1
|
Sobek J, Li J, Combes BF, Gerez JA, Henrich MT, Geibl FF, Nilsson PR, Shi K, Rominger A, Oertel WH, Nitsch RM, Nordberg A, Ågren H, Ni R. Efficient characterization of multiple binding sites of small molecule imaging ligands on amyloid-beta, tau and alpha-synuclein. Eur J Nucl Med Mol Imaging 2024; 51:3960-3977. [PMID: 38953933 DOI: 10.1007/s00259-024-06806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE There is an unmet need for compounds to detect fibrillar forms of alpha-synuclein (αSyn) and 4-repeat tau, which are critical in many neurodegenerative diseases. Here, we aim to develop an efficient surface plasmon resonance (SPR)-based assay to facilitate the characterization of small molecules that can bind these fibrils. METHODS SPR measurements were conducted to characterize the binding properties of fluorescent ligands/compounds toward recombinant amyloid-beta (Aβ)42, K18-tau, full-length 2N4R-tau and αSyn fibrils. In silico modeling was performed to examine the binding pockets of ligands on αSyn fibrils. Immunofluorescence staining of postmortem brain tissue slices from Parkinson's disease patients and mouse models was performed with fluorescence ligands and specific antibodies. RESULTS We optimized the protocol for the immobilization of Aβ42, K18-tau, full-length 2N4R-tau and αSyn fibrils in a controlled aggregation state on SPR-sensor chips and for assessing their binding to ligands. The SPR results from the analysis of binding kinetics suggested the presence of at least two binding sites for all fibrils, including luminescent conjugated oligothiophenes, benzothiazole derivatives, nonfluorescent methylene blue and lansoprazole. In silico modeling studies for αSyn (6H6B) revealed four binding sites with a preference for one site on the surface. Immunofluorescence staining validated the detection of pS129-αSyn positivity in the brains of Parkinson's disease patients and αSyn preformed-fibril injected mice, 6E10-positive Aβ in arcAβ mice, and AT-8/AT-100-positivity in pR5 mice. CONCLUSION SPR measurements of small molecules binding to Aβ42, K18/full-length 2N4R-tau and αSyn fibrils suggested the existence of multiple binding sites. This approach may provide efficient characterization of compounds for neurodegenerative disease-relevant proteinopathies.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center, University of Zurich & ETH Zurich, Zürich, Switzerland
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Peter R Nilsson
- Divison of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wolfgang H Oertel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Agneta Nordberg
- Divison of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
2
|
Kong Y, Maschio CA, Shi X, Xie F, Zuo C, Konietzko U, Shi K, Rominger A, Xiao J, Huang Q, Nitsch RM, Guan Y, Ni R. Relationship Between Reactive Astrocytes, by [ 18F]SMBT-1 Imaging, with Amyloid-Beta, Tau, Glucose Metabolism, and TSPO in Mouse Models of Alzheimer's Disease. Mol Neurobiol 2024; 61:8387-8401. [PMID: 38502413 DOI: 10.1007/s12035-024-04106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Reactive astrocytes play an important role in the development of Alzheimer's disease (AD). Here, we aimed to investigate the temporospatial relationships among monoamine oxidase-B, tau and amyloid-β (Aβ), translocator protein, and glucose metabolism by using multitracer imaging in AD transgenic mouse models. Positron emission tomography (PET) imaging with [18F]SMBT-1 (monoamine oxidase-B), [18F]florbetapir (Aβ), [18F]PM-PBB3 (tau), [18F]fluorodeoxyglucose (FDG), and [18F]DPA-714 (translocator protein) was carried out in 5- and 10-month-old APP/PS1, 11-month-old 3×Tg mice, and aged-matched wild-type mice. The brain regional referenced standard uptake value (SUVR) was computed with the cerebellum as the reference region. Immunofluorescence staining was performed on mouse brain tissue slices. [18F]SMBT-1 and [18F]florbetapir SUVRs were greater in the cortex and hippocampus of 10-month-old APP/PS1 mice than in those of 5-month-old APP/PS1 mice and wild-type mice. No significant difference in the regional [18F]FDG or [18F]DPA-714 SUVRs was observed in the brains of 5- or 10-month-old APP/PS1 mice or wild-type mice. No significant difference in the SUVRs of any tracer was observed between 11-month-old 3×Tg mice and age-matched wild-type mice. A positive correlation between the SUVRs of [18F]florbetapir and [18F]DPA-714 in the cortex and hippocampus was observed among the transgenic mice. Immunostaining validated the distribution of MAO-B and limited Aβ and tau pathology in 11-month-old 3×Tg mice; and Aβ deposits in brain tissue from 10-month-old APP/PS1 mice. In summary, these findings provide in vivo evidence that an increase in astrocyte [18F]SMBT-1 accompanies Aβ accumulation in APP/PS1 models of AD amyloidosis.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Zentrum (ZNZ), Zurich, Switzerland
| | - Xuefeng Shi
- Qinghai Provincial People's Hospital, Xining, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zurich Neuroscience Zentrum (ZNZ), Zurich, Switzerland.
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Ayers J, Lopez TP, Steele IT, Oehler A, Roman-Albarran R, Cleveland E, Chong A, Carlson GA, Condello C, Prusiner SB. Severe neurodegeneration in brains of transgenic rats producing human tau prions. Acta Neuropathol 2024; 148:25. [PMID: 39160375 PMCID: PMC11333523 DOI: 10.1007/s00401-024-02771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.
Collapse
Affiliation(s)
- Jacob Ayers
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - T Peter Lopez
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Ian T Steele
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Rigo Roman-Albarran
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Elisa Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Alex Chong
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Zhao Q, Fan Y, Zhao W, Ni Y, Tao Y, Bian J, Xia W, Yu W, Fan Z, Liu C, Sun B, Le W, Li W, Wang J, Li D. A Tau PET tracer PBB3 binds to TMEM106B amyloid fibril in brain. Cell Discov 2024; 10:50. [PMID: 38744856 PMCID: PMC11094151 DOI: 10.1038/s41421-024-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yun Fan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanbing Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - You Ni
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Bian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenbo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weidong Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wensheng Li
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
- WLA Laboratories, World Laureates Association, Shanghai, China.
| |
Collapse
|
6
|
Lin KJ, Huang SY, Huang KL, Huang CC, Hsiao IT. Human biodistribution and radiation dosimetry for the tau tracer [ 18F]Florzolotau in healthy subjects. EJNMMI Radiopharm Chem 2024; 9:27. [PMID: 38563872 PMCID: PMC10987466 DOI: 10.1186/s41181-024-00259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Tau pathology plays a crucial role in neurodegeneration diseases including Alzheimer's disease (AD) and non-AD diseases such as progressive supranuclear palsy. Tau positron emission tomography (PET) is an in-vivo and non-invasive medical imaging technique for detecting and visualizing tau deposition within a human brain. In this work, we aim to investigate the biodistribution of the dosimetry in the whole body and various organs for the [18F]Florzolotau tau-PET tracer. A total of 12 healthy controls (HCs) were enrolled at Chang Gung Memorial Hospital. All subjects were injected with approximately 379.03 ± 7.03 MBq of [18F]Florzolotau intravenously, and a whole-body PET/CT scan was performed for each subject. For image processing, the VOI for each organ was delineated manually by using the PMOD 3.7 software. Then, the time-activity curve of each organ was acquired by optimally fitting an exponential uptake and clearance model using the least squares method implemented in OLINDA/EXM 2.1 software. The absorbed dose for each target organ and the effective dose were finally calculated. RESULTS From the biodistribution results, the elimination of [18F]Florzolotau is observed mainly from the liver to the intestine and partially through the kidneys. The highest organ-absorbed dose occurred in the right colon wall (255.83 μSv/MBq), and then in the small intestine (218.67 μSv/MBq), gallbladder wall (151.42 μSv/MBq), left colon wall (93.31 μSv/MBq), and liver (84.15 μSv/MBq). Based on the ICRP103, the final computed effective dose was 34.9 μSv/MBq with CV of 10.07%. CONCLUSIONS The biodistribution study of [18F]Florzolotau demonstrated that the excretion of [18F]Florzolotau are mainly through the hepatobiliary and gastrointestinal pathways. Therefore, a routine injection of 370 MBq or 185 MBq of [18F]Florzolotau leads to an estimated effective dose of 12.92 or 6.46 mSv, and as a result, the radiation exposure to the whole-body and each organ remains within acceptable limits and adheres to established constraints. TRIAL REGISTRATION Retrospectively Registered at Clinicaltrials.gov (NCT03625128) on 12 July, 2018, https://clinicaltrials.gov/study/NCT03625128 .
Collapse
Affiliation(s)
- Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan
| | - Shao-Yi Huang
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan.
| |
Collapse
|
7
|
Smith M, Knight IS, Kormos RC, Pepe JG, Kunach P, Diamond MI, Shahmoradian SH, Irwin JJ, DeGrado WF, Shoichet BK. Docking for Molecules That Bind in a Symmetric Stack with SymDOCK. J Chem Inf Model 2024; 64:425-434. [PMID: 38191997 PMCID: PMC10806807 DOI: 10.1021/acs.jcim.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural-network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study, SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.
Collapse
Affiliation(s)
- Matthew
S. Smith
- Department
of Pharmaceutical Chemistry, University
of California, UCSF Genentech
Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States
- Program
in Biophysics, University of California, UCSF Genentech Hall MC2240, 600
16th St Rm N474D,San Francisco, California 94143, United States
| | - Ian S. Knight
- Department
of Pharmaceutical Chemistry, University
of California, UCSF Genentech
Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States
| | - Rian C. Kormos
- Department
of Pharmaceutical Chemistry, University
of California, UCSF Genentech
Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States
- Program
in Biophysics, University of California, UCSF Genentech Hall MC2240, 600
16th St Rm N474D,San Francisco, California 94143, United States
| | - Joseph G. Pepe
- Department
of Pharmaceutical Chemistry, University
of California, UCSF Genentech
Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States
- Program
in Biophysics, University of California, UCSF Genentech Hall MC2240, 600
16th St Rm N474D,San Francisco, California 94143, United States
| | - Peter Kunach
- McGill
Research Centre for Studies in Aging, McGill
University, 6875 Boulevard LaSalle, Montreal, Quebec H4H 1R3, Canada
- Department
of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Room 310, Montreal, Quebec H3A 1A1, Canada
- Center
for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell
Jr. Brain Institute, University of Texas
Southwestern Medical Center, 6124 Harry Hines Blvd. Suite NS03.200, Dallas, Texas 75390, United States
- Department
of Neurology, University of Texas Southwestern
Medical Center, 5323 Harry Hines Blvd., G2.222, Dallas, Texas 75390-9368, United States
- Department
of Neuroscience, University of Texas Southwestern
Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9111, United States
| | - Marc I. Diamond
- Center
for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell
Jr. Brain Institute, University of Texas
Southwestern Medical Center, 6124 Harry Hines Blvd. Suite NS03.200, Dallas, Texas 75390, United States
- Department
of Neurology, University of Texas Southwestern
Medical Center, 5323 Harry Hines Blvd., G2.222, Dallas, Texas 75390-9368, United States
- Department
of Neuroscience, University of Texas Southwestern
Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9111, United States
| | - Sarah H. Shahmoradian
- Center
for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell
Jr. Brain Institute, University of Texas
Southwestern Medical Center, 6124 Harry Hines Blvd. Suite NS03.200, Dallas, Texas 75390, United States
- Department
of Biophysics, University of Texas Southwestern
Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-8816, United States
| | - John J. Irwin
- Department
of Pharmaceutical Chemistry, University
of California, UCSF Genentech
Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States
| | - William F. DeGrado
- Department
of Pharmaceutical Chemistry, University
of California, UCSF Genentech
Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States
- Cardiovascular
Research Institute, University of California, 555 Mission Bay Blvd South, PO Box 589001, San Francisco, California 94158-9001, United
States
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California, UCSF Genentech
Hall Box 2280, 600 16th St Rm 518,San Francisco, California 94158, United States
| |
Collapse
|
8
|
Savoie FA, Arpin DJ, Vaillancourt DE. Magnetic Resonance Imaging and Nuclear Imaging of Parkinsonian Disorders: Where do we go from here? Curr Neuropharmacol 2024; 22:1583-1605. [PMID: 37533246 PMCID: PMC11284713 DOI: 10.2174/1570159x21666230801140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinsonian disorders are a heterogeneous group of incurable neurodegenerative diseases that significantly reduce quality of life and constitute a substantial economic burden. Nuclear imaging (NI) and magnetic resonance imaging (MRI) have played and continue to play a key role in research aimed at understanding and monitoring these disorders. MRI is cheaper, more accessible, nonirradiating, and better at measuring biological structures and hemodynamics than NI. NI, on the other hand, can track molecular processes, which may be crucial for the development of efficient diseasemodifying therapies. Given the strengths and weaknesses of NI and MRI, how can they best be applied to Parkinsonism research going forward? This review aims to examine the effectiveness of NI and MRI in three areas of Parkinsonism research (differential diagnosis, prodromal disease identification, and disease monitoring) to highlight where they can be most impactful. Based on the available literature, MRI can assist with differential diagnosis, prodromal disease identification, and disease monitoring as well as NI. However, more work is needed, to confirm the value of MRI for monitoring prodromal disease and predicting phenoconversion. Although NI can complement or be a substitute for MRI in all the areas covered in this review, we believe that its most meaningful impact will emerge once reliable Parkinsonian proteinopathy tracers become available. Future work in tracer development and high-field imaging will continue to influence the landscape for NI and MRI.
Collapse
Affiliation(s)
- Félix-Antoine Savoie
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David J. Arpin
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David E. Vaillancourt
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Teppang KL, Zhao Q, Yang J. Development of fluorophores for the detection of oligomeric aggregates of amyloidogenic proteins found in neurodegenerative diseases. Front Chem 2023; 11:1343118. [PMID: 38188930 PMCID: PMC10766704 DOI: 10.3389/fchem.2023.1343118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease are the two most common neurodegenerative diseases globally. These neurodegenerative diseases have characteristic late-stage symptoms allowing for differential diagnosis; however, they both share the presence of misfolded protein aggregates which appear years before clinical manifestation. Historically, research has focused on the detection of higher-ordered aggregates (or amyloids); however, recent evidence has shown that the oligomeric state of these protein aggregates plays a greater role in disease pathology, resulting in increased efforts to detect oligomers to aid in disease diagnosis. In this review, we summarize some of the exciting new developments towards the development of fluorescent probes that can detect oligomeric aggregates of amyloidogenic proteins present in Alzheimer's and Parkinson's disease patients.
Collapse
Affiliation(s)
| | | | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Smith MS, Knight IS, Kormos RC, Pepe JG, Kunach P, Diamond MI, Shahmoradian SH, Irwin JJ, DeGrado WF, Shoichet BK. Docking for molecules that bind in a symmetric stack with SymDOCK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564400. [PMID: 37961414 PMCID: PMC10634874 DOI: 10.1101/2023.10.27.564400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of much current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed, and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.
Collapse
Affiliation(s)
- Matthew S. Smith
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Ian S. Knight
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Rian C. Kormos
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph G. Pepe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Kunach
- McGill Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah H. Shahmoradian
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Cummings JL, Gonzalez MI, Pritchard MC, May PC, Toledo-Sherman LM, Harris GA. The therapeutic landscape of tauopathies: challenges and prospects. Alzheimers Res Ther 2023; 15:168. [PMID: 37803386 PMCID: PMC10557207 DOI: 10.1186/s13195-023-01321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Tauopathies are a group of neurodegenerative disorders characterized by the aggregation of the microtubule-associated protein tau. Aggregates of misfolded tau protein are believed to be implicated in neuronal death, which leads to a range of symptoms including cognitive decline, behavioral change, dementia, and motor deficits. Currently, there are no effective treatments for tauopathies. There are four clinical candidates in phase III trials and 16 in phase II trials. While no effective treatments are currently approved, there is increasing evidence to suggest that various therapeutic approaches may slow the progression of tauopathies or improve symptoms. This review outlines the landscape of therapeutic drugs (indexed through February 28, 2023) that target tau pathology and describes drug candidates in clinical development as well as those in the discovery and preclinical phases. The review also contains information on notable therapeutic programs that are inactive or that have been discontinued from development.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas (UNLV), Henderson, NV, USA
| | | | | | - Patrick C May
- ADvantage Neuroscience Consulting LLC, Fort Wayne, IN, USA
| | | | - Glenn A Harris
- Rainwater Charitable Foundation, 777 Main Street, Suite 2250, Fort Worth, TX, 76102, USA.
| |
Collapse
|
12
|
Li J, Kumar A, Långström B, Nordberg A, Ågren H. Insight into the Binding of First- and Second-Generation PET Tracers to 4R and 3R/4R Tau Protofibrils. ACS Chem Neurosci 2023; 14:3528-3539. [PMID: 37639522 PMCID: PMC10515481 DOI: 10.1021/acschemneuro.3c00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Primary supranuclear palsy (PSP) is a rare neurodegenerative disease that perturbs body movement, eye movement, and walking balance. Similar to Alzheimer's disease (AD), the abnormal aggregation of tau fibrils in the central neuronal and glial cells is a major hallmark of PSP disease. In this study, we use multiple approaches, including docking, molecular dynamics, and metadynamics simulations, to investigate the binding mechanism of 10 first- and second-generations of PET tracers for PSP tau and compare their binding in cortical basal degeneration (CBD) and AD tauopathies. Structure-activity relationships, binding preferences, the nature of ligand binding in terms of basic intermolecular interactions, the role of polar/charged residues, induced-fit mechanisms, grove closures, and folding patterns for the binding of these tracers in PSP, CBD, and AD tau fibrils are evaluated and discussed in detail in order to build a holistic picture of what is essential for the binding and also to rank the potency of the different tracers. For example, we found that the same tracer shows different binding preferences for the surface sites of tau fibrils that are intrinsically distinct in the folding patterns. Results from the metadynamics simulations predict that PMPBB3 and PBB3 exhibit the strongest binding free energies onto the Q276[I277]I278, Q351[S352]K353, and N368[K369]K370 sites of PSP than the other explored tracers, indicating a solid preference for vdW and cation-π interactions. Our results also reproduced known preferences of tracers, namely, that MK6240 binds better to AD tau than CBD tau and PSP tau and that CBD2115, PI2620, and PMPBB3 are 4R tau binders. These findings fill in the well-sought-after knowledge gap in terms of these tracers' potential binding mechanisms and will be important for the design of highly selective novel PET tracers for tauopathies.
Collapse
Affiliation(s)
- Junhao Li
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Amit Kumar
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
| | - Bengt Långström
- Department
of Chemistry - BMC, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
- Theme
Inflammation and Aging, Karolinska University
Hospital, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
13
|
Kim HY, Chia WK, Hsieh CJ, Guarino DS, Graham TJA, Lengyel-Zhand Z, Schneider M, Tomita C, Lougee MG, Kim HJ, Pagar VV, Lee H, Hou C, Garcia BA, Petersson EJ, O’Shea J, Kotzbauer PT, Mathis CA, Lee VMY, Luk KC, Mach RH. A Novel Brain PET Radiotracer for Imaging Alpha Synuclein Fibrils in Multiple System Atrophy. J Med Chem 2023; 66:12185-12202. [PMID: 37651366 PMCID: PMC10617560 DOI: 10.1021/acs.jmedchem.3c00779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abnormal α-synuclein (α-syn) aggregation characterizes α-synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy (MSA). However, no suitable positron emission tomography (PET) radiotracer for imaging α-syn in PD and MSA exists currently. Our structure-activity relationship studies identified 4-methoxy-N-(4-(3-(pyridin-2-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)phenyl)benzamide (4i) as a PET radiotracer candidate for imaging α-syn. In vitro assays revealed high binding of 4i to recombinant α-syn fibrils (inhibition constant (Ki) = 6.1 nM) and low affinity for amyloid beta (Aβ) fibrils in Alzheimer's disease (AD) homogenates. However, [3H]4i also exhibited high specific binding to AD, progressive supranuclear palsy, and corticobasal degeneration tissues as well as PD and MSA tissues, suggesting notable affinity to tau. Nevertheless, the specific binding to pathologic α-syn aggregates in MSA post-mortem brain tissues was significantly higher than in PD tissues. This finding demonstrated the potential use of [11C]4i as a PET tracer for imaging α-syn in MSA patients. Nonhuman primate PET studies confirmed good brain uptake and rapid washout for [11C]4i.
Collapse
Affiliation(s)
- Ho Young Kim
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Wai Kit Chia
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Chia-Ju Hsieh
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Dinahlee Saturnino Guarino
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Thomas J. A. Graham
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Zsofia Lengyel-Zhand
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Mark Schneider
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Cosette Tomita
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Marshall G. Lougee
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6303, USA
| | - Vinayak V. Pagar
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6303, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jennifer O’Shea
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA
| | - Paul T. Kotzbauer
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA
| | - Chester A. Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-2676, USA
| | - Kelvin C. Luk
- Center for Neurodegenerative Disease Research, Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-2676, USA
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
14
|
Wongso H, Ono M, Yamasaki T, Kumata K, Higuchi M, Zhang MR, Fulham MJ, Katsifis A, Keller PA. Synthesis and structure-activity relationship (SAR) studies of 1,2,3-triazole, amide, and ester-based benzothiazole derivatives as potential molecular probes for tau protein. RSC Med Chem 2023; 14:858-868. [PMID: 37252097 PMCID: PMC10211319 DOI: 10.1039/d2md00358a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/24/2023] [Indexed: 01/04/2024] Open
Abstract
The pyridinyl-butadienyl-benzothiazole (PBB3 15) scaffold was used to develop tau ligands with improved in vitro and in vivo properties for imaging applications to provide insights into the etiology and characteristics of Alzheimer's disease. The photoisomerisable trans-butadiene bridge of PBB3 was replaced with 1,2,3-triazole, amide, and ester moieties and in vitro fluorescence staining studies revealed that triazole derivatives showed good visualisation of Aβ plaques, but failed to detect the neurofibrillary tangles (NFTs) in human brain sections. However, NFTs could be observed using the amide 110 and ester 129. Furthermore, the ligands showed low to high affinities (Ki = >1.5 mM-0.46 nM) at the shared binding site(s) with PBB3.
Collapse
Affiliation(s)
- Hendris Wongso
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong Wollongong NSW 2522 Australia
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency Puspiptek Banten 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency Sumedang 45363 Indonesia
| | - Maiko Ono
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology Chiba 263-8555 Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology Chiba 263-8555 Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology Chiba 263-8555 Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology Chiba 263-8555 Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology Chiba 263-8555 Japan
| | - Michael J Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
15
|
Lin HC, Lin KJ, Huang KL, Chen SH, Ho TY, Huang CC, Hsu JL, Chang CC, Hsiao IT. Visual reading for [ 18F]Florzolotau ([ 18F]APN-1607) tau PET imaging in clinical assessment of Alzheimer's disease. Front Neurosci 2023; 17:1148054. [PMID: 37250400 PMCID: PMC10213356 DOI: 10.3389/fnins.2023.1148054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Tau-targeted positron emission tomography (tau-PET) is a potential tool for the differential diagnosis of Alzheimer's disease (AD) and to clarify the distribution of tau deposition. In addition to the quantitative analysis of tau-PET scans, visual reading supports the assessment of tau loading for clinical diagnosis. This study aimed to propose a method for visually interpreting tau-PET using the [18F] Florzolotau tracer and investigate the performance and utility of the visual reading. Materials and methods A total number of 46 individuals with 12 cognitively unimpaired subjects (CU), 20 AD patients with mild cognitive impairment (AD-MCI), and 14 AD with dementia (AD-D) patients with both [18F]Florbetapir amyloid PET and [18F]Florzolotau tau PET scans were included. Clinical information, cognitive assessment, and amyloid PET scan results were recorded. For visual interpretation, a modified rainbow colormap was created and a regional tau uptake scoring system was proposed to evaluate the degree of tracer uptake and its spatial distribution within five cortical regions. Each region was scored on a scale of [0, 2] as compared to the background, and that resulted in a global scale range of [0, 10]. Four readers interpreted [18F]Florzolotau PET using the visual scale. The global and regional standardized uptake value ratios (SUVr) were also calculated for analysis. Results The result indicates the average global visual scores were 0 ± 0 in the CU group, 3.43 ± 3.35 in the AD-MCI group, and 6.31 ± 2.97 in the AD-D group (p < 0.001). The consensus among the four observers on image scores was high with an intraclass correlation coefficient of 0.880 (95% CI: 0.767-0.936). The average global visual score was significantly associated with global SUVr (r = 0.884, p < 0.0001) and with the CDR-sum of box (r = 0.677, p < 0.0001). Conclusion The visual reading method generated a visual score of [18F]Florzolotau tau-PET with good sensitivity and specificity to identify AD-D or CU individuals from the other patients. The preliminary result also showed that the global visual scores are significantly and reliably correlated with global cortical SUVr, and associated well with the clinical diagnosis and cognitive performance.
Collapse
Affiliation(s)
- Huan-Chun Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shih-Hsin Chen
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Tsung-Ying Ho
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| |
Collapse
|
16
|
Monge FA, Fanni AM, Donabedian PL, Hulse J, Maphis NM, Jiang S, Donaldson TN, Clark BJ, Whitten DG, Bhaskar K, Chi EY. Selective In Vitro and Ex Vivo Staining of Brain Neurofibrillary Tangles and Amyloid Plaques by Novel Ethylene Ethynylene-Based Optical Sensors. BIOSENSORS 2023; 13:151. [PMID: 36831917 PMCID: PMC9953543 DOI: 10.3390/bios13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The identification of protein aggregates as biomarkers for neurodegeneration is an area of interest for disease diagnosis and treatment development. In this work, we present novel super luminescent conjugated polyelectrolyte molecules as ex vivo sensors for tau-paired helical filaments (PHFs) and amyloid-β (Aβ) plaques. We evaluated the use of two oligo-p-phenylene ethynylenes (OPEs), anionic OPE12- and cationic OPE24+, as stains for fibrillar protein pathology in brain sections of transgenic mouse (rTg4510) and rat (TgF344-AD) models of Alzheimer's disease (AD) tauopathy, and post-mortem brain sections from human frontotemporal dementia (FTD). OPE12- displayed selectivity for PHFs in fluorimetry assays and strong staining of neurofibrillary tangles (NFTs) in mouse and human brain tissue sections, while OPE24+ stained both NFTs and Aβ plaques. Both OPEs stained the brain sections with limited background or non-specific staining. This novel family of sensors outperformed the gold-standard dye Thioflavin T in sensing capacities and co-stained with conventional phosphorylated tau (AT180) and Aβ (4G8) antibodies. As the OPEs readily bind protein amyloids in vitro and ex vivo, they are selective and rapid tools for identifying proteopathic inclusions relevant to AD. Such OPEs can be useful in understanding pathogenesis and in creating in vivo diagnostically relevant detection tools for neurodegenerative diseases.
Collapse
Affiliation(s)
- Florencia A. Monge
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adeline M. Fanni
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Patrick L. Donabedian
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jonathan Hulse
- Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nicole M. Maphis
- Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shanya Jiang
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
- Sartorius, Bohemia, NY 11716, USA
| | - Tia N. Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Benjamin J. Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - David G. Whitten
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eva Y. Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
17
|
Tau PET imaging in progressive supranuclear palsy: a systematic review and meta-analysis. J Neurol 2023; 270:2451-2467. [PMID: 36633672 DOI: 10.1007/s00415-022-11556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To evaluate the difference of tau burden between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs) or other neurodegenerative diseases using tau-positron emission tomography (PET) imaging. METHODS A systematic search on PubMed, Embase, and Web of Science databases was performed for tau-PET studies in PSP patients, up to April 1, 2022. Standardized mean differences (SMDs) of tau tracer uptake were calculated using random-effects models. Subgroup analysis based on the type of tau tracers, meta-regression, and sensitivity analysis were conducted. RESULTS Twenty-seven studies comprising 553 PSP, 626 HCs, and 406 other neurodegenerative diseases were included. Compared with HCs, PSP patients showed elevated tau binding in basal ganglia, midbrain, dentate nucleus, cerebellar white matter, and frontal lobe with decreasing SMD (SMD: 0.390-1.698). Compared with Parkinson's disease patients, increased tau binding was identified in the midbrain, basal ganglia, dentate nucleus, and frontal and parietal lobe in PSP patients with decreasing SMD (SMD: 0.503-1.853). PSP patients showed higher tau binding in the subthalamic nucleus (SMD = 1.351) and globus pallidus (SMD = 1.000), and lower binding in the cortex and parahippocampal gyrus than Alzheimer's disease patients (SMD: - 2.976 to - 1.018). PSP patients showed higher midbrain tau binding than multiple system atrophy patients (SMD = 1.269). CONCLUSION Tau PET imaging indicates different topography of tau deposition between PSP patients and HCs or other neurodegenerative disorders. The affinity and selectivity of tracers for 4R-tau and the off-target binding of tracers should be considered when interpreting the results.
Collapse
|
18
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
19
|
Pierre K, Molina V, Shukla S, Avila A, Fong N, Nguyen J, Lucke-Wold B. Chronic traumatic encephalopathy: Diagnostic updates and advances. AIMS Neurosci 2022; 9:519-535. [PMID: 36660076 PMCID: PMC9826753 DOI: 10.3934/neuroscience.2022030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs secondary to repetitive mild traumatic brain injury. Current clinical diagnosis relies on symptomatology and structural imaging findings which often vary widely among those with the disease. The gold standard of diagnosis is post-mortem pathological examination. In this review article, we provide a brief introduction to CTE, current diagnostic workup and the promising research on imaging and fluid biomarker diagnostic techniques. For imaging, we discuss quantitative structural analyses, DTI, fMRI, MRS, SWI and PET CT. For fluid biomarkers, we discuss p-tau, TREM2, CCL11, NfL and GFAP.
Collapse
Affiliation(s)
- Kevin Pierre
- University of Florida Department of Radiology, Gainesville 32603, Florida, USA
| | - Vanessa Molina
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Shil Shukla
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Anthony Avila
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Nicholas Fong
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Jessica Nguyen
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Brandon Lucke-Wold
- University of Florida Department of Neurosurgery, Gainesville 32603, Florida, USA,* Correspondence:
| |
Collapse
|
20
|
Knight AC, Morrone CD, Varlow C, Yu WH, McQuade P, Vasdev N. Head-to-Head Comparison of Tau-PET Radioligands for Imaging TDP-43 in Post-Mortem ALS Brain. Mol Imaging Biol 2022; 25:513-527. [PMID: 36258099 DOI: 10.1007/s11307-022-01779-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE In vivo detection of transactivation response element DNA binding protein-43 kDa (TDP-43) aggregates through positron emission tomography (PET) would impact the ability to successfully develop therapeutic interventions for a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The purpose of the present study is to evaluate the ability of six tau PET radioligands to bind to TDP-43 aggregates in post-mortem brain tissues from ALS patients. PROCEDURES Herein, we report the first head-to-head evaluation of six tritium labeled isotopologs of tau-targeting PET radioligands, [3H]MK-6240 (a.k.a. florquinitau), [3H]Genentech Tau Probe-1 (GTP-1), [3H]JNJ-64326067(JNJ-067), [3H]CBD-2115, [3H]flortaucipir, and [3H]APN-1607, and their ability to bind to the β-pleated sheet structures of aggregate TDP-43 in post-mortem ALS brain tissues by autoradiography and immunostaining methods. Post-mortem frontal cortex, motor cortex, and cerebellum tissues were evaluated, and binding intensity was aligned with areas of elevated phosphorylated tau (ptau), pTDP-43, and β-amyloid. RESULTS Negligible binding was observed with [3H]MK-6240, [3H]JNJ-067, and [3H]GTP-1. While [3H]CBD-2115 displayed marginal specific binding, this binding did not significantly correlate with the distribution of pTDP-43 and AT8 inclusions. Of the remaining ligands, the distribution of [3H]flortaucipir did not significantly correlate to pTDP-43 pathology; however, specific binding trends to a positive relationship with tau. Finally, [3H]APN-1607 relates most strongly to amyloid load and does not indicate pTDP-43 pathology as confirmed by [3H]PiB distribution in sister sections. CONCLUSIONS Our results demonstrate the prominent nature of mixed pathology in ALS, and do not support the application of [3H]MK-6240, [3H]JNJ-067, [3H]GTP-1, [3H]CBD-2115, [3H]flortaucipir, or [3H]APN-1607 for selective imaging TDP-43 in ALS for clinical research with the currently available in vitro data. Identification of potent and selective radiotracers for TDP-43 remains an ongoing challenge.
Collapse
Affiliation(s)
- Ashley C Knight
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Christopher D Morrone
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Wai Haung Yu
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Paul McQuade
- Takeda Pharmaceutical Company, Ltd, 35 Landsdowne Street, Cambridge, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada.
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Canada.
| |
Collapse
|
21
|
Wang R, Gao H, Xie H, Jia Z, Chen Q. Molecular imaging biomarkers in familial frontotemporal lobar degeneration: Progress and prospects. Front Neurol 2022; 13:933217. [PMID: 36051222 PMCID: PMC9424494 DOI: 10.3389/fneur.2022.933217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Familial frontotemporal lobar degeneration (FTLD) is a pathologically heterogeneous group of neurodegenerative diseases with diverse genotypes and clinical phenotypes. Three major mutations were reported in patients with familial FTLD, namely, progranulin (GRN), microtubule-associated protein tau (MAPT), and the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which could cause neurodegenerative pathological changes years before symptom onset. Noninvasive quantitative molecular imaging with PET or single-photon emission CT (SPECT) allows for selective visualization of the molecular targets in vivo to investigate brain metabolism, perfusion, neuroinflammation, and pathophysiological changes. There was increasing evidence that several molecular imaging biomarkers tend to serve as biomarkers to reveal the early brain abnormalities in familial FTLD. Tau-PET with 18F-flortaucipir and 11C-PBB3 demonstrated the elevated tau position in patients with FTLD and also showed the ability to differentiate patterns among the different subtypes of the mutations in familial FTLD. Furthermore, dopamine transporter imaging with the 11C-DOPA and 11C-CFT in PET and the 123I-FP-CIT in SPECT revealed the loss of dopaminergic neurons in the asymptomatic and symptomatic patients of familial FTLD. In addition, PET imaging with the 11C-MP4A has demonstrated reduced acetylcholinesterase (AChE) activity in patients with FTLD, while PET with the 11C-DAA1106 and 11C-PK11195 revealed an increased level of microglial activation associated with neuroinflammation even before the onset of symptoms in familial FTLD. 18F-fluorodeoxyglucose (FDG)-PET indicated hypometabolism in FTLD with different mutations preceded the atrophy on MRI. Identifying molecular imaging biomarkers for familial FTLD is important for the in-vivo assessment of underlying pathophysiological changes with disease progression and future disease-modifying therapy. We review the recent progress of molecular imaging in familial FTLD with focused on the possible implication of these techniques and their prospects in specific mutation types.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qin Chen
| |
Collapse
|
22
|
Kimura T, Ono M, Seki C, Sampei K, Shimojo M, Kawamura K, Zhang MR, Sahara N, Takado Y, Higuchi M. A quantitative in vivo imaging platform for tracking pathological tau depositions and resultant neuronal death in a mouse model. Eur J Nucl Med Mol Imaging 2022; 49:4298-4311. [PMID: 35798978 DOI: 10.1007/s00259-022-05898-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Depositions of tau fibrils are implicated in diverse neurodegenerative disorders, including Alzheimer's disease, and precise assessments of tau pathologies and their impacts on neuronal survival are crucial for pursuing the neurodegenerative tau pathogenesis with and without potential therapies. We aimed to establish an in vivo imaging system to quantify tau accumulations with positron emission tomography (PET) and brain atrophy with volumetric MRI in rTg4510 transgenic mice modeling neurodegenerative tauopathies. METHODS A total of 91 rTg4510 and non-transgenic control mice underwent PET with a tau radiotracer, 18F-PM-PBB3, and MRI at various ages (1.8-12.3 months). Using the cerebellum as reference, the radiotracer binding in target regions was estimated as standardized uptake value ratio (SUVR) and distribution volume ratio (DVR). Histopathological staining of brain sections derived from scanned animals was also conducted to investigate the imaging-neuropathology correlations. RESULTS 18F-PM-PBB3 SUVR at 40-60 min in the neocortex, hippocampus, and striatum of rTg4510 mice agreed with DVR, became significantly different from control values around 4-5 months of age, and progressively and negatively correlated with age and local volumes, respectively. Neocortical SUVR also correlated with the abundance of tau inclusions labeled with PM-PBB3 fluorescence, Gallyas-Braak silver impregnation, and anti-phospho-tau antibodies in postmortem assays. The in vivo and ex vivo 18F-PM-PBB3 binding was blocked by non-radioactive PM-PBB3. 18F-PM-PBB3 yielded a 1.6-fold greater dynamic range for tau imaging than its ancestor, 11C-PBB3. CONCLUSION Our imaging platform has enabled the quantification of tau depositions and consequent neuronal loss and is potentially applicable to the evaluation of candidate anti-tau and neuroprotective drugs.
Collapse
Affiliation(s)
- Taeko Kimura
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Maiko Ono
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Chie Seki
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Kazuaki Sampei
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masafumi Shimojo
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naruhiko Sahara
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuhei Takado
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Makoto Higuchi
- National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
23
|
Vagenknecht P, Luzgin A, Ono M, Ji B, Higuchi M, Noain D, Maschio CA, Sobek J, Chen Z, Konietzko U, Gerez JA, Riek R, Razansky D, Klohs J, Nitsch RM, Dean-Ben XL, Ni R. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2022; 49:2137-2152. [PMID: 35128565 PMCID: PMC9165274 DOI: 10.1007/s00259-022-05708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 μm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 μm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.
Collapse
Affiliation(s)
- Patrick Vagenknecht
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Artur Luzgin
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Maiko Ono
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland.
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Maschio C, Ni R. Amyloid and Tau Positron Emission Tomography Imaging in Alzheimer’s Disease and Other Tauopathies. Front Aging Neurosci 2022; 14:838034. [PMID: 35527737 PMCID: PMC9074832 DOI: 10.3389/fnagi.2022.838034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The detection and staging of Alzheimer’s disease (AD) using non-invasive imaging biomarkers is of substantial clinical importance. Positron emission tomography (PET) provides readouts to uncover molecular alterations in the brains of AD patients with high sensitivity and specificity. A variety of amyloid-β (Aβ) and tau PET tracers are already available for the clinical diagnosis of AD, but there is still a lack of imaging biomarkers with high affinity and selectivity for tau inclusions in primary tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick’s disease (PiD). This review aims to provide an overview of the existing Aβ and tau PET imaging biomarkers and their binding properties from in silico, in vitro, and in vivo assessment. Imaging biomarkers for pathologic proteins are vital for clinical diagnosis, disease staging and monitoring of the potential therapeutic approaches of AD. Off-target binding of radiolabeled tracers to white matter or other neural structures is one confounding factor when interpreting images. To improve binding properties such as binding affinity and to eliminate off-target binding, second generation of tau PET tracers have been developed. To conclude, we further provide an outlook for imaging tauopathies and other pathological features of AD and primary tauopathies.
Collapse
Affiliation(s)
- Cinzia Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Cinzia Maschio,
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
- Ruiqing Ni,
| |
Collapse
|
25
|
Disclosing tau tangles using PET imaging: a pharmacological review of the radiotracers available in 2021. Acta Neurol Belg 2022; 122:263-272. [PMID: 34713414 DOI: 10.1007/s13760-021-01797-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Neurological symptoms depend on the topography of the lesions in the nervous system, hence the importance of brain imaging for neurologists. Neurological treatment, however, depends on the biological nature of the lesions. The development of radiotracers specific for the proteinopathies observed in neurodegenerative disorders is, therefore, crucially important for better understanding the relationships between the pathology and the clinical symptoms, as well as the efficacy of therapeutical interventions. The tau protein is involved in several neurodegenerative disorders, that can be distinguished both biologically and clinically as the type of tau isoforms and filaments observed in brain aggregates, and the brain regions affected differ between tauopathies. Over the past few years, several tracers have been developed for imaging tauopathies with positron emission tomography. The present review aims to compare the binding properties of these tracers, with a specific focus on how these properties might be relevant for neurologists using these biomarkers to characterize the pathology of patients presenting with clinical symptoms suspect of a neurodegenerative disorder.
Collapse
|
26
|
Standke HG, Kraus A. Seed amplification and RT-QuIC assays to investigate protein seed structures and strains. Cell Tissue Res 2022; 392:323-335. [PMID: 35258712 DOI: 10.1007/s00441-022-03595-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Abstract
The accumulation of misfolded proteins as amyloid fibrils in the brain is characteristic of most neurodegenerative disorders. These misfolded proteins are capable of self-amplifying through protein seeding mechanisms, leading to accumulation in the host. First shown for PrP prions and prion diseases, it is now recognized that self-propagating misfolded proteins occur broadly in neurodegenerative diseases and include amyloid-β (Aβ) and tau in Alzheimer's disease (AD), tau in chronic traumatic encephalopathy (CTE), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), and α-synuclein (α-syn) in Parkinson's disease (PD) and Lewy body dementias (LBD). Techniques able to directly measure these bioactive protein seeds include the real-time quaking-induced conversion (RT-QuIC) assays. Initially developed for the detection of PrP prions and subsequently for the detection of other misfolded protein seeds, these assays take advantage of the mechanism of protein-based self-propagation to result in exponential amplification of the initial protein seeds from biospecimens. Disease-specific "protein seeds" recruit and template the misfolding of native recombinant protein substrates to elongate amyloid fibrils. The amplification power of these assays allows for detection of minute amounts of disease-specific protein seeds to better support early and accurate diagnosis. In addition to the diagnostic capabilities, assay readouts have been shown to reveal biochemical, structural, and kinetic information of protein seed self-propagation. This review examines the various protein seed amplification assays currently available for distinct neurodegenerative diseases, with a focus on RT-QuIC assays, along with the insights their readouts provide into protein seed structures and strain differences.
Collapse
Affiliation(s)
- Heidi G Standke
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
27
|
Filippi L, Schillaci O, Palumbo B. Neuroimaging with PET/CT in chronic traumatic encephalopathy: what nuclear medicine can do to move the field forward. Expert Rev Mol Diagn 2022; 22:149-156. [PMID: 35086415 DOI: 10.1080/14737159.2022.2035723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative syndrome, caused by single or repeated traumatic brain injuries. Since a few years ago, post mortem examination represented the only effective method to diagnose CTE through the detection of its peculiar neuropathological features (i.e. tau protein aggregates) at a macroscopic and microscopic level. Several efforts have been made to develop radiopharmaceuticals characterized by high affinity for tau aggregates, suitable for imaging through Positron Emission Computed Tomography (Tau-PET). AREAS COVERED : The various radiopharmaceuticals utilized for the molecular imaging of CTE through Tau-PET are covered, with specific reference to their applications in clinical practice. Furthermore, PET probes binding to the translocator protein (TSPO), a marker of brain injury and repair, are reviewed as potential tools for the imaging of neuroinflammatory cascade associated with CTE. EXPERT OPINION molecular neuroimaging of CTE with Tau-PET is an intriguing, although still not completely explored, tool for the in vivo detection and monitoring of neuropathological hallmarks associated with CTE. Furthermore, some novel tracers, such as TSPO-ligands, hold the promise to get an insight into the complex physiopathological mechanisms leading from brain injury to symptomatic CTE.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, 04100 Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
28
|
Ni R. Magnetic Resonance Imaging in Tauopathy Animal Models. Front Aging Neurosci 2022; 13:791679. [PMID: 35145392 PMCID: PMC8821905 DOI: 10.3389/fnagi.2021.791679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The microtubule-associated protein tau plays an important role in tauopathic diseases such as Alzheimer's disease and primary tauopathies such as progressive supranuclear palsy and corticobasal degeneration. Tauopathy animal models, such as transgenic, knock-in mouse and rat models, recapitulating tauopathy have facilitated the understanding of disease mechanisms. Aberrant accumulation of hyperphosphorylated tau contributes to synaptic deficits, neuroinflammation, and neurodegeneration, leading to cognitive impairment in animal models. Recent advances in molecular imaging using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided valuable insights into the time course of disease pathophysiology in tauopathy animal models. High-field MRI has been applied for in vivo imaging in animal models of tauopathy, including diffusion tensor imaging for white matter integrity, arterial spin labeling for cerebral blood flow, resting-state functional MRI for functional connectivity, volumetric MRI for neurodegeneration, and MR spectroscopy. In addition, MR contrast agents for non-invasive imaging of tau have been developed recently. Many preclinical MRI indicators offer excellent translational value and provide a blueprint for clinical MRI in the brains of patients with tauopathies. In this review, we summarized the recent advances in using MRI to visualize the pathophysiology of tauopathy in small animals. We discussed the outstanding challenges in brain imaging using MRI in small animals and propose a future outlook for visualizing tau-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Zheng Y, Ji B, Chen S, Zhou R, Ni R. The impact of uremic toxins on Alzheimer's disease. Curr Alzheimer Res 2022; 19:104-118. [PMID: 35048807 DOI: 10.2174/1567205019666220120113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia, pathologically characterized by accumulation of senile plaques and neurofibrillary tangles. Chronic kidney disease (CKD) is highly prevalent in elderly population closely associated with occurrence of dementia. Recent epidemiological and experimental studies suggest a potential association of CKD with AD. Both diseases share a panel of identical risk factors, such as type 2 diabetes; and hypertension. However, the relationship between CKD and AD is unclear. Lower clearance of a panel of uremic toxin including cystatin-C, guanidine, and adiponectin due to CKD is implied to contribute to AD pathogenesis. In this review we summarize the current evidence from epidemiological, experimental and clinical studies on the potential contribution of uremic toxins to AD pathogenesis. We describe outstanding questions and propose an outlook on the link between uremic toxins and AD.
Collapse
Affiliation(s)
- Yuqi Zheng
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Sijun Chen
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
32
|
Shimojo M, Ono M, Takuwa H, Mimura K, Nagai Y, Fujinaga M, Kikuchi T, Okada M, Seki C, Tokunaga M, Maeda J, Takado Y, Takahashi M, Minamihisamatsu T, Zhang M, Tomita Y, Suzuki N, Maximov A, Suhara T, Minamimoto T, Sahara N, Higuchi M. A genetically targeted reporter for PET imaging of deep neuronal circuits in mammalian brains. EMBO J 2021; 40:e107757. [PMID: 34636430 PMCID: PMC8591537 DOI: 10.15252/embj.2021107757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 01/27/2023] Open
Abstract
Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Maiko Ono
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Hiroyuki Takuwa
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Koki Mimura
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yuji Nagai
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Tatsuya Kikuchi
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Maki Okada
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Chie Seki
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Masaki Tokunaga
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Jun Maeda
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yuhei Takado
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Manami Takahashi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takeharu Minamihisamatsu
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Ming‐Rong Zhang
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yutaka Tomita
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Norihiro Suzuki
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Anton Maximov
- Department of NeuroscienceThe Scripps Research InstituteLa JollaCAUSA
| | - Tetsuya Suhara
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takafumi Minamimoto
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Naruhiko Sahara
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| |
Collapse
|
33
|
Tezuka T, Takahata K, Seki M, Tabuchi H, Momota Y, Shiraiwa M, Suzuki N, Morimoto A, Nakahara T, Iwabuchi Y, Miura E, Yamamoto Y, Sano Y, Funaki K, Yamagata B, Ueda R, Yoshizaki T, Mashima K, Shibata M, Oyama M, Okada K, Kubota M, Okita H, Takao M, Jinzaki M, Nakahara J, Mimura M, Ito D. Evaluation of [ 18F]PI-2620, a second-generation selective tau tracer, for assessing four-repeat tauopathies. Brain Commun 2021; 3:fcab190. [PMID: 34632382 PMCID: PMC8495135 DOI: 10.1093/braincomms/fcab190] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Tau aggregates represent a key pathologic feature of Alzheimer's disease and other neurodegenerative diseases. Recently, PET probes have been developed for in vivo detection of tau accumulation; however, they are limited because of off-target binding and a reduced ability to detect tau in non-Alzheimer's disease tauopathies. The novel tau PET tracer, [18F]PI-2620, has a high binding affinity and specificity for aggregated tau; therefore, it was hypothesized to have desirable properties for the visualization of tau accumulation in Alzheimer's disease and non-Alzheimer's disease tauopathies. To assess the ability of [18F]PI-2620 to detect regional tau burden in non-Alzheimer's disease tauopathies compared with Alzheimer's disease, patients with progressive supranuclear palsy (n = 3), corticobasal syndrome (n = 2), corticobasal degeneration (n = 1) or Alzheimer's disease (n = 8), and healthy controls (n = 7) were recruited. All participants underwent MRI, amyloid β assessment and [18F]PI-2620 PET (Image acquisition at 60-90 min post-injection). Cortical and subcortical tau accumulations were assessed by calculating standardized uptake value ratios using [18F]PI-2620 PET. For pathologic validation, tau pathology was assessed using tau immunohistochemistry and compared with [18F]PI-2620 retention in an autopsied case of corticobasal degeneration. In Alzheimer's disease, focal retention of [18F]PI-2620 was evident in the temporal and parietal lobes, precuneus, and cingulate cortex. Standardized uptake value ratio analyses revealed that patients with non-Alzheimer's disease tauopathies had elevated [18F]PI-2620 uptake only in the globus pallidus, as compared to patients with Alzheimer's disease, but not healthy controls. A head-to-head comparison of [18F]PI-2620 and [18F]PM-PBB3, another tau PET probe for possibly visualizing the four-repeat tau pathogenesis in non-Alzheimer's disease, revealed different retention patterns in one subject with progressive supranuclear palsy. Imaging-pathology correlation analysis of the autopsied patient with corticobasal degeneration revealed no significant correlation between [18F]PI-2620 retention in vivo. High [18F]PI-2620 uptake at 60-90 min post-injection in the globus pallidus may be a sign of neurodegeneration in four-repeat tauopathy, but not necessarily practical for diagnosis of non-Alzheimer's disease tauopathies. Collectively, this tracer is a promising tool to detect Alzheimer's disease-tau aggregation. However, late acquisition PET images of [18F]PI-2620 may have limited utility for reliable detection of four-repeat tauopathy because of lack of correlation between post-mortem tau pathology and different retention pattern than the non-Alzheimer's disease-detectable tau radiotracer, [18F]PM-PBB3. A recent study reported that [18F]PI-2620 tracer kinetics curves in four-repeat tauopathies peak earlier (within 30 min) than Alzheimer's disease; therefore, further studies are needed to determine appropriate PET acquisition times that depend on the respective interest regions and diseases.
Collapse
Affiliation(s)
- Toshiki Tezuka
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Mika Shiraiwa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Natsumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ayaka Morimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Tadaki Nakahara
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yu Iwabuchi
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eisuke Miura
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kei Funaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo 160-8582, Japan
| | - Takahito Yoshizaki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kyoko Mashima
- Department of Neurology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | - Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Tokyo 272-8513, Japan
| | - Munenori Oyama
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masahito Kubota
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo 187-8551, Japan.,Brain Bank, Mihara Memorial Hospital, Gunma 372-0006, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Excess tau PET ligand retention in elderly patients with major depressive disorder. Mol Psychiatry 2021; 26:5856-5863. [PMID: 32606373 DOI: 10.1038/s41380-020-0766-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022]
Abstract
Depression is one of the common psychiatric disorders in old age. Major depressive disorder (MDD) has been identified as a risk factor or prodrome for neurodegenerative dementias, suggesting neuropathological overlaps and a continuum between MDD and neurodegenerative disorders. In this study, we examined tau and amyloid-β (Aβ) accumulations in the brains of MDD and healthy controls using positron emission tomography (PET) to explore pathological substrates of this illness. Twenty MDD and twenty age-matched, healthy controls were examined by PET with a tau radioligand, [11C]PBB3, and an Aβ radioligand, [11C]PiB. Radioligand retentions were quantified as a standardized uptake value ratio (SUVR). We also assessed clinical manifestations of the patients using the 17-item Hamilton Depression Scale, the Geriatric Depression Scale, and psychotic symptoms. Mean cortical [11C]PBB3 SUVRs in MDD patients were significantly higher than those of healthy controls. These values were higher in MDD patients with psychotic symptoms than in those without any. The present findings indicate that tau depositions may underlie MDD, and especially in patients with psychotic symptoms. PET detection of tau accumulations may provide mechanistic insights into neuronal dysfunctions in these cases and could serve as predictions of their clinical consequences.
Collapse
|
35
|
Shi XF, Ji B, Kong Y, Guan Y, Ni R. Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals. Front Bioeng Biotechnol 2021; 9:746815. [PMID: 34650961 PMCID: PMC8505530 DOI: 10.3389/fbioe.2021.746815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.
Collapse
Affiliation(s)
- Xue-feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
37
|
Zhou Y, Li J, Nordberg A, Ågren H. Dissecting the Binding Profile of PET Tracers to Corticobasal Degeneration Tau Fibrils. ACS Chem Neurosci 2021; 12:3487-3496. [PMID: 34464084 PMCID: PMC8447187 DOI: 10.1021/acschemneuro.1c00536] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
Alzheimer’s
disease and primary tauopathies are characterized
by the presence of tau pathology in brain. Several tau positron emission
tomography (PET) tracers have been developed and studied in Alzheimer’s
disease (AD), but there is still a lack of 4R-tau specific tracers
for non-AD tauopathies. We here present the first computational study
on the binding profiles of four tau different PET tracers, PI2620,
CBD2115, PM-PBB3, and MK6240, to corticobasal degeneration (CBD) tau.
The in silico results showed different preferences
for the various binding sites on the 4R fibril, and especially an
entry site, a concave site, and a core site showed high binding affinity
to these tracers. The core site and entry site both showed higher
binding affinity than the surface sites, but the tracers were less
likely to enter these sites. PI2620, CBD2115, and PM-PBB3 all showed
higher binding affinities to CBD tau than the 3R/4R tracer MK6240.
The same strategy has also been applied to AD tau fibrils, and significant
differences in selectivity of binding sites were also observed. A
higher binding affinity was observed for CBD2115 and PM-PBB3 to AD
tau compared to PI2620. None of the studied tracers showed a selectivity
for 4R compared to 3R/4R tau. This study clearly shows that identified
binding sites from cryo-EM with low resolution can be further refined
by metadynamics simulations in order to provide atomic resolution
of the binding modes as well as of the thermodynamic properties.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 84, Stockholm, Sweden
- Theme Aging Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
38
|
Murugan NA, Nordberg A, Ågren H. Cryptic Sites in Tau Fibrils Explain the Preferential Binding of the AV-1451 PET Tracer toward Alzheimer's Tauopathy. ACS Chem Neurosci 2021; 12:2437-2447. [PMID: 34152739 PMCID: PMC8291571 DOI: 10.1021/acschemneuro.0c00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
![]()
Tauopathies are a subclass of neurodegenerative diseases characterized
by an accumulation of microtubule binding tau fibrils in brain regions.
Diseases such as Alzheimer’s (AD), chronic traumatic encephalopathy
(CTE), Pick’s disease (PiD), and corticobasal degeneration
(CBD) belong to this subclass. Development of tracers which can visualize
and discriminate between different tauopathies is of clinical importance
in the diagnosis of various tauopathies. Currently, several tau tracers
are available for in vivo imaging using a positron emission tomography
(PET) technique. Among these tracers, PBB3 is reported to bind to
various types of tau fibrils with comparable binding affinities.
In contrast, tau tracer AV-1451 is reported to bind to specific types
of tau fibrils (in particular to AD-associated and CTE) with higher
binding affinity and only show nonspecific or weaker binding toward
tau fibrils dominant with 3R isoforms (associated with PiD). The tau
fibrils associated with different tauopathies can adopt different
microstructures with different binding site microenvironments. By
using detailed studies of the binding profiles of tau tracers for
different types of tau fibrils, it may be possible to design tracers
with high selectivity toward a specific tauopathy. The microstructures
for the tau fibrils from patients with AD, PiD, and CTE have recently
been demonstrated by cryogenic electron microscopy (cryo-EM) measurements
allowing structure-based in silico simulations. In the present study,
we have performed a multiscale computational study involving molecular
docking, molecular dynamics, free energy calculations, and QM fragmentation
calculations to understand the binding profiles of tau tracer AV-1451
and its potential use for diagnosis of AD, CTE, and PiD tauopathies.
Our computational study reveals that different affinity binding sites
exist for AV-1451 in the tau fibrils associated with different tauopathies.
The binding affinity of this tracer toward different tau fibrils goes
in this order: PiD > AD > CTE. The interaction energies for different
tau fibril–tracer complexes using the QM fragmentation scheme
also showed the same trend. However, by carrying out molecular dynamics
simulations for the AD-derived tau fibrils in organic solvents, we
found additional high affinity binding sites for AV-1451. The AV-1451
binding profile in these cryptic sites correctly explains the preferential
binding of this tracer toward the AD fibrils when compared with the
PiD fibrils. This study clearly demonstrates having a cryo-EM structure
is still not sufficient for the structure-based tracer discovery for
certain targets, as they may have “potential but hidden”
high affinity binding sites, and we need additional strategies to
identify them.
Collapse
Affiliation(s)
- N. Arul Murugan
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 86 Stockholm, Sweden
- Theme Aging, The Aging Brain, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-75120, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
39
|
Ege D. Action Mechanisms of Curcumin in Alzheimer's Disease and Its Brain Targeted Delivery. MATERIALS 2021; 14:ma14123332. [PMID: 34208692 PMCID: PMC8234049 DOI: 10.3390/ma14123332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
AD is a chronic neurodegenerative disease. Many different signaling pathways, such as Wnt/β-catenin, Notch, ROS/JNK, and PI3K/Akt/mTOR are involved in Alzheimer’s disease and crosstalk between themselves. A promising treatment involves the uses of flavonoids, and one of the most promising is curcumin; however, because it has difficulty permeating the blood–brain barrier (BBB), it must be encapsulated by a drug carrier. Some of the most frequently studied are lipid nanocarriers, liposomes, micelles and PLGA. These carriers are further conjugated with brain-targeting agents such as lactoferrin and transferrin. In this review paper, curcumin and its therapeutic effects, which have been examined in vivo, are analyzed and then the delivery systems to the brain are addressed. Overall, the analysis of the literature revealed great potential for curcumin in treating AD and indicated the challenges that require further research.
Collapse
Affiliation(s)
- Duygu Ege
- Biomedical Engineering, Boğaziçi University, Rasathane Cd, Kandilli Campus, Istanbul 34684, Turkey
| |
Collapse
|
40
|
McMurray L, Macdonald JA, Ramakrishnan NK, Zhao Y, Williamson DW, Tietz O, Zhou X, Kealey S, Fagan SG, Smolek T, Cubinkova V, Žilka N, Spillantini MG, Tolkovsky AM, Goedert M, Aigbirhio FI. Synthesis and Assessment of Novel Probes for Imaging Tau Pathology in Transgenic Mouse and Rat Models. ACS Chem Neurosci 2021; 12:1885-1893. [PMID: 33689290 PMCID: PMC8176454 DOI: 10.1021/acschemneuro.0c00790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregated tau protein is a core pathology present in several neurodegenerative diseases. Therefore, the development and application of positron emission tomography (PET) imaging radiotracers that selectively bind to aggregated tau in fibril form is of importance in furthering the understanding of these disorders. While radiotracers used in human PET studies offer invaluable insight, radiotracers that are also capable of visualizing tau fibrils in animal models are important tools for translational research into these diseases. Herein, we report the synthesis and characterization of a novel library of compounds based on the phenyl/pyridinylbutadienylbenzothiazoles/benzothiazolium (PBB3) backbone developed for this application. From this library, we selected the compound LM229, which binds to recombinant tau fibrils with high affinity (Kd = 3.6 nM) and detects with high specificity (a) pathological 4R tau aggregates in living cultured neurons and mouse brain sections from transgenic human P301S tau mice, (b) truncated human 151-351 3R (SHR24) and 4R (SHR72) tau aggregates in transgenic rat brain sections, and (c) tau neurofibrillary tangles in brain sections from Alzheimer's disease (3R/4R tau) and progressive supranuclear palsy (4R tau). With LM229 also shown to cross the blood-brain barrier in vivo and its effective radiolabeling with the radioisotope carbon-11, we have established a novel platform for PET translational studies using rodent transgenic tau models.
Collapse
Affiliation(s)
- Lindsay McMurray
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | - Nisha Kuzhuppilly Ramakrishnan
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Yanyan Zhao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - David W. Williamson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Ole Tietz
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Xiaoyun Zhou
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Steven Kealey
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Steven G. Fagan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Tomáš Smolek
- Axon Neuroscience R&D Services SE, Bratislava, Slovak Republic 811 02
| | | | - Norbert Žilka
- Axon Neuroscience R&D Services SE, Bratislava, Slovak Republic 811 02
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Aviva M. Tolkovsky
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Franklin I. Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
41
|
An Update on the State of Tau Radiotracer Development: a Brief Review. Mol Imaging Biol 2021; 23:797-808. [PMID: 33987775 DOI: 10.1007/s11307-021-01612-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Evolving scientific evidence has begun to point towards hyperphosphorylated tau as a major neurotoxic component in the pathophysiological development of many major neurodegenerative conditions. In response to a need for accurate and reliable diagnosis and disease monitoring in clinical and trial settings, there has been great effort put into the development of tau radiotracers. While first-generation and second-generation radiotracers have provided a basis for assessing tau, concerns of inadequate specificity and selectivity have continued to motivate further study of these radiotracers and the development of novel radiopharmaceuticals. Given the prospective scientific and clinical value of a valid tau radiotracer, the molecular neuroimaging community must be aware of the most recent developments in the realm of tau radiotracer development. This brief review article will critically overview the most established tau radiotracers and, most importantly, concentrate on the progress of more recently developed tau radiotracers.
Collapse
|
42
|
Bao W, Xie F, Zuo C, Guan Y, Huang YH. PET Neuroimaging of Alzheimer's Disease: Radiotracers and Their Utility in Clinical Research. Front Aging Neurosci 2021; 13:624330. [PMID: 34025386 PMCID: PMC8134674 DOI: 10.3389/fnagi.2021.624330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's Disease (AD), the leading cause of senile dementia, is a progressive neurodegenerative disorder affecting millions of people worldwide and exerting tremendous socioeconomic burden on all societies. Although definitive diagnosis of AD is often made in the presence of clinical manifestations in late stages, it is now universally believed that AD is a continuum of disease commencing from the preclinical stage with typical neuropathological alterations appearing decades prior to its first symptom, to the prodromal stage with slight symptoms of amnesia (amnestic mild cognitive impairment, aMCI), and then to the terminal stage with extensive loss of basic cognitive functions, i.e., AD-dementia. Positron emission tomography (PET) radiotracers have been developed in a search to meet the increasing clinical need of early detection and treatment monitoring for AD, with reference to the pathophysiological targets in Alzheimer's brain. These include the pathological aggregations of misfolded proteins such as β-amyloid (Aβ) plagues and neurofibrillary tangles (NFTs), impaired neurotransmitter system, neuroinflammation, as well as deficient synaptic vesicles and glucose utilization. In this article we survey the various PET radiotracers available for AD imaging and discuss their clinical applications especially in terms of early detection and cognitive relevance.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
43
|
Shi Y, Murzin AG, Falcon B, Epstein A, Machin J, Tempest P, Newell KL, Vidal R, Garringer HJ, Sahara N, Higuchi M, Ghetti B, Jang MK, Scheres SHW, Goedert M. Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathol 2021; 141:697-708. [PMID: 33723967 PMCID: PMC8043864 DOI: 10.1007/s00401-021-02294-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Tau and Aβ assemblies of Alzheimer’s disease (AD) can be visualized in living subjects using positron emission tomography (PET). Tau assemblies comprise paired helical and straight filaments (PHFs and SFs). APN-1607 (PM-PBB3) is a recently described PET ligand for AD and other tau proteinopathies. Since it is not known where in the tau folds PET ligands bind, we used electron cryo-microscopy (cryo-EM) to determine the binding sites of APN-1607 in the Alzheimer fold. We identified two major sites in the β-helix of PHFs and SFs and a third major site in the C-shaped cavity of SFs. In addition, we report that tau filaments from posterior cortical atrophy (PCA) and primary age-related tauopathy (PART) are identical to those from AD. In support, fluorescence labelling showed binding of APN-1607 to intraneuronal inclusions in AD, PART and PCA. Knowledge of the binding modes of APN-1607 to tau filaments may lead to the development of new ligands with increased specificity and binding activity. We show that cryo-EM can be used to identify the binding sites of small molecules in amyloid filaments.
Collapse
|
44
|
Abstract
Two pathologically distinct neurodegenerative conditions, progressive supranuclear palsy and corticobasal degeneration, share in common deposits of tau proteins that differ both molecularly and ultrastructurally from the common tau deposits diagnostic of Alzheimer disease. The proteinopathy in these disorders is characterized by fibrillary aggregates of 4R tau proteins. The clinical presentations of progressive supranuclear palsy and of corticobasal degeneration are often confused with more common disorders such as Parkinson disease or subtypes of frontotemporal lobar degeneration. Neither of these 4R tau disorders has effective therapy, and while there are emerging molecular imaging approaches to identify patients earlier in the course of disease, there are as yet no reliably sensitive and specific approaches to diagnoses in life. In this review, aspects of the clinical syndromes, neuropathology, and molecular biomarker imaging studies applicable to progressive supranuclear palsy and to corticobasal degeneration will be presented. Future development of more accurate molecular imaging approaches is proposed.
Collapse
Affiliation(s)
- Kirk A Frey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The University of Michigan Health System, Ann Arbor, MI.
| |
Collapse
|
45
|
Ni R, Röjdner J, Voytenko L, Dyrks T, Thiele A, Marutle A, Nordberg A. In vitro Characterization of the Regional Binding Distribution of Amyloid PET Tracer Florbetaben and the Glia Tracers Deprenyl and PK11195 in Autopsy Alzheimer's Brain Tissue. J Alzheimers Dis 2021; 80:1723-1737. [PMID: 33749648 PMCID: PMC8150513 DOI: 10.3233/jad-201344] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Emerging evidence indicates a central role of gliosis in Alzheimer's disease (AD) pathophysiology. However, the regional distribution and interaction of astrogliosis and microgliosis in association with amyloid-β (Aβ) still remain uncertain. OBJECTIVE Here we studied the pathological profiles in autopsy AD brain by using specific imaging tracers. METHODS Autopsy brain tissues of AD (n = 15, age 70.4±8.5 years) and control cases (n = 12, age 76.6±10.9) were examined with homogenate binding assays, autoradiography for Aβ plaques (3H-florbetaben/3H-PIB), astrogliosis (3H-L-deprenyl), and microgliosis (3H-PK11195/3H-FEMPA), as well as immunoassays. RESULTS In vitro saturation analysis revealed high-affinity binding sites of 3H-florbetaben, 3H-L-deprenyl, and 3H-PK11195/3H-FEMPA in the frontal cortex of AD cases. In vitro3H-florbetaben binding increased across cortical and subcortical regions of AD compared to control with the highest binding in the frontal and parietal cortices. The in vitro3H-L-deprenyl binding showed highest binding in the hippocampus (dentate gyrus) followed by cortical and subcortical regions of AD while the GFAP expression was upregulated only in the hippocampus compared to control. The in vitro3H-PK11195 binding was solely increased in the parietal cortex and the hippocampus of AD compared to control. The 3H-florbetaben binding positively correlated with the 3H-L-deprenyl binding in the hippocampus and parietal cortex of AD and controls. Similarly, a positive correlation was observed between 3H-florbetaben binding and GFAP expression in hippocampus of AD and control. CONCLUSION The use of multi-imaging tracers revealed different regional pattern of changes in autopsy AD brain with respect to amyloid plaque pathology versus astrogliosis and microgliosis.
Collapse
Affiliation(s)
- Ruiqing Ni
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jennie Röjdner
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Larysa Voytenko
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Amelia Marutle
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, The Aging Brain Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
46
|
Brooks DJ. Imaging Familial and Sporadic Neurodegenerative Disorders Associated with Parkinsonism. Neurotherapeutics 2021; 18:753-771. [PMID: 33432494 PMCID: PMC8423977 DOI: 10.1007/s13311-020-00994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
In this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson's disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson's disease dementia, and Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- David J Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus N, 8200, Denmark.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
47
|
Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imaging 2021; 48:4152-4170. [PMID: 33594473 PMCID: PMC8566397 DOI: 10.1007/s00259-021-05207-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
Collapse
Affiliation(s)
- Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
- Institute for Regenerative Medicine, Uiversity of Zurich, Zurich, Switzerland.
| |
Collapse
|
48
|
Goodheart AE, Locascio JJ, Samore WR, Collins JA, Brickhouse M, Schultz A, Touroutoglou A, Johnson KA, Frosch MP, Growdon JH, Dickerson BC, Gomperts SN. 18F-AV-1451 positron emission tomography in neuropathological substrates of corticobasal syndrome. Brain 2021; 144:266-277. [PMID: 33578418 PMCID: PMC7880673 DOI: 10.1093/brain/awaa383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022] Open
Abstract
Multiple neuropathological processes can manifest in life as a corticobasal syndrome. We sought to relate retention of the tau-PET tracer 18F-AV-1451 and structural magnetic resonance measures of regional atrophy to clinical features in clinically diagnosed and neuropathologically confirmed cases of corticobasal syndrome and to determine whether these vary with the underlying neuropathological changes. In this observational, cross-sectional study, 11 subjects (eight female and three male, median age 72 years) with corticobasal syndrome underwent structural MRI, tau-PET with 18F-AV-1451, amyloid-PET with 11C-Pittsburgh compound B, detailed clinical examinations and neuropsychological testing. Of the 11, three had evidence of high amyloid burden consistent with Alzheimer's disease while eight did not. Neuropathological evaluations were acquired in six cases. Mixed effects general linear models were used to compare 18F-AV-1451 retention and atrophy in amyloid-negative corticobasal syndrome cases to 32 age-matched healthy control subjects and to relate cortical and subcortical 18F-AV-1451 retention and atrophy to clinical features. Subjects without amyloid, including three with pathologically confirmed corticobasal degeneration, showed greater regional 18F-AV-1451 retention and associated regional atrophy in areas commonly associated with corticobasal degeneration pathology than healthy control subjects [retention was higher compared to healthy controls (P = 0.0011), driven especially by the precentral gyrus (P = 0.011) and pallidum (P < 0.0001), and greater atrophy was seen in subjects compared to control subjects (P = 0.0004)]. Both 18F-AV-1451 retention and atrophy were greater in the clinically more affected hemisphere [on average, retention was 0.173 standardized uptake value ratio units higher on the more affected side (95% confidence interval, CI 0.11-0.24, P < 0.0001), and volume was 0.719 lower on the more affected side (95% CI 0.35-1.08, P = 0.0001)]. 18F-AV-1451 retention was greater in subcortical than in cortical regions, P < 0.0001. In contrast to these findings, subjects with amyloid-positive corticobasal syndrome, including two neuropathologically confirmed cases of Alzheimer's disease, demonstrated greater and more widespread 18F-AV-1451 retention and regional atrophy than observed in the amyloid-negative cases. There was thalamic 18F-AV-1451 retention but minimal cortical and basal ganglia uptake in a single corticobasal syndrome subject without neuropathological evidence of tau pathology, likely representing non-specific signal. Asymmetric cortical and basal ganglia 18F-AV-1451 retention consonant with the clinical manifestations characterize corticobasal syndrome due to corticobasal degeneration, whereas the cortical retention in cases associated with Alzheimer's disease is greater and more diffuse.
Collapse
Affiliation(s)
- Anna E Goodheart
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Wesley R Samore
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica A Collins
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michael Brickhouse
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aaron Schultz
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - John H Growdon
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen N Gomperts
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
49
|
Mishra SK, Yamaguchi Y, Higuchi M, Sahara N. Pick's Tau Fibril Shows Multiple Distinct PET Probe Binding Sites: Insights from Computational Modelling. Int J Mol Sci 2020; 22:E349. [PMID: 33396273 PMCID: PMC7796283 DOI: 10.3390/ijms22010349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023] Open
Abstract
In recent years, it has been realized that the tau protein is a key player in multiple neurodegenerative diseases. Positron emission tomography (PET) radiotracers that bind to tau filaments in Alzheimer's disease (AD) are in common use, but PET tracers binding to tau filaments of rarer, age-related dementias, such as Pick's disease, have not been widely explored. To design disease-specific and tau-selective PET tracers, it is important to determine where and how PET tracers bind to tau filaments. In this paper, we present the first molecular modelling study on PET probe binding to the structured core of tau filaments from a patient with Pick's disease (TauPiD). We have used docking, molecular dynamics simulations, binding-affinity and tunnel calculations to explore TauPiD binding sites, binding modes, and binding energies of PET probes (AV-1451, MK-6240, PBB3, PM-PBB3, THK-5351 and PiB) with TauPiD. The probes bind to TauPiD at multiple surface binding sites as well as in a cavity binding site. The probes show unique surface binding patterns, and, out of them all, PM-PBB3 proves to bind the strongest. The findings suggest that our computational workflow of structural and dynamic details of the tau filaments has potential for the rational design of TauPiD specific PET tracers.
Collapse
Affiliation(s)
- Sushil K. Mishra
- Advance Glycoscience Research Cluster, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Naruhiko Sahara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| |
Collapse
|
50
|
Soleimani-Meigooni DN, Iaccarino L, La Joie R, Baker S, Bourakova V, Boxer AL, Edwards L, Eser R, Gorno-Tempini ML, Jagust WJ, Janabi M, Kramer JH, Lesman-Segev OH, Mellinger T, Miller BL, Pham J, Rosen HJ, Spina S, Seeley WW, Strom A, Grinberg LT, Rabinovici GD. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain 2020; 143:3477-3494. [PMID: 33141172 PMCID: PMC7719031 DOI: 10.1093/brain/awaa276] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Few studies have evaluated the relationship between in vivo18F-flortaucipir PET and post-mortem pathology. We sought to compare antemortem 18F-flortaucipir PET to neuropathology in a consecutive series of patients with a broad spectrum of neurodegenerative conditions. Twenty patients were included [mean age at PET 61 years (range 34-76); eight female; median PET-to-autopsy interval of 30 months (range 4-59 months)]. Eight patients had primary Alzheimer's disease pathology, nine had non-Alzheimer tauopathies (progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and frontotemporal lobar degeneration with MAPT mutations), and three had non-tau frontotemporal lobar degeneration. Using an inferior cerebellar grey matter reference, 80-100-min 18F-flortaucipir PET standardized uptake value ratio (SUVR) images were created. Mean SUVRs were calculated for progressive supranuclear palsy, corticobasal degeneration, and neurofibrillary tangle Braak stage regions of interest, and these values were compared to SUVRs derived from young, non-autopsy, cognitively normal controls used as a standard for tau negativity. W-score maps were generated to highlight areas of increased tracer retention compared to cognitively normal controls, adjusting for age as a covariate. Autopsies were performed blinded to PET results. There was excellent correspondence between areas of 18F-flortaucipir retention, on both SUVR images and W-score maps, and neurofibrillary tangle distribution in patients with primary Alzheimer's disease neuropathology. Patients with non-Alzheimer tauopathies and non-tau frontotemporal lobar degeneration showed a range of tracer retention that was less than Alzheimer's disease, though higher than age-matched, cognitively normal controls. Overall, binding across both tau-positive and tau-negative non-Alzheimer disorders did not reliably correspond with post-mortem tau pathology. 18F-flortaucipir SUVRs in subcortical regions were higher in autopsy-confirmed progressive supranuclear palsy and corticobasal degeneration than in controls, but were similar to values measured in Alzheimer's disease and tau-negative neurodegenerative pathologies. Quantification of 18F-flortaucipir SUVR images at Braak stage regions of interest reliably detected advanced Alzheimer's (Braak VI) pathology. However, patients with earlier Braak stages (Braak I-IV) did not show elevated tracer uptake in these regions compared to young, tau-negative controls. In summary, PET-to-autopsy comparisons confirm that 18F-flortaucipir PET is a reliable biomarker of advanced Braak tau pathology in Alzheimer's disease. The tracer cannot reliably differentiate non-Alzheimer tauopathies and may not detect early Braak stages of neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Suzanne Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rana Eser
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - William J Jagust
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Orit H Lesman-Segev
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Taylor Mellinger
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|