1
|
Forrest SL, Kovacs GG. Current concepts and molecular pathology of neurodegenerative diseases. Pathology 2025; 57:178-190. [PMID: 39672768 DOI: 10.1016/j.pathol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/15/2024]
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of diseases characterised by selective dysfunction, loss of synaptic connectivity and neurodegeneration, and are associated with the deposition of misfolded proteins in neurons and/or glia. Molecular studies have highlighted the role of conformationally altered proteins in the pathogenesis of neurodegenerative diseases and have paved the way for developing disease-specific biomarkers that capture and differentiate the main type/s of protein abnormality responsible for neurodegenerative diseases, some of which are currently used in clinical practice. These proteins follow sequential patterns of anatomical involvement and disease spread in the brain and may also be detected in peripheral organs. Recent studies suggest that glia are likely to have an important role in pathological spread throughout the brain and even follow distinct progression patterns from neurons. In addition to morphological and molecular approaches to the classification of these disorders, a further new stratification level incorporates the structure of protein filaments detected by cryogenic electron microscopy. Rather than occurring in isolation, combined deposition of tau, amyloid-β, α-synuclein and TDP-43 are frequently observed in neurodegenerative diseases and in the ageing brain. These can be overlooked, and their clinicopathological relevance is difficult to interpret. This review provides an overview of disease pathogenesis and diagnostic implications, recent molecular and ultrastructural classification of neurodegenerative diseases, how to approach ageing-related and mixed pathologies, and the importance of the protein-based classification system for practising neuropathologists and clinicians. This review also informs general pathologists about the relevance of ongoing full body autopsy studies to understand the spectrum and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Son KY, Choi YJ, Kim B, Han K, Hwang S, Jung W, Shin DW, Lim DH. Association between Age-Related Macular Degeneration with Visual Disability and Risk of Dementia: A Nationwide Cohort Study. J Am Med Dir Assoc 2025; 26:105392. [PMID: 39642914 DOI: 10.1016/j.jamda.2024.105392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVES To investigate the prospective association between the risk of dementia and age-related macular degeneration (AMD) in patients with related visual disability (VD). DESIGN A nationwide population-based cohort study used authorized data provided by the Korean National Health Insurance Service. SETTING AND PARTICIPANTS A total of 1,788,457 individuals aged >50 years who participated in the Korean National Health Screening Program were enrolled. METHODS From January 2009 to December 2019, participants were tracked for a diagnosis of dementia using registered diagnostic codes from claims data. Participants with VD were defined as those registered in a national disability registration established by the Korean government. The prospective association of AMD and related VD with new-onset dementia was investigated using a multivariate-adjusted Cox proportional hazard model adjusted for age, sex, body mass index, income level, systemic comorbidities, psychiatric diseases, and behavioral factors. RESULTS During the average follow-up period of 9.7 ± 2.16 years, 4260 of 21,384 participants in the AMD cohort and 137,166 of 1,662,319 participants in the control cohort were newly diagnosed with dementia, respectively. Participants diagnosed with AMD showed a higher risk of new-onset dementia than those in the control group in the fully adjusted model [hazard ratio (HR) 1.11, 95% CI 1.07-1.14]. The risk of dementia was higher in participants diagnosed with AMD and associated VD (HR 1.28, 95% CI 1.15-1.43) compared to those without VD (HR 1.09, 95% CI 1.06-1.13). CONCLUSIONS AND IMPLICATIONS A diagnosis of AMD was associated with an increased risk of all-cause dementia and its major subtypes. Close monitoring of cognitive function in patients with AMD, especially those with VD, may help in early detection of all-cause dementia, which could reduce the socioeconomic burden and improve the quality of life of patients.
Collapse
Affiliation(s)
- Ki Young Son
- Department of Ophthalmology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| | - Yong-Jun Choi
- School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Sungsoon Hwang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Wonyoung Jung
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Dong Hui Lim
- School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea; Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Cerny Oliveira L, Chauhan J, Chaudhari A, Cheung SCS, Patel V, Villablanca AC, Jin LW, DeCarli C, Chuah CN, Dugger BN. A machine learning approach to automate microinfarct and microhemorrhage screening in hematoxylin and eosin-stained human brain tissues. J Neuropathol Exp Neurol 2025; 84:114-125. [PMID: 39724914 PMCID: PMC11747222 DOI: 10.1093/jnen/nlae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Microinfarcts and microhemorrhages are characteristic lesions of cerebrovascular disease. Although multiple studies have been published, there is no one universal standard criteria for the neuropathological assessment of cerebrovascular disease. In this study, we propose a novel application of machine learning in the automated screening of microinfarcts and microhemorrhages. Utilizing whole slide images (WSIs) from postmortem human brain samples, we adapted a patch-based pipeline with convolutional neural networks. Our cohort consisted of 22 cases from the University of California Davis Alzheimer's Disease Research Center brain bank with hematoxylin and eosin-stained formalin-fixed, paraffin-embedded sections across 3 anatomical areas: frontal, parietal, and occipital lobes (40 WSIs with microinfarcts and/or microhemorrhages, 26 without). We propose a multiple field-of-view prediction step to mitigate false positives. We report screening performance (ie, the ability to distinguish microinfarct/microhemorrhage-positive from microinfarct/microhemorrhage-negative WSIs), and detection performance (ie, the ability to localize the affected regions within a WSI). Our proposed approach improved detection precision and screening accuracy by reducing false positives thereby achieving 100% screening accuracy. Although this sample size is small, this pipeline provides a proof-of-concept for high efficacy in screening for characteristic brain changes of cerebrovascular disease to aid in screening of microinfarcts/microhemorrhages at the WSI level.
Collapse
Affiliation(s)
- Luca Cerny Oliveira
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA, United States
| | - Joohi Chauhan
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA, United States
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States
| | - Ajinkya Chaudhari
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA, United States
| | - Sen-ching S Cheung
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, United States
| | - Viharkumar Patel
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States
| | - Amparo C Villablanca
- Department of Internal Medicine, University of California Davis, Davis, CA, United States
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States
| | - Charles DeCarli
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States
| | - Chen-Nee Chuah
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA, United States
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States
| |
Collapse
|
4
|
Tang P, Sun Y, Yang C, Zhang N. Early functional and structural hippocampal impairment in a bilateral common carotid artery stenosis mouse model. Animal Model Exp Med 2025. [PMID: 39853719 DOI: 10.1002/ame2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS. METHODS We used behavioral tests, laser speckle flowmetry, long-term potentiation, histochemical staining, molecular experiments, and voxel-based morphometry to evaluate the hippocampal impairments. RESULTS Behavioral studies revealed that BCAS mice exhibited worse performance. Laser speckle flowmetry detected an obvious decrease in cerebral blood flow. The synaptic plasticity of the perforant path-dentate gyrus pathway was inhibited. Decreased fractional anisotropy and increased mean diffusivity were detected in the hippocampus via diffusion tensor imaging data. A reduction in gray matter volume, which was most prominent in the hippocampus and its surrounding areas, was detected via voxel-based morphometry analysis. Impairments in cell morphology and myelin integrity were validated using histochemical staining and molecular biology techniques. In addition, the numbers of GFAP+ astrocytes and Iba1+ microglia increased in the hippocampus. CONCLUSIONS Overall, our study demonstrates early functional and structural impairments in the hippocampus contributing to learning and memory deficits after 1 month of BCAS, indicating that the hippocampus is vulnerable to chronic cerebral ischemia.
Collapse
Affiliation(s)
- Ping Tang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
5
|
Ortega-Cruz D, Rabano A, Strange BA. Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia. Alzheimers Res Ther 2025; 17:16. [PMID: 39789603 PMCID: PMC11714914 DOI: 10.1186/s13195-024-01633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes. METHODS In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies. After exploring co-occurrence profiles of these pathologies, voxel-based morphometry was implemented to determine their joint and independent effects on grey matter loss. The impact of these pathologies on WMH burden was then evaluated both in spatial and quantitative combined analyses, using voxel-based and generalized linear models respectively. RESULTS 86.8% of patients in this cohort presented more than one pathology. The combined structural effect of these pathologies was a focal impact on hippocampal grey matter atrophy, primarily driven by HS and Alzheimer's pathology (family-wise error corrected, p < 0.05), which also exhibited the strongest individual effects (uncorrected, p < 0.001). WMHs, predominant in middle and anterior cerebral portions, were most strongly associated with vascular (T = 2.47, p = 0.017) and tau pathologies (T = 2.09, p = 0.041). CONCLUSIONS The mixed associations of these dementia neuroimaging hallmarks are relevant for the fine-tuning of diagnostic protocols and underscore the need for comprehensive pathology evaluations in the study of dementia phenotypes.
Collapse
Affiliation(s)
- Diana Ortega-Cruz
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, 28031, Spain
| | - Alberto Rabano
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, 28031, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, 28031, Spain.
| |
Collapse
|
6
|
Mikhailenko E, Colangelo K, Tuimala J, Kero M, Savola S, Raunio A, Kok EH, Tanskanen M, Mäkelä M, Puttonen H, Mäyränpää MI, Kumar D, Kaivola K, Paetau A, Tienari PJ, Polvikoski T, Myllykangas L. Limbic-predominant age-related TDP-43 encephalopathy in the oldest old: a population-based study. Brain 2025; 148:154-167. [PMID: 38938199 PMCID: PMC11706281 DOI: 10.1093/brain/awae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Population-based cohort studies are essential for understanding the pathological basis of dementia in older populations. Previous studies have shown that limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) increases with age, but there have been only a few studies, which have investigated this entity in a population-based setting. Here we studied the frequency of LATE-NC and its associations with other brain pathologies and cognition in a population aged ≥ 85 years. The population-based Vantaa 85+ study cohort includes all 601 individuals aged ≥85 years who were living in Vantaa, Finland in 1991. A neuropathological examination was performed on 304 subjects (50.5%) and LATE-NC staging was possible in 295 of those. Dementia status and Mini-Mental State Examination (MMSE) scores were defined in the baseline study and three follow-ups (1994-99). The LATE-NC stages were determined based on TDP-43 immunohistochemistry, according to recently updated recommendations. Arteriolosclerosis was digitally assessed by calculating the average sclerotic index of five random small arterioles in amygdala and hippocampal regions, and frontal white matter. The association of LATE-NC with arteriolosclerosis and previously determined neuropathological variables including Alzheimer's disease neuropathologic change (ADNC), Lewy-related pathology (LRP), hippocampal sclerosis (HS) and cerebral amyloid angiopathy (CAA), and cognitive variables were analysed by Fisher's exact test, linear and logistic regression (univariate and multivariate) models. LATE-NC was found in 189 of 295 subjects (64.1%). Stage 2 was the most common (28.5%) and stage 3 the second most common (12.9%), whereas stages 1a, 1b and 1c were less common (9.5%, 5.1% and 8.1%, respectively). Stages 1a (P < 0.01), 2 (P < 0.001) and 3 (P < 0.001) were significantly associated with dementia and lower MMSE scores. LATE-NC was associated with ADNC (P < 0.001), HS (P < 0.001), diffuse neocortical LRP (P < 0.002), and arteriolosclerosis in amygdala (P < 0.02). In most cases LATE-NC occurred in combination alongside other neuropathological changes. There were only six subjects with dementia who had LATE-NC without high levels of ADNC or LRP (2% of the cohort, 3% of the cases with dementia), and five of these had HS. In all multivariate models, LATE-NC was among the strongest independent predictors of dementia. When LATE-NC and ADNC were assessed in a multivariate model without other dementia-associated pathologies, the attributable risk was higher for LATE-NC than ADNC (24.2% versus 18.6%). This population-based study provides evidence that LATE-NC is very common and one of the most significant determinants of dementia in the general late-life aged population.
Collapse
Affiliation(s)
| | - Kia Colangelo
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Jarno Tuimala
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kero
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Sara Savola
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Anna Raunio
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Eloise H Kok
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit Tanskanen
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Mira Mäkelä
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Henri Puttonen
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | | | - Karri Kaivola
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, 00014 Finland
- Department of Neurology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, 00014 Finland
- Department of Neurology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
7
|
Xin Y, Zhou S, Chu T, Zhou Y, Xu A. Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases. Curr Neuropharmacol 2025; 23:145-171. [PMID: 38379403 PMCID: PMC11793074 DOI: 10.2174/1570159x22999240209102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/22/2024] Open
Abstract
Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Yoshida K, Forrest SL, Ichimata S, Tanaka H, Kon T, Kovacs GG. Co-pathologies modify hippocampal protein accumulation patterns in neurodegenerative diseases. Alzheimers Dement 2025; 21:e14355. [PMID: 39711489 PMCID: PMC11782183 DOI: 10.1002/alz.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Limited research has extensively analyzed neurodegenerative disease-related protein deposition patterns in the hippocampus. METHODS This study examined the distribution of proteins in hippocampal subregions across major neurodegenerative diseases and explored their relation to each other. The area density of phosphorylated tau (p-tau), amyloid beta (Aβ), α-synuclein, and phosphorylated TDP-43 protein deposits together with pyramidal cell density in each hippocampal subregion, including CA1-4, prosubiculum (ProS), and subiculum was assessed in 166 cases encompassing various neurodegenerative diseases. RESULTS Alzheimer's disease-associated p-tau predominated in ProS, Aβ in the CA1, and Lewy body-related α-synuclein in the CA2. The area density of protein deposits increased with the pathological stage until a peak, then decreased in cases with high pathology stages along with pyramidal cell density. Comorbid protein pathology influenced protein deposition patterns. DISCUSSION This comprehensive evaluation reveals characteristic neurodegenerative disease-related protein accumulation patterns in hippocampal subregions modified by co-pathologies. HIGHLIGHTS Alzheimer's disease-related phosphorylated tau predominates in the prosubiculum. Amyloid beta predominates in the CA1 and Lewy body-related α-synuclein in the CA2. The area density of protein deposition increases with the disease stage up to a peak. In the high pathology stage, protein deposition and pyramidal cell density decreases. Comorbid protein pathology affects the pattern of protein accumulation.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Legal MedicineGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Shelley L. Forrest
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Laboratory Medicine Program & Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of NeurologyDementia Research CentreMacquarie Medical SchoolFaculty of MedicineHealth and Human SciencesMacquarie UniversitySydneyAustralia
| | - Shojiro Ichimata
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Legal MedicineGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Hidetomo Tanaka
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
| | - Tomoya Kon
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Graduate School of MedicineHirosaki UniversityHirosakiJapan
| | - Gabor G. Kovacs
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Laboratory Medicine Program & Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of NeurologyDementia Research CentreMacquarie Medical SchoolFaculty of MedicineHealth and Human SciencesMacquarie UniversitySydneyAustralia
| |
Collapse
|
9
|
Wang X, Zhu K, Wu W, Zhou D, Lu H, Du J, Cai L, Yan X, Li W, Qian X, Wang X, Ma C, Hu Y, Tian C, Sun B, Fang Z, Wu J, Jiang P, Liu J, Liu C, Fan J, Cui H, Shen Y, Duan S, Bao A, Yang Y, Qiu W, Zhang J. Prevalence of mixed neuropathologies in age-related neurodegenerative diseases: A community-based autopsy study in China. Alzheimers Dement 2025; 21:e14369. [PMID: 39582417 PMCID: PMC11782840 DOI: 10.1002/alz.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Despite extensive studies on mixed neuropathologies, data from China are limited. This study aims to fill this gap by analyzing brain samples from Chinese brain banks. METHODS A total of 1142 brains from six Chinese brain banks were examined using standardized methods. Independent pathologists conducted evaluations with stringent quality control. Prevalence and correlations of neurological disorders were analyzed. RESULTS Significant proportions of brains displayed primary age-related tauopathy (PART, 35%), limbic-predominant age-related TDP-43 encephalopathy (LATE, 46%), and aging-related tau astrogliopathy (ARTAG, 12%). Alzheimer's disease neuropathological change (ADNC, 48%), Lewy body disease (LBD, 13%), and cerebrovascular disease (CVD, 63%) were also prevalent, often co-occurring with regional variations. CVD emerged as the potential most early contributor to neuropathological changes. DISCUSSION This analysis highlights the prevalence of PART, LATE, ARTAG, ADNC, LBD, and CVD, with regional differences. The findings suggest CVD may be the earliest contributing factor, potentially preceding other neuropathologies. Highlights The prevalence of primary age-related tauopathy (PART), limbic-predominant age-related TDP-43 encephalopathy (LATE), aging-related tau astrogliopathy (ARTAG), Alzheimer's disease neuropathologic change, Lewy body disease, and cerebrovascular disease (CVD) in China, increasing with age, is comparable to other countries. Significant regional differences in the prevalences of diseases are noted. CVD develops prior to any other disorders, including PART, LATE, and ARTAG.
Collapse
|
10
|
Lee K, Kim SI, Shim YM, Kim EE, Yoo S, Won JK, Park SH. Current Status and Future Perspective of Seoul National University Hospital-Dementia Brain Bank with Concordance of Clinical and Neuropathological Diagnosis. Exp Neurobiol 2024; 33:295-311. [PMID: 39806943 PMCID: PMC11738475 DOI: 10.5607/en24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate. Between 2015 and September 2024, 162 brain specimens were collected via brain donation and autopsy. The median donor age was 73 years (1-94) with a male-to -female ratio of 2:1. The median postmortem interval was 9.5 hours (range: 2.5-65). Common neuropathological diagnoses included pure Lewy body disease (10.6%), Lewy body disease (LBD) with other brain diseases (10.6%), pure Alzheimer's disease-neuropathological change (ADNC) (6.0%), ADNC with other brain diseases (10.7%), vascular brain injury (15.2%), and primary age-related tauopathy (7.3%). APOE genotype distribution was following: ε3/ε3: 62.3%, ε2/ε3: 9.6%, ε2/ε4: 3.4%, ε3/ε4: 24.0%, and ε4/ε4: 0.7%. Concordance rates between pathological and clinical diagnoses were: ADNC/AD at 42.4%; LBD at 59.0%; PSP at 100%; ALS at 85.7%; Huntington's disease 100%. The varying concordance rates across different diseases emphasize the need for improved diagnostic criteria and biomarkers, particularly for AD and LBD. Tissues have been distributed to over 40 national studies. SNUH-DBB provides high-quality brain tissues and cell models for neuroscience research, operating under standardized procedures and international guidelines. It supports translational research in dementia and neurodegenerative diseases, potentially advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong-Ik Kim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yu-Mi Shim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eric Enshik Kim
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sooyeon Yoo
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
| | - Jae-Kyung Won
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Hye Park
- Dementia Brain Bank, Seoul National University Hospital, Seoul 03080, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Brain Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
11
|
You T, Wang Y, Chen S, Dong Q, Yu J, Cui M. Vascular cognitive impairment: Advances in clinical research and management. Chin Med J (Engl) 2024; 137:2793-2807. [PMID: 39048312 PMCID: PMC11649275 DOI: 10.1097/cm9.0000000000003220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Vascular cognitive impairment (VCI) encompasses a wide spectrum of cognitive disorders, ranging from mild cognitive impairment to vascular dementia. Its diagnosis relies on thorough clinical evaluations and neuroimaging. VCI predominately arises from vascular risk factors (VRFs) and cerebrovascular disease, either independently or in conjunction with neurodegeneration. Growing evidence underscores the prevalence of VRFs, highlighting their potential for early prediction of cognitive impairment and dementia in later life. The precise mechanisms linking vascular pathologies to cognitive deficits remain elusive. Chronic cerebrovascular pathology is the most common neuropathological feature of VCI, often interacting synergistically with neurodegenerative processes. Current research efforts are focused on developing and validating reliable biomarkers to unravel the etiology of vascular brain changes in VCI. The collaborative integration of these biomarkers into clinical practice, alongside routine incorporation into neuropathological assessments, presents a promising strategy for predicting and stratifying VCI. The cornerstone of VCI prevention remains the control of VRFs, which includes multi-domain lifestyle modifications. Identifying appropriate pharmacological approaches is also of paramount importance. In this review, we synthesize recent advancements in the field of VCI, including its definition, determinants of vascular risk, pathophysiology, neuroimaging and fluid-correlated biomarkers, predictive methodologies, and current intervention strategies. Increasingly evident is the notion that more rigorous research for VCI, which arises from a complex interplay of physiological events, is still needed to pave the way for better clinical outcomes and enhanced quality of life for affected individuals.
Collapse
Affiliation(s)
- Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shufen Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jintai Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200040, China
| |
Collapse
|
12
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
13
|
Burgueño-García I, López-Martínez MJ, Uceda-Heras A, García-Carracedo L, Zea-Sevilla MA, Rodrigo-Lara H, Rego-García I, Saiz-Aúz L, Ruiz-Valderrey P, López-González FJ, Guerra-Martín V, Rábano A. Neuropathological Heterogeneity of Dementia Due to Combined Pathology in Aged Patients: Clinicopathological Findings in the Vallecas Alzheimer's Reina Sofía Cohort. J Clin Med 2024; 13:6755. [PMID: 39597898 PMCID: PMC11594757 DOI: 10.3390/jcm13226755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Clinicopathological research in late-life dementia has focused recently on combined neurodegenerative and vascular conditions underlying the high phenotypic heterogeneity of patients. The Vallecas Alzheimer's Reina Sofía (VARS) cohort (n > 550), and particularly the series of associated brain donations (VARSpath cohort) are presented here. The aim of this study is to contribute to research in dementia with a well-characterized cohort from a single center. Methods: A total of 167 patients with complete neuropathological work-ups were analyzed here. The cohort is characterized by a high female predominance (79%), advanced age at death (88 yrs.), and a high frequency of ApoE-e4 haplotype (43%). Results: The main neuropathological diagnosis was Alzheimer's disease (79.6%), followed by vascular dementia (10.2%) and Lewy body dementia (6%). Overall, intermediate-to-high cerebrovascular disease was observed in 38.9%, Lewy body pathology in 57.5%, LATE (TDP-43 pathology) in 70.7%, ARTAG in 53%, and argyrophilic grain disease in 12% of the patients. More than one pathology with a clinically relevant burden of disease was present in 71.1% of the brains, and a selection of premortem neuropsychological and functional scores showed significant correlation with the number of co-pathologies identified in postmortem brains. Conclusions: The VARS cohort, with thorough clinical follow-up, regular blood sampling, 3-Tesla MR, and a high rate of postmortem brain donation, can provide essential multidisciplinary data in the rising age of modifying therapies and biomarkers for Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Iván Burgueño-García
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | - María José López-Martínez
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | - Alicia Uceda-Heras
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | - Lucía García-Carracedo
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | - María Ascensión Zea-Sevilla
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | | | - Iago Rego-García
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | - Laura Saiz-Aúz
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | - Paloma Ruiz-Valderrey
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | - Francisco J. López-González
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| | | | - Alberto Rábano
- Reina Sofía Alzheimer Center, CIEN Foundation, ISCIII, 28031 Madrid, Spain; (I.B.-G.); (M.J.L.-M.); (A.U.-H.); (L.G.-C.); (M.A.Z.-S.); (I.R.-G.); (L.S.-A.); (P.R.-V.); (F.J.L.-G.)
| |
Collapse
|
14
|
Shade LMP, Katsumata Y, Abner EL, Aung KZ, Claas SA, Qiao Q, Heberle BA, Brandon JA, Page ML, Hohman TJ, Mukherjee S, Mayeux RP, Farrer LA, Schellenberg GD, Haines JL, Kukull WA, Nho K, Saykin AJ, Bennett DA, Schneider JA, Ebbert MTW, Nelson PT, Fardo DW. GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia. Nat Genet 2024; 56:2407-2421. [PMID: 39379761 PMCID: PMC11549054 DOI: 10.1038/s41588-024-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Genome-wide association studies (GWAS) have identified >80 Alzheimer's disease and related dementias (ADRD)-associated genetic loci. However, the clinical outcomes used in most previous studies belie the complex nature of underlying neuropathologies. Here we performed GWAS on 11 ADRD-related neuropathology endophenotypes with participants drawn from the following three sources: the National Alzheimer's Coordinating Center, the Religious Orders Study and Rush Memory and Aging Project, and the Adult Changes in Thought study (n = 7,804 total autopsied participants). We identified eight independent significantly associated loci, of which four were new (COL4A1, PIK3R5, LZTS1 and APOC2). Separately testing known ADRD loci, 19 loci were significantly associated with at least one neuropathology after false-discovery rate adjustment. Genetic colocalization analyses identified pleiotropic effects and quantitative trait loci. Methylation in the cerebral cortex at two sites near APOC2 was associated with cerebral amyloid angiopathy. Studies that include neuropathology endophenotypes are an important step in understanding the mechanisms underlying genetic ADRD risk.
Collapse
Affiliation(s)
- Lincoln M P Shade
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Khine Zin Aung
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Steven A Claas
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Anthony Brandon
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Madeline L Page
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Richard P Mayeux
- Department of Neurology, Columbia University, New York City, NY, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
- Department of Pathology, Rush Medical College, Chicago, IL, USA
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Folloso MC, Villaraza SG, Yi-Wen L, Pek-Lan K, Tanaka T, Hilal S, Venketasubramanian N, Li-Hsian Chen C. The AHA/ASA and DSM-V diagnostic criteria for vascular cognitive impairment identify cases with predominant vascular pathology. Int J Stroke 2024; 19:925-934. [PMID: 38651759 PMCID: PMC11408959 DOI: 10.1177/17474930241252556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND There are major challenges in determining the etiology of vascular cognitive impairment (VCI) clinically, especially in the presence of mixed pathologies, such as vascular and amyloid. Most recently, two criteria (American Heart Association/American Stroke Association (AHA/ASA) and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V)) have been proposed for the clinical diagnosis of VCI but have not as yet been validated using neuroimaging. AIMS This study aims to determine whether the AHA/ASA and DSM-V criteria for VCI can distinguish between cases with predominantly vascular pathology and cases with mixed pathology. METHODS A total of 186 subjects were recruited from a cross-sectional memory clinic-based study at the National University Hospital, Singapore. All subjects underwent clinical and neuropsychological assessment, magnetic resonance imaging (MRI) and carbon 11-labeled Pittsburgh Compound B ([11C] PiB) positron emission tomography (PET) scans. Diagnosis of the etiological subtypes of VCI (probable vascular mild cognitive impairment (VaMCI), possible VaMCI, non-VaMCI, probable vascular dementia (VaD), possible VaD, non-VaD) were performed following AHA/ASA and DSM-V criteria. Brain amyloid burden was determined for each subject with standardized uptake value ratio (SUVR) values ⩾1.5 classified as amyloid positive. RESULTS Using κ statistics, both criteria had excellent agreement for probable VaMCI, probable VaD, and possible VaD (κ = 1.00), and good for possible VaMCI (κ = 0.71). Using the AHA/ASA criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.7%), non-VaMCI (33.3%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). Similarly, using the DSM-V criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.3%), non-VaMCI (32.1%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). In both criteria, there was good agreement in differentiating individuals with non-VaD and possible VaD, with significantly higher (p < 0.001) global [11C]-PiB SUVR, from individuals with probable VaMCI and probable VaD, who had predominant vascular pathology. CONCLUSION The AHA/ASA and DSM-V criteria for VCI can identify VCI cases with little to no concomitant amyloid pathology, hence supporting the utility of AHA/ASA and DSM-V criteria in diagnosing patients with predominant vascular pathology. DATA ACCESS STATEMENT Data supporting this study are available from the Memory Aging and Cognition Center, National University of Singapore. Access to the data is subject to approval and a data sharing agreement due to University policy.
Collapse
Affiliation(s)
- Melmar C Folloso
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Steven G Villaraza
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Lo Yi-Wen
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Khong Pek-Lan
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Tomotaka Tanaka
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Christopher Li-Hsian Chen
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| |
Collapse
|
16
|
Zhang J, Price CJ, Zhao K, Tang Y, Zhong S, Lou J, Ye X, Liang F. Associations between amyloid-β load and cognition in cerebrovascular disease beyond cerebral amyloid angiopathy: a systematic review and meta-analysis of positron emission tomography studies. Age Ageing 2024; 53:afae240. [PMID: 39468728 DOI: 10.1093/ageing/afae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND There is growing interest in the comorbidity of vascular and neurodegenerative pathologies in patients with cerebrovascular disease (CVD) beyond cerebral amyloid angiopathy (CAA). However, the relationship between amyloid-β and vascular cognitive impairment (VCI) remains debated. OBJECTIVE To investigate the association between VCI and amyloid-β deposition in non-CAA CVD patients. METHODS PubMed, Embase, Web of Science, PsycINFO and CENTRAL databases were systematically searched. Observational studies, including case-control and cohort studies, associating cognitive scores with amyloid load measured by positron emission tomography were selected. Meta-analyses were performed to assess the strength of amyloid-cognition associations across CVD subtypes and cognitive domains. A random-effects model using the inverse variance method was used, with heterogeneity evaluated by Q-statistics and I2 statistics. Meta-regression analyses were conducted to examine the influence of moderators, and publication bias was assessed using funnel plots and Egger's test. All statistical analyses were performed using StataMP 18. RESULTS Twenty-seven eligible studies encompassing 2894 participants were included. Among non-CAA CVD patients, global cognitive performance was significantly lower in those with higher amyloid-β deposition (standardized mean difference = -0.43, P < 0.001). The correlation strength varied across cognitive domains (executive function: r = -0.41; language: r = -0.36; memory: r = -0.29; all P < 0.001). The correlation was significant in patients with subcortical vascular disease (r = -0.43, P < 0.001) but not post-stroke patients (r = -0.19, P > 0.05). CONCLUSIONS Amyloid-β load is associated with cognitive decline in non-CAA CVD patients. This is more pronounced in patients with subcortical vascular disease than in post-stroke patients. Executive function is the most susceptible domain in VCI when the level of amyloid-β increases.
Collapse
Affiliation(s)
- Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
- Wellcome Center for Human Neuroimaging, Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Cathy J Price
- Wellcome Center for Human Neuroimaging, Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AZ, United Kingdom
| | - Yuanyuan Tang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Shuchang Zhong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Jingjing Lou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| | - Feng Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, China
| |
Collapse
|
17
|
Jiménez-Ruiz A, Aguilar-Fuentes V, Becerra-Aguiar NN, Roque-Sanchez I, Ruiz-Sandoval JL. Vascular cognitive impairment and dementia: a narrative review. Dement Neuropsychol 2024; 18:e20230116. [PMID: 39318380 PMCID: PMC11421556 DOI: 10.1590/1980-5764-dn-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 06/09/2024] [Indexed: 09/26/2024] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of cognitive impairment after Alzheimer's disease. The VCI spectrum involves a decline in cognition attributable to vascular pathologies (e.g., large infarcts or hemorrhages, microinfarcts, microbleeds, lacunar infarcts, white matter hyperintensities, and perivascular space dilation). Pathophysiological mechanisms include direct tissue injury, small vessel disease, inflammaging (inflammation + aging), atrophy, and altered neurotransmission. VCI is diagnosed using distinct clinical and radiological criteria. It may lead to long-term disability and reduced quality of life. An essential factor for reducing cognitive impairment incidence is preventing stroke by managing traditional and non-traditional cerebrovascular risk factors. This article reviews the spectrum of VCI, epidemiology, risk factors, pathophysiology, diagnosis, available treatment, and preventive strategies.
Collapse
Affiliation(s)
- Amado Jiménez-Ruiz
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Victor Aguilar-Fuentes
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Naomi Nazareth Becerra-Aguiar
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Ivan Roque-Sanchez
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Jose Luis Ruiz-Sandoval
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Neurociencias, Guadalajara, Jalisco, Mexico
| |
Collapse
|
18
|
Tayler HM, Skrobot OA, Baron DH, Kehoe PG, Miners JS. Dysregulation of the renin-angiotensin system in vascular dementia. Brain Pathol 2024; 34:e13251. [PMID: 38454306 PMCID: PMC11189771 DOI: 10.1111/bpa.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The renin-angiotensin system (RAS) regulates systemic and cerebral blood flow and is dysregulated in dementia. The major aim of this study was to determine if RAS signalling is dysregulated in vascular dementia. We measured markers of RAS signalling in white matter underlying the frontal and occipital cortex in neuropathologically confirmed cases of vascular dementia (n = 42), Alzheimer's disease (n = 50), mixed AD/VaD (n = 50) and age-matched controls (n = 50). All cases were stratified according to small vessel disease (SVD) severity across both regions. ACE-1 and ACE-2 protein and activity was measured by ELISA and fluorogenic peptide assays respectively, and angiotensin peptide (Ang-II, Ang-III and Ang-(1-7)) levels were measured by ELISA. ACE-1 protein level and enzyme activity, and Ang-II and Ang-III, were elevated in the white matter in vascular dementia in relation to SVD severity. ACE-1 and Ang-II protein levels were inversely related to MAG:PLP1 ratio, a biochemical marker of brain tissue oxygenation that when reduced indicates cerebral hypoperfusion, in a subset of cases. ACE-2 level was elevated in frontal white matter in vascular dementia. Ang-(1-7) level was elevated across all dementia groups compared to age-matched controls but was not related to SVD severity. RAS signalling was not altered in the white matter in Alzheimer's disease. In the overlying frontal cortex, ACE-1 protein was reduced and ACE-2 protein increased in vascular dementia, whereas angiotensin peptide levels were unchanged. These data indicate that RAS signalling is dysregulated in the white matter in vascular dementia and may contribute to the pathogenesis of small vessel disease.
Collapse
Affiliation(s)
- H. M. Tayler
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - O. A. Skrobot
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - D. H. Baron
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - P. G. Kehoe
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| | - J. S. Miners
- Dementia Research Group, Bristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
19
|
Vos SJB, Delvenne A, Jack CR, Thal DR, Visser PJ. The clinical importance of suspected non-Alzheimer disease pathophysiology. Nat Rev Neurol 2024; 20:337-346. [PMID: 38724589 DOI: 10.1038/s41582-024-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
The development of biomarkers for Alzheimer disease (AD) has led to the origin of suspected non-AD pathophysiology (SNAP) - a heterogeneous biomarker-based concept that describes individuals with normal amyloid and abnormal tau and/or neurodegeneration biomarker status. In this Review, we describe the origins of the SNAP construct, along with its prevalence, diagnostic and prognostic implications, and underlying neuropathology. As we discuss, SNAP can be operationalized using different biomarker modalities, which could affect prevalence estimates and reported characteristics of SNAP in ways that are not yet fully understood. Moreover, the underlying aetiologies that lead to a SNAP biomarker profile, and whether SNAP is the same in people with and without cognitive impairment, remains unclear. Improved insight into the clinical characteristics and pathophysiology of SNAP is of major importance for research and clinical practice, as well as for trial design to optimize care and treatment of individuals with SNAP.
Collapse
Affiliation(s)
- Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
20
|
Hamilton CA, Matthews FE, Attems J, Donaghy PC, Erskine D, Taylor JP, Thomas AJ. Associations between multimorbidity and neuropathology in dementia: consideration of functional cognitive disorders, psychiatric illness and dementia mimics. Br J Psychiatry 2024; 224:237-244. [PMID: 38584319 PMCID: PMC7615979 DOI: 10.1192/bjp.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
BACKGROUND Multimorbidity, the presence of two or more health conditions, has been identified as a possible risk factor for clinical dementia. It is unclear whether this is due to worsening brain health and underlying neuropathology, or other factors. In some cases, conditions may reflect the same disease process as dementia (e.g. Parkinson's disease, vascular disease), in others, conditions may reflect a prodromal stage of dementia (e.g. depression, anxiety and psychosis). AIMS To assess whether multimorbidity in later life was associated with more severe dementia-related neuropathology at autopsy. METHOD We examined ante-mortem and autopsy data from 767 brain tissue donors from the UK, identifying physical multimorbidity in later life and specific brain-related conditions. We assessed associations between these purported risk factors and dementia-related neuropathological changes at autopsy (Alzheimer's-disease related neuropathology, Lewy body pathology, cerebrovascular disease and limbic-predominant age-related TDP-43 encephalopathy) with logistic models. RESULTS Physical multimorbidity was not associated with greater dementia-related neuropathological changes. In the presence of physical multimorbidity, clinical dementia was less likely to be associated with Alzheimer's disease pathology. Conversely, conditions which may be clinical or prodromal manifestations of dementia-related neuropathology (Parkinson's disease, cerebrovascular disease, depression and other psychiatric conditions) were associated with dementia and neuropathological changes. CONCLUSIONS Physical multimorbidity alone is not associated with greater dementia-related neuropathological change; inappropriate inclusion of brain-related conditions in multimorbidity measures and misdiagnosis of neurodegenerative dementia may better explain increased rates of clinical dementia in multimorbidity.
Collapse
Affiliation(s)
- Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona E Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Cousins KAQ, Phillips JS, Das SR, O'Brien K, Tropea TF, Chen‐Plotkin A, Shaw LM, Nasrallah IM, Mechanic‐Hamilton D, McMillan CT, Irwin DJ, Lee EB, Wolk DA. Pathologic and cognitive correlates of plasma biomarkers in neurodegenerative disease. Alzheimers Dement 2024; 20:3889-3905. [PMID: 38644682 PMCID: PMC11180939 DOI: 10.1002/alz.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION We investigate pathological correlates of plasma phosphorylated tau 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) across a clinically diverse spectrum of neurodegenerative disease, including normal cognition (NormCog) and impaired cognition (ImpCog). METHODS Participants were NormCog (n = 132) and ImpCog (n = 461), with confirmed β-amyloid (Aβ+/-) status (cerebrospinal fluid, positron emission tomography, autopsy) and single molecule array plasma measurements. Logistic regression and receiver operating characteristic (ROC) area under the curve (AUC) tested how combining plasma analytes discriminated Aβ+ from Aβ-. Survival analyses tested time to clinical dementia rating (global CDR) progression. RESULTS Multivariable models (p-tau+GFAP+NfL) had the best performance to detect Aβ+ in NormCog (ROCAUC = 0.87) and ImpCog (ROCAUC = 0.87). Survival analyses demonstrated that higher NfL best predicted faster CDR progression for both Aβ+ (hazard ratio [HR] = 2.94; p = 8.1e-06) and Aβ- individuals (HR = 3.11; p = 2.6e-09). DISCUSSION Combining plasma biomarkers can optimize detection of Alzheimer's disease (AD) pathology across cognitively normal and clinically diverse neurodegenerative disease. HIGHLIGHTS Participants were clinically heterogeneous, with autopsy- or biomarker-confirmed Aβ. Combining plasma p-tau181, GFAP, and NfL improved diagnostic accuracy for Aβ status. Diagnosis by plasma biomarkers is more accurate in amnestic AD than nonamnestic AD. Plasma analytes show independent associations with tau PET and post mortem Aβ/tau. Plasma NfL predicted longitudinal cognitive decline in both Aβ+ and Aβ- individuals.
Collapse
Affiliation(s)
- Katheryn A. Q. Cousins
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jeffrey S. Phillips
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu R. Das
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kyra O'Brien
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas F. Tropea
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alice Chen‐Plotkin
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dawn Mechanic‐Hamilton
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corey T. McMillan
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David J. Irwin
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
22
|
Wang HP, Scalco R, Saito N, Beckett L, Nguyen ML, Huie EZ, Honig LS, DeCarli C, Rissman RA, Teich AF, Mungas DM, Jin LW, Dugger BN. The neuropathological landscape of small vessel disease and Lewy pathology in a cohort of Hispanic and non-Hispanic White decedents with Alzheimer disease. Acta Neuropathol Commun 2024; 12:81. [PMID: 38790074 PMCID: PMC11127432 DOI: 10.1186/s40478-024-01773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 05/26/2024] Open
Abstract
Cerebrovascular and α-synuclein pathologies are frequently observed alongside Alzheimer disease (AD). The heterogeneity of AD necessitates comprehensive approaches to postmortem studies, including the representation of historically underrepresented ethnic groups. In this cohort study, we evaluated small vessel disease pathologies and α-synuclein deposits among Hispanic decedents (HD, n = 92) and non-Hispanic White decedents (NHWD, n = 184) from three Alzheimer's Disease Research Centers: Columbia University, University of California San Diego, and University of California Davis. The study included cases with a pathological diagnosis of Intermediate/High AD based on the National Institute on Aging- Alzheimer's Association (NIA-AA) and/or NIA-Reagan criteria. A 2:1 random comparison sample of NHWD was frequency-balanced and matched with HD by age and sex. An expert blinded to demographics and center origin evaluated arteriolosclerosis, cerebral amyloid angiopathy (CAA), and Lewy bodies/Lewy neurites (LBs/LNs) with a semi-quantitative approach using established criteria. There were many similarities and a few differences among groups. HD showed more severe Vonsattel grading of CAA in the cerebellum (p = 0.04), higher CAA density in the posterior hippocampus and cerebellum (ps = 0.01), and increased LBs/LNs density in the frontal (p = 0.01) and temporal cortices (p = 0.03), as determined by Wilcoxon's test. Ordinal logistic regression adjusting for age, sex, and center confirmed these findings except for LBs/LNs in the temporal cortex. Results indicate HD with AD exhibit greater CAA and α-synuclein burdens in select neuroanatomic regions when compared to age- and sex-matched NHWD with AD. These findings aid in the generalizability of concurrent arteriolosclerosis, CAA, and LBs/LNs topography and severity within the setting of pathologically confirmed AD, particularly in persons of Hispanic descent, showing many similarities and a few differences to those of NHW descent and providing insights into precision medicine approaches.
Collapse
Affiliation(s)
- Hsin-Pei Wang
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Rebeca Scalco
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Naomi Saito
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Laurel Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - My-Le Nguyen
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Emily Z Huie
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lawrence S Honig
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Department of Neurology, Columbia University Medical Center, New York, USA
| | - Charles DeCarli
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, San Diego, La Jolla, CA, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Department of Neurology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| | - Dan M Mungas
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
23
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Sánchez-Juan P, Valeriano-Lorenzo E, Ruiz-González A, Pastor AB, Rodrigo Lara H, López-González F, Zea-Sevilla MA, Valentí M, Frades B, Ruiz P, Saiz L, Burgueño-García I, Calero M, del Ser T, Rábano A. Serum GFAP levels correlate with astrocyte reactivity, post-mortem brain atrophy and neurofibrillary tangles. Brain 2024; 147:1667-1679. [PMID: 38634687 PMCID: PMC11068326 DOI: 10.1093/brain/awae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Glial fibrillary acidic protein (GFAP), a proxy of astrocyte reactivity, has been proposed as biomarker of Alzheimer's disease. However, there is limited information about the correlation between blood biomarkers and post-mortem neuropathology. In a single-centre prospective clinicopathological cohort of 139 dementia patients, for which the time-frame between GFAP level determination and neuropathological assessment was exceptionally short (on average 139 days), we analysed this biomarker, measured at three time points, in relation to proxies of disease progression such as cognitive decline and brain weight. Most importantly, we investigated the use of blood GFAP to detect the neuropathological hallmarks of Alzheimer's disease, while accounting for potential influences of the most frequent brain co-pathologies. The main findings demonstrated an association between serum GFAP level and post-mortem tau pathology (β = 12.85; P < 0.001) that was independent of amyloid deposits (β = 13.23; P = 0.02). A mediation analysis provided additional support for the role of astrocytic activation as a link between amyloid and tau pathology in Alzheimer's disease. Furthermore, a negative correlation was observed between pre-mortem serum GFAP and brain weight at post-mortem (r = -0.35; P < 0.001). This finding, together with evidence of a negative correlation with cognitive assessments (r = -0.27; P = 0.005), supports the role of GFAP as a biomarker for disease monitoring, even in the late phases of Alzheimer's disease. Moreover, the diagnostic performance of GFAP in advanced dementia patients was explored, and its discriminative power (area under the receiver operator characteristic curve at baseline = 0.91) in differentiating neuropathologically-confirmed Alzheimer's disease dementias from non-Alzheimer's disease dementias was determined, despite the challenging scenario of advanced age and frequent co-pathologies in these patients. Independently of Alzheimer's disease, serum GFAP levels were shown to be associated with two other pathologies targeting the temporal lobes-hippocampal sclerosis (β = 3.64; P = 0.03) and argyrophilic grain disease (β = -6.11; P = 0.02). Finally, serum GFAP levels were revealed to be correlated with astrocyte reactivity, using the brain GFAP-immunostained area as a proxy (ρ = 0.21; P = 0.02). Our results contribute to increasing evidence suggesting a role for blood GFAP as an Alzheimer's disease biomarker, and the findings offer mechanistic insights into the relationship between blood GFAP and Alzheimer's disease neuropathology, highlighting its ties with tau burden. Moreover, the data highlighting an independent association between serum GFAP levels and other neuropathological lesions provide information for clinicians to consider when interpreting test results. The longitudinal design and correlation with post-mortem data reinforce the robustness of our findings. However, studies correlating blood biomarkers and neuropathological assessments are still scant, and further research is needed to replicate and validate these results in diverse populations.
Collapse
Affiliation(s)
- Pascual Sánchez-Juan
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28029 Madrid, Spain
| | | | - Alicia Ruiz-González
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Ana Belén Pastor
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Hector Rodrigo Lara
- Banco de Cerebros de la Región de Murcia, Neuropathology Department, 30120 Murcia, Spain
| | | | | | - Meritxell Valentí
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Belen Frades
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Paloma Ruiz
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Laura Saiz
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Iván Burgueño-García
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Miguel Calero
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28029 Madrid, Spain
- Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII, Research Platforms, 28031 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28029 Madrid, Spain
| |
Collapse
|
25
|
Kon T, Ichimata S, Di Luca DG, Martinez-Valbuena I, Kim A, Yoshida K, Alruwaita AA, Kleiner G, Strafella AP, Forrest SL, Sato C, Rogaeva E, Fox SH, Lang AE, Kovacs GG. Multiple system atrophy with amyloid-β-predominant Alzheimer's disease neuropathologic change. Brain Commun 2024; 6:fcae141. [PMID: 38712319 PMCID: PMC11073746 DOI: 10.1093/braincomms/fcae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Multiple system atrophy is a neurodegenerative disease with α-synuclein pathology predominating in the striatonigral and olivopontocerebellar systems. Mixed pathologies are considered to be of low frequency and mostly comprise primary age-related tauopathy or low levels of Alzheimer's disease-related neuropathologic change. Therefore, the concomitant presence of different misfolded proteins in the same brain region is less likely in multiple system atrophy. During the neuropathological evaluation of 21 consecutive multiple system atrophy cases, we identified four cases exhibiting an unusual discrepancy between high Thal amyloid-β phase and low transentorhinal Braak neurofibrillary tangle stage. We mapped α-synuclein pathology, measured the size and number of glial cytoplasmic inclusions and compared the amyloid-β peptides between multiple system atrophy and Alzheimer's disease. In addition, we performed α-synuclein seeding assay from the affected putamen samples. We performed genetic testing for APOE, MAPT, PSEN1, PSEN2 and APP. We refer to the four multiple system atrophy cases with discrepancy between amyloid-β and tau pathology as 'amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy' to distinguish these from multiple system atrophy with primary age-related tauopathy or multiple system atrophy with typical Alzheimer's disease neuropathologic change. As most multiple system atrophy cases with mixed pathologies reported in the literature, these cases did not show a peculiar clinical or MRI profile. Three amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy cases were available for genetic testing, and all carried the APOE ɛ4 allele. The extent and severity of neuronal loss and α-synuclein pathology were not different compared with typical multiple system atrophy cases. Analysis of amyloid-β peptides revealed more premature amyloid-β plaques in amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy compared with Alzheimer's disease. α-Synuclein seeding amplification assay showed differences in the kinetics in two cases. This study highlights a rare mixed pathology variant of multiple system atrophy in which there is an anatomical meeting point of amyloid-β and α-synuclein, i.e. the striatum or cerebellum. Since biomarkers are entering clinical practice, these cases will be recognized, and the clinicians have to be informed that the prognosis is not necessarily different than in pure multiple system atrophy cases but that the effect of potential α-synuclein-based therapies might be influenced by the co-presence of amyloid-β in regions where α-synuclein also aggregates. We propose that mixed pathologies should be interpreted not only based on differences in the clinical phenotype but also on whether protein depositions regionally overlap, potentially leading to a different response to α-synuclein-targeted therapies.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Daniel G Di Luca
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Abdullah A Alruwaita
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
- Neurology Department, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Galit Kleiner
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Movement Disorders and Spasticity Management Clinic, Pamela and Paul Austin Centre for Neurology and Behavioral Support, Baycrest Centre for Geriatric Care, Toronto, ON M6A 2E1, Canada
| | - Antonio P Strafella
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Susan H Fox
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
26
|
Alafuzoff I, Libard S. Ageing-Related Neurodegeneration and Cognitive Decline. Int J Mol Sci 2024; 25:4065. [PMID: 38612875 PMCID: PMC11012171 DOI: 10.3390/ijms25074065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Neuropathological assessment was conducted on 1630 subjects, representing 5% of all the deceased that had been sent to the morgue of Uppsala University Hospital during a 15-year-long period. Among the 1630 subjects, 1610 were ≥41 years of age (range 41 to 102 years). Overall, hyperphosphorylated (HP) τ was observed in the brains of 98% of the 1610 subjects, and amyloid β-protein (Aβ) in the brains of 64%. The most common alteration observed was Alzheimer disease neuropathologic change (ADNC) (56%), followed by primary age-related tauopathy (PART) in 26% of the subjects. In 16% of the subjects, HPτ was limited to the locus coeruleus. In 14 subjects (<1%), no altered proteins were observed. In 3 subjects, only Aβ was observed, and in 17, HPτ was observed in a distribution other than that seen in ADNC/PART. The transactive DNA-binding protein 43 (TDP43) associated with limbic-predominant age-related TDP encephalopathy (LATE) was observed in 565 (35%) subjects and α-synuclein (αS) pathology, i.e., Lewy body disease (LBD) or multi system atrophy (MSA) was observed in the brains of 21% of the subjects. A total of 39% of subjects with ADNC, 59% of subjects with PART, and 81% of subjects with HPτ limited to the locus coeruleus lacked concomitant pathologies, i.e., LATE-NC or LBD-NC. Of the 293 (18% of the 1610 subjects) subjects with dementia, 81% exhibited a high or intermediate level of ADNC. In 84% of all individuals with dementia, various degrees of concomitant alterations were observed; i.e., MIXED-NC was a common cause of dementia. A high or intermediate level of PART was observed in 10 subjects with dementia (3%), i.e., tangle-predominant dementia. No subjects exhibited only vascular NC (VNC), but in 17 subjects, severe VNC might have contributed to cognitive decline. Age-related tau astrogliopathy (ARTAG) was observed in 37% of the 1610 subjects and in 53% of those with dementia.
Collapse
Affiliation(s)
- Irina Alafuzoff
- Department of Pathology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Sylwia Libard
- Department of Pathology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| |
Collapse
|
27
|
Kim B, Yannatos I, Blam K, Wiebe D, Xie SX, McMillan CT, Mechanic‐Hamilton D, Wolk DA, Lee EB. Neighborhood disadvantage reduces cognitive reserve independent of neuropathologic change. Alzheimers Dement 2024; 20:2707-2718. [PMID: 38400524 PMCID: PMC11032541 DOI: 10.1002/alz.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Individuals in socioeconomically disadvantaged neighborhoods exhibit increased risk for impaired cognitive function. Whether this association relates to the major dementia-related neuropathologies is unknown. METHODS This cross-sectional study included 469 autopsy cases from 2011 to 2023. The relationships between neighborhood disadvantage measured by Area Deprivation Index (ADI) percentiles categorized into tertiles, cognition evaluated by the last Mini-Mental State Examination (MMSE) scores before death, and 10 dementia-associated proteinopathies and cerebrovascular disease were assessed using regression analyses. RESULTS Higher ADI was significantly associated with lower MMSE score. This was mitigated by increasing years of education. ADI was not associated with an increase in dementia-associated neuropathologic change. Moreover, the significant association between ADI and cognition remained even after controlling for changes in major dementia-associated proteinopathies or cerebrovascular disease. DISCUSSION Neighborhood disadvantage appears to be associated with decreased cognitive reserve. This association is modified by education but is independent of the major dementia-associated neuropathologies.
Collapse
Affiliation(s)
- Boram Kim
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Isabel Yannatos
- Penn Frontotemporal Degeneration CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kaitlin Blam
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Douglas Wiebe
- Department of Emergency MedicineDepartment of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon X. Xie
- Department of BiostatisticsEpidemiology and InformaticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dawn Mechanic‐Hamilton
- Penn Memory CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Penn Memory CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
28
|
Yoshida K, Forrest SL, Ichimata S, Tanaka H, Kon T, Tartaglia MC, Tator CH, Lang AE, Nishida N, Kovacs GG. Revisiting the relevance of Hirano bodies in neurodegenerative diseases. Neuropathol Appl Neurobiol 2024; 50:e12978. [PMID: 38634242 DOI: 10.1111/nan.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
AIMS Hirano bodies (HBs) are eosinophilic pathological structures with two morphological phenotypes commonly found in the hippocampal CA1 region in Alzheimer's disease (AD). This study evaluated the prevalence and distribution of HBs in AD and other neurodegenerative diseases. METHODS This cross-sectional study systematically evaluated HBs in a cohort of 193 cases with major neurodegenerative diseases, including AD (n = 91), Lewy body disease (LBD, n = 87), progressive supranuclear palsy (PSP, n = 36), multiple system atrophy (MSA, n = 14) and controls (n = 26). The prevalence, number and morphology of HBs in the stratum lacunosum (HBL) and CA1 pyramidal cell layer were examined. In addition, we investigated the presence of HBs in five additional hippocampal subregions. RESULTS The morphological types of HBs in CA1 were divided into three, including a newly discovered type, and were evaluated separately, with their morphology confirmed in three dimensions: (1) classic rod-shaped HB (CHB), (2) balloon-shaped HB (BHB) and the newly described (3) string-shaped HB (SHB). The prevalence of each HB type differed between disease groups: Compared with controls, for CHB in AD, AD + LBD, PSP and corticobasal degeneration, for BHB in AD + LBD and PSP, and SHB in AD + LBD and PSP were significantly increased. Regression analysis showed that CHBs were independently associated with higher Braak NFT stage, BHBs with LBD and TDP-43 pathology, SHBs with higher Braak NFT stage, PSP and argyrophilic grain disease and HBLs with MSA. CONCLUSIONS This study demonstrates that HBs are associated with diverse neurodegenerative diseases and shows that morphological types appear distinctively in various conditions.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Shelley L Forrest
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Shojiro Ichimata
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Hidetomo Tanaka
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
| | - Tomoya Kon
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Maria Carmela Tartaglia
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Charles H Tator
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Naoki Nishida
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
29
|
Shim YM, Kim SI, Lim SD, Lee K, Kim EE, Won JK, Park SH. An Autopsy-proven Case-based Review of Autoimmune Encephalitis. Exp Neurobiol 2024; 33:1-17. [PMID: 38471800 PMCID: PMC10938074 DOI: 10.5607/en23036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autoimmune encephalitis (AIE) is a type of immunoreactive encephalitic disorder and is recognized as the most prevalent noninfectious encephalitis. Nevertheless, the rarity of definitive AIE diagnosis through biopsy or autopsy represents a significant hurdle to understanding and managing the disease. In this article, we present the pathological findings of AIE and review the literature based on a distinct case of AIE presenting as CD8+ T-lymphocyte predominant encephalitis. We describe the clinical progression, diagnostic imaging, laboratory data, and autopsy findings of an 80-year-old deceased male patient. The patient was diagnosed with pulmonary tuberculosis 6 months before death and received appropriate medications. A week before admission to the hospital, the patient manifested symptoms such as a tendency to sleep, decreased appetite, and confusion. Although the patient temporally improved with medication including correction of hyponatremia, the patient progressed rapidly and died in 6 weeks. The brain tissue revealed lymphocytic infiltration in the gray and white matter, leptomeninges, and perivascular infiltration with a predominance of CD8+ T lymphocytes, suggesting a case of AIE. There was no detectable evidence of viral infection or underlying neoplasm. The autopsy revealed that this patient also had Alzheimer's disease, atherosclerosis, arteriolosclerosis, and aging-related tau astrogliopathy. This report emphasizes the pivotal role of pathological examination in the diagnosis of AIE, especially when serological autoantibody testing is not available or when a patient is suspected of having multiple diseases.
Collapse
Affiliation(s)
- Yu-Mi Shim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong-Ik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - So Dug Lim
- Department of Pathology, KonKuk University School of Medicine, Seoul 05029, Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eric Eunshik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Neuroscience, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
30
|
Hase Y, Jobson D, Cheong J, Gotama K, Maffei L, Hase M, Hamdan A, Ding R, Polivkoski T, Horsburgh K, Kalaria RN. Hippocampal capillary pericytes in post-stroke and vascular dementias and Alzheimer's disease and experimental chronic cerebral hypoperfusion. Acta Neuropathol Commun 2024; 12:29. [PMID: 38360798 PMCID: PMC10870440 DOI: 10.1186/s40478-024-01737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Neurovascular unit mural cells called 'pericytes' maintain the blood-brain barrier and local cerebral blood flow. Pathological changes in the hippocampus predispose to cognitive impairment and dementia. The role of hippocampal pericytes in dementia is largely unknown. We investigated hippocampal pericytes in 90 post-mortem brains from post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD), and AD-VaD (Mixed) subjects, and post-stroke non-demented survivors as well as similar age controls. We used collagen IV immunohistochemistry to determine pericyte densities and a mouse model of VaD to validate the effects of chronic cerebral hypoperfusion. Despite increased trends in hippocampal microvascular densities across all dementias, mean pericyte densities were reduced by ~25-40% in PSD, VaD and AD subjects compared to those in controls, which calculated to 14.1 ± 0.7 per mm capillary length, specifically in the cornu ammonis (CA) 1 region (P = 0.01). In mice with chronic bilateral carotid artery occlusion, hippocampal pericyte loss was ~60% relative to controls (P < 0.001). Pericyte densities were correlated with CA1 volumes (r = 0.54, P = 0.006) but not in any other sub-region. However, mice subjected to the full-time environmental enrichment (EE) paradigm showed remarkable attenuation of hippocampal CA1 pericyte loss in tandem with CA1 atrophy. Our results suggest loss of hippocampal microvascular pericytes across common dementias is explained by a vascular aetiology, whilst the EE paradigm offers significant protection.
Collapse
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Dan Jobson
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Jeremy Cheong
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Kelvin Gotama
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Luciana Maffei
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Mai Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Alhafidz Hamdan
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Ren Ding
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Tuomo Polivkoski
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Little France Crescent, Edinburgh, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK.
| |
Collapse
|
31
|
Katsumata Y, Wu X, Aung KZ, Gauthreaux K, Mock C, Forrest SL, Kovacs GG, Nelson PT. Pathologic correlates of aging-related tau astrogliopathy: ARTAG is associated with LATE-NC and cerebrovascular pathologies, but not with ADNC. Neurobiol Dis 2024; 191:106412. [PMID: 38244935 PMCID: PMC10892903 DOI: 10.1016/j.nbd.2024.106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Age-related tau astrogliopathy (ARTAG) is detectable in the brains of over one-third of autopsied persons beyond age 80, but the pathoetiology of ARTAG is poorly understood. Insights can be gained by analyzing risk factors and comorbid pathologies. Here we addressed the question of which prevalent co-pathologies are observed with increased frequency in brains with ARTAG. The study sample was the National Alzheimer's Coordinating Center (NACC) data set, derived from multiple Alzheimer's disease research centers (ADRCs) in the United States. Data from persons with unusual conditions (e.g. frontotemporal dementia) were excluded leaving 504 individual autopsied research participants, clustering from 20 different ADRCs, autopsied since 2020; ARTAG was reported in 222 (44.0%) of included participants. As has been shown previously, ARTAG was increasingly frequent with older age and in males. The presence and severity of other common subtypes of pathology that were previously linked to dementia were analyzed, stratifying for the presence of ARTAG. In logistical regression-based statistical models that included age and sex as covariates, ARTAG was relatively more likely to be found in brains with limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and in brains with comorbid cerebrovascular pathology (arteriolosclerosis and/or brain infarcts). However, ARTAG was not associated with severe Alzheimer's disease neuropathologic change (ADNC), or primary age-related tauopathy (PART). In a subset analysis of 167 participants with neurocognitive testing data, there was a marginal trend for ARTAG pathology to be associated with cognitive impairment as assessed with MMSE scores (P = 0.07, adjusting for age, sex, interval between final clinic visit and death, and ADNC severity). A limitation of the study was that there were missing data about ARTAG pathologies, with incomplete operationalization of ARTAG according to anatomic region and pathologic subtypes (e.g., thorn-shaped or granular-fuzzy astrocytes). In summary, ARTAG was not associated with ADNC, whereas prior observations about ARTAG occurring with increased frequency in aging, males, and brains with LATE-NC were replicated. It remains to be determined whether the increased frequency of ARTAG in brains with comorbid cerebrovascular pathology is related to local infarctions or neuroinflammatory signaling, or with some other set of correlated factors including blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Xian Wu
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Khine Zin Aung
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Charles Mock
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
32
|
Villablanca A, Dugger BN, Nuthikattu S, Chauhan J, Cheung S, Chuah CN, Garrison SL, Milenkovic D, Norman JE, Oliveira LC, Smith BP, Brown SD. How cy pres promotes transdisciplinary convergence science: an academic health center for women's cardiovascular and brain health. J Clin Transl Sci 2024; 8:e16. [PMID: 38384925 PMCID: PMC10880003 DOI: 10.1017/cts.2023.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Cardiovascular disease (CVD) is largely preventable, and the leading cause of death for men and women. Though women have increased life expectancy compared to men, there are marked sex disparities in prevalence and risk of CVD-associated mortality and dementia. Yet, the basis for these and female-male differences is not completely understood. It is increasingly recognized that heart and brain health represent a lifetime of exposures to shared risk factors (including obesity, hyperlipidemia, diabetes, and hypertension) that compromise cerebrovascular health. We describe the process and resources for establishing a new research Center for Women's Cardiovascular and Brain Health at the University of California, Davis as a model for: (1) use of the cy pres principle for funding science to improve health; (2) transdisciplinary collaboration to leapfrog progress in a convergence science approach that acknowledges and addresses social determinants of health; and (3) training the next generation of diverse researchers. This may serve as a blueprint for future Centers in academic health institutions, as the cy pres mechanism for funding research is a unique mechanism to leverage residual legal settlement funds to catalyze the pace of scientific discovery, maximize innovation, and promote health equity in addressing society's most vexing health problems.
Collapse
Affiliation(s)
- Amparo Villablanca
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Brittany N. Dugger
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA
| | | | - Joohi Chauhan
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Samson Cheung
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Chen-Nee Chuah
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Siedah L. Garrison
- Department of Internal Medicine, University of California, Davis, CA, USA
| | | | - Jennifer E. Norman
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Luca Cerny Oliveira
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Bridgette P. Smith
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Susan D. Brown
- Department of Internal Medicine, University of California, Davis, CA, USA
| |
Collapse
|
33
|
Parfenov VA, Bogolepova AN, Mkhitaryan EA. [Meta-analysis of randomized controlled trials of the effectiveness of Prospekta in the treatment of vascular cognitive impairment of varying severity]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:62-69. [PMID: 39072568 DOI: 10.17116/jnevro202412406162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To conduct a meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy of Prospekta in the treatment of SCI of varying severity. MATERIAL AND METHODS The meta-analysis included the results of RCTs of the efficacy of Prospekta in the treatment of VCI, the severity of which was assessed using the Montreal Cognitive Scale (MoCA). The pooled effect estimate included all publications of double-blind, placebo-controlled RCTs that provided sufficient MoCA efficacy data to support further statistical analysis. The main result of the meta-analysis was obtained for the final values of the efficacy indicator in the groups of patients receiving the drug Prospekta, in comparison with the placebo group. RESULTS A meta-analysis of the effectiveness of Prospekta in the treatment of SCI of varying severity was carried out based on data from 3 RCTs and 2 CTs involving 12.701 patients aged 18 years and older. When using the mixed models method, the effect size for the endpoint «change in total MoCA score from baseline to follow-up visit» was 3.4 points for Prospekta (2.7 points for placebo, p<0.0001); for the end point «∆ between changes in the total score on the MoCA scale while taking Prospekta and placebo» - 0.6736 points (p<0.0001). CONCLUSION A statistically significant improvement in cognitive function according to the MoCA scale was demonstrated in patients with VCI using the drug Prospekta.
Collapse
Affiliation(s)
- V A Parfenov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
| | - E A Mkhitaryan
- Pirogov Russian National Research Medical University, Moscow, Russia
- Russian Gerontology Research and Clinical Centre of the Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
34
|
Gentleman SM, Liu AKL. Neuropathological Assessment as an Endpoint in Clinical Trial Design. Methods Mol Biol 2024; 2785:261-270. [PMID: 38427198 DOI: 10.1007/978-1-0716-3774-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Different neurodegenerative conditions can have complex, overlapping clinical presentations that make accurate diagnosis during life very challenging. For this reason, confirmation of the clinical diagnosis still requires postmortem verification. This is particularly relevant for clinical trials of novel therapeutics where it is important to ascertain what disease- and/or pathology-modifying effects the therapeutics have had. Furthermore, it is important to confirm that patients in the trial had the correct clinical diagnosis as this will have a major bearing on the interpretation of trial results. Here we present a simple protocol for pathological assessment of neurodegenerative changes.
Collapse
Affiliation(s)
| | - Alan King Lun Liu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Arafuka S, Fujishiro H, Torii Y, Sekiguchi H, Habuchi C, Miwa A, Yoshida M, Iritani S, Iwasaki Y, Ikeda M, Ozaki N. Neuropathological substrate of incident dementia in older patients with schizophrenia: A clinicopathological study. Psychiatry Clin Neurosci 2024; 78:29-40. [PMID: 37706608 DOI: 10.1111/pcn.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
AIM Clinical studies reported that patients with schizophrenia are at a higher risk of developing dementia than people without schizophrenia. However, early neuropathological studies have shown that the incidence of Alzheimer's disease (AD) in schizophrenia patients does not differ from that in controls. These inconsistent results may be attributable to the inclusion of non-AD dementia, but there have been few clinicopathological studies in older patients with schizophrenia based on the current neuropathological classification. This study aimed to investigate the neuropathological basis of incident dementia in older patients with schizophrenia. METHODS We systematically examined 32 brains of old patients with schizophrenia using standardized pathological methods. The severity of dementia-related neuropathologies was analyzed using standardized semiquantitative assessments. After excluding patients who fulfilled the neuropathological criteria, clinicopathological variables were compared between patients with and without incident dementia to identify potential differences. RESULTS Seven patients fulfilled the pathological criteria for AD (n = 3), argyrophilic grain disease (AGD) (n = 2), dementia with Lewy bodies (n = 1), and AGD/progressive supranuclear palsy (n = 1). Among 25 patients for whom a neuropathological diagnosis was not obtained, 10 had dementia, but the clinicopathological findings did not differ from the remaining 15 patients without dementia. CONCLUSION Two types of older schizophrenia patient present dementia: patients with co-existing neurodegenerative disease and patients who do not meet pathological criteria based on the current classification. To understand the neurobiological aspects of incident dementia in older patients with schizophrenia, further clinicopathological studies are needed that do not simply analyze incident dementia as a comorbidity of conventional dementia-related neuropathologies.
Collapse
Affiliation(s)
- Shusei Arafuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Okehazama Hospital Fujita Mental Care Center, Toyoake, Japan
| | | | - Ayako Miwa
- Moriyama General Mental Hospital, Nagoya, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Shuji Iritani
- Moriyama General Mental Hospital, Nagoya, Japan
- Department of Psychiatry, Okehazama Hospital Fujita Mental Care Center, Toyoake, Japan
- Aichi Psychiatric Medical Center, Nagoya, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
36
|
Robinson AC, Bin Rizwan T, Davidson YS, Minshull J, Tinkler P, Payton A, Mann DMA, Roncaroli F. Self-Reported Late-Life Hypertension Is Associated with a Healthy Cognitive Status and Reduced Alzheimer's Disease Pathology Burden. J Alzheimers Dis 2024; 98:1457-1466. [PMID: 38552117 DOI: 10.3233/jad-231429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background While mid-life hypertension represents a risk factor for the development of Alzheimer's disease (AD), the risk after the age of 65 is less certain. Establishing relationships between late life hypertension and the pathological changes of AD could be crucial in understanding the relevance of blood pressure as a risk factor for this disorder. Objective We investigated associations between self-reported late-life hypertension, cognitive status and AD pathology at death. The impact of antihypertensive medication was also examined. Methods Using the Cornell Medical Index questionnaire, we ascertained whether participants had ever reported hypertension. We also noted use of antihypertensive medication. The donated brains of 108 individuals were assessed for AD pathology using consensus guidelines. Statistical analysis aimed to elucidate relationships between hypertension and AD pathology. Results We found no associations between self-reported hypertension and cognitive impairment at death. However, those with hypertension were significantly more likely to exhibit lower levels of AD pathology as measured by Thal phase, Braak stage, CERAD score, and NIA-AA criteria-even after controlling for sex, level of education and presence of APOEɛ4 allele(s). No significant associations could be found when examining use of antihypertensive medications. Conclusions Our findings suggest that late-life hypertension is associated with less severe AD pathology. We postulate that AD pathology may be promoted by reduced cerebral blood flow.
Collapse
Affiliation(s)
- Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Tawfique Bin Rizwan
- Faculty of Biology, Medicine and Health, School of Medical Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Yvonne S Davidson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - James Minshull
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Phillip Tinkler
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Antony Payton
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Federico Roncaroli
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
37
|
Katanga JA, Hamilton CA, Walker L, Attems J, Thomas AJ. Age-related hearing loss and dementia-related neuropathology: An analysis of the United Kingdom brains for dementia research cohort. Brain Pathol 2023; 33:e13188. [PMID: 37551936 PMCID: PMC10580004 DOI: 10.1111/bpa.13188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Age-related hearing loss frequently precedes or coexists with mild cognitive impairment and dementia. The role specific neuropathologies play in this association, as either a cause or a consequence, is unclear. We therefore aimed to investigate whether specific dementia related neuropathologies were associated with hearing impairment in later life. We analysed data on ante-mortem hearing impairment with post-mortem neuropathological data for 442 participants from the Brains for Dementia Research Cohort. Binary logistic regression models were used to estimate the association of hearing impairment with the presence of each dementia-related neuropathology overall, and with specific staged changes. All analyses adjusted for age and sex, and several sensitivity analyses were conducted to test the robustness of findings. Presence and density of neuritic plaques were associated with higher odds of hearing impairment ante-mortem (OR = 3.65, 95% CI 1.78-7.46 for frequent density of plaques). Presence of any LB disease was likewise associated with hearing impairment (OR = 2.10, 95% CI 1.27-3.48), but this did not increase with higher cortical pathology (OR = 1.53, 95% CI 0.75-3.11). Nonspecific amyloid deposition, neurofibrillary tangle staging, overall AD neuropathology level, and cerebrovascular disease were not clearly associated with increased risks of hearing impairment. Our results provide some support for an association between dementia-related neuropathology and hearing loss and suggest that hearing loss may be associated with a high neuritic plaque burden and more common in Lewy body disease.
Collapse
Affiliation(s)
- Jessica A. Katanga
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Calum A. Hamilton
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lauren Walker
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Johannes Attems
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Alan J. Thomas
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
38
|
Parent O, Bussy A, Devenyi GA, Dai A, Costantino M, Tullo S, Salaciak A, Bedford S, Farzin S, Béland ML, Valiquette V, Villeneuve S, Poirier J, Tardif CL, Dadar M, Chakravarty MM. Assessment of white matter hyperintensity severity using multimodal magnetic resonance imaging. Brain Commun 2023; 5:fcad279. [PMID: 37953840 PMCID: PMC10636521 DOI: 10.1093/braincomms/fcad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
White matter hyperintensities are radiological abnormalities reflecting cerebrovascular dysfunction detectable using MRI. White matter hyperintensities are often present in individuals at the later stages of the lifespan and in prodromal stages in the Alzheimer's disease spectrum. Tissue alterations underlying white matter hyperintensities may include demyelination, inflammation and oedema, but these are highly variable by neuroanatomical location and between individuals. There is a crucial need to characterize these white matter hyperintensity tissue alterations in vivo to improve prognosis and, potentially, treatment outcomes. How different MRI measure(s) of tissue microstructure capture clinically-relevant white matter hyperintensity tissue damage is currently unknown. Here, we compared six MRI signal measures sampled within white matter hyperintensities and their associations with multiple clinically-relevant outcomes, consisting of global and cortical brain morphometry, cognitive function, diagnostic and demographic differences and cardiovascular risk factors. We used cross-sectional data from 118 participants: healthy controls (n = 30), individuals at high risk for Alzheimer's disease due to familial history (n = 47), mild cognitive impairment (n = 32) and clinical Alzheimer's disease dementia (n = 9). We sampled the median signal within white matter hyperintensities on weighted MRI images [T1-weighted (T1w), T2-weighted (T2w), T1w/T2w ratio, fluid-attenuated inversion recovery (FLAIR)] as well as the relaxation times from quantitative T1 (qT1) and T2* (qT2*) images. qT2* and fluid-attenuated inversion recovery signals within white matter hyperintensities displayed different age- and disease-related trends compared to normal-appearing white matter signals, suggesting sensitivity to white matter hyperintensity-specific tissue deterioration. Further, white matter hyperintensity qT2*, particularly in periventricular and occipital white matter regions, was consistently associated with all types of clinically-relevant outcomes in both univariate and multivariate analyses and across two parcellation schemes. qT1 and fluid-attenuated inversion recovery measures showed consistent clinical relationships in multivariate but not univariate analyses, while T1w, T2w and T1w/T2w ratio measures were not consistently associated with clinical variables. We observed that the qT2* signal was sensitive to clinically-relevant microstructural tissue alterations specific to white matter hyperintensities. Our results suggest that combining volumetric and signal measures of white matter hyperintensity should be considered to fully characterize the severity of white matter hyperintensities in vivo. These findings may have implications in determining the reversibility of white matter hyperintensities and the potential efficacy of cardio- and cerebrovascular treatments.
Collapse
Affiliation(s)
- Olivier Parent
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Aurélie Bussy
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Gabriel Allan Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Alyssa Dai
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Manuela Costantino
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Stephanie Tullo
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Alyssa Salaciak
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Saashi Bedford
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sarah Farzin
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Marie-Lise Béland
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Vanessa Valiquette
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sylvia Villeneuve
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Center for the Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Center for the Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Molecular Neurobiology Unit, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Christine Lucas Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
39
|
Davidson CG, Woodford SJ, Mathur S, Valle DB, Foster D, Kioutchoukova I, Mahmood A, Lucke-Wold B. Investigation into the vascular contributors to dementia and the associated treatments. EXPLORATION OF NEUROSCIENCE 2023; 2:224-237. [PMID: 37981945 PMCID: PMC10655228 DOI: 10.37349/en.2023.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/21/2023]
Abstract
As the average lifespan has increased, memory disorders have become a more pressing public health concern. However, dementia in the elderly population is often neglected in light of other health priorities. Therefore, expanding the knowledge surrounding the pathology of dementia will allow more informed decision-making regarding treatment within elderly and older adult populations. An important emerging avenue in dementia research is understanding the vascular contributors to dementia. This review summarizes potential causes of vascular cognitive impairment like stroke, microinfarction, hypertension, atherosclerosis, blood-brain-barrier dysfunction, and cerebral amyloid angiopathy. Also, this review address treatments that target these vascular impairments that also show promising results in reducing patient's risk for and experience of dementia.
Collapse
Affiliation(s)
| | | | - Shreya Mathur
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Devon Foster
- University of Central Florida, Orlando, FL 32816, USA
| | | | - Arman Mahmood
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
40
|
Coelho P, Madureira J, Franco A, Peralta AR, Bentes C, Campos AR, Anink J, Aronica E, Roque R, Pimentel J. Histopathological characterization of cerebral small vessel disease in epilepsy patients with temporal lobe epilepsy submitted to surgery: A case-control study. Eur J Neurol 2023; 30:2999-3007. [PMID: 37402214 DOI: 10.1111/ene.15963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Cerebrovascular disease (CVD) is a major contributor to epilepsy; however, patients with epilepsy also have a significantly increased risk of stroke. The way in which epilepsy contributes to the increased risk of stroke is still uncertain and is ill-characterized in neuropathological studies. A neuropathological characterization of cerebral small vessel disease (cSVD) in patients with chronic epilepsy was performed. METHODS Thirty-three patients with refractory epilepsy and hippocampal sclerosis (HS) submitted to epilepsy surgery from a reference center were selected between 2010 and 2020 and compared with 19 autopsy controls. Five randomly selected arterioles from each patient were analyzed using a previously validated scale for cSVD. The presence of CVD disease imaging markers in pre-surgical brain magnetic resonance imaging (MRI) was studied. RESULTS There were no differences in age (43.8 vs. 41.6 years; p = 0.547) or gender distribution (female gender 60.6% vs. male gender 52.6%; p = 0.575) between groups. Most CVD findings in brain MRI were mild. Patients had a mean time between the epilepsy onset and surgery of 26 ± 14.7 years and were medicated with a median number of three antiseizure medication (ASMs) [IQR 2-3]. Patients had higher median scores in arteriolosclerosis (3 vs. 1; p < 0.0001), microhemorrhages (4 vs. 1; p < 0.0001) and total score value (12 vs. 8.9; p = 0.031) in comparison with controls. No correlation was found between age, number of years until surgery, number of ASMs or cumulative defined daily dosage of ASM. CONCLUSION The present study provides evidence supporting the increased burden of cSVD in the neuropathological samples of patients with chronic epilepsy.
Collapse
Affiliation(s)
- Pedro Coelho
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Madureira
- Serviço de Imagiologia Neurológica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Franco
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Laboratório EEG/Sono, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Ana Rita Peralta
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Laboratório EEG/Sono, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Carla Bentes
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Laboratório EEG/Sono, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Alexandre Rainha Campos
- Centro de Referência para a Área de Epilepsias Refratárias, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Serviço de Neurocirurgia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Jasper Anink
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Rafael Roque
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Laboratório de Neuropatologia, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - José Pimentel
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Laboratório de Neuropatologia, Departamento de Neurociências e Saúde Mental (Neurologia), Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| |
Collapse
|
41
|
Wharton SB, Simpson JE, Ince PG, Richardson CD, Merrick R, Matthews FE, Brayne C. Insights into the pathological basis of dementia from population-based neuropathology studies. Neuropathol Appl Neurobiol 2023; 49:e12923. [PMID: 37462105 PMCID: PMC10946587 DOI: 10.1111/nan.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.
Collapse
Affiliation(s)
- Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Paul G. Ince
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | | | - Richard Merrick
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | | - Carol Brayne
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | |
Collapse
|
42
|
Affleck AJ, Sachdev PS, Halliday GM. Past antihypertensive medication use is associated with lower levels of small vessel disease and lower Aβ plaque stage in the brains of older individuals. Neuropathol Appl Neurobiol 2023; 49:e12922. [PMID: 37431095 PMCID: PMC10947144 DOI: 10.1111/nan.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/22/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023]
Abstract
AIMS This study assesses the association of antihypertensive medication use on the severities of neuropathological cerebrovascular disease (CVD excluding lobar infarction) in older individuals. METHODS Clinical and neuropathological data were retrieved for 149 autopsy cases >75 years old with or without CVD or Alzheimer's disease and no other neuropathological diagnoses. Clinical data included hypertension status, hypertension diagnosis, antihypertensive medication use, antihypertensive medication dose (where available) and clinical dementia rating (CDR). Neuropathological CVD severity was evaluated for differences with anti-hypertensive medication usage. RESULTS Antihypertensive medication use was associated with less severe white matter small vessel disease (SVD, mainly perivascular dilatation and rarefaction), with a 5.6-14.4 times greater likelihood of less severe SVD if medicated. No significant relationship was detected between infarction (presence, type, number and size), lacunes or cerebral amyloid angiopathy and antihypertensive medication use. Only increased white matter rarefaction/oedema and not perivascular dilation was associated with Alzheimer's pathology, with a 4.3 times greater likelihood of reduced Aβ progression through the brain if white matter rarefaction severity was none or mild. Antihypertensive medication use was associated with reduced Aβ progression but only in those with moderate to severe white matter SVD. CONCLUSIONS This histopathological study provides further evidence that antihypertensive medication use in older individuals is associated with white matter SVD and not with other CVD pathologies. This is mainly due to a reduction in white matter perivascular dilation and rarefaction/oedema. Even in those with moderate to severe white matter SVD, antihypertensive medication use reduced rarefaction and Aβ propagation through the brain.
Collapse
Affiliation(s)
- Andrew J. Affleck
- Neuroscience Research Australia (NeuRA)SydneyAustralia
- Centre for Health Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | - Perminder S. Sachdev
- Centre for Health Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of MedicineUniversity of New South WalesSydneyAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyAustralia
| | - Glenda M. Halliday
- Neuroscience Research Australia (NeuRA)SydneyAustralia
- School of Medical Sciences, Faculty of MedicineUniversity of New South WalesSydneyAustralia
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical SciencesUniversity of SydneySydneyAustralia
| |
Collapse
|
43
|
Cao Y, Huang MY, Mao CH, Wang X, Xu YY, Qian XJ, Ma C, Qiu WY, Zhu YC. Arteriolosclerosis differs from venular collagenosis in relation to cerebrovascular parenchymal damages: an autopsy-based study. Stroke Vasc Neurol 2023; 8:267-275. [PMID: 36581493 PMCID: PMC10512076 DOI: 10.1136/svn-2022-001924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Cerebrovascular parenchymal damage is prevalent in ageing brains; however, its vascular aetiology has not been fully elucidated. In addition to the underlying role of sclerotic arterioles, the correlation between collagenised venules has not been clarified. Here, we aimed to investigate the associations between microvascular injuries, including arteriolosclerosis and venular collagenosis, and related parenchymal damages in ageing brains, to investigate the underlying correlations. METHODS We evaluated arteriolosclerosis and venular collagenosis in 7 regions from 27 autopsy cases with no history of stroke or brain tumour. The correlations between the ratio of arteriolosclerosis, venular collagenosis and the severity of cerebrovascular parenchymal damage, including lacunes, microinfarcts, myelin loss, and parenchymal and perivascular haemosiderin deposits, were assessed. RESULTS Arteriolosclerosis and venular collagenosis became more evident with age. Arteriolosclerosis was associated with lacunes (p=0.004) and brain parenchymal haemosiderin deposits in the superior frontal cortex (p=0.024) but not with leukoaraiosis severity. Venular collagenosis was not associated with the number of lacunes or haemosiderin, while white matter generally became paler with severe venular collagenosis in the periventricular (β=-0.430, p=0.028) and deep white matter (β=-0.437, p=0.025). CONCLUSION Our findings imply an important role for venular lesions in relation to microvessel-related parenchymal damage which is different from that for arteriolosclerosis. Different underlying mechanisms of both cerebral arterioles and venules require further investigation.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Ying Huang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen-Hui Mao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Xu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Jing Qian
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wen-Ying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi-Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
45
|
Ortega-Cruz D, Uceda-Heras A, Iglesias JE, Zea-Sevilla MA, Strange B, Rabano A. A novel histological staging of hippocampal sclerosis that is evident in gray matter loss in vivo. Alzheimers Dement 2023; 19:3028-3040. [PMID: 36691755 PMCID: PMC10363577 DOI: 10.1002/alz.12942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hippocampal sclerosis of aging (HS) is defined by end-stage histological findings, strongly associated with limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). We aimed to characterize features of early HS to refine the understanding of its role within combined pathology. METHODS We studied 159 brain donations from the multimodal Vallecas Alzheimer's Center Study. A staging system (0 to IV) was developed to account for HS progression and analyzed in relation to pre-mortem cognitive and magnetic resonance imaging (MRI) data. RESULTS Our HS staging system displayed a significant correlation with disease duration, cognitive performance, and combined neuropathologies, especially with LATE. Two-level assessment along the hippocampal longitudinal axis revealed an anterior-posterior gradient of HS severity. In vivo MRI showed focally reduced hippocampal gray matter density as a function of HS staging. DISCUSSION The association of this staging system with clinical progression and structural differences supports its utility in the characterization and potential in vivo monitoring of HS. HIGHLIGHTS The definition of hippocampal sclerosis of aging (HS) is currently limited to an end-stage pathological fingerprint. We characterize early HS histological features to define a complete staging system. The proposed staging displays a parallel but not identical progression to limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). The proposed staging also reflects the expected demographic and cognitive differences associated with HS. In vivo magnetic resonance imaging (MRI) showed focal hippocampal gray matter loss as a function of HS staging.
Collapse
Affiliation(s)
- Diana Ortega-Cruz
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alicia Uceda-Heras
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Current address: Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, MA, USA
| | | | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alberto Rabano
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
46
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
47
|
Nelson RS, Abner EL, Jicha GA, Schmitt FA, Di J, Wilcock DM, Barber JM, Van Eldik LJ, Katsumata Y, Fardo DW, Nelson PT. Neurodegenerative pathologies associated with behavioral and psychological symptoms of dementia in a community-based autopsy cohort. Acta Neuropathol Commun 2023; 11:89. [PMID: 37269007 PMCID: PMC10236713 DOI: 10.1186/s40478-023-01576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023] Open
Abstract
In addition to the memory disorders and global cognitive impairment that accompany neurodegenerative diseases, behavioral and psychological symptoms of dementia (BPSD) commonly impair quality of life and complicate clinical management. To investigate clinical-pathological correlations of BPSD, we analyzed data from autopsied participants from the community-based University of Kentucky Alzheimer's Disease Research Center longitudinal cohort (n = 368 research volunteers met inclusion criteria, average age at death 85.4 years). Data assessing BPSD were obtained approximately annually, including parameters for agitation, anxiety, apathy, appetite problems, delusions, depression, disinhibition, hallucinations, motor disturbance, and irritability. Each BPSD was scored on a severity scale (0-3) via the Neuropsychiatric Inventory Questionnaire (NPI-Q). Further, Clinical Dementia Rating (CDR)-Global and -Language evaluations (also scored on 0-3 scales) were used to indicate the degree of global cognitive and language impairment. The NPI-Q and CDR ratings were correlated with neuropathology findings at autopsy: Alzheimer's disease neuropathological changes (ADNC), neocortical and amygdala-only Lewy bodies (LBs), limbic predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), primary age-related tauopathy (PART), hippocampal sclerosis, and cerebrovascular pathologies. Combinations of pathologies included the quadruple misfolding proteinopathy (QMP) phenotype with co-occurring ADNC, neocortical LBs, and LATE-NC. Statistical models were used to estimate the associations between BPSD subtypes and pathologic patterns. Individuals with severe ADNC (particularly those with Braak NFT stage VI) had more BPSD, and the QMP phenotype was associated with the highest mean number of BPSD symptoms: > 8 different BPSD subtypes per individual. Disinhibition and language problems were common in persons with severe ADNC but were not specific to any pathology. "Pure" LATE-NC was associated with global cognitive impairment, apathy, and motor disturbance, but again, these were not specific associations. In summary, Braak NFT stage VI ADNC was strongly associated with BPSD, but no tested BPSD subtype was a robust indicator of any particular "pure" or mixed pathological combination.
Collapse
Affiliation(s)
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology and Environmental Health, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Jing Di
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Justin M Barber
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA.
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, 40536, USA.
| |
Collapse
|
48
|
Sin MK, Cheng Y, Roseman JM, Zamrini E, Ahmed A. Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults. J Clin Med 2023; 12:3807. [PMID: 37298002 PMCID: PMC10253407 DOI: 10.3390/jcm12113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cerebral microinfarcts are associated with cognitive impairment and dementia. Small vessel diseases such as cerebral arteriolosclerosis and cerebral amyloid angiography (CAA) have been found to be associated with microinfarcts. Less is known about the associations of these vasculopathies with the presence, numbers, and location of microinfarcts. These associations were examined in the clinical and autopsy data of 842 participants in the Adult Changes in Thought (ACT) study. Both vasculopathies were categorized by severity (none, mild, moderate, and severe) and region (cortical and subcortical). Odds ratios (OR) and 95% CIs for microinfarcts associated with arteriolosclerosis and CAA adjusted for possible modifying covariates such as age at death, sex, blood pressure, APOE genotype, Braak, and CERAD were estimated. 417 (49.5%) had microinfarcts (cortical, 301; subcortical, 249), 708 (84.1%) had cerebral arteriolosclerosis, 320 (38%) had CAA, and 284 (34%) had both. Ors (95% CI) for any microinfarct were 2.16 (1.46-3.18) and 4.63 (2.90-7.40) for those with moderate (n = 183) and severe (n = 124) arteriolosclerosis, respectively. Respective Ors (95% CI) for the number of microinfarcts were 2.25 (1.54-3.30) and 4.91 (3.18-7.60). Similar associations were observed for cortical and subcortical microinfarcts. Ors (95% Cis) for the number of microinfarcts associated with mild (n = 75), moderate (n = 73), and severe (n = 15) amyloid angiopathy were 0.95 (0.66-1.35), 1.04 (0.71-1.52), and 2.05 (0.94-4.45), respectively. Respective Ors (95% Cis) for cortical microinfarcts were 1.05 (0.71-1.56), 1.50 (0.99-2.27), and 1.69 (0.73-3.91). Respective Ors (95% Cis) for subcortical microinfarcts were 0.84 (0.55-1.28), 0.72 (0.46-1.14), and 0.92 (0.37-2.28). These findings suggest a significant association of cerebral arteriolosclerosis with the presence, number, and location (cortical and subcortical) of microinfarcts, and a weak and non-significant association of CAA with each microinfarct, highlighting the need for future research to better understand the role of small vessel diseases in the pathogenesis of cerebral microinfarcts.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | - Yan Cheng
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (E.Z.); (A.A.)
| | - Jeffrey M. Roseman
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Edward Zamrini
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (E.Z.); (A.A.)
- Division of Neurology, Irvine Clinical Research, Irvine, CA 92614, USA
- Health and Aging, VA Medical Center, Washington, DC 20060, USA
| | - Ali Ahmed
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (E.Z.); (A.A.)
- Health and Aging, VA Medical Center, Washington, DC 20060, USA
- School of Medicine, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
49
|
Cousins KAQ, Irwin DJ, Chen-Plotkin A, Shaw LM, Arezoumandan S, Lee EB, Wolk DA, Weintraub D, Spindler M, Deik A, Grossman M, Tropea TF. Plasma GFAP associates with secondary Alzheimer's pathology in Lewy body disease. Ann Clin Transl Neurol 2023; 10:802-813. [PMID: 37000892 DOI: 10.1002/acn3.51768] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE Within Lewy body spectrum disorders (LBSD) with α-synuclein pathology (αSyn), concomitant Alzheimer's disease (AD) pathology is common and is predictive of clinical outcomes, including cognitive impairment and decline. Plasma phosphorylated tau 181 (p-tau181 ) is sensitive to AD neuropathologic change (ADNC) in clinical AD, and plasma glial fibrillary acidic protein (GFAP) is associated with the presence of β-amyloid plaques. While these plasma biomarkers are well tested in clinical and pathological AD, their diagnostic and prognostic performance for concomitant AD in LBSD is unknown. METHODS In autopsy-confirmed αSyn-positive LBSD, we tested how plasma p-tau181 and GFAP differed across αSyn with concomitant ADNC (αSyn+AD; n = 19) and αSyn without AD (αSyn; n = 30). Severity of burden was scored on a semiquantitative scale for several pathologies (e.g., β-amyloid and tau), and scores were averaged across sampled brainstem, limbic, and neocortical regions. RESULTS Linear models showed that plasma GFAP was significantly higher in αSyn+AD compared to αSyn (β = 0.31, 95% CI = 0.065-0.56, and P = 0.015), after covarying for age at plasma, plasma-to-death interval, and sex; plasma p-tau181 was not (P = 0.37). Next, linear models tested associations of AD pathological features with both plasma analytes, covarying for plasma-to-death, age at plasma, and sex. GFAP was significantly associated with brain β-amyloid (β = 15, 95% CI = 6.1-25, and P = 0.0018) and tau burden (β = 12, 95% CI = 2.5-22, and P = 0.015); plasma p-tau181 was not associated with either (both P > 0.34). INTERPRETATION Findings indicate that plasma GFAP may be sensitive to concomitant AD pathology in LBSD, especially accumulation of β-amyloid plaques.
Collapse
Affiliation(s)
- Katheryn A Q Cousins
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanaz Arezoumandan
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Weintraub
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meredith Spindler
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andres Deik
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Magaki S, Chen Z, Severance A, Williams CK, Diaz R, Fang C, Khanlou N, Yong WH, Paganini-Hill A, Kalaria RN, Vinters HV, Fisher M. Neuropathology of microbleeds in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). J Neuropathol Exp Neurol 2023; 82:333-344. [PMID: 36715085 PMCID: PMC10025882 DOI: 10.1093/jnen/nlad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cerebral microbleeds (CMBs) detected on magnetic resonance imaging are common in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The neuropathologic correlates of CMBs are unclear. In this study, we characterized findings relevant to CMBs in autopsy brain tissue of 8 patients with genetically confirmed CADASIL and 10 controls within the age range of the CADASIL patients by assessing the distribution and extent of hemosiderin/iron deposits including perivascular hemosiderin leakage (PVH), capillary hemosiderin deposits, and parenchymal iron deposits (PID) in the frontal cortex and white matter, basal ganglia and cerebellum. We also characterized infarcts, vessel wall thickening, and severity of vascular smooth muscle cell degeneration. CADASIL subjects had a significant increase in hemosiderin/iron deposits compared with controls. This increase was principally seen with PID. Hemosiderin/iron deposits were seen in the majority of CADASIL subjects in all brain areas. PVH was most pronounced in the frontal white matter and basal ganglia around small to medium sized arterioles, with no predilection for the vicinity of vessels with severe vascular changes or infarcts. CADASIL subjects have increased brain hemosiderin/iron deposits but these do not occur in a periarteriolar distribution. Pathogenesis of these lesions remains uncertain.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Zesheng Chen
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Alyscia Severance
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Ramiro Diaz
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Chuo Fang
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Annlia Paganini-Hill
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Brain Research Institute, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, California, USA
| |
Collapse
|