1
|
Sherbini AHE, Hasheminia A, Gemae MR, Ansari F, Anood A, Saha T, Towe CW, El-Diasty M. Neuroinflammatory Pathways Associated with Chronic Post-Thoracotomy Pain: A Review of Current Literature. Mol Neurobiol 2024:10.1007/s12035-024-04565-y. [PMID: 39467985 DOI: 10.1007/s12035-024-04565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Chronic post-thoracotomy pain (CPTP) is a major clinical problem that affects up to 35-55% of patients undergoing thoracic incisions. Evidence suggests that multiple cellular signaling pathways and neuro-inflammatory mediators may play an essential role in the pathogenesis of CPTP. In this comprehensive review, we present the current evidence on the cellular signaling pathways and inflammatory changes associated with the initiation and maintenance of CPTP, focusing on the potential application of these findings in the clinical setting. An electronic search of Medline, EMBASE, Cochrane, Google Scholar, and ClinicalTrials.gov was performed, and 3652 abstracts were identified. After an initial abstract screening, 131 studies underwent a full-text review, and nine papers were eventually included in this review. Studies were included if they assessed the cellular signaling pathways or inflammatory processes associated with the induction and/or maintenance of CPTP. All the identified studies were pre-clinical studies conducted on animal models. Our search identified seven cellular pathways (NK-1 receptor (NK-1), Glutaminase 1, Toll-like receptor 4 (TLR4), Resolvins, Ror-2, Sonic hedgehog signaling (Shh), and Wnt5a/Wnts) and six cytokines (IL-1β, IL-6, IL-8, IL-10, IFN-γ, and TNF-α) that were investigated in the context of CPTP. Multiple cellular signaling pathways and inflammatory cytokines may play an important role in the neuroinflammatory changes associated with the induction and maintenance of chronic post-thoracotomy pain in animal models. However, the clinical impact and therapeutic utility of these neuroinflammatory changes in routine clinical practice have yet to be demonstrated.
Collapse
Affiliation(s)
| | - Amin Hasheminia
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Mohamed R Gemae
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Farzan Ansari
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Alqaydi Anood
- Department of General Surgery, Queen's University, Kingston, ON, Canada
| | - Tarit Saha
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, ON, Canada
| | - Christopher W Towe
- Division of Thoracic and Esophageal Surgery, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mohammad El-Diasty
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada.
- Harrington Heart and Vascular Institute, Cardiac Surgery Department, University Hospitals Cleveland Medical Centre, Lakeside 3024, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Klyne DM, Smith SS, Hall M. Should cognitive behavioral therapy for insomnia be considered for preventing and managing chronic pain? Sleep 2024; 47:zsae177. [PMID: 39093687 PMCID: PMC11467058 DOI: 10.1093/sleep/zsae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 08/04/2024] Open
Affiliation(s)
- David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Simon S Smith
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Michelle Hall
- Sydney Musculoskeletal Health, The Kolling Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Kodila ZN, Shultz SR, Yamakawa GR, Mychasiuk R. Critical Windows: Exploring the Association Between Perinatal Trauma, Epigenetics, and Chronic Pain. Neuroscientist 2024; 30:574-596. [PMID: 37212380 PMCID: PMC11439237 DOI: 10.1177/10738584231176233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chronic pain is highly prevalent and burdensome, affecting millions of people worldwide. Although it emerges at any point in life, it often manifests in adolescence. Given that adolescence is a unique developmental period, additional strains associated with persistent and often idiopathic pain lead to significant long-term consequences. While there is no singular cause for the chronification of pain, epigenetic modifications that lead to neural reorganization may underpin central sensitization and subsequent manifestation of pain hypersensitivity. Epigenetic processes are particularly active during the prenatal and early postnatal years. We demonstrate how exposure to various traumas, such as intimate partner violence while in utero or adverse childhood experiences, can significantly influence epigenetic regulation within the brain and in turn modify pain-related processes. We provide compelling evidence that the burden of chronic pain is likely initiated early in life, often being transmitted from mother to offspring. We also highlight two promising prophylactic strategies, oxytocin administration and probiotic use, that have the potential to attenuate the epigenetic consequences of early adversity. Overall, we advance understanding of the causal relationship between trauma and adolescent chronic pain by highlighting epigenetic mechanisms that underlie this transmission of risk, ultimately informing how to prevent this rising epidemic.
Collapse
Affiliation(s)
- Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Nanaimo, Canada
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Sun ZC, Han WJ, Dou ZW, Lu N, Wang X, Wang FD, Ma SB, Tian ZC, Xian H, Liu WN, Liu YY, Wu WB, Chu WG, Guo H, Wang F, Ding H, Liu YY, Tao HR, Freichel M, Birnbaumer L, Li ZZ, Xie RG, Wu SX, Luo C. TRPC3/6 Channels Mediate Mechanical Pain Hypersensitivity via Enhancement of Nociceptor Excitability and of Spinal Synaptic Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404342. [PMID: 39340833 DOI: 10.1002/advs.202404342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Patients with tissue inflammation or injury often experience aberrant mechanical pain hypersensitivity, one of leading symptoms in clinic. Despite this, the molecular mechanisms underlying mechanical distortion are poorly understood. Canonical transient receptor potential (TRPC) channels confer sensitivity to mechanical stimulation. TRPC3 and TRPC6 proteins, coassembling as heterotetrameric channels, are highly expressed in sensory neurons. However, how these channels mediate mechanical pain hypersensitivity has remained elusive. It is shown that in mice and human, TRPC3 and TRPC6 are upregulated in DRG and spinal dorsal horn under pathological states. Double knockout of TRPC3/6 blunts mechanical pain hypersensitivity, largely by decreasing nociceptor hyperexcitability and spinal synaptic potentiation via presynaptic mechanism. In corroboration with this, nociceptor-specific ablation of TRPC3/6 produces comparable pain relief. Mechanistic analysis reveals that upon peripheral inflammation, TRPC3/6 in primary sensory neurons get recruited via released bradykinin acting on B1/B2 receptors, facilitating BDNF secretion from spinal nociceptor terminals, which in turn potentiates synaptic transmission through TRPC3/6 and eventually results in mechanical pain hypersensitivity. Antagonizing TRPC3/6 in DRG relieves mechanical pain hypersensitivity in mice and nociceptor hyperexcitability in human. Thus, TRPC3/6 in nociceptors is crucially involved in pain plasticity and constitutes a promising therapeutic target against mechanical pain hypersensitivity with minor side effects.
Collapse
Affiliation(s)
- Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Neurosurgery, Xi'an Daxing Hospital, Xi'an, 710016, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Wei Dou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Lu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, 710000, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Cheng Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hang Xian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wan-Neng Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Bin Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui-Ren Tao
- Department of Orthopedic Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, C1107AVV, Argentina
- Signal Transduction Laboratory, National institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
6
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
7
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. Brain Behav Immun 2024; 120:471-487. [PMID: 38925417 DOI: 10.1016/j.bbi.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Activity-induced muscle pain increases interleukin-1β (IL-1β) release from muscle macrophages and the development of hyperalgesia is prevented by blockade of IL-1β in muscle. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesize that in activity-induced pain, fatigue metabolites combined with IL-1β activate sensory neurons to increase BDNF release, peripherally in muscle and centrally in the spinal dorsal horn, to produce hyperalgesia. We tested the effect of intrathecal or intramuscular injection of BDNF-Tropomyosin receptor kinase B (TrkB) inhibitors, ANA-12 or TrkB-Fc, on development of activity-induced pain. Both inhibitors prevented the hyperalgesia when given before or 24hr after induction of the model in male but not female mice. BDNF messenger ribonucleic acid (mRNA) and protein were significantly increased in dorsal root ganglion (DRG) 24hr after induction of the model in both male and female mice. Blockade of IL-1β in muscle had no effect on the increased BNDF mRNA observed in the activity-induced pain model, while IL-1β applied to cultured DRG significantly induced BDNF expression, suggesting IL-1β is sufficient but not necessary to induce BNDF. Thus, fatigue metabolites, combined with IL-1β, upregulate BDNF in primary DRG neurons in both male and female mice, but contribute to activity-induced pain only in males.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA; Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joseph B Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
9
|
He WC, Hou SL, Wang KB, Xu N, Li K, Xiong T, Luo J. Treadmill running on neuropathic pain: via modulation of neuroinflammation. Front Mol Neurosci 2024; 17:1345864. [PMID: 38989156 PMCID: PMC11233809 DOI: 10.3389/fnmol.2024.1345864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 07/12/2024] Open
Abstract
Neuropathic pain is a type of chronic pain caused by an injury or somatosensory nervous system disease. Drugs and exercise could effectively relieve neuropathic pain, but no treatment can completely stop neuropathic pain. The integration of exercise into neuropathic pain management has attracted considerable interest in recent years, and treadmill training is the most used among exercise therapies. Neuropathic pain can be effectively treated if its mechanism is clarified. In recent years, the association between neuroinflammation and neuropathic pain has been explored. Neuroinflammation can trigger proinflammatory cytokines, activate microglia, inhibit descending pain modulatory systems, and promote the overexpression of brain-derived neurotrophic factor, which lead to the generation of neuropathic pain and hypersensitivity. Treadmill exercise can alleviate neuropathic pain mainly by regulating neuroinflammation, including inhibiting the activity of pro-inflammatory factors and over activation of microglia in the dorsal horn, regulating the expression of mu opioid receptor expression in the rostral ventromedial medulla and levels of γ-aminobutyric acid to activate the descending pain modulatory system and the overexpression of brain-derived neurotrophic factor. This article reviews and summarizes research on the effect of treadmill exercise on neuropathic pain and its role in the regulation of neuroinflammation to explore its benefits for neuropathic pain treatment.
Collapse
Affiliation(s)
- Wei-Chun He
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Shuang-Long Hou
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Kai-Bin Wang
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Ning Xu
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Ke Li
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Ting Xiong
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Jing Luo
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| |
Collapse
|
10
|
Klyne DM, Hall M. Is sleep the new treatment for pain? Two issues need resolving before deciding. Sleep 2024; 47:zsae089. [PMID: 38632974 PMCID: PMC11168756 DOI: 10.1093/sleep/zsae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Hall
- Sydney Musculoskeletal Health, The Kolling Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Tiwari N, Smith C, Sharma D, Shen S, Mehta P, Qiao LY. Plp1-expresssing perineuronal DRG cells facilitate colonic and somatic chronic mechanical pain involving Piezo2 upregulation in DRG neurons. Cell Rep 2024; 43:114230. [PMID: 38743566 PMCID: PMC11234328 DOI: 10.1016/j.celrep.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRGs) are activated in a variety of chronic pain conditions; however, their mediation roles in pain remain elusive. Here, we take advantage of proteolipid protein (PLP)/creERT-driven recombination in the periphery mainly occurring in SGCs of DRGs to assess the role of SGCs in the regulation of chronic mechanical hypersensitivity and pain-like responses in two organs, the distal colon and hindpaw, to test generality. We show that PLP/creERT-driven hM3Dq activation increases, and PLP/creERT-driven TrkB.T1 deletion attenuates, colon and hindpaw chronic mechanical hypersensitivity, positively associating with calcitonin gene-related peptide (CGRP) expression in DRGs and phospho-cAMP response element-binding protein (CREB) expression in the dorsal horn of the spinal cord. Activation of Plp1+ DRG cells also increases the number of small DRG neurons expressing Piezo2 and acquiring mechanosensitivity and leads to peripheral organ neurogenic inflammation. These findings unravel a role and mechanism of Plp1+ cells, mainly SGCs, in the facilitation of chronic mechanical pain and suggest therapeutic targets for pain mitigation.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Parshva Mehta
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| |
Collapse
|
13
|
Barbe MF, Chen FL, Loomis RH, Harris MY, Kim BM, Xie K, Hilliard BA, McGonagle ER, Bailey TD, Gares RP, Van Der Bas M, Kalicharan BA, Holt-Bright L, Stone LS, Hodges PW, Klyne DM. Characterization of pain-related behaviors in a rat model of acute-to-chronic low back pain: single vs. multi-level disc injury. FRONTIERS IN PAIN RESEARCH 2024; 5:1394017. [PMID: 38770243 PMCID: PMC11102983 DOI: 10.3389/fpain.2024.1394017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Low back pain is the most common type of chronic pain. We examined pain-related behaviors across 18 weeks in rats that received injury to one or two lumbar intervertebral discs (IVD) to determine if multi-level disc injuries enhance/prolong pain. Methods Twenty-three Sprague-Dawley adult female rats were used: 8 received disc puncture (DP) of one lumbar IVD (L5/6, DP-1); 8 received DP of two lumbar IVDs (L4/5 & L5/6, DP-2); 8 underwent sham surgery. Results DP-2 rats showed local (low back) sensitivity to pressure at 6- and 12-weeks post-injury, and remote sensitivity to pressure (upper thighs) at 12- and 18-weeks and touch (hind paws) at 6, 12 and 18-weeks. DP-1 rats showed local and remote pressure sensitivity at 12-weeks only (and no tactile sensitivity), relative to Sham DP rats. Both DP groups showed reduced distance traveled during gait testing over multiple weeks, compared to pre-injury; only DP-2 rats showed reduced distance relative to Sham DP rats at 12-weeks. DP-2 rats displayed reduced positive interactions with a novel adult female rat at 3-weeks and hesitation and freezing during gait assays from 6-weeks onwards. At study end (18-weeks), radiological and histological analyses revealed reduced disc height and degeneration of punctured IVDs. Serum BDNF and TNFα levels were higher at 18-weeks in DP-2 rats, relative to Sham DP rats, and levels correlated positively with remote sensitivity in hind paws (tactile) and thighs (pressure). Discussion Thus, multi-level disc injuries resulted in earlier, prolonged and greater discomfort locally and remotely, than single-level disc injury. BDNF and TNFα may have contributing roles.
Collapse
Affiliation(s)
- Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Frank Liu Chen
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Regina H. Loomis
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michele Y. Harris
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brandon M. Kim
- Medical Doctor Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Xie
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elizabeth R. McGonagle
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Taylor D. Bailey
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ryan P. Gares
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Megan Van Der Bas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Betsy A. Kalicharan
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lewis Holt-Bright
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laura S. Stone
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, United States
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Jia J, Chen T, Chen C, Si T, Gao C, Fang Y, Sun J, Wang J, Zhang Z. Astrocytes in preoptic area regulate acute nociception-induced hypothermia through adenosine receptors. CNS Neurosci Ther 2024; 30:e14726. [PMID: 38715251 PMCID: PMC11076694 DOI: 10.1111/cns.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.
Collapse
Affiliation(s)
- Junke Jia
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Ting Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Chang Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Tengxiao Si
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
| | - Chenyi Gao
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jiahui Sun
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- Institute of Neuroscience and Brain Diseases, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of MedicineSongjiang Hospital and Songjiang Research InstituteShanghaiChina
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| |
Collapse
|
15
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
16
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
17
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
18
|
Peier F, Mouthon M, De Pretto M, Chabwine JN. Response to experimental cold-induced pain discloses a resistant category among endurance athletes, with a distinct profile of pain-related behavior and GABAergic EEG markers: a case-control preliminary study. Front Neurosci 2024; 17:1287233. [PMID: 38287989 PMCID: PMC10822956 DOI: 10.3389/fnins.2023.1287233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Pain is a major public health problem worldwide, with a high rate of treatment failure. Among promising non-pharmacological therapies, physical exercise is an attractive, cheap, accessible and innocuous method; beyond other health benefits. However, its highly variable therapeutic effect and incompletely understood underlying mechanisms (plausibly involving the GABAergic neurotransmission) require further research. This case-control study aimed to investigate the impact of long-lasting intensive endurance sport practice (≥7 h/week for the last 6 months at the time of the experiment) on the response to experimental cold-induced pain (as a suitable chronic pain model), assuming that highly trained individual would better resist to pain, develop advantageous pain-copying strategies and enhance their GABAergic signaling. For this purpose, clinical pain-related data, response to a cold-pressor test and high-density EEG high (Hβ) and low beta (Lβ) oscillations were documented. Among 27 athletes and 27 age-adjusted non-trained controls (right-handed males), a category of highly pain-resistant participants (mostly athletes, 48.1%) was identified, displaying lower fear of pain, compared to non-resistant non-athletes. Furthermore, they tolerated longer cold-water immersion and perceived lower maximal sensory pain. However, while having similar Hβ and Lβ powers at baseline, they exhibited a reduction between cold and pain perceptions and between pain threshold and tolerance (respectively -60% and - 6.6%; -179.5% and - 5.9%; normalized differences), in contrast to the increase noticed in non-resistant non-athletes (+21% and + 14%; +23.3% and + 13.6% respectively). Our results suggest a beneficial effect of long-lasting physical exercise on resistance to pain and pain-related behaviors, and a modification in brain GABAergic signaling. In light of the current knowledge, we propose that the GABAergic neurotransmission could display multifaceted changes to be differently interpreted, depending on the training profile and on the homeostatic setting (e.g., in pain-free versus chronic pain conditions). Despite limitations related to the sample size and to absence of direct observations under acute physical exercise, this precursory study brings into light the unique profile of resistant individuals (probably favored by training) allowing highly informative observation on physical exercise-induced analgesia and paving the way for future clinical translation. Further characterizing pain-resistant individuals would open avenues for a targeted and physiologically informed pain management.
Collapse
Affiliation(s)
- Franziska Peier
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Division, Department of Internal Medicine, Fribourg-Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
19
|
Ismail CAN, Zakaria R, Azman KF, Shafin N, Bakar NAA. Brain-derived neurotrophic factor (BDNF) in chronic pain research: A decade of bibliometric analysis and network visualization. AIMS Neurosci 2024; 11:1-24. [PMID: 38617040 PMCID: PMC11007409 DOI: 10.3934/neuroscience.2024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Chronic pain research, with a specific focus on the brain-derived neurotrophic factor (BDNF), has made impressive progress in the past decade, as evident in the improved research quality and increased publications. To better understand this evolving landscape, a quantitative approach is needed. The main aim of this study is to identify the hotspots and trends of BDNF in chronic pain research. We screened relevant publications from 2013 to 2022 in the Scopus database using specific search subject terms. A total of 401 documents were selected for further analysis. We utilized several tools, including Microsoft Excel, Harzing's Publish or Perish, and VOSViewer, to perform a frequency analysis, citation metrics, and visualization, respectively. Key indicators that were examined included publication growth, keyword analyses, topmost influential articles and journals, networking by countries and co-citation of cited references. Notably, there was a persistent publication growth between 2015 and 2021. "Neuropathic pain" emerged as a prominent keyword in 2018, alongside "microglia" and "depression". The journal Pain® was the most impactful journal that published BDNF and chronic pain research, while the most influential publications came from open-access reviews and original articles. China was the leading contributor, followed by the United States (US), and maintained a leadership position in the total number of publications and collaborations. In conclusion, this study provides a comprehensive list of the most influential publications on BDNF in chronic pain research, thereby aiding in the understanding of academic concerns, research hotspots, and global trends in this specialized field.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Rahimah Zakaria
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Khairunnuur Fairuz Azman
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Nazlahshaniza Shafin
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Noor Azlina Abu Bakar
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Jalan Mahmud, 20400 Kuala Terengganu, Terengganu, MALAYSIA
| |
Collapse
|
20
|
Xiong HY, Hendrix J, Schabrun S, Wyns A, Campenhout JV, Nijs J, Polli A. The Role of the Brain-Derived Neurotrophic Factor in Chronic Pain: Links to Central Sensitization and Neuroinflammation. Biomolecules 2024; 14:71. [PMID: 38254671 PMCID: PMC10813479 DOI: 10.3390/biom14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies. The brain-derived neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both a neurotransmitter and neuromodulator. Mounting evidence supports BDNF's pro-nociceptive role, spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels are observed in various chronic pain disorders. To comprehensively understand the profound impact of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the intricate complexities of chronic pain.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
21
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
22
|
Korczeniewska OA, Husain S, Hoque M, Soteropoulos P, Khan J, Eliav E, Benoliel R. Time-Course Progression of Whole Transcriptome Expression Changes of Trigeminal Ganglia Compared to Dorsal Root Ganglia in Rats Exposed to Nerve Injury. THE JOURNAL OF PAIN 2024; 25:101-117. [PMID: 37524222 DOI: 10.1016/j.jpain.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Mechanisms underlying neuropathic pain (NP) are complex with multiple genes, their interactions, environmental and epigenetic factors being implicated. Transcriptional changes in the trigeminal (TG) and dorsal root (DRG) ganglia have been implicated in the development and maintenance of NP. Despite efforts to unravel molecular mechanisms of NP, many remain unknown. Also, most of the studies focused on the spinal system. Although the spinal and trigeminal systems share some of the molecular mechanisms, differences exist. We used RNA-sequencing technology to identify differentially expressed genes (DEGs) in the TG and DRG at baseline and 3 time points following the infraorbital or sciatic nerve injuries, respectively. Pathway analysis and comparison analysis were performed to identify differentially expressed pathways. Additionally, upstream regulator effects were investigated in the two systems. DEG (differentially expressed genes) analyses identified 3,225 genes to be differentially expressed between TG and DRG in naïve animals, 1,828 genes 4 days post injury, 5,644 at day 8 and 9,777 DEGs at 21 days postinjury. A comparison of top enriched canonical pathways revealed that a number of signaling pathway was significantly inhibited in the TG and activated in the DRG at 21 days postinjury. Finally, CORT upstream regulator was predicted to be inhibited in the TG while expression levels of the CSF1 upstream regulator were significantly elevated in the DRG at 21 days postinjury. This study provides a basis for further in-depth studies investigating transcriptional changes, pathways, and upstream regulation in TG and DRG in rats exposed to peripheral nerve injuries. PERSPECTIVE: Although trigeminal and dorsal root ganglia are homologs of each other, they respond differently to nerve injury and therefore treatment. Activation/inhibition of number of biological pathways appear to be ganglion/system specific suggesting that different approaches might be required to successfully treat neuropathies induced by injuries in spinal and trigeminal systems.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, New Jersey
| | - Seema Husain
- Department of Microbiology, Biochemistry and Molecular Genetics, The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Patricia Soteropoulos
- Department of Microbiology, Biochemistry and Molecular Genetics, The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Junad Khan
- Eastman Institute for Oral Health, University of Rochester, Rochester, New York
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester, Rochester, New York
| | - Rafael Benoliel
- Department of Oral and Maxillofacial Surgery, Sourasky Medical Center, Ichilov, Tel Aviv, Israel
| |
Collapse
|
23
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565022. [PMID: 37961342 PMCID: PMC10635076 DOI: 10.1101/2023.10.31.565022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Activity-induced muscle pain increases release of interleukin-1β (IL-1β) in muscle macrophages and the development of pain is prevented by blockade of IL-1β. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesized that metabolites released during fatiguing muscle contractions activate macrophages to release IL-1β, which subsequently activate sensory neurons to secrete BDNF. To test this hypothesis, we used an animal model of activity-induced pain induced by repeated intramuscular acidic saline injections combined with fatiguing muscle contractions. Intrathecal or intramuscular injection of inhibitors of BDNF-Tropomyosin receptor kinase B (TrkB) signaling, ANA-12 or TrkB-Fc, reduced the decrease in muscle withdrawal thresholds in male, but not in female, mice when given before or 24hr after, but not 1 week after induction of the model. BDNF messenger ribonucleic acid (mRNA) was significantly increased in L4-L6 dorsal root ganglion (DRG), but not the spinal dorsal horn or gastrocnemius muscle, 24hr after induction of the model in either male or female mice. No changes in TrkB mRNA or p75 neurotrophin receptor mRNA were observed. BDNF protein expression via immunohistochemistry was significantly increased in L4-L6 spinal dorsal horn and retrogradely labelled muscle afferent DRG neurons, at 24hr after induction of the model in both sexes. In cultured DRG, fatigue metabolites combined with IL-1β significantly increased BDNF expression in both sexes. In summary, fatigue metabolites release, combined with IL-1β, BDNF from primary DRG neurons and contribute to activity-induced muscle pain only in males, while there were no sex differences in the changes in expression observed in BDNF.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J. Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F. Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K. Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
24
|
Gheorghe RO, Grosu AV, Magercu M, Ghenghea MS, Zbarcea CE, Tanase A, Negres S, Filippi A, Chiritoiu G, Gherghiceanu M, Dinescu S, Gaina G, Sapunar D, Ristoiu V. Switching Rat Resident Macrophages from M1 to M2 Phenotype by Iba1 Silencing Has Analgesic Effects in SNL-Induced Neuropathic Pain. Int J Mol Sci 2023; 24:15831. [PMID: 37958812 PMCID: PMC10648812 DOI: 10.3390/ijms242115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Melania Magercu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Mihail-Sebastian Ghenghea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Cristina Elena Zbarcea
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandra Tanase
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Biophysics, University of Medicine and Pharmacy “Carol Davila”, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 2996 Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babeș National Institute of Pathology Bucharest, 99-101 Splaiul Independentei, District 5, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| |
Collapse
|
25
|
Fuller AM, Luiz A, Tian N, Arcangeletti M, Iseppon F, Sexton JE, Millet Q, Caxaria S, Ketabi N, Celik P, Wood JN, Sikandar S. Gate control of sensory neurotransmission in peripheral ganglia by proprioceptive sensory neurons. Brain 2023; 146:4033-4039. [PMID: 37249190 PMCID: PMC10549771 DOI: 10.1093/brain/awad182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Melzak and Wall's gate control theory proposed that innocuous input into the dorsal horn of the spinal cord represses pain-inducing nociceptive input. Here we show that input from proprioceptive parvalbumin-expressing sensory neurons tonically represses nociceptor activation within dorsal root ganglia. Deletion of parvalbumin-positive sensory neurons leads to enhanced nociceptor activity measured with GCaMP3, increased input into wide dynamic range neurons of the spinal cord and increased acute and spontaneous pain behaviour, as well as potentiated innocuous sensation. Parvalbumin-positive sensory neurons express the enzymes and transporters necessary to produce vesicular GABA that is known to be released from depolarized somata. These observations support the view that gate control mechanisms occur peripherally within dorsal root ganglia.
Collapse
Affiliation(s)
- Alice M Fuller
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Ana Luiz
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Naxi Tian
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Manuel Arcangeletti
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Federico Iseppon
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Jane E Sexton
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Queensta Millet
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sara Caxaria
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Niloofar Ketabi
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Petek Celik
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - John N Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Shafaq Sikandar
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
26
|
Zancanaro M, Stein DJ, Lopes BC, de Souza A, Ströher Toledo R, de Souza AH, Oliveira SM, Visioli F, Sanches PRS, Fregni F, Caumo W, Torres ILS. Preemptive transcranial direct current stimulation induces analgesia, prevents chronic inflammation and fibrosis, and promotes tissue repair in a rat model of postoperative pain. Neurosci Lett 2023; 813:137407. [PMID: 37499743 DOI: 10.1016/j.neulet.2023.137407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study evaluated the effects of previous exposure to Transcranial Direct Current Stimulation (tDCS) on nociceptive, neuroinflammatory, and neurochemical parameters, in rats subjected to an incisional pain model. Forty adult male Wistar rats (60 days old; weighing ∼ 250 g) were divided into five groups: 1. control (C); 2. drugs (D); 3. surgery (S); 4. surgery + sham-tDCS (SsT) and 5. surgery + tDCS (ST). Bimodal tDCS (0.5 mA) was applied for 20 min/day/8 days before the incisional model. Mechanical allodynia (von Frey) was evaluated at different time points after surgery. Cytokines and BDNF levels were evaluated in the cerebral cortex, hippocampus, brainstem, and spinal cord. Histology and activity of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) were evaluated in the surgical lesion sites in the right hind paw. The results demonstrate that the surgery procedure increased BDNF and IL-6 levels in the spinal cord levels in the hippocampus, and decreased IL-1β and IL-6 levels in the cerebral cortex, IL-6 levels in the hippocampus, and IL-10 levels in the brainstem and hippocampus. In addition, preemptive tDCS was effective in controlling postoperative pain, increasing BDNF, IL-6, and IL-10 levels in the spinal cord and brainstem, increasing IL-1β in the spinal cord, and decreasing IL-6 levels in the cerebral cortex and hippocampus, IL-1β and IL-10 levels in the hippocampus. Preemptive tDCS also contributes to tissue repair, preventing chronic inflammation, and consequent fibrosis. Thus, these findings imply that preemptive methods for postoperative pain management should be considered an interesting pain management strategy, and may contribute to the development of clinical applications for tDCS in surgical situations.
Collapse
Affiliation(s)
- Mayra Zancanaro
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Dirson J Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Bettega C Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Roberta Ströher Toledo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Alessandra H de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Sara M Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Visioli
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | | | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, United States
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
27
|
Toloui A, Ramawad HA, Gharin P, Vaccaro AR, Zarei H, Hosseini M, Yousefifard M, Rahimi-Movaghar V. The Role of Exercise in the Alleviation of Neuropathic Pain Following Traumatic Spinal Cord Injuries: A Systematic Review and Meta-analysis. Neurospine 2023; 20:1073-1087. [PMID: 37798999 PMCID: PMC10562228 DOI: 10.14245/ns.2346588.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE The objective of this systematic review and meta-analysis was to assess the efficacy of exercise in neuropathic pain following traumatic spinal cord injuries. METHODS The search was conducted in MEDLINE, Embase, Scopus, and Web of Science by the end of 2022. Two independent researchers included the articles based on the inclusion and exclusion criteria. A standardized mean difference was calculated for each data and they were pooled to calculate an overall effect size. To assess the heterogeneity between studies, I2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression was performed to identify the potential source. RESULTS Fifteen preclinical studies were included. Meta-analysis demonstrated that exercise significantly improves mechanical allodynia (standardized mean difference [SMD], -1.59; 95% confidence interval [CI], -2.16 to -1.02; p < 0.001; I2 = 90.37%), thermal hyperalgesia (SMD, 1.95; 95% CI, 0.96-2.94; p < 0.001), and cold allodynia (SMD, -2.92; 95% CI, -4.4 to -1.43; p < 0.001). The improvement in mechanical allodynia is significantly more in animals with a compression model of SCI (meta-regression coefficient, -1.33; 95% CI, -1.84 to -0.57; p < 0.001) and in mild SCI (p < 0.001). Additionally, the improvement was more prominent if the training was started 7 to 8 days postinjury (coefficient, -2.54; 95% CI, -3.85 to -1.23; p < 0.001) and was continued every day (coefficient, -1.99; 95% CI, -3.07 to -0.9; p < 0.001). Likewise, voluntary exercise demonstrated a significantly more effect size (coefficient, -1.45; 95% CI, -2.67 to -0.23; p = 0.02). CONCLUSION Exercise is effective in the amelioration of neuropathic pain. This effect in mechanical allodynia is more prominent if voluntary, continuous training is initiated in the subacute phase of mild SCI.
Collapse
Affiliation(s)
- Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamzah Adel Ramawad
- Department of Emergency Medicine, NYC Health + Hospitals, Coney Island, New York, NY, USA
| | - Pantea Gharin
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamed Zarei
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D’Amato I, Hoeijmakers JGJ, Dib-Hajj S, Waxman SG, Faber CG, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023; 146:3049-3062. [PMID: 36730021 PMCID: PMC10316770 DOI: 10.1093/brain/awad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.
Collapse
Affiliation(s)
- Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Gelemanovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Matilde Paolini
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carlotta Pardo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria D’Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| |
Collapse
|
29
|
Yang S, Zhang B, Wang D, Hu S, Wang W, Liu C, Wu Z, Yang C. Role of GABAergic system in the comorbidity of pain and depression. Brain Res Bull 2023:110691. [PMID: 37331640 DOI: 10.1016/j.brainresbull.2023.110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Patients with chronic pain often suffer with depressive symptoms, and these two conditions can be aggravated by each other over time, leading to an increase in symptom intensity and duration. The comorbidity of pain and depression poses a significant challenge to human health and quality of life, as it is often difficult to diagnose early and treat effectively. Therefore, exploring the molecular mechanisms underlying the comorbidity of chronic pain and depression is crucial to identifying new therapeutic targets for treatment. However, understanding the pathogenesis of comorbidity requires examining interactions among multiple factors, which calls for an integrative perspective. While several studies have explored the role of the GABAergic system in pain and depression, fewer have examined its interactions with other systems involved in their comorbidity. Here, we review the evidence that the role of GABAergic system in the comorbidity of chronic pain and depression, as well as the interactions between the GABAergic system and other secondary systems involved in pain and depression comorbidity, providing a comprehensive understanding of their intricate interplay.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Bingyuan Zhang
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, No. 399 Hailing South Road, Taizhou City, 225300, Jiangsu Province, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| |
Collapse
|
30
|
Pan J, Zhao Y, Sang R, Yang R, Bao J, Wu Y, Fei Y, Wu J, Chen G. Huntington-associated protein 1 inhibition contributes to neuropathic pain by suppressing Cav1.2 activity and attenuating inflammation. Pain 2023; 164:e286-e302. [PMID: 36508175 DOI: 10.1097/j.pain.0000000000002837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Although pain dysfunction is increasingly observed in Huntington disease, the underlying mechanisms still unknown. As a crucial Huntington-associated protein, Huntington-associated protein 1 (HAP1) is enriched in normal spinal dorsal horn and dorsal root ganglia (DRG) which are regarded as "primary sensory center," indicating its potential functions in pain process. Here, we discovered that HAP1 level was greatly increased in the dorsal horn and DRG under acute and chronic pain conditions. Lack of HAP1 obviously suppressed mechanical allodynia and hyperalgesia in spared nerve injury (SNI)-induced and chronic constriction injury-induced pain. Its deficiency also greatly inhibited the excitability of nociceptive neurons. Interestingly, we found that suppressing HAP1 level diminished the membrane expression of the L-type calcium channel (Cav1.2), which can regulate Ca 2+ influx and then influence brain-derived neurotrophic factor (BDNF) synthesis and release. Furthermore, SNI-induced activation of astrocytes and microglia notably decreased in HAP1-deficient mice. These results indicate that HAP1 deficiency might attenuate pain responses. Collectively, our results suggest that HAP1 in dorsal horn and DRG neurons regulates Cav1.2 surface expression, which in turn reduces neuronal excitability, BDNF secretion, and inflammatory responses and ultimately influences neuropathic pain progression.
Collapse
Affiliation(s)
- JingYing Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - YaYu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rui Sang
- Department of Physiology, Medical School of Nantong University, Nantong, China
| | - RiYun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JingYin Bao
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - YongJiang Wu
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jian Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
31
|
Meng L, Yang P, Zhang W, Zhang X, Rong X, Liu H, Li M. Brain-derived neurotrophic factor promotes orthodontic tooth movement by alleviating periodontal ligament stem cell senescence. Cell Signal 2023; 108:110724. [PMID: 37211081 DOI: 10.1016/j.cellsig.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Orthodontic treatment in older adults is more difficult than in younger adults, partially due to delayed osteogenesis caused by senescence of human periodontal ligament stem cells (hPDLSCs). The production of brain-derived neurotrophic factor (BDNF) which regulates the differentiation and survival of stem cells decreases with age. We aimed to investigate the relationship between BDNF and hPDLSC senescence and its effects on orthodontic tooth movement (OTM). We constructed mouse OTM models using orthodontic nickel‑titanium springs and compared the responses of wild-type (WT) and BDNF+/- mice with or without addition of exogenous BDNF. In vitro, hPDLSCs subjected to the mechanical stretch were used to simulate the cell stretch environment during OTM. We extracted periodontal ligament cells from WT and BDNF+/- mice to evaluate their senescence-related indicators. The application of orthodontic force increased BDNF expression in the periodontium of WT mice, while the mechanical stretch increased BDNF expression in hPDLSCs. Osteogenesis-related indicators, including RUNX2 and ALP decreased and cellular senescence-related indicators such as p16, p53 and β-galactosidase increased in BDNF+/- mice periodontium. Furthermore, periodontal ligament cells extracted from BDNF+/- mice exhibited more senescent compared with cells from WT mice. Application of exogenous BDNF decreased the expression of senescence-related indicators in hPDLSCs by inhibiting Notch3, thereby promoting osteogenic differentiation. Periodontal injection of BDNF decreased the expression of senescence-related indicators in periodontium of aged WT mice. In conclusion, our study showed that BDNF promotes osteogenesis during OTM by alleviating hPDLSCs senescence, paving a new path for future research and clinical applications.
Collapse
Affiliation(s)
- Lingxiao Meng
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Panpan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021 Jinan, China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Xin Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China.
| |
Collapse
|
32
|
Caxaria S, Bharde S, Fuller AM, Evans R, Thomas B, Celik P, Dell’Accio F, Yona S, Gilroy D, Voisin MB, Wood JN, Sikandar S. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc Natl Acad Sci U S A 2023; 120:e2211631120. [PMID: 37071676 PMCID: PMC10151464 DOI: 10.1073/pnas.2211631120] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/05/2023] [Indexed: 04/19/2023] Open
Abstract
Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.
Collapse
Affiliation(s)
- Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Sabah Bharde
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Alice M. Fuller
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Romy Evans
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Bethan Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Petek Celik
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Francesco Dell’Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Simon Yona
- Institute of Biomedical and Oral Research, Hebrew University, 9112102Jerusalem, Israel
| | - Derek Gilroy
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - John N. Wood
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| |
Collapse
|
33
|
Ovrom EA, Mostert KA, Khakhkhar S, McKee DP, Yang P, Her YF. A Comprehensive Review of the Genetic and Epigenetic Contributions to the Development of Fibromyalgia. Biomedicines 2023; 11:1119. [PMID: 37189737 PMCID: PMC10135661 DOI: 10.3390/biomedicines11041119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
This narrative review summarizes the current knowledge of the genetic and epigenetic contributions to the development of fibromyalgia (FM). Although there is no single gene that results in the development of FM, this study reveals that certain polymorphisms in genes involved in the catecholaminergic pathway, the serotonergic pathway, pain processing, oxidative stress, and inflammation may influence susceptibility to FM and the severity of its symptoms. Furthermore, epigenetic changes at the DNA level may lead to the development of FM. Likewise, microRNAs may impact the expression of certain proteins that lead to the worsening of FM-associated symptoms.
Collapse
Affiliation(s)
- Erik A. Ovrom
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA;
| | - Karson A. Mostert
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Hospital, Rochester, MN 55905, USA
| | - Shivani Khakhkhar
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Daniel P. McKee
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Padao Yang
- Department of Psychiatry and Psychology, Mayo Clinic Hospital, Rochester, MN 55905, USA
| | - Yeng F. Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Sánchez-Sánchez J, Vicente-García C, Cañada-García D, Martín-Zanca D, Arévalo JC. ARMS/Kidins220 regulates nociception by controlling brain-derived neurotrophic factor secretion. Pain 2023; 164:563-576. [PMID: 35916735 DOI: 10.1097/j.pain.0000000000002741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is an alarm mechanism to prevent body damage in response to noxious stimuli. The nerve growth factor (NGF)/TrkA axis plays an essential role as pain mediator, and several clinical trials using antibodies against NGF have yielded promising results, but side effects have precluded their clinical approval. A better understanding of the mechanism of NGF/TrkA-mediated nociception is needed. Here, we find that ARMS/Kidins220, a scaffold protein for Trk receptors, is a modulator of nociception. Male mice, with ARMS/Kidins220 reduction exclusively in TrkA-expressing cells, displayed hyperalgesia to heat, inflammatory, and capsaicin stimuli, but not to cold or mechanical stimuli. Simultaneous deletion of brain-derived neurotrophic factor (BDNF) reversed the effects of ARMS/Kidins220 knock down alone. Mechanistically, ARMS/Kidins220 levels are reduced in vitro and in vivo in response to capsaicin through calpains, and this reduction leads to enhanced regulated BDNF secretion from dorsal root ganglion. Altogether, these data indicate that ARMS/Kidins220 protein levels have a role as a pain modulator in the NGF/TrkA axis regulating BDNF secretion.
Collapse
Affiliation(s)
- Julia Sánchez-Sánchez
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Vicente-García
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Daniel Cañada-García
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dionisio Martín-Zanca
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Juan C Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
35
|
Thakkar B, Acevedo EO. BDNF as a biomarker for neuropathic pain: Consideration of mechanisms of action and associated measurement challenges. Brain Behav 2023; 13:e2903. [PMID: 36722793 PMCID: PMC10013954 DOI: 10.1002/brb3.2903] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The primary objective of this paper is to (1) provide a summary of human studies that have used brain derived neurotrophic factor (BDNF) as a biomarker, (2) review animal studies that help to elucidate the mechanistic involvement of BDNF in the development and maintenance of neuropathic pain (NP), and (3) provide a critique of the existing measurement techniques to highlight the limitations of the methods utilized to quantify BDNF in different biofluids in the blood (i.e., serum and plasma) with the intention of presenting a case for the most reliable and valid technique. Lastly, this review also explores potential moderators that can influence the measurement of BDNF and provides recommendations to standardize its quantification to reduce the inconsistencies across studies. METHODS In this manuscript we examined the literature on BDNF, focusing on its role as a biomarker, its mechanism of action in NP, and critically analyzed its measurement in serum and plasma to identify factors that contribute to the discrepancy in results between plasma and serum BDNF values. RESULTS A large heterogenous literature was reviewed that detailed BDNF's utility as a potential biomarker in healthy volunteers, patients with chronic pain, and patients with neuropsychiatric disorders but demonstrated inconsistent findings. The literature provides insight into the mechanism of action of BDNF at different levels of the central nervous system using animal studies. We identified multiple factors that influence the measurement of BDNF in serum and plasma and based on current evidence, we recommend assessing serum BDNF levels to quantify peripheral BDNF as they are more stable and sensitive to changes than plasma BDNF. CONCLUSION Although mechanistic studies clearly explain the role of BDNF, results from human studies are inconsistent. More studies are needed to evaluate the methodological challenges in using serum BDNF as a biomarker in NP.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
36
|
Knisely MR, Yang Q, Stauffer N, Kenney M, Ashley-Koch A, Myers J, Walker JKL, Tanabe PJ, Shah NR. Evaluating Associations between Average Pain Intensity and Genetic Variation in People with Sickle Cell Disease: An Exploratory Study. Pain Manag Nurs 2023; 24:12-18. [PMID: 36096903 PMCID: PMC9925395 DOI: 10.1016/j.pmn.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pain is one of the most common and deleterious symptoms experienced by individuals with sickle cell disease (SCD). There is a paucity of studies identifying potential genetic mechanisms of pain in this population. AIM Examine associations between 11 functional single nucleotide polymorphisms in 9 candidate genes with reports of average pain intensity in individuals with sickle cell disease. METHOD Cross-sectional analyses were performed on data and blood samples collected through the Duke SCD Implementation Consortium Registry. Participants were asked to rate their pain "on the average" using an 11-point numeric rating scale (0 = no pain; 10 = pain as bad as you can imagine). We genotyped 11 single nucleotide polymorphisms in 9 pain-related genes using TaqMan® Genotyping Assays. Associations between each polymorphism and reports of average pain were evaluated. RESULTS The 86 participants (mean age: 28.7 years; 64% female) included in this study reported moderate pain on average (Mean = 4, Standard Deviation = 2.4). ICAM1 rs1799969 was the only genetic polymorphism that was significantly associated with pain (p = .01). Individuals with one or more minor alleles had lower average pain (Mean = 1.25, Standard Deviation = 1.50) than individuals without a minor allele (Mean = 4.13, Standard Deviation = 2.25). The effect size for ICAM1 rs1799969 was 1.30, which is considered large. The effect sizes for all other single nucleotide polymorphisms ranged from small to medium (range: 0-0.3). CONCLUSIONS Our findings provide preliminary evidence that the minor allele in ICAM1 rs1799969 had protective effects against experiencing more severe pain in sickle cell disease.
Collapse
Affiliation(s)
| | - Qing Yang
- Duke University School of Nursing, Durham, North Carolina
| | - Nic Stauffer
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Martha Kenney
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Allison Ashley-Koch
- Departments of Medicine and Biostatistics and Bioinformatics, Duke Molecular Physiology Institute, Durham, North Carolina; Duke University School of Medicine, Durham, North Carolina
| | - John Myers
- Duke University School of Nursing, Durham, North Carolina
| | | | - Paula J Tanabe
- Duke University School of Nursing, Durham, North Carolina
| | - Nirmish R Shah
- Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
37
|
Gabryelska A, Turkiewicz S, Ditmer M, Sochal M. Neurotrophins in the Neuropathophysiology, Course, and Complications of Obstructive Sleep Apnea-A Narrative Review. Int J Mol Sci 2023; 24:1808. [PMID: 36768132 PMCID: PMC9916304 DOI: 10.3390/ijms24031808] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a disorder characterized by chronic intermittent hypoxia and sleep fragmentation due to recurring airway collapse during sleep. It is highly prevalent in modern societies, and due to its pleiotropic influence on the organism and numerous sequelae, it burdens patients and physicians. Neurotrophins (NTs), proteins that modulate the functioning and development of the central nervous system, such as brain-derived neurotrophic factor (BDNF), have been associated with OSA, primarily due to their probable involvement in offsetting the decline in cognitive functions which accompanies OSA. However, NTs influence multiple aspects of biological functioning, such as immunity. Thus, extensive evaluation of their role in OSA might enlighten the mechanism behind some of its elusive features, such as the increased risk of developing an immune-mediated disease or the association of OSA with cardiovascular diseases. In this review, we examine the interactions between NTs and OSA and discuss their contribution to OSA pathophysiology, complications, as well as comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
38
|
Di-Bonaventura S, Fernández-Carnero J, Matesanz-García L, Arribas-Romano A, Polli A, Ferrer-Peña R. Effect of Different Physical Therapy Interventions on Brain-Derived Neurotrophic Factor Levels in Chronic Musculoskeletal Pain Patients: A Systematic Review. Life (Basel) 2023; 13:163. [PMID: 36676112 PMCID: PMC9867147 DOI: 10.3390/life13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The main objectives of this review were, firstly, to study the effect of different physiotherapy interventions on BDNF levels, and, secondly, to analyze the influence of physiotherapy on pain levels to subsequently draw conclusions about its possible relationship with BDNF. BACKGROUND Based on the theory that neurotrophic factors such as BDNF play a fundamental role in the initiation and/or maintenance of hyperexcitability of central neurons in pain, it was hypothesized that the levels of this neurotrophic factor may be modified by the application of therapeutic interventions, favoring a reduction in pain intensity. METHODS A literature search of multiple electronic databases (Pubmed, PsycINFO, Medline (Ebsco), Scopus, WOS, Embase) was conducted to identify randomized control trials (RCTs) published without language restrictions up to and including March 2022. The search strategy was based on the combination of medical terms (Mesh) and keywords relating to the following concepts: "pain", "chronic pain", "brain derived neurotrophic factor", "BDNF", "physiotherapy", and "physical therapy". A total of seven papers were included. RESULTS There were two studies that showed statistically significant differences in pain intensity reduction and an increase in the BDNF levels that used therapies such as rTMS and EIMS in patients with chronic myofascial pain. However, the same conclusions cannot be drawn for the other physical therapies applied. CONCLUSIONS rTMS and EIMS interventions achieved greater short-term reductions in pain intensity and increased BDNF over other types of interventions in chronic myofascial pain patients, as demonstrated by a moderate amount of evidence. In contrast, other types of physical therapy (PT) interventions did not appear to be more effective in decreasing pain intensity and increasing BDNF levels than placebo PT or minimal intervention, as a low amount of evidence was found.
Collapse
Affiliation(s)
- Silvia Di-Bonaventura
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Grupo de Investigación de Dolor Musculoesqueletico y Control Motor, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Luis Matesanz-García
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Pleinlaan 22, 1050 Brussels, Belgium
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Blok D, Bus 7001, 3000 Leuven, Belgium
| | - Raúl Ferrer-Peña
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| |
Collapse
|
39
|
Johnston KJ, Huckins LM. Chronic Pain and Psychiatric Conditions. Complex Psychiatry 2023; 9:24-43. [PMID: 37034825 PMCID: PMC10080192 DOI: 10.1159/000527041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Chronic pain is a common condition with high socioeconomic and public health burden. A wide range of psychiatric conditions are often comorbid with chronic pain and chronic pain conditions, negatively impacting successful treatment of either condition. The psychiatric condition receiving most attention in the past with regard to chronic pain comorbidity has been major depressive disorder, despite the fact that many other psychiatric conditions also demonstrate epidemiological and genetic overlap with chronic pain. Further understanding potential mechanisms involved in psychiatric and chronic pain comorbidity could lead to new treatment strategies both for each type of disorder in isolation and in scenarios of comorbidity. Methods This article provides an overview of relationships between DSM-5 psychiatric diagnoses and chronic pain, with particular focus on PTSD, ADHD, and BPD, disorders which are less commonly studied in conjunction with chronic pain. We also discuss potential mechanisms that may drive comorbidity, and present new findings on the genetic overlap of chronic pain and ADHD, and chronic pain and BPD using linkage disequilibrium score regression analyses. Results Almost all psychiatric conditions listed in the DSM-5 are associated with increased rates of chronic pain. ADHD and BPD are significantly genetically correlated with chronic pain. Psychiatric conditions aside from major depression are often under-researched with respect to their relationship with chronic pain. Conclusion Further understanding relationships between psychiatric conditions other than major depression (such as ADHD, BPD, and PTSD as exemplified here) and chronic pain can positively impact understanding of these disorders, and treatment of both psychiatric conditions and chronic pain.
Collapse
Affiliation(s)
- Keira J.A. Johnston
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Li Y, Chen H, Wang J, Wang J, Niu X, Wang C, Qin D, Li F, Wang Y, Xiong J, Liu S, Huang L, Zhang X, Gao F, Gao D, Fan M, Xiao X, Wang ZH. Inflammation-activated C/EBPβ mediates high-fat diet-induced depression-like behaviors in mice. Front Mol Neurosci 2022; 15:1068164. [PMID: 36578534 PMCID: PMC9790918 DOI: 10.3389/fnmol.2022.1068164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Depression, one of the most common causes of disability, has a high prevalence rate in patients with metabolic syndrome. Type 2 diabetes patients are at an increased risk for depression. However, the molecular mechanism coupling diabetes to depressive disorder remains largely unknown. Here we found that the neuroinflammation, associated with high-fat diet (HFD)-induced diabetes and obesity, activated the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) in hippocampal neurons. This factor repressed brain-derived neurotrophic factor (BDNF) expression and caused depression-like behaviors in male mice. Besides, the loss of C/EBPβ expression in C/EBPβ heterozygous knockout male mice attenuated HFD-induced depression-like behaviors, whereas Thy1-C/EBPβ transgenic male mice (overexpressing C/EBPβ) showed depressive behaviors after a short-term HFD. Furthermore, HFD impaired synaptic plasticity and decreased surface expression of glutamate receptors in the hippocampus of wild-type (WT) mice, but not in C/EBPβ heterozygous knockout mice. Remarkably, the anti-inflammatory drug aspirin strongly alleviated HFD-elicited depression-like behaviors in neuronal C/EBPβ transgenic mice. Finally, the genetic delivery of BDNF or the pharmacological activation of the BDNF/TrkB signaling pathway by 7,8-dihydroxyflavone reversed anhedonia in a series of behavioral tests on HFD-fed C/EBPβ transgenic mice. Therefore, our findings aim to demonstrate that the inflammation-activated neuronal C/EBPβ promotes HFD-induced depression by diminishing BDNF expression.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingxia Fan
- Animal Experiment Center, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Mingxia Fan, ; Xuan Xiao, ; Zhi-Hao Wang,
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Mingxia Fan, ; Xuan Xiao, ; Zhi-Hao Wang,
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China,Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Mingxia Fan, ; Xuan Xiao, ; Zhi-Hao Wang,
| |
Collapse
|
41
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. Brain-derived neurotrophic factor: focus on the pathogenesis of multiple myeloma and the development of treatment-induced peripheral neuropathy. Leuk Lymphoma 2022; 63:3044-3051. [PMID: 35999712 DOI: 10.1080/10428194.2022.2113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For many years, intensive research has been carried out on the in-depth understanding of the pathogenesis of multiple myeloma (MM). Nevertheless, the multifactorial nature of the disease, the development of drug resistance, and the side effects of therapy, make it difficult to effectively treat patients. One of the many factors involved in the pathogenesis of MM is brain-derived neurotrophic factor (BDNF). This factor is widely described as a neuroregenerative and neuroprotective agent, but it also regulates non-neuronal cell functions, such as proliferation, apoptosis, and viability. Therefore, BDNF appears to be a good therapeutic target in MM. On the other hand, its decreased concentration during treatment closely correlates with the development of peripheral neuropathy (PN). BDNF dualism requires a detailed understanding of its action on individual molecular mechanisms. Perhaps the optimization of the BDNF level will contribute to the improvement of MM treatment and the reduction of chemotherapy side effects.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Baumert
- Department of Bone Marrow Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland.,Department of Bone Marrow Transplantation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
42
|
Gheorghe RO, Grosu AV, Bica-Popi M, Ristoiu V. The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain. Int J Mol Sci 2022; 23:ijms232012389. [PMID: 36293246 PMCID: PMC9603877 DOI: 10.3390/ijms232012389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Traumatic peripheral neuropathic pain is a complex syndrome caused by a primary lesion or dysfunction of the peripheral nervous system. Secondary to the lesion, resident or infiltrating macrophages proliferate and initiate a cross-talk with the sensory neurons, at the level of peripheral nerves and sensory ganglia. The neuron–macrophage interaction, which starts very early after the lesion, is very important for promoting pain development and for initiating changes that will facilitate the chronicization of pain, but it also has the potential to facilitate the resolution of injury-induced changes and, consequently, promote the reduction of pain. This review is an overview of the unique characteristics of nerve-associated macrophages in the peripheral nerves and sensory ganglia and of the molecules and signaling pathways involved in the neuro-immune cross-talk after a traumatic lesion, with the final aim of better understanding how the balance between pro- and anti-nociceptive dialogue between neurons and macrophages may be modulated for new therapeutic approaches.
Collapse
|
43
|
Sochal M, Ditmer M, Gabryelska A, Białasiewicz P. The Role of Brain-Derived Neurotrophic Factor in Immune-Related Diseases: A Narrative Review. J Clin Med 2022; 11:6023. [PMID: 36294343 PMCID: PMC9604720 DOI: 10.3390/jcm11206023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin regulating synaptic plasticity, neuronal excitability, and nociception. It seems to be one of the key molecules in interactions between the central nervous system and immune-related diseases, i.e., diseases with an inflammatory background of unknown etiology, such as inflammatory bowel diseases or rheumatoid arthritis. Studies show that BDNF levels might change in the tissues and serum of patients during the course of these conditions, e.g., affecting cell survival and modulating pain severity and signaling pathways involving different neurotransmitters. Immune-related conditions often feature psychiatric comorbidities, such as sleep disorders (e.g., insomnia) and symptoms of depression/anxiety; BDNF may be related as well to them as it seems to exert an influence on sleep structure; studies also show that patients with psychiatric disorders have decreased BDNF levels, which increase after treatment. BDNF also has a vital role in nociception, particularly in chronic pain, hyperalgesia, and allodynia, participating in the formation of central hypersensitization. In this review, we summarize the current knowledge on BDNF's function in immune-related diseases, sleep, and pain. We also discuss how BDNF is affected by treatment and what consequences these changes might have beyond the nervous system.
Collapse
|
44
|
Martin KK, Noble DJ, Parvin S, Jang K, Garraway SM. Pharmacogenetic inhibition of TrkB signaling in adult mice attenuates mechanical hypersensitivity and improves locomotor function after spinal cord injury. Front Cell Neurosci 2022; 16:987236. [PMID: 36226073 PMCID: PMC9548551 DOI: 10.3389/fncel.2022.987236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through tropomyosin receptor kinase B (TrkB), to exert various types of plasticity. The exact involvement of BDNF and TrkB in neuropathic pain states after spinal cord injury (SCI) remains unresolved. This study utilized transgenic TrkBF616 mice to examine the effect of pharmacogenetic inhibition of TrkB signaling, induced by treatment with 1NM-PP1 (1NMP) in drinking water for 5 days, on formalin-induced inflammatory pain, pain hypersensitivity, and locomotor dysfunction after thoracic spinal contusion. We also examined TrkB, ERK1/2, and pERK1/2 expression in the lumbar spinal cord and trunk skin. The results showed that formalin-induced pain responses were robustly attenuated in 1NMP-treated mice. Weekly assessment of tactile sensitivity with the von Frey test showed that treatment with 1NMP immediately after SCI blocked the development of mechanical hypersensitivity up to 4 weeks post-SCI. Contrastingly, when treatment started 2 weeks after SCI, 1NMP reversibly and partially attenuated hind-paw hypersensitivity. Locomotor scores were significantly improved in the early-treated 1NMP mice compared to late-treated or vehicle-treated SCI mice. 1NMP treatment attenuated SCI-induced increases in TrkB and pERK1/2 levels in the lumbar cord but failed to exert similar effects in the trunk skin. These results suggest that early onset TrkB signaling after SCI contributes to maladaptive plasticity that leads to spinal pain hypersensitivity and impaired locomotor function.
Collapse
Affiliation(s)
| | | | | | | | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
45
|
Pathophysiology of Nociception and Rare Genetic Disorders with Increased Pain Threshold or Pain Insensitivity. PATHOPHYSIOLOGY 2022; 29:435-452. [PMID: 35997391 PMCID: PMC9397076 DOI: 10.3390/pathophysiology29030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pain and nociception are different phenomena. Nociception is the result of complex activity in sensory pathways. On the other hand, pain is the effect of interactions between nociceptive processes, and cognition, emotions, as well as the social context of the individual. Alterations in the nociceptive route can have different genesis and affect the entire sensorial process. Genetic problems in nociception, clinically characterized by reduced or absent pain sensitivity, compose an important chapter within pain medicine. This chapter encompasses a wide range of very rare diseases. Several genes have been identified. These genes encode the Nav channels 1.7 and 1.9 (SCN9A, and SCN11A genes, respectively), NGFβ and its receptor tyrosine receptor kinase A, as well as the transcription factor PRDM12, and autophagy controllers (TECPR2). Monogenic disorders provoke hereditary sensory and autonomic neuropathies. Their clinical pictures are extremely variable, and a precise classification has yet to be established. Additionally, pain insensitivity is described in diverse numerical and structural chromosomal abnormalities, such as Angelman syndrome, Prader Willy syndrome, Chromosome 15q duplication syndrome, and Chromosome 4 interstitial deletion. Studying these conditions could be a practical strategy to better understand the mechanisms of nociception and investigate potential therapeutic targets against pain.
Collapse
|
46
|
Neuropathic Pain Relief after Surgical Neurolysis in Patients with Traumatic Brachial Plexus Injuries: A Preliminary Report. Pain Res Manag 2022; 2022:5660462. [PMID: 35958676 PMCID: PMC9363225 DOI: 10.1155/2022/5660462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Objective To evaluate the usefulness of surgical neurolysis for neuropathic pain relief in patients with posttraumatic brachial plexus injury (BPI). Methods A prospective, longitudinal, nonrandomized, self-controlled before and after study was performed to evaluate the pain changes according to their intensity using the Visual Analogue Scale (VAS), and the sensory recovery after surgery using the British Medical Research Council (BMRC) scale for sensory recovery. To establish significant changes, a paired T-test was performed, and in order to determine the magnitude of these changes, an effect size was measured. α = 0.05. Results Ten patients were included with an average follow-up of 61.9 ± 53.62 months. The main mechanism of injury was vehicular trauma (70%). A significant decrease in pain after the surgical intervention was observed resulting from an average preoperative state according to VAS of 8.4 ± 1.58, to a postoperative state of 3.4 ± 3.27 (59.52%, p = 0.005, Δ = 1.572), added to a mean sensory improvement (25%) from 2.8 ± 1.62 to 3.5 ± 0.97 after surgery according to BMRC, without statistically significant changes (p=0.062), showing a moderate effect size (Δ = 0.413). Almost all patients showed improvement in the continuous and paroxysmal pattern of pain. No postoperative complications were observed. Discussion. These results suggest that in cases of BPI that originates from a compressive syndrome secondary to the posttraumatic fibrosis that surrounds the nerve structures causing strangulation and inducing hypernociception, the use of surgical neurolysis is an appropriate alternative for patients with medically refractory neuropathic pain.
Collapse
|
47
|
Liu B, Kong Y, Shi W, Kuss M, Liao K, Hu G, Xiao P, Sankarasubramanian J, Guda C, Wang X, Lei Y, Duan B. Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioact Mater 2022; 14:61-75. [PMID: 35310346 PMCID: PMC8892082 DOI: 10.1016/j.bioactmat.2021.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, anti-inflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. Our results demonstrated that hADMSC-SCs secreted more neurotrophic factors and other growth factors, compared to hADMSCs without differentiation. The dExo isolated from hADMSC-SCs protected rat SCs from oxidative stress and enhanced HUVEC migration and angiogenesis. Compared to uExo, dExo also had improved performances in downregulating pro-inflammatory gene expressions and cytokine secretions and promoting axonal growth of sensory neurons differentiated from human induced pluripotent stem cells. Furthermore, microRNA (miRNA) sequencing analysis revealed that exosomes and their parent cells shared some similarities in their miRNA profiles and exosomes displayed a distinct miRNA signature. Many more miRNAs were identified in dExo than in uExo. Several upregulated miRNAs, like miRNA-132-3p and miRNA-199b-5p, were highly related to neuroprotection, anti-inflammation, and angiogenesis. The dExo can effectively modulate various peripheral nerve-related cellular functions and is promising for cell-free biological therapeutics to enhance neural regeneration. Exosomes were isolated from hADMSCs with and without differentiation towards SC phenotype (i.e., dExo vs uExo). hADMSC-SCs secreted more growth factors compared to hADMSCs without differentiation. The dExo protected rat SCs from oxidative stress and enhanced endothelial cell migration and angiogenesis. dExo promoted axonal growth of sensory neurons differentiated from hiPSCs. miRNA sequencing analysis unveiled and compared the exosomal and cellular miRNA profiles.
Collapse
|
48
|
Chase R, de la Peña JB, Smith PR, Lawson J, Lou TF, Stanowick AD, Black BJ, Campbell ZT. Global analyses of mRNA expression in human sensory neurons reveal eIF5A as a conserved target for inflammatory pain. FASEB J 2022; 36:e22422. [PMID: 35747924 DOI: 10.1096/fj.202101933rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.
Collapse
Affiliation(s)
- Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Patrick R Smith
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Alexander D Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Bryan J Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
49
|
He L, Xu W, Zhang C, Ding Z, Guo Q, Zou W, Wang J. Dysregulation of Vesicular Glutamate Transporter VGluT2 via BDNF/TrkB Pathway Contributes to Morphine Tolerance in Mice. Front Pharmacol 2022; 13:861786. [PMID: 35559256 PMCID: PMC9086316 DOI: 10.3389/fphar.2022.861786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Morphine is widely used in the treatment of moderate to severe pain. Long-term use of morphine leads to various adverse effects, such as tolerance and hyperalgesia. Vesicular glutamate transporter 2 (VGluT2) accumulates glutamate into synaptic vesicles and plays multiple roles in the central nervous system. However, the specific role of VGluT2 in morphine tolerance has not been fully elucidated. Here, we investigated the regulatory role of VGluT2 in morphine tolerance and assessed the potential role of the brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) pathway in VGluT2 mediated morphine antinociceptive tolerance in mice. In the present study, we found that VGluT2 is upregulated in the spinal cord after the development of morphine tolerance. Furthermore, inhibition of VGluT2 with its antagonist (Chicago sky blue 6 B, CSB6B) or knockdown of VGluT2 by lentivirus restored the analgesic effect of morphine, suppressed the activation of astrocytes and microglia, and decreased glial-derived pro-inflammatory cytokines. Overexpression of VGluT2 by lentivirus facilitated morphine tolerance and mechanical hyperalgesia. In addition, we found the expression of BDNF is correlated with VGluT2 expression in the spinal cord after chronic morphine administration. Intrathecal injection of the BDNF/TrkB pathway antagonist K252a attenuated the development of morphine tolerance and decreased the expression of VGluT2 in the spinal cord, which suggested the BDNF/TrkB pathway participates in the regulation of VGluT2 in morphine tolerance. This study elucidates the functional capability of VGluT2 in modulating morphine tolerance and identifies a novel mechanism and promising therapeutic target for morphine tolerance.
Collapse
Affiliation(s)
- Liqiong He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Bidari A, Ghavidel-Parsa B, Gharibpoor F. Comparison of the serum brain-derived neurotrophic factor (BDNF) between fibromyalgia and nociceptive pain groups; and effect of duloxetine on the BDNF level. BMC Musculoskelet Disord 2022; 23:411. [PMID: 35501732 PMCID: PMC9059381 DOI: 10.1186/s12891-022-05369-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background The primary objective was to compare the serum brain-derived neurotrophic factor (BDNF) level in the patients with two types of pain: fibromyalgia (FM) and non-FM nociceptive pain (non-FM NP). The secondary objective was to investigate the effect of duloxetine on serum BDNF in FM patients and assess the direction of BDNF changes’ relation to clinical parameters’ alterations. Methods: This is a study on 73 patients (50 FM and 23 non-FM chronic non-inflammatory pain patients). Serum BDNF was first compared between both groups. Patients with FM, then prospectively, underwent standardized FM treatment with duloxetine maximized to 60 mg/day. The Revised Fibromyalgia Impact Questionnaire (FIQR), Short-Form Health Survey (SF-12), pain visualized analog scale (pain VAS), Beck Depression Inventory-II (BDI-II), polysymptomatic distress scale (PSD) and serum BDNF were measured and compared at baseline and 4 weeks after treatment in FM group. Results The mean of adjusted BDNF level in the FM group had no significant difference than the non-FM NP group ((5293.5 ± 2676.3 vs. 6136.3 ± 4037.6; P value = 0.77). Using linear mixed model, we showed that duloxetine reduced BDNF level significantly in FM patients, even after adjusting for depression, pain and severity of the disease (P < 0.01). The FIQR, BDI-II, PSD, and pain VAS improved significantly after duloxetine treatment. Conclusions Non-significant BDNF level difference between FM and non-FM nociceptive pain suggested that peripheral BDNF is not a pathophysiological feature of FM. The decreased BDNF level parallel with improvement of PSD/pain scores after duloxetine treatment indicates BDNF alteration in the pain modulation process, regardless of cause and effect.
Collapse
Affiliation(s)
- Ali Bidari
- Department of Rheumatology, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Ghavidel-Parsa
- Rheumatology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Faeze Gharibpoor
- Student Research Committee, Deputy of Research and Technology, Faculty of Medicine, Guilan University of Medical Sciences, Namjoo St, Rasht, Guilan, 41446-66949, Iran.
| |
Collapse
|