1
|
Magistrati M, Zupin L, Lamantea E, Baruffini E, Ghezzi D, Legati A, Celsi F, Murru FM, Capaci V, Pinamonti M, Bussani R, Carrozzi M, Dallabona C, Zeviani M, Bonati MT. De Novo DNM1L Pathogenic Variant Associated with Lethal Encephalocardiomyopathy-Case Report and Literature Review. Int J Mol Sci 2025; 26:846. [PMID: 39859560 PMCID: PMC11765995 DOI: 10.3390/ijms26020846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Pathogenic variants in DNM1L, encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo DNM1L variant identified by whole exome sequencing performed more than 10 years after the patient's death. Meanwhile, we reviewed the broadness and specificities of DNM1L-related phenotype. The patient, who exhibited developmental delay in her third year, developed a therapy-refractory myoclonic status epilepticus, followed by neurological deterioration with brain atrophy and refractory epilepsy. She died of heart failure due to hypertrophic cardiomyopathy. She was found to be heterozygous for the DNM1L variant (NM_ 012062.5):c.1201G>A, p.(Gly401Ser). We demonstrated its deleterious impact and dominant negative effect by assessing haploid and diploid mutant yeast strains, oxidative growth, oxygen consumption, frequency of petite, and architecture of the mitochondrial network. Structural modeling of p.(Gly401Ser) predicted the interference of the mutant protein in the self-oligomerization of the DRP1 active complex. DNM1L-related phenotypes include static or (early) lethal encephalopathy and neurodevelopmental disorders. In addition, there may be ophthalmological impairment, peripheral neuropathy, ataxia, dystonia, spasticity, myoclonus, and myopathy. The clinical presentations vary depending on mutations in different DRP1 domains. Few pathogenic variants, the p.(Gly401Ser) included, cause an encephalocardiomyopathy with refractory status epilepticus.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy; (M.M.); (C.D.)
| | - Luisa Zupin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy; (E.L.); (D.G.); (A.L.)
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy; (M.M.); (C.D.)
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy; (E.L.); (D.G.); (A.L.)
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza, 35, 20122 Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy; (E.L.); (D.G.); (A.L.)
| | - Fulvio Celsi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Flora Maria Murru
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Valeria Capaci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Maurizio Pinamonti
- Institute of Pathological Anatomy and Histology, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Via Giacomo Puccini, 50, 34148 Trieste, Italy; (M.P.); (R.B.)
| | - Rossana Bussani
- Institute of Pathological Anatomy and Histology, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Via Giacomo Puccini, 50, 34148 Trieste, Italy; (M.P.); (R.B.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Giacomo Puccini, 50, 34148 Trieste, Italy
| | - Marco Carrozzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy; (M.M.); (C.D.)
| | - Massimo Zeviani
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| |
Collapse
|
2
|
Messina M, Vaz FM, Rahman S. Mitochondrial membrane synthesis, remodelling and cellular trafficking. J Inherit Metab Dis 2025; 48:e12766. [PMID: 38872485 PMCID: PMC11730691 DOI: 10.1002/jimd.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria are dynamic cellular organelles with complex roles in metabolism and signalling. Primary mitochondrial disorders are a group of approximately 400 monogenic disorders arising from pathogenic genetic variants impacting mitochondrial structure, ultrastructure and/or function. Amongst these disorders, defects of complex lipid biosynthesis, especially of the unique mitochondrial membrane lipid cardiolipin, and membrane biology are an emerging group characterised by clinical heterogeneity, but with recurrent features including cardiomyopathy, encephalopathy, neurodegeneration, neuropathy and 3-methylglutaconic aciduria. This review discusses lipid synthesis in the mitochondrial membrane, the mitochondrial contact site and cristae organising system (MICOS), mitochondrial dynamics and trafficking, and the disorders associated with defects of each of these processes. We highlight overlapping functions of proteins involved in lipid biosynthesis and protein import into the mitochondria, pointing to an overarching coordination and synchronisation of mitochondrial functions. This review also focuses on membrane interactions between mitochondria and other organelles, namely the endoplasmic reticulum, peroxisomes, lysosomes and lipid droplets. We signpost disorders of these membrane interactions that may explain the observation of secondary mitochondrial dysfunction in heterogeneous pathological processes. Disruption of these organellar interactions ultimately impairs cellular homeostasis and organismal health, highlighting the central role of mitochondria in human health and disease.
Collapse
Affiliation(s)
- Martina Messina
- Mitochondrial Research Group, Genetics and Genomic Medicine DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Frédéric M. Vaz
- Department of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's HospitalAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
3
|
Wai T. Is mitochondrial morphology important for cellular physiology? Trends Endocrinol Metab 2024; 35:854-871. [PMID: 38866638 DOI: 10.1016/j.tem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Mitochondria are double membrane-bound organelles the network morphology of which in cells is shaped by opposing events of fusion and fission executed by dynamin-like GTPases. Mutations in these genes can perturb the form and functions of mitochondria in cell and animal models of mitochondrial diseases. An expanding array of chemical, mechanical, and genetic stressors can converge on mitochondrial-shaping proteins and disrupt mitochondrial morphology. In recent years, studies aimed at disentangling the multiple roles of mitochondrial-shaping proteins beyond fission or fusion have provided insights into the homeostatic relevance of mitochondrial morphology. Here, I review the pleiotropy of mitochondrial fusion and fission proteins with the aim of understanding whether mitochondrial morphology is important for cell and tissue physiology.
Collapse
Affiliation(s)
- Timothy Wai
- Institut Pasteur, Mitochondrial Biology, CNRS UMR 3691, Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Tang S, Fuß A, Fattahi Z, Culmsee C. Drp1 depletion protects against ferroptotic cell death by preserving mitochondrial integrity and redox homeostasis. Cell Death Dis 2024; 15:626. [PMID: 39191736 DOI: 10.1038/s41419-024-07015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Mitochondria are highly dynamic organelles which undergo constant fusion and fission as part of the mitochondrial quality control. In genetic diseases and age-related neurodegenerative disorders, altered mitochondrial fission-fusion dynamics have been linked to impaired mitochondrial quality control, disrupted organelle integrity and function, thereby promoting neural dysfunction and death. The key enzyme regulating mitochondrial fission is the GTPase Dynamin-related Protein 1 (Drp1), which is also considered as a key player in mitochondrial pathways of regulated cell death. In particular, increasing evidence suggests a role for impaired mitochondrial dynamics and integrity in ferroptosis, which is an iron-dependent oxidative cell death pathway with relevance in neurodegeneration. In this study, we demonstrate that CRISPR/Cas9-mediated genetic depletion of Drp1 exerted protective effects against oxidative cell death by ferroptosis through preserved mitochondrial integrity and maintained redox homeostasis. Knockout of Drp1 resulted in mitochondrial elongation, attenuated ferroptosis-mediated impairment of mitochondrial membrane potential, and stabilized iron trafficking and intracellular iron storage. In addition, Drp1 deficiency exerted metabolic effects, with reduced basal and maximal mitochondrial respiration and a metabolic shift towards glycolysis. These metabolic effects further alleviated the mitochondrial contribution to detrimental ROS production thereby significantly enhancing neural cell resilience against ferroptosis. Taken together, this study highlights the key role of Drp1 in mitochondrial pathways of ferroptosis and expose the regulator of mitochondrial dynamics as a potential therapeutic target in neurological diseases involving oxidative dysregulation.
Collapse
Affiliation(s)
- Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Anneke Fuß
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
- Institute of Reconstructive Neurobiology, Neurodevelopmental Genetics, University Bonn, LIFE & BRAIN Center, Bonn, Germany
| | - Zohreh Fattahi
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany.
| |
Collapse
|
5
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Berti B, Verrigni D, Nasca A, Di Nottia M, Leone D, Torraco A, Rizza T, Bellacchio E, Legati A, Palermo C, Marchet S, Lamperti C, Novelli A, Mercuri EM, Bertini ES, Pane M, Ghezzi D, Carrozzo R. De Novo DNM1L Mutation in a Patient with Encephalopathy, Cardiomyopathy and Fatal Non-Epileptic Paroxysmal Refractory Vomiting. Int J Mol Sci 2024; 25:7782. [PMID: 39063023 PMCID: PMC11277250 DOI: 10.3390/ijms25147782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.
Collapse
Affiliation(s)
- Beatrice Berti
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Daniela Verrigni
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.V.); (A.N.)
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
- Neuromuscular Disorders Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy;
| | - Daniela Leone
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Concetta Palermo
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
| | - Silvia Marchet
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (D.V.); (A.N.)
| | - Eugenio Maria Mercuri
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Enrico Silvio Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy;
| | - Marika Pane
- Centro Clinico Nemo and Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy; (B.B.); (D.L.); (C.P.); (E.M.M.); (M.P.)
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (A.N.); (A.L.); (S.M.); (C.L.); (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy; (M.D.N.); (A.T.); (T.R.)
| |
Collapse
|
7
|
Lambiri DW, Levin LA. Maculopapillary Bundle Degeneration in Optic Neuropathies. Curr Neurol Neurosci Rep 2024; 24:203-218. [PMID: 38833037 DOI: 10.1007/s11910-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Degeneration of the maculopapillary bundle (MPB) is a prominent feature in a spectrum of optic neuropathies. MPB-selective degeneration is seen in specific conditions, such as nutritional and toxic optic neuropathies, Leber hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA). Despite their distinct etiologies and clinical presentations, which encompass variations in age of incidence and monocular or binocular onset, these disorders share a core molecular mechanism: compromised mitochondrial homeostasis. This disruption is characterized by dysfunctions in mitochondrial metabolism, biogenesis, and protein synthesis. This article provides a comprehensive understanding of the MPB's role in optic neuropathies, emphasizing the importance of mitochondrial mechanisms in the pathogenesis of these conditions. RECENT FINDINGS Optical coherence tomography studies have characterized the retinal nerve fiber layer changes accompanying mitochondrial-affiliated optic neuropathies. Selective thinning of the temporal optic nerve head is preceded by thickening in early stages of these disorders which correlates with reductions in macular ganglion cell layer thinning and vascular atrophy. A recently proposed mechanism underpinning the selective atrophy of the MPB involves the positive feedback of reactive oxygen species generation as a common consequence of mitochondrial dysfunction. Additionally, new research has revealed that the MPB can undergo degeneration in the early stages of glaucoma, challenging the historically held belief that this area was not involved in this common optic neuropathy. A variety of anatomical risk factors influence the propensity of glaucomatous MPB degeneration, and cases present distinct patterns of ganglion cell degeneration that are distinct from those observed in mitochondria-associated diseases. This review synthesizes clinical and molecular research on primary MPB disorders, highlighting the commonalities and differences in their pathogenesis. KEY POINTS (BOX) 1. Temporal degeneration of optic nerve fibers accompanied by cecocentral scotoma is a hallmark of maculopapillary bundle (MPB) degeneration. 2. Mechanisms of MPB degeneration commonly implicate mitochondrial dysfunction. 3. Recent research challenges the traditional belief that the MPB is uninvolved in glaucoma by showing degeneration in the early stages of this common optic neuropathy, yet with features distinct from other MPB-selective neuropathies. 4. Reactive oxygen species generation is a mechanism linking mitochondrial mechanisms of MPB-selective optic neuropathies, but in-vivo and in-vitro studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Darius W Lambiri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Amore G, Romagnoli M, Carbonelli M, Cascavilla ML, De Negri AM, Carta A, Parisi V, Di Renzo A, Schiavi C, Lenzetti C, Zenesini C, Ormanbekova D, Palombo F, Fiorini C, Caporali L, Carelli V, Barboni P, La Morgia C. AFG3L2 and ACO2-Linked Dominant Optic Atrophy: Genotype-Phenotype Characterization Compared to OPA1 Patients. Am J Ophthalmol 2024; 262:114-124. [PMID: 38278202 DOI: 10.1016/j.ajo.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Heterozygous mutations in the AFG3L2 gene (encoding a mitochondrial protease indirectly reflecting on OPA1 cleavage) and ACO2 gene (encoding the mitochondrial enzyme aconitase) are associated with isolated forms of Dominant Optic Atrophy (DOA). We aimed at describing their neuro-ophthalmological phenotype as compared with classic OPA1-related DOA. DESIGN Cross-sectional study. METHODS The following neuro-ophthalmological parameters were collected: logMAR visual acuity (VA), color vision, mean deviation and foveal threshold at visual fields, average and sectorial retinal nerve fiber layer (RNFL), and ganglion cell layer (GCL) thickness on optical coherence tomography. ACO2 and AFG3L2 patients were compared with an age- and sex-matched group of OPA1 patients with a 1:2 ratio. All eyes were analyzed using a clustered Wilcoxon rank sum test with the Rosner-Glynn-Lee method. RESULTS A total of 44 eyes from 23 ACO2 patients and 26 eyes from 13 AFG3L2 patients were compared with 143 eyes from 72 OPA1 patients. All cases presented with bilateral temporal-predominant optic atrophy with various degree of visual impairment. Comparison between AFG3L2 and OPA1 failed to reveal any significant difference. ACO2 patients compared to both AFG3L2 and OPA1 presented overall higher values of nasal RNFL thickness (P = .029, P = .023), average thickness (P = .012, P = .0007), and sectorial GCL thickness. These results were confirmed also comparing separately affected and subclinical patients. CONCLUSIONS Clinically, DOA remains a fairly homogeneous entity despite the growing genetic heterogeneity. ACO2 seems to be associated with an overall better preservation of retinal ganglion cells, probably depending on the different pathogenic mechanism involving mtDNA maintenance, as opposed to AFG3L2, which is involved in OPA1 processing and is virtually indistinguishable from classic OPA1-DOA.
Collapse
Affiliation(s)
- Giulia Amore
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Michele Carbonelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Arturo Carta
- Ophthalmology Unit (A.C.), University Hospital of Parma, University of Parma, Parma, Italy
| | | | | | - Costantino Schiavi
- Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Lenzetti
- Department of Surgery and Translational Medicine (C.L.), Eye Clinic, Careggi University Hospital, University of Florence, Florence, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.Z.), Unità di Epidemiologia e Statistica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Piero Barboni
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara La Morgia
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M.), UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
10
|
Maruyama T, Hama Y, Noda NN. Mechanisms of mitochondrial reorganization. J Biochem 2024; 175:167-178. [PMID: 38016932 DOI: 10.1093/jb/mvad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The cytoplasm of eukaryotes is dynamically zoned by membrane-bound and membraneless organelles. Cytoplasmic zoning allows various biochemical reactions to take place at the right time and place. Mitochondrion is a membrane-bound organelle that provides a zone for intracellular energy production and metabolism of lipids and iron. A key feature of mitochondria is their high dynamics: mitochondria constantly undergo fusion and fission, and excess or damaged mitochondria are selectively eliminated by mitophagy. Therefore, mitochondria are appropriate model systems to understand dynamic cytoplasmic zoning by membrane organelles. In this review, we summarize the molecular mechanisms of mitochondrial fusion and fission as well as mitophagy unveiled through studies using yeast and mammalian models.
Collapse
Affiliation(s)
- Tatsuro Maruyama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yutaro Hama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
11
|
Zhang Z, Bie X, Chen Z, Liu J, Xie Z, Li X, Xiao M, Zhang Q, Zhang Y, Yang Y, Li D. A novel variant of DNM1L expanding the clinical phenotypic spectrum: a case report and literature review. BMC Pediatr 2024; 24:104. [PMID: 38341530 PMCID: PMC10858475 DOI: 10.1186/s12887-023-04442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Mitochondrial diseases are heterogeneous in terms of clinical manifestations and genetic characteristics. The dynamin 1-like gene (DNM1L) encodes dynamin-related protein 1 (DRP1), a member of the GTPases dynamin superfamily responsible for mitochondrial and peroxisomal fission. DNM1L variants can lead to mitochondrial fission dysfunction. CASE PRESENTATION Herein, we report a distinctive clinical phenotype associated with a novel variant of DNM1L and review the relevant literature. A 5-year-old girl presented with paroxysmal hemiplegia, astigmatism, and strabismus. Levocarnitine and coenzyme Q10 supplement showed good efficacy. Based on the patient's clinical data, trio whole-exome sequencing (trio-WES) and mtDNA sequencing were performed to identify the potential causative genes, and Sanger sequencing was used to validate the specific variation in the proband and her family members. The results showed a novel de novo heterozygous nonsense variant in exon 20 of the DNM1L gene, c.2161C>T, p.Gln721Ter, which is predicted to be a pathogenic variant according to the ACMG guidelines. The proband has a previously undescribed clinical manifestation, namely hemiparesis, which may be an additional feature of the growing phenotypic spectrum of DNM1L-related diseases. CONCLUSION Our findings elucidate a novel variant in DNM1L-related disease and reveal an expanding phenotypic spectrum associated with DNM1L variants. This report highlights the necessity of next generation sequencing for early diagnosis of patients, and that further clinical phenotypic and genotypic analysis may help to improve the understanding of DNM1L-related diseases.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Xiaofan Bie
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jing Liu
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhenhua Xie
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Xian Li
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Mengjun Xiao
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Qiang Zhang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yaodong Zhang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Dongxiao Li
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
12
|
Ladero M, Reche-Sainz JA, Gallardo ME. Hereditary Optic Neuropathies: A Systematic Review on the Interplay between Biomaterials and Induced Pluripotent Stem Cells. Bioengineering (Basel) 2024; 11:52. [PMID: 38247929 PMCID: PMC10813088 DOI: 10.3390/bioengineering11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Hereditary optic neuropathies (HONs) such as dominant optic atrophy (DOA) and Leber Hereditary Optic Neuropathy (LHON) are mitochondrial diseases characterized by a degenerative loss of retinal ganglion cells (RGCs) and are a cause of blindness worldwide. To date, there are only limited disease-modifying treatments for these disorders. The discovery of induced pluripotent stem cell (iPSC) technology has opened several promising opportunities in the field of HON research and the search for therapeutic approaches. This systematic review is focused on the two most frequent HONs (LHON and DOA) and on the recent studies related to the application of human iPSC technology in combination with biomaterials technology for their potential use in the development of RGC replacement therapies with the final aim of the improvement or even the restoration of the vision of HON patients. To this purpose, the combination of natural and synthetic biomaterials modified with peptides, neurotrophic factors, and other low- to medium-molecular weight compounds, mimicking the ocular extracellular matrices, with human iPSC or iPSC-derived cell retinal progenitors holds enormous potential to be exploited in the near future for the generation of transplantable RGC populations.
Collapse
Affiliation(s)
- Miguel Ladero
- FQPIMA Group, Materials and Chemical Engineering Department, Chemical Sciences School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose Alberto Reche-Sainz
- Ophthalmology Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Translational Research with iPS Cells Group, Research Institute of Hospital 12 de Octubre, imas12, 28041 Madrid, Spain
| | - M. Esther Gallardo
- Translational Research with iPS Cells Group, Research Institute of Hospital 12 de Octubre, imas12, 28041 Madrid, Spain
| |
Collapse
|
13
|
Gazit I, Hecht I, Weiner C, Kotlyar A, Almer Z, Bakshi E, Or L, Volkov H, Feldman B, Maharshak I, Michelson M, Goldenberg-Cohen N, Pras E. Variants in the WDR45 Gene Within the OPA-2 Locus Associate With Isolated X-Linked Optic Atrophy. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37819743 PMCID: PMC10573587 DOI: 10.1167/iovs.64.13.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose To describe clinical and molecular findings of two families with X-linked optic atrophy and present two new pathogenic variants in the WDR45 gene. Methods Case series and molecular analysis of two families of Jewish Ashkenazi descent with early onset bilateral optic atrophy. Whole-exome sequencing (WES) and bioinformatic analysis were performed, followed by Sanger sequencing and segregation analysis. Results In both families, male siblings (three in family 1, two in family 2) had early-onset isolated bilateral optic atrophy. The sibling's healthy mother (and in the second family also one healthy sister) had a mild presentation, suggesting a carrier state and an X-linked inheritance pattern. All participants were otherwise healthy, apart from mild learning disabilities and autism spectrum disorder in two siblings of the second family. Variants in known optic atrophy genes were excluded. Analysis revealed a point variant in the WDR45 gene-a missense variant in the first family, NM_001029896.2:c.107C>A; NP_001025067.1:p.Pro36His (variant ID: 1704205), and a splice site variant in the second family, NM_001029896.2:c.236-1G>T; NP_009006.2:p.Val80Leu (variant ID: 1704204), located on Xp11.23 (OPA2 locus). Both variants are novel and predicted as pathogenic. In both families, the variant was seen with full segregation with the disease, occurring in all affected male participants and in one allele of the carrier females, as well as none of the healthy participants. Conclusions Among two families with isolated X-linked optic atrophy, molecular analysis revealed novel variants in the WDR45 gene in full segregation with the disease. This gene resides within the OPA2 locus, previously described to associate with X-linked optic atrophy. Taken together, these findings suggest that certain pathogenic variants in the WDR45 gene are associated with isolated X-linked optic atrophy.
Collapse
Affiliation(s)
- Inbal Gazit
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idan Hecht
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| | - Chen Weiner
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| | - Alina Kotlyar
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| | - Zina Almer
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
| | - Erez Bakshi
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Or
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Volkov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Barak Feldman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Maharshak
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ophthalmology, Edith Wolfson Medical Center, Holon, Israel
| | - Marina Michelson
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel Aviv, Israel
| | - Nitza Goldenberg-Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel, and the Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
| | - Eran Pras
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| |
Collapse
|
14
|
Bauer BL, Rochon K, Liu JC, Ramachandran R, Mears JA. Disease-associated mutations in Drp1 have fundamentally different effects on the mitochondrial fission machinery. Hum Mol Genet 2023; 32:1975-1987. [PMID: 36795043 PMCID: PMC10244223 DOI: 10.1093/hmg/ddad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Patient mutations have been identified throughout dynamin-related protein 1 (Drp1), the key protein mediator of mitochondrial fission. These changes generally impact young children and often result in severe neurological defects and, in some instances, death. Until now, the underlying functional defect leading to patient phenotypes has been largely speculative. We therefore analyzed six disease-associated mutations throughout the GTPase and middle domains (MD) of Drp1. The MD plays a role in Drp1 oligomerization, and three mutations in this region were predictably impaired in self-assembly. However, another mutant in this region (F370C) retained oligomerization capability on pre-curved membranes despite being assembly-limited in solution. Instead, this mutation impaired membrane remodeling of liposomes, which highlights the importance of Drp1 in generating local membrane curvature before fission. Two GTPase domain mutations were also observed in different patients. The G32A mutation was impaired in GTP hydrolysis both in solution and in the presence of lipid but remains capable of self-assembly on these lipid templates. The G223V mutation also exhibited decreased GTPase activity and was able to assemble on pre-curved lipid templates; however, this change impaired membrane remodeling of unilamellar liposomes similar to F370C. This demonstrates that the Drp1 GTPase domain also contributes to self-assembly interactions that drive membrane curvature. Overall, the functional defects caused by mutations in Drp1 are highly variable even for mutations that reside within the same functional domain. This study provides a framework for characterizing additional Drp1 mutations to provide a comprehensive understanding of functional sites within this essential protein.
Collapse
Affiliation(s)
- Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kristy Rochon
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jasmine C Liu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| |
Collapse
|
15
|
Robertson GL, Riffle S, Patel M, Bodnya C, Marshall A, Beasley HK, Garza-Lopez E, Shao J, Vue Z, Hinton A, Stoll MS, de Wet S, Theart RP, Chakrabarty RP, Loos B, Chandel NS, Mears JA, Gama V. DRP1 mutations associated with EMPF1 encephalopathy alter mitochondrial membrane potential and metabolic programs. J Cell Sci 2023; 136:jcs260370. [PMID: 36763487 PMCID: PMC10657212 DOI: 10.1242/jcs.260370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/22/2022] [Indexed: 02/11/2023] Open
Abstract
Mitochondria and peroxisomes are dynamic signaling organelles that constantly undergo fission, driven by the large GTPase dynamin-related protein 1 (DRP1; encoded by DNM1L). Patients with de novo heterozygous missense mutations in DNM1L present with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF1) - a devastating neurodevelopmental disease with no effective treatment. To interrogate the mechanisms by which DRP1 mutations cause cellular dysfunction, we used human-derived fibroblasts from patients who present with EMPF1. In addition to elongated mitochondrial morphology and lack of fission, patient cells display lower coupling efficiency, increased proton leak and upregulation of glycolysis. Mitochondrial hyperfusion also results in aberrant cristae structure and hyperpolarized mitochondrial membrane potential. Peroxisomes show a severely elongated morphology in patient cells, which is associated with reduced respiration when cells are reliant on fatty acid oxidation. Metabolomic analyses revealed impaired methionine cycle and synthesis of pyrimidine nucleotides. Our study provides insight into the role of mitochondrial dynamics in cristae maintenance and the metabolic capacity of the cell, as well as the disease mechanism underlying EMPF1.
Collapse
Affiliation(s)
| | - Stellan Riffle
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
| | - Mira Patel
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
| | - Caroline Bodnya
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
| | - Andrea Marshall
- Vanderbilt University, Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Heather K. Beasley
- Vanderbilt University, Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Edgar Garza-Lopez
- Vanderbilt University, Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52246, USA
| | - Zer Vue
- Vanderbilt University, Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Antentor Hinton
- Vanderbilt University, Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | - Maria S. Stoll
- Case Western Reserve University, Department of Pharmacology and Center for Mitochondrial Diseases, Cleveland, OH 44106, USA
| | - Sholto de Wet
- Stellenbosch University, Department of Physiological Sciences, Matieland, 7602, Stellenbosch, South Africa
| | - Rensu P. Theart
- Stellenbosch University, Department of Electrical and Electronic Engineering, Matieland, 7602, Stellenbosch, South Africa
| | - Ram Prosad Chakrabarty
- Northwestern University, Feinberg School of Medicine Department of Medicine Division of Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA
| | - Ben Loos
- Stellenbosch University, Department of Electrical and Electronic Engineering, Matieland, 7602, Stellenbosch, South Africa
| | - Navdeep S. Chandel
- Northwestern University, Feinberg School of Medicine Department of Medicine Division of Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine Department of Biochemistry and Molecular Genetics, Chicago, IL 60611, USA
| | - Jason A. Mears
- Case Western Reserve University, Department of Pharmacology and Center for Mitochondrial Diseases, Cleveland, OH 44106, USA
| | - Vivian Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Vanderbilt University, Vanderbilt Center for Stem Cell Biology, Nashville, TN 37232, USA
- Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Lhuissier C, Wagner BE, Vincent A, Garraux G, Hougrand O, Van Coster R, Benoit V, Karadurmus D, Lenaers G, Gueguen N, Chevrollier A, Maystadt I. Case report: Thirty-year progression of an EMPF1 encephalopathy due to defective mitochondrial and peroxisomal fission caused by a novel de novo heterozygous DNM1L variant. Front Neurol 2022; 13:937885. [PMID: 36212643 PMCID: PMC9538651 DOI: 10.3389/fneur.2022.937885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in DNM1L (DRP1), which encode a key player of mitochondrial and peroxisomal fission, have been reported in patients with the variable phenotypic spectrum, ranging from non-syndromic optic atrophy to lethal infantile encephalopathy. Here, we report a case of an adult female patient presenting with a complex neurological phenotype that associates axonal sensory neuropathy, spasticity, optic atrophy, dysarthria, dysphasia, dystonia, and ataxia, worsening with aging. Whole-exome sequencing revealed a heterozygous de novo variant in the GTPase domain of DNM1L [NM_001278464.1: c.176C>A p.(Thr59Asn)] making her the oldest patient suffering from encephalopathy due to defective mitochondrial and peroxisomal fission-1. In silico analysis suggested a protein destabilization effect of the variant Thr59Asn. Unexpectedly, Western blotting disclosed profound decrease of DNM1L expression, probably related to the degradation of DNM1L complexes. A detailed description of mitochondrial and peroxisomal anomalies in transmission electron and 3D fluorescence microscopy studies confirmed the exceptional phenotype of this patient.
Collapse
Affiliation(s)
- Charlène Lhuissier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d'Angers, Angers, France
| | - Bart E. Wagner
- Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Amy Vincent
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gaëtan Garraux
- GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU Liège, Liège, Belgium
| | | | - Rudy Van Coster
- Division of Pediatric Neurology and Metabolism, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Valerie Benoit
- Institut de Pathologie et de Génétique, Gosselies, Belgium
| | | | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d'Angers, Angers, France
- Service de Neurologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d'Angers, Angers, France
- Service de Biochimie et Biologie Moléculaire, CHU Angers, Angers, France
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d'Angers, Angers, France
- *Correspondence: Arnaud Chevrollier
| | - Isabelle Maystadt
- Institut de Pathologie et de Génétique, Gosselies, Belgium
- Faculté de Médecine, URPhyM, Université de Namur, Namur, Belgium
- Isabelle Maystadt
| |
Collapse
|
18
|
Al Ojaimi M, Salah A, El-Hattab AW. Mitochondrial Fission and Fusion: Molecular Mechanisms, Biological Functions, and Related Disorders. MEMBRANES 2022; 12:membranes12090893. [PMID: 36135912 PMCID: PMC9502208 DOI: 10.3390/membranes12090893] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 05/13/2023]
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission. These active processes occur continuously and simultaneously and are mediated by nuclear-DNA-encoded proteins that act on mitochondrial membranes. The balance between fusion and fission determines the mitochondrial morphology and adapts it to the metabolic needs of the cells. Therefore, these two processes are crucial to optimize mitochondrial function and its bioenergetics abilities. Defects in mitochondrial proteins involved in fission and fusion due to pathogenic variants in the genes encoding them result in disruption of the equilibrium between fission and fusion, leading to a group of mitochondrial diseases termed disorders of mitochondrial dynamics. In this review, the molecular mechanisms and biological functions of mitochondrial fusion and fission are first discussed. Then, mitochondrial disorders caused by defects in fission and fusion are summarized, including disorders related to MFN2, MSTO1, OPA1, YME1L1, FBXL4, DNM1L, and MFF genes.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
| | - Azza Salah
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
| | - Ayman W. El-Hattab
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi 505193, United Arab Emirates
- Correspondence: ; Tel.: +971-508875123
| |
Collapse
|
19
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Zhang W, Sun X, Qi X, Liu X, Zhang Y, Qiao S, Lin H. Di-(2-Ethylhexyl) Phthalate and Microplastics Induced Neuronal Apoptosis through the PI3K/AKT Pathway and Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10771-10781. [PMID: 36006862 DOI: 10.1021/acs.jafc.2c05474] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Di-(2-Ethylhexyl) phthalate (DEHP) and microplastics (MPs) have released widespread residues to the environment and possess the ability to cause damage to humans and animals. However, there are still gaps in the study of damage to neurons caused by DEHP and MPs in mice cerebra and whether they have combined toxic effects. To investigate the underlying mechanism of action, mice were fed 200 mg/kg DEHP and 10 mg/L MPs in vivo. In vitro, NS20Y (CBNumber: CB15474825) cells were treated with 25 μM DEHP and 775 mg/L MPs. Next, qRT-PCR and western blot analysis were performed to evaluate PI3K/AKT pathway genes, mitochondrial dynamics-related genes, apoptosis-related genes, and GSK-3β and its associated genes, mRNA, and protein expression. To determine pathological changes in the mice cerebra, hematoxylin and eosin (H&E) staining, transmission electron microscopy, and TUNEL staining were employed. To determine the levels of reactive oxygen species (ROS) and apoptosis cells in vitro, ROS staining, acridine orange/ethidium bromide (AO/EB) staining, and flow cytometry were performed. Our results demonstrated that DEHP and MPs caused changes in mitochondrial function, and GSK-3β and its associated gene expression in mice through the PI3K/AKT pathway, which eventually led to apoptosis of neurons. Moreover, our findings showed that DEHP and MPs have a combined toxic effect on mice cerebra. Our findings facilitate the understanding of the neurotoxic effects of DEHP and MPs on neurons in the cerebra of mice and help identify the important role of maintaining normal mitochondrial function in protecting cerebrum health.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
21
|
Nolden KA, Egner JM, Collier JJ, Russell OM, Alston CL, Harwig MC, Widlansky ME, Sasorith S, Barbosa IA, Douglas AG, Baptista J, Walker M, Donnelly DE, Morris AA, Tan HJ, Kurian MA, Gorman K, Mordekar S, Deshpande C, Samanta R, McFarland R, Hill RB, Taylor RW, Oláhová M. Novel DNM1L variants impair mitochondrial dynamics through divergent mechanisms. Life Sci Alliance 2022; 5:e202101284. [PMID: 35914810 PMCID: PMC9354038 DOI: 10.26508/lsa.202101284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Imbalances in mitochondrial and peroxisomal dynamics are associated with a spectrum of human neurological disorders. Mitochondrial and peroxisomal fission both involve dynamin-related protein 1 (DRP1) oligomerisation and membrane constriction, although the precise biophysical mechanisms by which distinct DRP1 variants affect the assembly and activity of different DRP1 domains remains largely unexplored. We analysed four unreported de novo heterozygous variants in the dynamin-1-like gene DNM1L affecting different highly conserved DRP1 domains, leading to developmental delay, seizures, hypotonia, and/or rare cardiac complications in infancy. Single-nucleotide DRP1 stalk domain variants were found to correlate with more severe clinical phenotypes, with in vitro recombinant human DRP1 mutants demonstrating greater impairments in protein oligomerisation, DRP1-peroxisomal recruitment, and both mitochondrial and peroxisomal hyperfusion compared to GTPase or GTPase-effector domain variants. Importantly, we identified a novel mechanism of pathogenesis, where a p.Arg710Gly variant uncouples DRP1 assembly from assembly-stimulated GTP hydrolysis, providing mechanistic insight into how assembly-state information is transmitted to the GTPase domain. Together, these data reveal that discrete, pathological DNM1L variants impair mitochondrial network maintenance by divergent mechanisms.
Collapse
Affiliation(s)
- Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John M Egner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jack J Collier
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- The National Health Service (NHS) Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Megan C Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Souphatta Sasorith
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire and PhyMedExp, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Inês A Barbosa
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Andrew Gl Douglas
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Mark Walker
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Deirdre E Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Andrew A Morris
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Hui Jeen Tan
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Manju A Kurian
- Developmental Neurosciences Department, Zayed Centre for Research into Rare Diseases in Children, University College London Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, UK
| | - Kathleen Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Santosh Mordekar
- Department of Paediatric Neurology, Sheffield Children's Hospital, Sheffield, UK
| | - Charu Deshpande
- Clinical Genetics Unit, Guys and St. Thomas' NHS Foundation Trust, London, UK
| | - Rajib Samanta
- Department of Paediatric Neurology, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- The National Health Service (NHS) Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- The National Health Service (NHS) Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Newcastle University, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Charif M, Chevrollier A, Gueguen N, Kane S, Bris C, Goudenège D, Desquiret-Dumas V, Meunier I, Mochel F, Jeanjean L, Varenne F, Procaccio V, Reynier P, Bonneau D, Amati-Bonneau P, Lenaers G. Next-Generation Sequencing Identifies Novel PMPCA Variants in Patients with Late-Onset Dominant Optic Atrophy. Genes (Basel) 2022; 13:1202. [PMID: 35885985 PMCID: PMC9320445 DOI: 10.3390/genes13071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation and exome sequencing, we identified for the first time heterozygous PMPCA variants having a causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance. Functional assays on patients’ fibroblasts show a hyperconnection of the mitochondrial network and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells, and consequently lead to their progressive degeneration.
Collapse
Affiliation(s)
- Majida Charif
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda 60000, Morocco
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Valerie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University Hospital of Montpellier, University of Montpellier, 34000 Montpellier, France;
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, 34000 Montpellier, France
| | - Fanny Mochel
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Luc Jeanjean
- Department of Ophthalmology, Nîmes University Hospital, CEDEX 9, 30900 Nîmes, France;
| | - Fanny Varenne
- Department of Ophthalmology, Hôpital Pierre Paul Riquet CHU Purpan, 31300 Toulouse, France;
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Service de Neurologie, University Hospital Angers, 49933 Angers, France
| |
Collapse
|
23
|
Almannai M, Salah A, El-Hattab AW. Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. MEMBRANES 2022; 12:membranes12060625. [PMID: 35736332 PMCID: PMC9229594 DOI: 10.3390/membranes12060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria are surrounded by two membranes; the outer mitochondrial membrane and the inner mitochondrial membrane. They are unique organelles since they have their own DNA, the mitochondrial DNA (mtDNA), which is replicated continuously. Mitochondrial membranes have direct interaction with mtDNA and are therefore involved in organization of the mitochondrial genome. They also play essential roles in mitochondrial dynamics and the supply of nucleotides for mtDNA synthesis. In this review, we will discuss how the mitochondrial membranes interact with mtDNA and how this interaction is essential for mtDNA maintenance. We will review different mtDNA maintenance disorders that result from defects in this crucial interaction. Finally, we will review therapeutic approaches relevant to defects in mitochondrial membranes.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, Riyadh P.O. Box 22490, Saudi Arabia
- Correspondence:
| | - Azza Salah
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Ayman W. El-Hattab
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi P.O. Box 505193, United Arab Emirates
| |
Collapse
|
24
|
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022; 110:1899-1923. [PMID: 35429433 PMCID: PMC9233091 DOI: 10.1016/j.neuron.2022.03.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
25
|
Fission Impossible (?)-New Insights into Disorders of Peroxisome Dynamics. Cells 2022; 11:cells11121922. [PMID: 35741050 PMCID: PMC9221819 DOI: 10.3390/cells11121922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are highly dynamic and responsive organelles, which can adjust their morphology, number, intracellular position, and metabolic functions according to cellular needs. Peroxisome multiplication in mammalian cells involves the concerted action of the membrane-shaping protein PEX11β and division proteins, such as the membrane adaptors FIS1 and MFF, which recruit the fission GTPase DRP1 to the peroxisomal membrane. The latter proteins are also involved in mitochondrial division. Patients with loss of DRP1, MFF or PEX11β function have been identified, showing abnormalities in peroxisomal (and, for the shared proteins, mitochondrial) dynamics as well as developmental and neurological defects, whereas the metabolic functions of the organelles are often unaffected. Here, we provide a timely update on peroxisomal membrane dynamics with a particular focus on peroxisome formation by membrane growth and division. We address the function of PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes and pathophysiology of patients with defects in the key division proteins DRP1, MFF, and PEX11β as well as in the peroxisome–ER tether ACBD5. Potential therapeutic strategies for these rare disorders with limited treatment options are discussed.
Collapse
|
26
|
Kabanovski A, Donaldson L, Margolin E. Neuro-ophthalmological manifestations of Wolfram syndrome: Case series and review of the literature. J Neurol Sci 2022; 437:120267. [DOI: 10.1016/j.jns.2022.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
|
27
|
Yang H, Sibilla C, Liu R, Yun J, Hay BA, Blackstone C, Chan DC, Harvey RJ, Guo M. Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria. Nat Commun 2022; 13:1582. [PMID: 35332133 PMCID: PMC8948191 DOI: 10.1038/s41467-022-29071-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial fission is critically important for controlling mitochondrial morphology, function, quality and transport. Drp1 is the master regulator driving mitochondrial fission, but exactly how Drp1 is regulated remains unclear. Here, we identified Drosophila Clueless and its mammalian orthologue CLUH as key regulators of Drp1. As with loss of drp1, depletion of clueless or CLUH results in mitochondrial elongation, while as with drp1 overexpression, clueless or CLUH overexpression leads to mitochondrial fragmentation. Importantly, drp1 overexpression rescues adult lethality, tissue disintegration and mitochondrial defects of clueless null mutants in Drosophila. Mechanistically, Clueless and CLUH promote recruitment of Drp1 to mitochondria from the cytosol. This involves CLUH binding to mRNAs encoding Drp1 receptors MiD49 and Mff, and regulation of their translation. Our findings identify a crucial role of Clueless and CLUH in controlling mitochondrial fission through regulation of Drp1. Drp1 is the master regulator of mitochondrial fission, which has important impact on cellular functions. Here, Yang et al identified evolutionarily conserved proteins Clueless and its homolog CLUH as key regulators of Drp1 that function via translation of Drp1 receptors MiD49 and Mff.
Collapse
Affiliation(s)
- Huan Yang
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Caroline Sibilla
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Department of Pharmacology, University College London School of Pharmacy, London, UK.,AstraZeneca PLC, Cambridge Biomedical Campus, Cambridge, UK
| | - Raymond Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Jina Yun
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.,Genentech, Inc., South San Francisco, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA. .,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA. .,California NanoSystems Institute at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Dorn GW, Dang X. Predicting Mitochondrial Dynamic Behavior in Genetically Defined Neurodegenerative Diseases. Cells 2022; 11:cells11061049. [PMID: 35326500 PMCID: PMC8947719 DOI: 10.3390/cells11061049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dynamics encompass mitochondrial fusion, fission, and movement. Mitochondrial fission and fusion are seemingly ubiquitous, whereas mitochondrial movement is especially important for organelle transport through neuronal axons. Here, we review the roles of different mitochondrial dynamic processes in mitochondrial quantity and quality control, emphasizing their impact on the neurological system in Charcot–Marie–Tooth disease type 2A, amyotrophic lateral sclerosis, Friedrich’s ataxia, dominant optic atrophy, and Alzheimer’s, Huntington’s, and Parkinson’s diseases. In addition to mechanisms and concepts, we explore in detail different technical approaches for measuring mitochondrial dynamic dysfunction in vitro, describe how results from tissue culture studies may be applied to a better understanding of mitochondrial dysdynamism in human neurodegenerative diseases, and suggest how this experimental platform can be used to evaluate candidate therapeutics in different diseases or in individual patients sharing the same clinical diagnosis.
Collapse
Affiliation(s)
- Gerald W. Dorn
- Correspondence: ; Tel.: +314-362-4892; Fax: +314-362-8844
| | | |
Collapse
|
29
|
Liu S, Yuan Y, Xue Y, Xing C, Zhang B. Podocyte Injury in Diabetic Kidney Disease: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2022; 10:832887. [PMID: 35321238 PMCID: PMC8935076 DOI: 10.3389/fcell.2022.832887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Podocytes are a crucial cellular component in maintaining the glomerular filtration barrier, and their injury is the major determinant in the development of albuminuria and diabetic kidney disease (DKD). Podocytes are rich in mitochondria and heavily dependent on them for energy to maintain normal functions. Emerging evidence suggests that mitochondrial dysfunction is a key driver in the pathogenesis of podocyte injury in DKD. Impairment of mitochondrial function results in an energy crisis, oxidative stress, inflammation, and cell death. In this review, we summarize the recent advances in the molecular mechanisms that cause mitochondrial damage and illustrate the impact of mitochondrial injury on podocytes. The related mitochondrial pathways involved in podocyte injury in DKD include mitochondrial dynamics and mitophagy, mitochondrial biogenesis, mitochondrial oxidative phosphorylation and oxidative stress, and mitochondrial protein quality control. Furthermore, we discuss the role of mitochondria-associated membranes (MAMs) formation, which is intimately linked with mitochondrial function in podocytes. Finally, we examine the experimental evidence exploring the targeting of podocyte mitochondrial function for treating DKD and conclude with a discussion of potential directions for future research in the field of mitochondrial dysfunction in podocytes in DKD.
Collapse
Affiliation(s)
- Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi Xue
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| |
Collapse
|
30
|
Zeviani M, Carelli V. Mitochondrial Retinopathies. Int J Mol Sci 2021; 23:210. [PMID: 35008635 PMCID: PMC8745158 DOI: 10.3390/ijms23010210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
The retina is an exquisite target for defects of oxidative phosphorylation (OXPHOS) associated with mitochondrial impairment. Retinal involvement occurs in two ways, retinal dystrophy (retinitis pigmentosa) and subacute or chronic optic atrophy, which are the most common clinical entities. Both can present as isolated or virtually exclusive conditions, or as part of more complex, frequently multisystem syndromes. In most cases, mutations of mtDNA have been found in association with mitochondrial retinopathy. The main genetic abnormalities of mtDNA include mutations associated with neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) sometimes with earlier onset and increased severity (maternally inherited Leigh syndrome, MILS), single large-scale deletions determining Kearns-Sayre syndrome (KSS, of which retinal dystrophy is a cardinal symptom), and mutations, particularly in mtDNA-encoded ND genes, associated with Leber hereditary optic neuropathy (LHON). However, mutations in nuclear genes can also cause mitochondrial retinopathy, including autosomal recessive phenocopies of LHON, and slowly progressive optic atrophy caused by dominant or, more rarely, recessive, mutations in the fusion/mitochondrial shaping protein OPA1, encoded by a nuclear gene on chromosome 3q29.
Collapse
Affiliation(s)
- Massimo Zeviani
- Department of Neurosciences, The Clinical School, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
- Programma di Neurogenetica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 6, 40139 Bologna, Italy
| |
Collapse
|
31
|
König T, Nolte H, Aaltonen MJ, Tatsuta T, Krols M, Stroh T, Langer T, McBride HM. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat Cell Biol 2021; 23:1271-1286. [PMID: 34873283 DOI: 10.1038/s41556-021-00798-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial-derived vesicles (MDVs) are implicated in diverse physiological processes-for example, mitochondrial quality control-and are linked to various neurodegenerative diseases. However, their specific cargo composition and complex molecular biogenesis are still unknown. Here we report the proteome and lipidome of steady-state TOMM20+ MDVs. We identified 107 high-confidence MDV cargoes, which include all β-barrel proteins and the TOM import complex. MDV cargoes are delivered as fully assembled complexes to lysosomes, thus representing a selective mitochondrial quality control mechanism for multi-subunit complexes, including the TOM machinery. Moreover, we define key biogenesis steps of phosphatidic acid-enriched MDVs starting with the MIRO1/2-dependent formation of thin membrane protrusions pulled along microtubule filaments, followed by MID49/MID51/MFF-dependent recruitment of the dynamin family GTPase DRP1 and finally DRP1-dependent scission. In summary, we define the function of MDVs in mitochondrial quality control and present a mechanistic model for global GTPase-driven MDV biogenesis.
Collapse
Affiliation(s)
- Tim König
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mari J Aaltonen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michiel Krols
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Thomas Stroh
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
33
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Zou W, Ji D, Zhang Z, Yang L, Cao Y. Players in Mitochondrial Dynamics and Female Reproduction. Front Mol Biosci 2021; 8:717328. [PMID: 34708072 PMCID: PMC8542886 DOI: 10.3389/fmolb.2021.717328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial dynamics (fission and fusion) are essential physiological processes for mitochondrial metabolic function, mitochondrial redistribution, and mitochondrial quality control. Various proteins are involved in regulating mitochondrial dynamics. Aberrant expression of these proteins interferes with mitochondrial dynamics and induces a range of diseases. Multiple therapeutic approaches have been developed to treat the related diseases in recent years, but their curative effects are limited. Meanwhile, the role of mitochondrial dynamics in female reproductive function has attracted progressively more attention, including oocyte development and maturation, fertilization, and embryonic development. Here, we reviewed the significance of mitochondrial dynamics, proteins involved in mitochondrial dynamics, and disorders resulting from primary mitochondrial dynamic dysfunction. We summarized the latest therapeutic approaches of hereditary mitochondrial fusion-fission abnormalities and reviewed the recent advances in female reproductive mitochondrial dynamics.
Collapse
Affiliation(s)
- Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
35
|
Banerjee R, Mukherjee A, Nagotu S. Mitochondrial dynamics and its impact on human health and diseases: inside the DRP1 blackbox. J Mol Med (Berl) 2021; 100:1-21. [PMID: 34657190 DOI: 10.1007/s00109-021-02150-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential organelles that play a significant role in various cellular processes apart from providing energy in eukaryotic cells. An intricate link between mitochondrial structure and function is now unequivocally accepted. Several molecular players have been identified, which are important in maintaining the structure of the organelle. Dynamin-related protein 1 (DRP1) is one such conserved protein that is a vital regulator of mitochondrial dynamics. Multidisciplinary studies have helped elucidate the structure of the protein and its mechanism of action in great detail. Mutations in various domains of the protein have been identified that are associated with debilitating conditions in patients. The involvement of the protein in disease conditions such as neurodegeneration, cancer, and cardiovascular disorders is also gaining attention. The purpose of this review is to highlight recent findings on the role of DRP1 in human disease conditions and address its importance as a therapeutic target.
Collapse
Affiliation(s)
- Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Agradeep Mukherjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
36
|
Weisschuh N, Schimpf-Linzenbold S, Mazzola P, Kieninger S, Xiao T, Kellner U, Neuhann T, Kelbsch C, Tonagel F, Wilhelm H, Kohl S, Wissinger B. Mutation spectrum of the OPA1 gene in a large cohort of patients with suspected dominant optic atrophy: Identification and classification of 48 novel variants. PLoS One 2021; 16:e0253987. [PMID: 34242285 PMCID: PMC8270428 DOI: 10.1371/journal.pone.0253987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant optic atrophy is one of the most common inherited optic neuropathies. This disease is genetically heterogeneous, but most cases are due to pathogenic variants in the OPA1 gene: depending on the population studied, 32–90% of cases harbor pathogenic variants in this gene. The aim of this study was to provide a comprehensive overview of the entire spectrum of likely pathogenic variants in the OPA1 gene in a large cohort of patients. Over a period of 20 years, 755 unrelated probands with a diagnosis of bilateral optic atrophy were referred to our laboratory for molecular genetic investigation. Genetic testing of the OPA1 gene was initially performed by a combined analysis using either single-strand conformation polymorphism or denaturing high performance liquid chromatography followed by Sanger sequencing to validate aberrant bands or melting profiles. The presence of copy number variations was assessed using multiplex ligation-dependent probe amplification. Since 2012, genetic testing was based on next-generation sequencing platforms. Genetic screening of the OPA1 gene revealed putatively pathogenic variants in 278 unrelated probands which represent 36.8% of the entire cohort. A total of 156 unique variants were identified, 78% of which can be considered null alleles. Variant c.2708_2711del/p.(V903Gfs*3) was found to constitute 14% of all disease-causing alleles. Special emphasis was placed on the validation of splice variants either by analyzing cDNA derived from patients´ blood samples or by heterologous splice assays using minigenes. Splicing analysis revealed different aberrant splicing events, including exon skipping, activation of exonic or intronic cryptic splice sites, and the inclusion of pseudoexons. Forty-eight variants that we identified were novel. Nine of them were classified as pathogenic, 34 as likely pathogenic and five as variant of uncertain significance. Our study adds a significant number of novel variants to the mutation spectrum of the OPA1 gene and will thereby facilitate genetic diagnostics of patients with suspected dominant optic atrophy.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Simone Schimpf-Linzenbold
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.,CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ting Xiao
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ulrich Kellner
- Zentrum für seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany.,RetinaScience, Bonn, Germany
| | | | - Carina Kelbsch
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Helmut Wilhelm
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Lenaers G, Neutzner A, Le Dantec Y, Jüschke C, Xiao T, Decembrini S, Swirski S, Kieninger S, Agca C, Kim US, Reynier P, Yu-Wai-Man P, Neidhardt J, Wissinger B. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog Retin Eye Res 2021; 83:100935. [PMID: 33340656 DOI: 10.1016/j.preteyeres.2020.100935] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.
Collapse
Affiliation(s)
- Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France.
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Yannick Le Dantec
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Christoph Jüschke
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ting Xiao
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Sarah Decembrini
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Swirski
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sinja Kieninger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey; Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Ungsoo S Kim
- Kim's Eye Hospital, Seoul, South Korea; Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France; Department of Biochemistry, University Hospital of Angers, Angers, France
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - John Neidhardt
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany.
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
38
|
Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells 2021; 10:cells10071593. [PMID: 34201955 PMCID: PMC8306483 DOI: 10.3390/cells10071593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.
Collapse
Affiliation(s)
- Nicole A. Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Sonia Patel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Margaret E. Maes
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| | - Ryan J. Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- Boston Children’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
39
|
Banerjee R, Kumar A, Satpati P, Nagotu S. Mimicking human Drp1 disease-causing mutations in yeast Dnm1 reveals altered mitochondrial dynamics. Mitochondrion 2021; 59:283-295. [PMID: 34157431 DOI: 10.1016/j.mito.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
The dynamin-related protein 1 (Drp1) and its homologs in various eukaryotes are essential to maintain mitochondrial morphology and regulate mitochondrial division. Several mutations in different domains of Drp1 have been reported, which result in debilitating conditions. Four such disease-causing mutations of the middle domain of Drp1 were mimicked in the yeast dynamin-related GTPase (Dnm1) and were characterized in this study. Mitochondrial morphology and protein function were observed to be altered to a variable extent in cells expressing the mutated variants of Dnm1. Several aspects related to the protein such as punctate formation, localization to mitochondria, dynamic behavior and structure were analyzed by microscopy, biochemical studies and molecular dynamics simulations. Significant effects on the protein structure and function were observed in cells expressing A430D and G397D mutations. Overall, our data provide insight into the molecular and cellular alterations resulting from middle domain mutations in Dnm1.
Collapse
Affiliation(s)
- Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Abhishek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
40
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
41
|
Mancardi MM, Nesti C, Febbo F, Cordani R, Siri L, Nobili L, Lampugnani E, Giacomini T, Granata T, Marucci G, Consales A, Rossi A, Luria G, Santorelli FM, Buratti S. Focal status and acute encephalopathy in a 13-year-old boy with de novo DNM1L mutation: Video-polygraphic pattern and clues for differential diagnosis. Brain Dev 2021; 43:644-651. [PMID: 33485697 DOI: 10.1016/j.braindev.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pathogenic variants in the dynamin 1 like gene are related to abnormal mitochondrial dynamics and distributions and are associated to variable clinical phenotypes. A few patients harboring the p.Arg403Cys missense variant appears to be different from the classical, more severe phenotypes, showing sudden onset of drug resistant seizures after a previously normal or slightly delayed development. CASE REPORT We report on a boy with abrupt onset of focal status and coma at the age of 13, initially treated as autoimmune encephalitis, with final diagnosis of de novo missense p.Arg403Cys variant in the DNM1L gene. DISCUSSION We compare his clinical, electrophysiological, biochemical, neuroradiological and histopathological picture to the rare cases reported to date and provide diagnostic clues that can help clinicians in differentiate p.Arg403Cys-related phenotype from that of immune-mediated encephalopathies. CONCLUSION The clinical picture related to p.Arg403Cys mutations should be considered alongside acquired pathologies in the differential diagnosis of young patients with focal refractory epilepsy and encephalopathy, also occurring during late childhood or adolescence. Prompt genetic testing allows to avoid unnecessary treatments and procedures and to better define the prognosis and management strategies.
Collapse
Affiliation(s)
- Maria Margherita Mancardi
- Unit of Child Neuropsichiatry, Department of Clinical and Surgical Neurosciences and Rehabilitation, IRCCS Giannina Gaslini, Genoa, Italy.
| | - Claudia Nesti
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Francesca Febbo
- Neonatal and Pediatric Intensive Care Unit, Department of Critical Care, IRCCS Giannina Gaslini, Genova, Italy
| | - Ramona Cordani
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Laura Siri
- Unit of Child Neuropsichiatry, Department of Clinical and Surgical Neurosciences and Rehabilitation, IRCCS Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Unit of Child Neuropsichiatry, Department of Clinical and Surgical Neurosciences and Rehabilitation, IRCCS Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Elisabetta Lampugnani
- Neonatal and Pediatric Intensive Care Unit, Department of Critical Care, IRCCS Giannina Gaslini, Genova, Italy
| | - Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Consales
- Unit of Neurosurgery, Department of Clinical and Surgical Neurosciences and Rehabilitation, IRCCS Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | | | - Silvia Buratti
- Neonatal and Pediatric Intensive Care Unit, Department of Critical Care, IRCCS Giannina Gaslini, Genova, Italy
| |
Collapse
|
42
|
Kyriakoudi S, Drousiotou A, Petrou PP. When the Balance Tips: Dysregulation of Mitochondrial Dynamics as a Culprit in Disease. Int J Mol Sci 2021; 22:ijms22094617. [PMID: 33924849 PMCID: PMC8124286 DOI: 10.3390/ijms22094617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.
Collapse
Affiliation(s)
- Styliana Kyriakoudi
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, Nicosia 1683, Cyprus; (S.K.); (A.D.)
| | - Anthi Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, Nicosia 1683, Cyprus; (S.K.); (A.D.)
- Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Petros P. Petrou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, Nicosia 1683, Cyprus; (S.K.); (A.D.)
- Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
- Correspondence:
| |
Collapse
|
43
|
Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett 2021; 595:1184-1204. [PMID: 33742459 DOI: 10.1002/1873-3468.14077] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
In animals, mitochondria are mainly organised into an interconnected tubular network extending across the cell along a cytoskeletal scaffold. Mitochondrial fission and fusion, as well as distribution along cytoskeletal tracks, are counterbalancing mechanisms acting in concert to maintain a mitochondrial network tuned to cellular function. Balanced mitochondrial dynamics permits quality control of the network including biogenesis and turnover, and distribution of mitochondrial DNA, and is linked to metabolic status. Cellular and organismal health relies on a delicate balance between fission and fusion, and large rearrangements in the mitochondrial network can be seen in response to cellular insults and disease. Indeed, dysfunction in the major components of the fission and fusion machineries including dynamin-related protein 1 (DRP1), mitofusins 1 and 2 (MFN1, MFN2) and optic atrophy protein 1 (OPA1) and ensuing imbalance of mitochondrial dynamics can lead to neurodegenerative disease. Altered mitochondrial dynamics is also seen in more common diseases. In this review, the machinery involved in mitochondrial dynamics and their dysfunction in disease will be discussed.
Collapse
Affiliation(s)
- Nethmi M B Yapa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
44
|
Gerber S, Orssaud C, Kaplan J, Johansson C, Rozet JM. MCAT Mutations Cause Nuclear LHON-like Optic Neuropathy. Genes (Basel) 2021; 12:genes12040521. [PMID: 33918393 PMCID: PMC8067165 DOI: 10.3390/genes12040521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Pathological variants in the nuclear malonyl-CoA-acyl carrier protein transacylase (MCAT) gene, which encodes a mitochondrial protein involved in fatty-acid biogenesis, have been reported in two siblings from China affected by insidious optic nerve degeneration in childhood, leading to blindness in the first decade of life. After analysing 51 families with negative molecular diagnostic tests, from a cohort of 200 families with hereditary optic neuropathy (HON), we identified two novel MCAT mutations in a female patient who presented with acute, sudden, bilateral, yet asymmetric, central visual loss at the age of 20. This presentation is consistent with a Leber hereditary optic neuropathy (LHON)-like phenotype, whose existence and association with NDUFS2 and DNAJC30 has only recently been described. Our findings reveal a wider phenotypic presentation of MCAT mutations, and a greater genetic heterogeneity of nuclear LHON-like phenotypes. Although MCAT pathological variants are very uncommon, this gene should be investigated in HON patients, irrespective of disease presentation.
Collapse
Affiliation(s)
- Sylvie Gerber
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (S.G.); (J.K.)
| | - Christophe Orssaud
- Unité Ophtalmologie, Hôpital Européen Georges-Pompidou (HEGP), and Centre de Référence des Maladies Rares en Ophtalmologie (OPHTARA), Service d’Ophtalmologie, Hôpital Necker–Enfants Malades, 75015 Paris, France;
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (S.G.); (J.K.)
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, University of Oxford, Oxford OX3 7LD, UK;
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France; (S.G.); (J.K.)
- Correspondence:
| |
Collapse
|
45
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
46
|
Charif M, Bris C, Goudenège D, Desquiret-Dumas V, Colin E, Ziegler A, Procaccio V, Reynier P, Bonneau D, Lenaers G, Amati-Bonneau P. Use of Next-Generation Sequencing for the Molecular Diagnosis of 1,102 Patients With a Autosomal Optic Neuropathy. Front Neurol 2021; 12:602979. [PMID: 33841295 PMCID: PMC8027346 DOI: 10.3389/fneur.2021.602979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) facilitate the diagnosis of genetic disorders. To evaluate its use for the molecular diagnosis of inherited optic neuropathy (ION), a blinding disease caused by the degeneration of retinal ganglion cells, we performed genetic analysis using targeted NGS of 22 already known and candidate genes in a cohort of 1,102 affected individuals. The panel design, library preparation, and sequencing reactions were performed using the Ion AmpliSeq technology. Pathogenic variants were detected in 16 genes in 245 patients (22%), including 186 (17%) and 59 (5%) dominant and recessive cases, respectively. Results confirmed that OPA1 variants are responsible for the majority of dominant IONs, whereas ACO2 and WFS1 variants are also frequently involved in both dominant and recessive forms of ION. All pathogenic variants were found in genes encoding proteins involved in the mitochondrial function, highlighting the importance of mitochondria in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Majida Charif
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Céline Bris
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Valérie Desquiret-Dumas
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Estelle Colin
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Alban Ziegler
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Guy Lenaers
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France
| | - Patrizia Amati-Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| |
Collapse
|
47
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
48
|
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell 2021; 56:881-905. [PMID: 33662258 DOI: 10.1016/j.devcel.2021.02.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Timothy Wai
- Institut Pasteur CNRS UMR 3691, 25-28 Rue du Docteur Roux, Paris, France.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
49
|
Charif M, Wong YC, Kim S, Guichet A, Vignal C, Zanlonghi X, Bensaid P, Procaccio V, Bonneau D, Amati-Bonneau P, Reynier P, Krainc D, Lenaers G. Dominant mutations in MIEF1 affect mitochondrial dynamics and cause a singular late onset optic neuropathy. Mol Neurodegener 2021; 16:12. [PMID: 33632269 PMCID: PMC7905578 DOI: 10.1186/s13024-021-00431-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/08/2021] [Indexed: 02/01/2023] Open
Abstract
Inherited optic neuropathies are the most common mitochondrial diseases, leading to neurodegeneration involving the irreversible loss of retinal ganglion cells, optic nerve degeneration and central visual loss. Importantly, properly regulated mitochondrial dynamics are critical for maintaining cellular homeostasis, and are further regulated by MIEF1 (mitochondrial elongation factor 1) which encodes for MID51 (mitochondrial dynamics protein 51), an outer mitochondrial membrane protein that acts as an adaptor protein to regulate mitochondrial fission. However, dominant mutations in MIEF1 have not been previously linked to any human disease. Using targeted sequencing of genes involved in mitochondrial dynamics, we report the first heterozygous variants in MIEF1 linked to disease, which cause an unusual form of late-onset progressive optic neuropathy characterized by the initial loss of peripheral visual fields. Pathogenic MIEF1 variants linked to optic neuropathy do not disrupt MID51's localization to the outer mitochondrial membrane or its oligomerization, but rather, significantly disrupt mitochondrial network dynamics compared to wild-type MID51 in high spatial and temporal resolution confocal microscopy live imaging studies. Together, our study identifies dominant MIEF1 mutations as a cause for optic neuropathy and further highlights the important role of properly regulated mitochondrial dynamics in neurodegeneration.
Collapse
Affiliation(s)
- Majida Charif
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Agnès Guichet
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Catherine Vignal
- Neuroophthalmology Department, Rothschild Ophthalmologic Foundation, Paris, France
| | - Xavier Zanlonghi
- Centre de Compétence Maladies Rares, Clinique Pluridisciplinaire Jules Verne, Nantes, France
| | | | - Vincent Procaccio
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Patrizia Amati-Bonneau
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Guy Lenaers
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
| |
Collapse
|
50
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|