISPR)-Cas9-mediated knockout of TFAM or other genes essential for mtDNA replication. Support protocols detail approaches for several processes: (1) genotyping ρ0 cells of human, mouse, and rat origin by polymerase chain reaction (PCR); (2) quantification of mtDNA by quantitative PCR (qPCR); (3) preparation of calibrator plasmids for mtDNA quantification; and (4) quantification of mtDNA by direct droplet digital PCR (dddPCR). © 2023 Wiley Periodicals LLC. Basic Protocol: Inducing mtDNA loss with mUNG1 Alternate Protocol 1: Generation of ρ0 cells by mtDNA depletion with EtBr and ddC Alternate Protocol 2: Generation of ρ0 cells by knocking out genes critical for mtDNA replication Support Protocol 1: Genotyping ρ0 cells by DirectPCR Support Protocol 2: Determination of mtDNA copy number by qPCR Support Protocol 3: Preparation of calibrator plasmid for qPCR Support Protocol 4: Determination of mtCN by direct droplet digital PCR (dddPCR).
Collapse
Affiliation(s)
| | | | | | - Rafik Fayzulin
- University of South Alabama, Department of Physiology and Cell Biology
| | - Mikhail Alexeyev
- University of South Alabama, Department of Physiology and Cell Biology
| |
Collapse
|
34
|
Fu M, Wang C, Hong S, Guan X, Meng H, Feng Y, Xiao Y, Zhou Y, Liu C, Zhong G, You Y, Wu T, Yang H, Zhang X, He M, Guo H. Multiple metals exposure and blood mitochondrial DNA copy number: A cross-sectional study from the Dongfeng-Tongji cohort. ENVIRONMENTAL RESEARCH 2023; 216:114509. [PMID: 36208786 DOI: 10.1016/j.envres.2022.114509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Mitochondria are essential organelles that execute fundamental biological processes, while mitochondrial DNA is vulnerable to environmental insults. The aim of this study was to investigate the individual and mixture effect of plasma metals on blood mitochondria DNA copy number (mtDNAcn). METHODS This study involved 1399 randomly selected subcohort participants from the Dongfeng-Tongji cohort. The blood mtDNAcn and plasma levels of 23 metals were determined by using quantitative real-time polymerase chain reaction (qPCR) and inductively coupled plasma mass spectrometer (ICP-MS), respectively. The multiple linear regression was used to explore the association between each metal and mtDNAcn, and the LASSO penalized regression was performed to select the most significant metals. We also used the quantile g-computation analysis to assess the mixture effect of multiple metals. RESULTS Based on multiple linear regression models, each 1% increase in plasma concentration of copper (Cu), rubidium (Rb), and titanium (Ti) was associated with a separate 0.16% [β(95% CI) = 0.158 (0.066, 0.249), P = 0.001], 0.20% [β(95% CI) = 0.196 (0.073, 0.318), P = 0.002], and 0.25% [β(95% CI) = 0.245 (0.081, 0.409), P = 0.003] increase in blood mtDNAcn. The LASSO regression also confirmed Cu, Rb, and Ti as significant predictors for mtDNAcn. There was a significant mixture effect of multiple metals on increasing mtDNAcn among the elder participants (aged ≥65), with an approximately 11% increase in mtDNAcn for each quartile increase in all metal concentrations [β(95% CI) = 0.146 (0.048, 0.243), P = 0.004]. CONCLUSIONS Our results show that plasma Cu, Rb and Ti were associated with increased blood mtDNA, and we further revealed a significant mixture effect of all metals on mtDNAcn among elder population. These findings may provide a novel perspective on the effect of metals on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Amore G, Vacchiano V, La Morgia C, Valentino ML, Caporali L, Fiorini C, Ormanbekova D, Salvi F, Bartoletti-Stella A, Capellari S, Liguori R, Carelli V. Co-occurrence of amyotrophic lateral sclerosis and Leber's hereditary optic neuropathy: is mitochondrial dysfunction a modifier? J Neurol 2023; 270:559-564. [PMID: 36066624 PMCID: PMC9813087 DOI: 10.1007/s00415-022-11355-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Giulia Amore
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Veria Vacchiano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria L Valentino
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma SLA Atassia Amiloidosi e Miastenia, Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES University of Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy. .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy. .,Bellaria Hospital, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
36
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
37
|
Warwick AM, Bomze HM, Wang L, Klingeborn M, Hao Y, Stinnett SS, Gospe III SM. Continuous Hypoxia Reduces Retinal Ganglion Cell Degeneration in a Mouse Model of Mitochondrial Optic Neuropathy. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 36538003 PMCID: PMC9769749 DOI: 10.1167/iovs.63.13.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To test whether continuous hypoxia is neuroprotective to retinal ganglion cells (RGCs) in a mouse model of mitochondrial optic neuropathy. Methods RGC degeneration was assessed in genetically modified mice in which the floxed gene for the complex I subunit NDUFS4 is deleted from RGCs using Vlgut2-driven Cre recombinase. Beginning at postnatal day 25 (P25), Vglut2-Cre;ndufs4loxP/loxP mice and control littermates were housed under hypoxia (11% oxygen) or kept under normoxia (21% oxygen). Survival of RGC somas and axons was assessed at P60 and P90 via histological analysis of retinal flatmounts and optic nerve cross-sections, respectively. Retinal tissue was also assessed for gliosis and neuroinflammation using western blot and immunofluorescence. Results Consistent with our previous characterization of this model, at least one-third of RGCs had degenerated by P60 in Vglut2-Cre;ndufs4loxP/loxP mice remaining under normoxia. However, continuous hypoxia resulted in complete rescue of RGC somas and axons at this time point, with normal axonal myelination observed on electron microscopy. Though only partial, hypoxia-mediated rescue of complex I-deficient RGC somas and axons remained significant at P90. Hypoxia prevented reactive gliosis at P60, but the retinal accumulation of Iba1+ mononuclear phagocytic cells was not substantially reduced. Conclusions Continuous hypoxia achieved dramatic rescue of early RGC degeneration in mice with severe mitochondrial dysfunction. Although complete rescue was not durable to P90, our observations suggest that investigating the mechanisms underlying hypoxia-mediated neuroprotection of RGCs may identify useful therapeutic strategies for optic neuropathies resulting from less profound mitochondrial impairment, such as Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Alexander M. Warwick
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Howard M. Bomze
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Luyu Wang
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Ying Hao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sidney M. Gospe III
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
38
|
Öğütlü H, Kaşak M, Tabur ST. Mitochondrial Dysfunction in Attention Deficit Hyperactivity Disorder. Eurasian J Med 2022; 54:187-195. [PMID: 36655466 PMCID: PMC11163340 DOI: 10.5152/eurasianjmed.2022.22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/14/2022] [Indexed: 01/19/2023] Open
Abstract
Attention deficit hyperactivity disorder is a neurodevelopmental disorder with primary symptoms of inattention, hyperactivity, and impulsivity, beginning in early childhood. Attention deficit hyperactivity disorder has a complex etiology based on neurobiological foundations, involving genetic, environmental, and biological factors in the early development process. The etiology of attention deficit hyperactivity disorder has not been completely clarified yet, but it has been suggested that increased oxidative stress is one of the possible common etiologies in attention deficit hyperactivity disorder. Oxidative stress can cause cellular damage, DNA repair system malfunction, and mitochondrial dysfunction. Mitochondrial dysfunction is thought to be a susceptibility factor in the development of psychiatric diseases. This article aims to review the research conducted to evaluate the possible relationship between attention deficit hyperactivity disorder and mitochondrial dysfunction and systematically examine the data obtained from these studies. Although studies considering the relationship between attention deficit hyperactivity disorder and mitochondrial dysfunction are less than those of autism spectrum disorder, schizophrenia, and mood disorders, studies on attention deficit hyperactivity disorder are increasing. A compensating system against mitochondrial dysfunction caused by hereditary and environmental factors may be generated by an increase in mitochondrial DNA copy number. Mitochondrial DNA copies may decrease with the reduction of attention deficit hyperactivity disorder severity and attention deficit in patients receiving treatment and may positively affect mitochondrial functions. The literature data of this review show that mitochondrial dysfunction could be a crucial factor in the pathophysiology of attention deficit hyperactivity disorder. Understanding mitochondrial contributions in the pathogenesis of attention deficit hyperactivity disorder may result in new diagnostic tools and the development of new therapeutic strategies for attention deficit hyperactivity disorder treatment.
Collapse
Affiliation(s)
- Hakan Öğütlü
- Department of Child and Adolescent Psychiatry, Cognitive Behavioral Psychotherapies Association, Ankara, Turkey
| | - Meryem Kaşak
- Department of Child and Adolescent Psychiatry, Ankara City Hospital, Ankara, Turkey
| | - Selin Tutku Tabur
- Department of Psychology, Hasan Kalyoncu University Faculty of Economics, Administrative and Social Sciences, Turkey
| |
Collapse
|
39
|
Caporali L, Fiorini C, Palombo F, Romagnoli M, Baccari F, Zenesini C, Visconti P, Posar A, Scaduto MC, Ormanbekova D, Battaglia A, Tancredi R, Cameli C, Viggiano M, Olivieri A, Torroni A, Maestrini E, Rochat MJ, Bacchelli E, Carelli V, Maresca A. Dissecting the multifaceted contribution of the mitochondrial genome to autism spectrum disorder. Front Genet 2022; 13:953762. [PMID: 36419830 PMCID: PMC9676943 DOI: 10.3389/fgene.2022.953762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a clinically heterogeneous class of neurodevelopmental conditions with a strong, albeit complex, genetic basis. The genetic architecture of ASD includes different genetic models, from monogenic transmission at one end, to polygenic risk given by thousands of common variants with small effects at the other end. The mitochondrial DNA (mtDNA) was also proposed as a genetic modifier for ASD, mostly focusing on maternal mtDNA, since the paternal mitogenome is not transmitted to offspring. We extensively studied the potential contribution of mtDNA in ASD pathogenesis and risk through deep next generation sequencing and quantitative PCR in a cohort of 98 families. While the maternally-inherited mtDNA did not seem to predispose to ASD, neither for haplogroups nor for the presence of pathogenic mutations, an unexpected influence of paternal mtDNA, apparently centered on haplogroup U, came from the Italian families extrapolated from the test cohort (n = 74) when compared to the control population. However, this result was not replicated in an independent Italian cohort of 127 families and it is likely due to the elevated paternal age at time of conception. In addition, ASD probands showed a reduced mtDNA content when compared to their unaffected siblings. Multivariable regression analyses indicated that variants with 15%-5% heteroplasmy in probands are associated to a greater severity of ASD based on ADOS-2 criteria, whereas paternal super-haplogroups H and JT were associated with milder phenotypes. In conclusion, our results suggest that the mtDNA impacts on ASD, significantly modifying the phenotypic expression in the Italian population. The unexpected finding of protection induced by paternal mitogenome in term of severity may derive from a role of mtDNA in influencing the accumulation of nuclear de novo mutations or epigenetic alterations in fathers' germinal cells, affecting the neurodevelopment in the offspring. This result remains preliminary and needs further confirmation in independent cohorts of larger size. If confirmed, it potentially opens a different perspective on how paternal non-inherited mtDNA may predispose or modulate other complex diseases.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Flavia Baccari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Epidemiologia e Statistica, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Epidemiologia e Statistica, Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Agatino Battaglia
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Raffaella Tancredi
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali Jane Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Diagnostica Funzionale Neuroradiologica, Bologna, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| |
Collapse
|
40
|
Traitements médicaux dans la neuropathie optique héréditaire de Leber. J Fr Ophtalmol 2022; 45:S24-S31. [DOI: 10.1016/s0181-5512(22)00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
|
42
|
Spiegel SJ, Sadun AA. Solutions to a Radical Problem: Overview of Current and Future Treatment Strategies in Leber's Hereditary Opic Neuropathy. Int J Mol Sci 2022; 23:13205. [PMID: 36361994 PMCID: PMC9656544 DOI: 10.3390/ijms232113205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is the most common primary mitochondrial DNA disorder. It is characterized by bilateral severe central subacute vision loss due to specific loss of Retinal Ganglion Cells and their axons. Historically, treatment options have been quite limited, but ongoing clinical trials show promise, with significant advances being made in the testing of free radical scavengers and gene therapy. In this review, we summarize management strategies and rational of treatment based on current insights from molecular research. This includes preventative recommendations for unaffected genetic carriers, current medical and supportive treatments for those affected, and emerging evidence for future potential therapeutics.
Collapse
Affiliation(s)
- Samuel J. Spiegel
- Gavin Herbert Eye Institute, University of California, Irvine, CA 92617, USA
| | - Alfredo A. Sadun
- Jules Stein and Doheny Eye Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Lambiri DW, Levin LA. Modeling Reactive Oxygen Species-Induced Axonal Loss in Leber Hereditary Optic Neuropathy. Biomolecules 2022; 12:1411. [PMID: 36291620 PMCID: PMC9599876 DOI: 10.3390/biom12101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a rare syndrome that results in vision loss. A necessary but not sufficient condition for its onset is the existence of known mitochondrial DNA mutations that affect complex I biomolecular structure. Cybrids with LHON mutations generate higher rates of reactive oxygen species (ROS). This study models how ROS, particularly H2O2, could signal and execute the axonal degeneration process that underlies LHON. We modeled and explored several hypotheses regarding the influence of H2O2 on the dynamics of propagation of axonal degeneration in LHON. Zonal oxidative stress, corresponding to H2O2 gradients, correlated with the morphology of injury exhibited in the LHON pathology. If the axonal membrane is highly permeable to H2O2 and oxidative stress induces larger production of H2O2, small injuries could trigger cascading failures of neighboring axons. The cellular interdependence created by H2O2 diffusion, and the gradients created by tissue variations in H2O2 production and scavenging, result in injury patterns and surviving axonal loss distributions similar to LHON tissue samples. Specifically, axonal degeneration starts in the temporal optic nerve, where larger groups of small diameter fibers are located and propagates from that region. These findings correlate well with clinical observations of central loss of visual field, visual acuity, and color vision in LHON, and may serve as an in silico platform for modeling the mechanism of action for new therapeutics.
Collapse
Affiliation(s)
- Darius W. Lambiri
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Leonard A. Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
44
|
LE G, M P, MA M, KE B, MP V, JM R, C B, S E, PD W. Prospective association between maternal allostatic load during pregnancy and child mitochondrial content and bioenergetic capacity. Psychoneuroendocrinology 2022; 144:105868. [PMID: 35853381 PMCID: PMC9706402 DOI: 10.1016/j.psyneuen.2022.105868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mitochondria are multifunctional energy-producing and signaling organelles that support life and contribute to stress adaptation. There is a growing understanding of the dynamic relationship between stress exposure and mitochondrial biology; however, the influence of stress on key domains of mitochondrial biology during early-life, particularly the earliest phases of intra-uterine/prenatal period remains largely unknown. Thus, the goal of this study was to examine the impact of fetal exposure to stress (modeled as the biological construct allostatic load) upon mitochondrial biology in early childhood. METHODS In n = 30 children (range: 3.5-6 years, 53% male), we quantified mitochondrial content via citrate synthase (CS) activity and mtDNA copy number (mtDNAcn), and measured mitochondrial bioenergetic capacity via respiratory chain enzyme activities (complexes I (CI), II (CII), and IV (CIV)) in platelet-depleted peripheral blood mononuclear cells (PBMCs). In a cohort of healthy pregnant women, maternal allostatic load was operationalized as a latent variable (sum of z-scores) representing an aggregation of early-, mid- and late-gestation measures of neuroendocrine (cortisol), immune (interleukin-6, C-reactive protein), metabolic (homeostasis model assessment of insulin resistance, free fatty acids), and cardiovascular (aggregate systolic and diastolic blood pressure) systems, as well as an anthropometric indicator (pre-pregnancy body mass index [BMI]). RESULTS An interquartile increase in maternal allostatic load during pregnancy was associated with higher mitochondrial content (24% and 15% higher CS and mtDNAcn), and a higher mitochondrial bioenergetic capacity (16%, 23%, and 25% higher CI, CII and CIV enzymatic activities) in child leukocytes. The positive association between maternal allostatic load during pregnancy and child mitochondrial content and bioenergetic capacity remained significant after accounting for the effects of key pre- and post-natal maternal and child covariates (p's < 0.05, except CI p = 0.073). CONCLUSION We report evidence that prenatal biological stress exposure, modeled as allostatic load, was associated with elevated child mitochondrial content and bioenergetic capacity in early childhood. This higher mitochondrial content and bioenergetic capacity (per leukocyte) may reflect increased energetic demands at the immune or organism level, and thus contribute to wear-and-tear and pathophysiology, and/or programmed pro-inflammatory phenotypes. These findings provide potential mechanistic insight into the cellular processes underlying developmental programming, and support the potential role that changes in mitochondrial content and bioenergetic functional capacity may play in altering life-long susceptibility for health and disease.
Collapse
Affiliation(s)
- Gyllenhammer LE
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA,Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
| | - Picard M
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA,Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - McGill MA
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Boyle KE
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Lifecourse Epidemiology of Adiposity and Diabetes Center, Aurora, Colorado, USA
| | - Vawter MP
- Department of Psychiatry and Human Behavior, University of California, School of Medicine, Irvine, CA, USA
| | - Rasmussen JM
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA,Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
| | - Buss C
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA,Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Entringer S
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA,Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Wadhwa PD
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA,Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, School of Medicine, Irvine, CA, USA,Department of Obstetrics and Gynecology, University of California, School of Medicine, Irvine, CA, USA,Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
45
|
Yu T, Slone J, Liu W, Barnes R, Opresko PL, Wark L, Mai S, Horvath S, Huang T. Premature aging is associated with higher levels of 8-oxoguanine and increased DNA damage in the Polg mutator mouse. Aging Cell 2022; 21:e13669. [PMID: 35993394 PMCID: PMC9470903 DOI: 10.1111/acel.13669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the aging process. However, the mechanism by which this dysfunction causes aging is not fully understood. The accumulation of mutations in the mitochondrial genome (or "mtDNA") has been proposed as a contributor. One compelling piece of evidence in support of this hypothesis comes from the PolgD257A/D257A mutator mouse (Polgmut/mut ). These mice express an error-prone mitochondrial DNA polymerase that results in the accumulation of mtDNA mutations, accelerated aging, and premature death. In this paper, we have used the Polgmut/mut model to investigate whether the age-related biological effects observed in these mice are triggered by oxidative damage to the DNA that compromises the integrity of the genome. Our results show that mutator mouse has significantly higher levels of 8-oxoguanine (8-oxoGua) that are correlated with increased nuclear DNA (nDNA) strand breakage and oxidative nDNA damage, shorter average telomere length, and reduced mtDNA integrity. Based on these results, we propose a model whereby the increased level of reactive oxygen species (ROS) associated with the accumulation of mtDNA mutations in Polgmut/mut mice results in higher levels of 8-oxoGua, which in turn lead to compromised DNA integrity and accelerated aging via increased DNA fragmentation and telomere shortening. These results suggest that mitochondrial play a central role in aging and may guide future research to develop potential therapeutics for mitigating aging process.
Collapse
Affiliation(s)
- Tenghui Yu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Human Aging Research Institute, School of Life ScienceNanchang UniversityNanchangChina,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jesse Slone
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Wensheng Liu
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA
| | - Ryan Barnes
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Patricia L. Opresko
- Department of Environmental and Occupational HealthUniversity of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Landon Wark
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Sabine Mai
- CancerCare Manitoba Research Institute, The Genomic Center for Cancer Research & DiagnosisUniversity of ManitobaWinnipegManitobaCanada
| | - Steve Horvath
- Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Taosheng Huang
- Department of PediatricsUniversity at BuffaloBuffaloNew YorkUSA,Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
46
|
Pathological mitophagy disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. Cell Rep 2022; 40:111124. [PMID: 35858578 PMCID: PMC9314546 DOI: 10.1016/j.celrep.2022.111124] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/27/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Leber’s hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy. Autophagy and mitophagy are abnormally activated in samples carrying LHON mutations Autophagy and mitophagy affect LHON cells’ viability Therapeutic approaches targeting autophagy reverts LHON cells’ apoptotic death
Collapse
|
47
|
Chuenkongkaew WL, Chinkulkitnivat B, Lertrit P, Chirapapaisan N, Kaewsutthi S, Suktitipat B, Mitrpant C. Clinical expression and mitochondrial deoxyribonucleic acid study in twins with 14484 Leber’s hereditary optic neuropathy: A case report. World J Clin Cases 2022; 10:6944-6953. [PMID: 36051150 PMCID: PMC9297404 DOI: 10.12998/wjcc.v10.i20.6944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/07/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to explore clinical and molecular factors that cause discordance for clinical expression of Leber’s hereditary optic neuropathy (LHON) in a pair of identical twins with the 14484 point mutation.
CASE SUMMARY Twin patients with the 14484 point mutation were studied for zygosity by using the Short Tandem Repeats Typing system. For the monozygotic twins, the radioactive restriction and densitometric analyses were used to quantitate the heteroplasmy level for the 14484 point mutation. The mitochondrial genome was analyzed to determine influential factors by mitochondrial deoxyribonucleic acid (DNA) sequencing, denaturing high-performance liquid chromatography and next generation sequencing. For the dizygotic twins, the nuclear DNA was analyzed. The twins with 14484 LHON were monozygotic with homoplasmy. No difference in the point mutation in mitochondrial DNA was found. No modifying genes that potentially influenced the disparity in phenotypic expression of LHON were detected in these twins.
CONCLUSION This 11-year follow-up of monozygotic twins showed additional genetic modifications and epigenetic factors are possibly associated with discordance for LHON.
Collapse
Affiliation(s)
| | - Buakhwan Chinkulkitnivat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Patcharee Lertrit
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Niphon Chirapapaisan
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supannee Kaewsutthi
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
48
|
Wang Y, Guo X, Hong X, Wang G, Pearson C, Zuckerman B, Clark AG, O'Brien KO, Wang X, Gu Z. Association of mitochondrial DNA content, heteroplasmies and inter-generational transmission with autism. Nat Commun 2022; 13:3790. [PMID: 35778412 PMCID: PMC9249801 DOI: 10.1038/s41467-022-30805-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are essential for brain development. While previous studies linked dysfunctional mitochondria with autism spectrum disorder (ASD), the role of the mitochondrial genome (mtDNA) in ASD risk is largely unexplored. This study investigates the association of mtDNA heteroplasmies (co-existence of mutated and unmutated mtDNA) and content with ASD, as well as its inter-generational transmission and sex differences among two independent samples: a family-based study (n = 1,938 families with parents, probands and sibling controls) and a prospective birth cohort (n = 997 mother-child pairs). In both samples, predicted pathogenic (PP) heteroplasmies in children are associated with ASD risk (Meta-OR = 1.56, P = 0.00068). Inter-generational transmission of mtDNA reveals attenuated effects of purifying selection on maternal heteroplasmies in children with ASD relative to controls, particularly among males. Among children with ASD and PP heteroplasmies, increased mtDNA content shows benefits for cognition, communication, and behaviors (P ≤ 0.02). These results underscore the value of exploring maternal and newborn mtDNA in ASD.
Collapse
Affiliation(s)
- Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xiaoxian Guo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | | | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
- Center for Mitochondrial Genetics and Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
| |
Collapse
|
49
|
Barone V, La Morgia C, Caporali L, Fiorini C, Carbonelli M, Gramegna LL, Bartiromo F, Tonon C, Morandi L, Liguori R, Petrini A, Brugnano R, Del Sordo R, Covarelli C, Morroni M, Lodi R, Carelli V. Case Report: Optic Atrophy and Nephropathy With m.13513G>A/MT-ND5 mtDNA Pathogenic Variant. Front Genet 2022; 13:887696. [PMID: 35719398 PMCID: PMC9204033 DOI: 10.3389/fgene.2022.887696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Isolated complex I deficiency represents the most common mitochondrial respiratory chain defect involved in mitochondrial disorders. Among these, the mitochondrial DNA (mtDNA) m.13513G>A pathogenic variant in the NADH dehydrogenase 5 subunit gene (MT-ND5) has been associated with heterogenous manifestations, including phenotypic overlaps of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes, Leigh syndrome, and Leber’s hereditary optic neuropathy (LHON). Interestingly, this specific mutation has been recently described in patients with adult-onset nephropathy. We, here, report the unique combination of LHON, nephropathy, sensorineural deafness, and subcortical and cerebellar atrophy in association with the m.13513G>A variant.
Collapse
Affiliation(s)
- Valentina Barone
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michele Carbonelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Aurelia Petrini
- Nephrology Division, “S. Giovanni Battista Nuovo” Hospital, Foligno, Italy
| | - Rachele Brugnano
- Department of Nephrology and Dialysis, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Rachele Del Sordo
- Department of Medicine and Surgery, Section of Anatomic Pathology and Hystology, Medical School, University of Perugia, Perugia, Italy
| | - Carla Covarelli
- Department of Medicine and Surgery, Section of Anatomic Pathology and Hystology, Medical School, University of Perugia, Perugia, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Valerio Carelli,
| |
Collapse
|
50
|
Stephenson KAJ, McAndrew J, Kenna PF, Cassidy L. The Natural History of Leber's Hereditary Optic Neuropathy in an Irish Population and Assessment for Prognostic Biomarkers. Neuroophthalmology 2022; 46:159-170. [PMID: 35574161 PMCID: PMC9103396 DOI: 10.1080/01658107.2022.2032761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In this study we have assessed the clinical and genetic characteristics of an Irish Leber's hereditary optic neuropathy (LHON) cohort and assessed for useful biomarkers of visual prognosis. We carried out a retrospective review of clinical data of patients with genetically confirmed LHON presenting to an Irish tertiary referral ophthalmic hospital. LHON diagnosis was made on classic clinical signs with genetic confirmation. Alternate diagnoses were excluded with serological investigations and neuro-imaging. Serial logarithm of the minimum angle of resolution (logMAR) visual acuity (VA) was stratified into 'on-chart' for logMAR 1.0 or better and 'off-chart' if worse than logMAR 1.0. Serial optical coherence tomography scans of the retinal nerve fibre layer (RNFL) and ganglion cell complex (GCC) monitored structure. Idebenone-treated and untreated patients were contrasted. Statistical analyses were performed to assess correlations of presenting characteristics with final VA. Forty-four patients from 34 pedigrees were recruited, of which 87% were male and 75% harboured the 11778 mutation. Legal blindness status was reached in 56.8% of patients by final review (mean 74 months). Preservation of initial nasal RNFL was the best predictor of on-chart final VA. Females had worse final VA than males and patients presenting at < 20 years of age had superior final VA. Idebenone therapy (50% of cohort) yielded no statistically significant benefit to final VA, although study design precludes definitive comment on efficacy. The reported cases represent the calculated majority of LHON pedigrees in Ireland. Visual outcomes were universally poor; however, VA may not be the most appropriate outcome measure and certain patient-reported outcome measures may be of more use when assessing future LHON interventions.
Collapse
Affiliation(s)
- Kirk A. J. Stephenson
- Department of Neuro-ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland,CONTACT Kirk A. J. Stephenson Department of Neuro-ophthalmology, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin2 D02 XK51, Ireland
| | - Joseph McAndrew
- Department of Neuro-ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Paul F. Kenna
- Department of Neuro-ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Lorraine Cassidy
- Department of Neuro-ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| |
Collapse
|