1
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Kim E, Cha D, Jang SJ, Cho J, Moh SH, Lee S. Redox control of NRF2 signaling in oocytes harnessing Porphyra derivatives as a toggle. Free Radic Biol Med 2024; 227:680-693. [PMID: 39674422 DOI: 10.1016/j.freeradbiomed.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This study investigated the potential of Porphyra derivatives (PD), including Porphyra334, to activate the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in porcine oocytes to enhance oocyte competency and intracellular networks. Conventional methods for manipulating mitochondrial functions and antioxidant pathways often rely upon genetic modifications that are impractical for direct application in humans. We hypothesized that PD serves as a natural regulator of the NRF2 pathway without requiring genetic intervention. To test this hypothesis, brusatol (Bru), a direct NRF2 inhibitor, was used to evaluate the specific role of PD in NRF2-mediated processes. The results demonstrated that PD significantly improved oocyte maturation, blastocyst formation, and mitochondrial function, including subsequent lipid metabolism. PD activates NRF2 and its downstream antioxidant response elements (AREs), whereas Bru inhibits these effects. Co-treatment with PD and Bru resulted in the partial recovery of NRF2 activity. These findings suggest that PD functions as a toggle for NRF2 activation, potentially offering a non-genetic strategy for enhancing oocyte quality and embryo development by modulating antioxidant mechanisms and mitochondrial functions. This study provides new avenues for investigating natural compounds in the context of reproductive biology and assisted reproductive technologies (ARTs).
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Navarro E, Esteras N. Multitarget Effects of Nrf2 Signalling in the Brain: Common and Specific Functions in Different Cell Types. Antioxidants (Basel) 2024; 13:1502. [PMID: 39765831 PMCID: PMC11673142 DOI: 10.3390/antiox13121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of cellular defence mechanisms, essential for maintaining the brain's health. Nrf2 supports mitochondrial function and protects against oxidative damage, which is vital for meeting the brain's substantial energy and antioxidant demands. Furthermore, Nrf2 modulates glial inflammatory responses, playing a pivotal role in preventing neuroinflammation. This review explores these multifaceted functions of Nrf2 within the central nervous system, focusing on its activity across various brain cell types, including neurons, astrocytes, microglia, and oligodendrocytes. Due to the brain's vulnerability to oxidative stress and metabolic challenges, Nrf2 is emerging as a key therapeutic target to enhance resilience against oxidative stress, inflammation, mitochondrial dysfunction, and demyelination, which are central to many neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Navarro
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Noemí Esteras
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
4
|
Fang Y, Zheng Y, Gao Q, Pang M, Wu Y, Feng X, Tao X, Hu Y, Lin Z, Lin W. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep 2024; 29:2394714. [PMID: 39284589 PMCID: PMC11407389 DOI: 10.1080/13510002.2024.2394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihui Zheng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiqing Wu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoli Feng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Saridas F, Mesut G, Ozpar R, Koc ER, Hakyemez B, Bican Demir A, Turan OF. Coexistence of epilepsy or seizure and multiple sclerosis; review of the literature with a single center experience. Mult Scler Relat Disord 2024; 92:105948. [PMID: 39486355 DOI: 10.1016/j.msard.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES There is evidence that the inflammatory demyelinating disorder in Multiple Sclerosis (MS) is associated with acute seizures and epilepsy. Additionally, the likelihood of developing epilepsy increases with neurodegeneration. This study aims to reveal the clinical and radiological features of MS-epilepsy/seizure coexistence. METHODS Among all patients diagnosed with MS that we followed in our center between April 2002 and July 2023, patients with a single seizure history or diagnosed with epilepsy (MS-seizure/epilepsy) were randomized 1:1 in terms of age and gender with MS patients without a diagnosis of epilepsy or seizures. Clinical (comorbidities, annualized relapse rate, disability, seizures during attacks, initial diagnosis, disease duration, disease-modifying therapies (DMTs), refractory epilepsy, anti-seizure drugs), electroencephalography (EEG) and MRI (lesion localization and new lesion(s)) data were retrospectively evaluated. RESULTS The mean EDSS was 4.07±2.81. 29.4 % of patients had progressive MS (n = 10). Refractory epilepsy was 52.9 % (n = 18), and SE history was 14.7 % (n = 5). Pathology was detected in 69.7 % (n = 23) of patients in the EEG. The most common slow wave activation was detected in 51.5 % (n = 17). Refractory epilepsy was more common in cases under 45 and patients with lesions in thalamic localization. Lesions in the temporal and thalamic regions and cerebral atrophy were more common in the MS-seizure/epilepsy group. CONCLUSION Patients with demyelinating lesions in the temporal and thalamic regions should be questioned more carefully for epilepsy, and an EEG should be performed in case of clinical suspicion. Since thalamus lesions are more common in patients with refractory epilepsy, anti-seizure treatment strategies should be applied more carefully. The presence of atrophy on MRI confirms the link between neurodegeneration processes and the development of epilepsy.
Collapse
Affiliation(s)
- Furkan Saridas
- Department of Neurology, Bursa Uludağ University Medicine Faculty, Türkiye.
| | - Gizem Mesut
- Department of Neurology, Bursa Uludağ University Medicine Faculty, Türkiye
| | - Rifat Ozpar
- Department of Radiology, Bursa Uludağ University Medicine Faculty, Türkiye
| | - Emine Rabia Koc
- Department of Neurology, Bursa Uludağ University Medicine Faculty, Türkiye
| | - Bahattin Hakyemez
- Department of Radiology, Bursa Uludağ University Medicine Faculty, Türkiye
| | - Aylin Bican Demir
- Department of Neurology, Bursa Uludağ University Medicine Faculty, Türkiye
| | - Omer Faruk Turan
- Department of Neurology, Bursa Uludağ University Medicine Faculty, Türkiye
| |
Collapse
|
6
|
Walker MC. Drug repurposing in status epilepticus. Epilepsy Behav 2024; 161:110109. [PMID: 39467455 DOI: 10.1016/j.yebeh.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
The treatment of status epilepticus (SE) has changed little in the last 20 years, largely because of the high risks and costs of new drug development for SE. Moreover, SE poses specific challenges to drug development, such as patient diversity, logistical hurdles, and the need for acute treatment strategies that differ from chronic seizure prevention. This has reduced the appetite of industry to develop new drugs in this area. Drug repurposing is an attractive approach to address this unmet need. It offers significant advantages, including reduced development time, lower costs, and higher success rates, compared to novel drug development. Here I demonstrate how novel methods integrating biological knowledge and computational methods can be applied to drug repurposing in status epilepticus. Biological approaches focus on addressing mechanisms underlying drug resistance in SE (using for example ketamine, tacrolimus and safinamide) and longer-term consequences (using for example omaveloxolone, celecoxib and losartan). Additionally, artificial intelligence platforms, such as ChatGPT, can rapidly generate promising drug lists, while in silico methods can analyze gene expression changes to predict molecular targets. Combining AI and in silico approaches has identified several candidate drugs, including metformin, sirolimus and riluzole, for SE treatment. Despite the promise of repurposing, challenges remain, such as intellectual property issues and regulatory barriers. Nonetheless, drug repurposing presents a viable solution to the high costs and slow progress of traditional drug development for SE. This paper is based on a presentation made at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures, in April 2024.
Collapse
Affiliation(s)
- Matthew C Walker
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
7
|
Bierhansl L, Gola L, Narayanan V, Dik A, Meuth SG, Wiendl H, Kovac S. Neuronal Mitochondrial Calcium Uniporter (MCU) Deficiency Is Neuroprotective in Hyperexcitability by Modulation of Metabolic Pathways and ROS Balance. Mol Neurobiol 2024; 61:9529-9538. [PMID: 38652352 PMCID: PMC11496325 DOI: 10.1007/s12035-024-04148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Gola
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Venu Narayanan
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
8
|
Singh PK, Shekh-Ahmad T. Nrf2 as a potential target for the treatment of epilepsy. Neural Regen Res 2024; 19:1865-1866. [PMID: 38227501 DOI: 10.4103/1673-5374.390975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Prince Kumar Singh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
9
|
Zhang Y, Shen J, Su H, Lin C. Association between composite dietary antioxidant index and epilepsy in American population: a cross-sectional study from NHANES. BMC Public Health 2024; 24:2240. [PMID: 39154181 PMCID: PMC11330070 DOI: 10.1186/s12889-024-19794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Epilepsy is a major global health challenge, affecting approximately 50 million people across the globe and resulting in significant economic impacts on individuals and society. Oxidative stress is implicated in the pathogenesis of epilepsy, highlighting the potential of antioxidant-rich dietary patterns in offering preventive and protective benefits by mitigating oxidative stress. The Composite Dietary Antioxidant Index (CDAI) provides a measure for assessing dietary antioxidant intake, yet its link to epilepsy remains unexplored. METHODS Our analysis utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 2013 to 2018, including 20,180 screened participants. Weighted logistic regression models were employed to examine the association between the CDAI and epilepsy prevalence. Non-linear associations were explored through restricted cubic splines (RCS), and the relationships between individual antioxidant components within the CDAI and epilepsy were also assessed. RESULTS After adjusting for potential confounders, a negative association between the CDAI and epilepsy was suggested (OR = 0.991; p = 0.087, 95% CI [0.819,1.014]). Stratification of CDAI into quartiles revealed a significantly reduced risk of epilepsy in higher CDAI quartiles (Q3 and Q4) compared to the lowest quartile (Q1) (Q3: OR = 0.419; p = 0.030, 95% CI [0.192, 0.914]; Q4: OR = 0.421; p = 0.004, 95% CI [0.239, 0.742]), with a significant trend observed across quartiles (p for trend = 0.013). RCS analysis suggested a nonlinear association between CDAI levels and epilepsy (non-linear p = 0.049), which, however, was not statistically significant after full adjustment (non-linear p = 0.103). Additionally, significant negative correlations with epilepsy were observed for vitamin A and zinc (Vitamin A: OR = 0.999; p = 0.012, 95% CI [0.998, 1.000]; Zinc: OR = 0.931; p = 0.042, 95% CI [0.869, 0.997]). CONCLUSIONS Our research indicates a correlation where higher CDAI levels correspond to a reduced risk of epilepsy. Therefore, embracing a diet rich in antioxidants could be beneficial in preventing epilepsy. This finding holds considerable potential for shaping future strategies in both epilepsy prevention and treatment.
Collapse
Affiliation(s)
- Yuhao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hao Su
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Lin
- Department of Teaching and Research Section of Internal Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Lin X, Wang H, Zou L, Yang B, Chen W, Rong X, Zhang X, He L, Li X, Peng Y. The NRF2 activator RTA-408 ameliorates chronic alcohol exposure-induced cognitive impairment and NLRP3 inflammasome activation by modulating impaired mitophagy initiation. Free Radic Biol Med 2024; 220:15-27. [PMID: 38679301 DOI: 10.1016/j.freeradbiomed.2024.04.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chronic alcohol exposure induces cognitive impairment and NLRP3 inflammasome activation in the mPFC (medial prefrontal cortex). Mitophagy plays a crucial role in neuroinflammation, and dysregulated mitophagy is associated with behavioral deficits. However, the potential relationships among mitophagy, inflammation, and cognitive impairment in the context of alcohol exposure have not yet been studied. NRF2 promotes the process of mitophagy, while alcohol inhibits NRF2 expression. Whether NRF2 activation can ameliorate defective mitophagy and neuroinflammation in the presence of alcohol remains unknown. METHODS BV2 cells and primary microglia were treated with alcohol. C57BL/6J mice were repeatedly administered alcohol intragastrically. BNIP3-siRNA, PINK1-siRNA, CCCP and bafilomycin A1 were used to regulate mitophagy in BV2 cells. RTA-408 acted as an NRF2 activator. Mitochondrial dysfunction, mitophagy and NLRP3 inflammasome activation were assayed. Behavioral tests were used to assess cognition. RESULTS Chronic alcohol exposure impaired the initiation of both receptor-mediated mitophagy and PINK1-mediated mitophagy in the mPFC and in vitro microglial cells. Silencing BNIP3 or PINK1 induced mitochondrial dysfunction and aggravated alcohol-induced NLRP3 inflammasome activation in BV2 cells. In addition, alcohol exposure inhibited the NRF2 expression both in vivo and in vitro. NRF2 activation by RTA-408 ameliorated NLRP3 inflammasome activation and mitophagy downregulation in microglia, ultimately improving cognitive impairment in the presence of alcohol. CONCLUSION Chronic alcohol exposure-induced impaired mitophagy initiation contributed to NLRP3 inflammasome activation and cognitive deficits, which could be alleviated by NRF2 activation via RTA-408.
Collapse
Affiliation(s)
- Xinrou Lin
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lubin Zou
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Biying Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wanru Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lei He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516400, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Liu Z, Jia J. Omaveloxolone Ameliorates Cognitive Deficits by Inhibiting Apoptosis and Neuroinflammation in APP/PS1 Mice. Mol Neurobiol 2024:10.1007/s12035-024-04361-8. [PMID: 39088030 DOI: 10.1007/s12035-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease associated with aging, characterized by progressive cognitive impairment and memory loss. However, treatments that delay AD progression or improve its symptoms remain limited. The aim of the present study was to investigate the therapeutic effects of omaveloxolone (Omav) on AD and to explore the underlying mechanisms. Thirty-week-old APP/PS1 mice were selected as an experimental model of AD. The spatial learning and memory abilities were tested using the Morris water maze. Amyloid-beta (Aβ) deposition in the brains was measured using immunohistochemistry. Network pharmacological analyses and molecular docking were conducted to gain insights into the therapeutic mechanisms of Omav. Finally, validation analyses were conducted to detect changes in the associated pathways and proteins. Our finding revealed that Omav markedly rescued cognitive dysfunction and reduced Aβ deposition in the brains of APP/PS1 mice. Network pharmacological analysis identified 112 intersecting genes, with CASP3 and MTOR emerging as the key targets. In vivo validation experiments indicated that Omav attenuated neuronal apoptosis by regulating apoptotic proteins, including caspase 3, Bax, and Bcl-2. Moreover, Omav suppressed neuroinflammation and induced autophagy by inhibiting the phosphorylation of mTOR. These findings highlight the therapeutic efficacy of Omav in AD and that its neuroprotective effects were associated with inhibiting neuronal apoptosis and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zhaojun Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, PR China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, PR China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, PR China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, PR China.
| |
Collapse
|
13
|
Pant K, Sharma A, Menon SV, Ali H, Hassan Almalki W, Kaur M, Deorari M, Kazmi I, Mahajan S, Kalra H, Alzarea SI. Exploring ncRNAs in epilepsy: From oxidative stress regulation to therapy. Brain Res 2024; 1841:149089. [PMID: 38880410 DOI: 10.1016/j.brainres.2024.149089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epilepsy is a prevalent neurological illness which is linked with high worldwide burdens. Oxidative stress (OS) is recognized to be among the contributors that trigger the advancement of epilepsy, affecting neuronal excitability and synaptic transmission. Various types of non-coding RNAs (ncRNAs) are known to serve vital functions in many disease mechanisms, including epilepsy. The current review sought to understand better the mechanisms through which these ncRNAs regulate epilepsy's OS-related pathways. We investigated the functions of microRNAs in controlling gene expression at the post-translatory stage and their involvement in OS and neuroinflammation. We also looked at the different regulatory roles of long ncRNAs, including molecular scaffolding, enhancer, and transcriptional activator, during OS. Circular RNAs and their capability to act as miRNA decoys and their consequential impact on epilepsy development were also explored. Our review aimed to improve the current understanding of novel therapies for epilepsy based on the role of ncRNAs in OS pathways. We also demonstrated the roles of ncRNAs in epilepsy treatment and diagnosis, explaining that these molecules play vital roles that could be used in therapy as biomarkers.
Collapse
Affiliation(s)
- Kumud Pant
- Graphic Era (Deemed to be University), Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India
| | - Aanchal Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali 140307, Punjab, India
| | - Soumya V Menon
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahamedha Deorari
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Hitesh Kalra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
14
|
Neumann AM, Britsch S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules 2024; 14:669. [PMID: 38927072 PMCID: PMC11202058 DOI: 10.3390/biom14060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
An epilepsy diagnosis reduces a patient's quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury-an emerging perspective on the epileptogenic process in acquired forms of epilepsy.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
15
|
Häussler U, Neres J, Vandenplas C, Eykens C, Kadiu I, Schramm C, Fleurance R, Stanley P, Godard P, de Mot L, van Eyll J, Knobeloch KP, Haas CA, Dedeurwaerdere S. Downregulation of Ubiquitin-Specific Protease 15 (USP15) Does Not Provide Therapeutic Benefit in Experimental Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2024; 61:2367-2389. [PMID: 37874479 PMCID: PMC10973041 DOI: 10.1007/s12035-023-03692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Structural epilepsies display complex immune activation signatures. However, it is unclear which neuroinflammatory pathways drive pathobiology. Transcriptome studies of brain resections from mesial temporal lobe epilepsy (mTLE) patients revealed a dysregulation of transforming growth factor β, interferon α/β, and nuclear factor erythroid 2-related factor 2 pathways. Since these pathways are regulated by ubiquitin-specific proteases (USP), in particular USP15, we hypothesized that USP15 blockade may provide therapeutic relief in treatment-resistant epilepsies. For validation, transgenic mice which either constitutively or inducibly lack Usp15 gene expression underwent intrahippocampal kainate injections to induce mTLE. We show that the severity of status epilepticus is unaltered in mice constitutively lacking Usp15 compared to wild types. Cell death, reactive gliosis, and changes in the inflammatory transcriptome were pronounced at 4 days after kainate injection. However, these brain inflammation signatures did not differ between genotypes. Likewise, induced deletion of Usp15 in chronic epilepsy did not affect seizure generation, cell death, gliosis, or the transcriptome. Concordantly, siRNA-mediated knockdown of Usp15 in a microglial cell line did not impact inflammatory responses in the form of cytokine release. Our data show that a lack of USP15 is insufficient to modulate the expression of relevant neuroinflammatory pathways in an mTLE mouse model and do not support targeting USP15 as a therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.
| | - João Neres
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Catherine Vandenplas
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Caroline Eykens
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Irena Kadiu
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Carolin Schramm
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Renaud Fleurance
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Phil Stanley
- Early Development Statistics, UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - Patrice Godard
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Laurane de Mot
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Jonathan van Eyll
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Klaus-Peter Knobeloch
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104, Freiburg, Germany
| | | |
Collapse
|
16
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Lynch DR, Perlman S, Schadt K. Omaveloxolone for the treatment of Friedreich ataxia: clinical trial results and practical considerations. Expert Rev Neurother 2024; 24:251-258. [PMID: 38269532 DOI: 10.1080/14737175.2024.2310617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Omavaloxolone, an NRF2 activator, recently became the first drug approved specifically for the treatment of Friedreich ataxia (FRDA). This landmark achievement provides a background for a review of the detailed data leading to the approval. AREAS COVERED The authors review the data from the 4 major articles on FRDA in the context of the authors' considerable (>1000 patients) experience in treating individuals with FRDA. The data is presented in the context not only of its scientific meaning but also in the practical context of therapy in FRDA. EXPERT OPINION Omaveloxolone provides a significant advance in the treatment of FRDA that is likely to be beneficial in a majority of the FRDA population. The data suggesting a benefit is consistent, and adverse issues are relatively modest. The major remaining questions are the subgroups that are most responsive and how long the beneficial effects will remain significant in FRDA patients.
Collapse
Affiliation(s)
- David R Lynch
- Friedrech Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan Perlman
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Kim Schadt
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
18
|
Wu C, Han J, Wu S, Liu C, Zhang Q, Tang J, Liu Z, Yang J, Chen Y, Zhuo Y, Li Y. Reduced Zn 2+ promotes retinal ganglion cells survival and optic nerve regeneration after injury through inhibiting autophagy mediated by ROS/Nrf2. Free Radic Biol Med 2024; 212:415-432. [PMID: 38134974 DOI: 10.1016/j.freeradbiomed.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
The molecular mechanism of how reduced mobile zinc (Zn2+) affected retinal ganglion cell (RGC) survival and optic nerve regeneration after optic nerve crush (ONC) injury remains unclear. Here, we used conditionally knocked out ZnT-3 in the amacrine cells (ACs) of mice (CKO) in order to explore the role of reactive oxygen species (ROS), nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) and autophagy in the protection of RGCs and axon regeneration after ONC injury. We found that reduced Zn2+ can promote RGC survival and axonal regeneration by decreasing ROS, activating Nrf2, and inhibiting autophagy. Additionally, autophagy after ONC is regulated by ROS and Nrf2. Visual function in mice after ONC injury was partially recovered through the reduction of Zn2+, achieved by using a Zn2+ specific chelator N,N,N',N'-tetrakis-(2-Pyridylmethyl) ethylenediamine (TPEN) or through CKO mice. Overall, our data reveal the crosstalk between Zn2+, ROS, Nrf2 and autophagy following ONC injury. This study verified that TPEN or knocking out ZnT-3 in ACs is a promising therapeutic option for the treatment of optic nerve damage and elucidated the postsynaptic molecular mechanism of Zn2+-triggered damage to RGCs after ONC injury.
Collapse
Affiliation(s)
- Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinpeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuze Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
20
|
Deng H, Chen Y, Liu H, Wang L, Xu H, Tan B, Yi Q, Wang R, He B, Tian J, Zhu J. Study of the effect of keap1 on oxidative stress in human umbilical cord mesenchymal stem cells. Mol Biol Rep 2024; 51:67. [PMID: 38170368 PMCID: PMC10764455 DOI: 10.1007/s11033-023-08997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND HucMSCs had shown promising efficacy in treating childhood diseases, but oxidative stress induced by the poor microenvironment at the site of damage resulted in low cell survival after transplantation, thus preventing the cells from maximizing therapeutic efficacy. Therefore, this study aimed to investigate the role and mechanism of keap1 in oxidative stress injury of human umbilical cord mesenchymal stem cells (hucMSCs), and to provide theoretical support for improving the efficacy of stem cell therapy. METHODS The hucMSCs were treated with hypoxic low-sugar-free serum (GSDH) to mimic the damaged site microenvironment after implantation. Adenoviral overexpression of keap1 gene of hucMSCs was performed in vitro, and cell proliferation ability was detected by CCK8 assay, crystal violet staining assay, and cell cycle assay. Cellular redox level was assessed by Amplex Red, MDA, and GSH/GSSG kit. Mitochondrial morphology was evaluated by mitotracker Red staining. ATP production was estimated by ATP detection kit. The mRNA and protein expression levels were tested by western blotting and RT-qPCR. RESULTS GSDH treatment substantially upregulated keap1 expression. Subsequently, we found that overexpression of keap1 notably inhibited cell proliferation and caused cells to stagnate in G1 phase. At the same time, overexpression of keap1 induced the production of large amounts of H2O2 and the accumulation of MDA, but suppressed the GSH/GSSG ratio and the expression of antioxidant proteins NQO1 and SOD1, which caused oxidative stress damage. Overexpression of keap1 induced cells to produce a large number of dysfunctional mitochondria resulting in reduced ATP production. Moreover, Overexpression of keap1 significantly decreased the IKKβ protein level, while upregulating IkB mRNA levels and downregulating P50 mRNA levels. CONCLUSIONS Overexpression of keap1 may induce oxidative stress injury in hucMSCs by down-regulating IKKβ expression and inhibiting NF-κB pathway activation. This implies the importance of keap1 in hucMSCs and it may be a potential gene for genetic modification of hucMSCs.
Collapse
Affiliation(s)
- Hongrong Deng
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yunxia Chen
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Rui Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bolin He
- Department of Blood Transfusion, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Department of Cardiovascular Internal Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
21
|
Zuo H, Peng L, Li W, Wang Y, Du X, Zou X, Dong Z, Yi L, Yin H, Quan F, Cheng O. Assessment of bidirectional relationships between multiple sclerosis and epilepsy: A two-sample Mendelian randomization study. Mult Scler Relat Disord 2024; 81:105148. [PMID: 38006848 DOI: 10.1016/j.msard.2023.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Epidemiological studies indicate that multiple sclerosis (MS) is associated with epilepsy. However, the causality and directionality of this association remain under-elucidated. This study aimed to reveal the causality between MS and epilepsy. METHODS A two-sample Mendelian randomization (MR) analysis was performed by using summarized statistics derived from large genome-wide association studies of MS and epilepsy. We used the inverse variance weighted method as the primary approach, and then four other MR methods to bidirectionally evaluate the causality of the association between MS and epilepsy. Additional sensitivity analyses were performed to measure the robustness of the findings. RESULTS Genetically predicted MS was positively correlated with developing all epilepsy [odds ratio (OR) = 1.027 (1.003-1.051), P = 0.028] and generalized epilepsy [OR = 1.050 (1.008-1.094), P = 0.019]. In the reverse MR analysis, all epilepsy [OR = 1.310 (1.112-1.543), P = 0.001], generalized epilepsy [OR = 1.173 (1.010-1.363), P = 0.037], and focal epilepsy [OR = 1.264 (1.069-1.494), P = 0.006] elevated the risk of developing MS. The result remained robust and congruous across all sensitivity analyses conducted. CONCLUSIONS MS is potentially associated with a higher risk of developing epilepsy. Furthermore, epilepsy may be a causal determinant of MS risk. These findings may further the understanding of the interaction of the two conditions.
Collapse
Affiliation(s)
- Hongzhou Zuo
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Li Peng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Youyang County People's Hospital, Chongqing 409899, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuzhu Wang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Du
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoya Zou
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoying Dong
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Li Yi
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Huimei Yin
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Fengying Quan
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
Sandouka S, Singh PK, Saadi A, Taiwo RO, Sheeni Y, Zhang T, Deeb L, Guignet M, White SH, Shekh-Ahmad T. Repurposing dimethyl fumarate as an antiepileptogenic and disease-modifying treatment for drug-resistant epilepsy. J Transl Med 2023; 21:796. [PMID: 37940957 PMCID: PMC10634153 DOI: 10.1186/s12967-023-04695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Epilepsy affects over 65 million people worldwide and significantly burdens patients, caregivers, and society. Drug-resistant epilepsy occurs in approximately 30% of patients and growing evidence indicates that oxidative stress contributes to the development of such epilepsies. Activation of the Nrf2 pathway, which is involved in cellular defense, offers a potential strategy for reducing oxidative stress and epilepsy treatment. Dimethyl fumarate (DMF), an Nrf2 activator, exhibits antioxidant and anti-inflammatory effects and is used to treat multiple sclerosis. METHODS The expression of Nrf2 and its related genes in vehicle or DMF treated rats were determined via RT-PCR and Western blot analysis. Neuronal cell death was evaluated by immunohistochemical staining. The effects of DMF in preventing the onset of epilepsy and modifying the disease were investigated in the kainic acid-induced status epilepticus model of temporal lobe epilepsy in rats. The open field, elevated plus maze and T-Maze spontaneous alteration tests were used for behavioral assessments. RESULTS We demonstrate that administration of DMF following status epilepticus increased Nrf2 activity, attenuated status epilepticus-induced neuronal cell death, and decreased seizure frequency and the total number of seizures compared to vehicle-treated animals. Moreover, DMF treatment reversed epilepsy-induced behavioral deficits in the treated rats. Moreover, DMF treatment even when initiated well after the diagnosis of epilepsy, reduced symptomatic seizures long after the drug was eliminated from the body. CONCLUSIONS Taken together, these findings suggest that DMF, through the activation of Nrf2, has the potential to serve as a therapeutic target for preventing epileptogenesis and modifying epilepsy.
Collapse
Affiliation(s)
- Sereen Sandouka
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prince Kumar Singh
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aseel Saadi
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rhoda Olowe Taiwo
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yara Sheeni
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Taige Zhang
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Larin Deeb
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michelle Guignet
- Department of Pharmacy, Center for Epilepsy Drug Discovery, University of Washington, Seattle, WA, USA
| | - Steve H White
- Department of Pharmacy, Center for Epilepsy Drug Discovery, University of Washington, Seattle, WA, USA
| | - Tawfeeq Shekh-Ahmad
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
24
|
Yang Y, Wang X, Chen L, Wang S, Han J, Wang Z, Wen M. A Compared Study of Eicosapentaenoic Acid and Docosahexaenoic Acid in Improving Seizure-Induced Cognitive Deficiency in a Pentylenetetrazol-Kindling Young Mice Model. Mar Drugs 2023; 21:464. [PMID: 37755077 PMCID: PMC10533149 DOI: 10.3390/md21090464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a chronic neurological disorder that is more prevalent in children, and recurrent unprovoked seizures can lead to cognitive impairment. Numerous studies have reported the benefits of docosahexaenoic acid (DHA) on neurodevelopment and cognitive ability, while comparatively less attention has been given to eicosapentaenoic acid (EPA). Additionally, little is known about the effects and mechanisms of DHA and EPA in relation to seizure-induced cognitive impairment in the young rodent model. Current research indicates that ferroptosis is involved in epilepsy and cognitive deficiency in children. Further investigation is warranted to determine whether EPA or DHA can mitigate seizure-induced cognitive deficits by inhibiting ferroptosis. Therefore, this study was conducted to compare the effects of DHA and EPA on seizure-induced cognitive deficiency and reveal the underlying mechanisms focused on ferroptosis in a pentylenetetrazol (PTZ)-kindling young mice model. Mice were fed a diet containing DHA-enriched ethyl esters or EPA-enriched ethyl esters for 21 days at the age of 3 weeks and treated with PTZ (35 mg/kg, i.p.) every other day 10 times. The findings indicated that both EPA and DHA exhibited ameliorative effects on seizure-induced cognitive impairment, with EPA demonstrating a superior efficacy. Further mechanism study revealed that supplementation of DHA and EPA significantly increased cerebral DHA and EPA levels, balanced neurotransmitters, and inhibited ferroptosis by modulating iron homeostasis and reducing lipid peroxide accumulation in the hippocampus through activating the Nrf2/Sirt3 signal pathway. Notably, EPA exhibited better an advantage in ameliorating iron dyshomeostasis compared to DHA, owing to its stronger upregulation of Sirt3. These results indicate that DHA and EPA can efficaciously alleviate seizure-induced cognitive deficiency by inhibiting ferroptosis in PTZ-kindled young mice.
Collapse
Affiliation(s)
- Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Xueyan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Lu Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Shiben Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China;
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (X.W.); (L.C.); (J.H.); (Z.W.)
- Pet Nutrition Research and Development Center, Gambol Pet Group Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
25
|
Meng L, Wu G. Recent advances in small molecules for improving mitochondrial disorders. RSC Adv 2023; 13:20476-20485. [PMID: 37435377 PMCID: PMC10331567 DOI: 10.1039/d3ra03313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
Mitochondrial disorders are observed in various human diseases, including rare genetic disorders and complex acquired pathologies. Recent advances in molecular biological techniques have dramatically expanded the understanding of multiple pathomechanisms involving mitochondrial disorders. However, the therapeutic methods for mitochondrial disorders are limited. For this reason, there is increasing interest in identifying safe and effective strategies to mitigate mitochondrial impairments. Small-molecule therapies hold promise for improving mitochondrial performance. This review focuses on the latest advances in developing bioactive compounds for treating mitochondrial disease, aiming to provide a broader perspective of fundamental studies that have been carried out to evaluate the effects of small molecules in regulating mitochondrial function. Novel-designed small molecules ameliorating mitochondrial functions are urgent for further research.
Collapse
Affiliation(s)
- Liying Meng
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University Qingdao China
| | - Guanzhao Wu
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University Qingdao China
| |
Collapse
|
26
|
Dayalan Naidu S, Dinkova-Kostova AT. Omaveloxolone (Skyclarys TM) for patients with Friedreich's ataxia. Trends Pharmacol Sci 2023; 44:394-395. [PMID: 37142519 DOI: 10.1016/j.tips.2023.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Sharadha Dayalan Naidu
- Division of Cellular and Systems Medicine, University of Dundee School of Medicine, Dundee, UK
| | - Albena T Dinkova-Kostova
- Division of Cellular and Systems Medicine, University of Dundee School of Medicine, Dundee, UK; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Zhang J, Zhang T, Zeng S, Zhang X, Zhou F, Gillies MC, Zhu L. The Role of Nrf2/sMAF Signalling in Retina Ageing and Retinal Diseases. Biomedicines 2023; 11:1512. [PMID: 37371607 DOI: 10.3390/biomedicines11061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related diseases, such as Parkinson's disease, Alzheimer's disease, cardiovascular diseases, cancers, and age-related macular disease, have become increasingly prominent as the population ages. Oxygen is essential for living organisms, but it may also cause disease when it is transformed into reactive oxygen species via biological processes in cells. Most of the production of ROS occurs in mitochondrial complexes I and III. The accumulation of ROS in cells causes oxidative stress, which plays a crucial role in human ageing and many diseases. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key antioxidant transcription factor that plays a central role in many diseases and ageing in general. It regulates many downstream antioxidative enzymes when cells are exposed to oxidative stress. A basic-region leucine zipper (bZIP) transcription factor, MAF, specifically the small MAF subfamily (sMAFs), forms heterodimers with Nrf2, which bind with Maf-recognition elements (MAREs) in response to oxidative stress. The role of this complex in the human retina remains unclear. This review summarises the current knowledge about Nrf2 and its downstream signalling, especially its cofactor-MAF, in ageing and diseases, with a focus on the retina. Since Nrf2 is the master regulator of redox homeostasis in cells, we hypothesise that targeting Nrf2 is a promising therapeutic approach for many age-related diseases.
Collapse
Affiliation(s)
- Jialing Zhang
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shaoxue Zeng
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Tian MQ, Li J, Shu XM, Lang CH, Chen J, Peng LY, Lei WT, Yang CJ. The increase of Nrf2 m6A modification induced by FTO downregulation promotes hippocampal neuron injury and aggravates the progression of epilepsy in a rat model. Synapse 2023; 77:e22270. [PMID: 37122072 DOI: 10.1002/syn.22270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Epilepsy is a common chronic neurological disorder characterized by widespread neuronal death. The purpose of this study was to investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) m6A methylation in epilepsy. To create epileptic models, the rats were given Lithium chloride and pilocarpine, and isolated primary rat hippocampal neurons were cultured in an Mg2+ -free medium. The frequency of seizures was recorded in the epilepsy group of rats. The functional tests included TUNEL, MTT, and flow cytometry. Mechanistically, RNA degradation assay, RNA immunoprecipitation, and methylated RNA immunoprecipitation were performed. In epileptic models, Nrf2 and fat mass and obesity-associated (FTO) levels were downregulated, whereas YT521-B homology (YTH) domain family protein 2 (YTHDF2) was upregulated. Additionally, in epileptic models, there was a rise in the m6A methylation level of Nrf2 mRNA. Overexpressing FTO increased cell viability and reduced apoptosis, but Nrf2 interference reversed these effects. Meanwhile, FTO overexpression decreased the m6A methylation of Nrf2 mRNA. Moreover, YTHDF2 bound to Nrf2 mRNA and decreased its stability. Furthermore, FTO overexpression reduced seizure frequency in rats and inhibited hippocampal neuron apoptosis via lowering the m6A methylation level of Nrf2 mRNA. Overexpressing FTO reduced m6A methylation of Nrf2 mRNA, increased cell viability, suppressed apoptosis, and slowed the progression of epileptic diseases, which is linked to YTHDF2 binding to m6A-modified Nrf2 and promoting its degradation, as well as downregulating Nrf2 expression in hippocampal neurons.
Collapse
Affiliation(s)
- Mao-Qiang Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Juan Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Xiao-Mei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Chang-Hui Lang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Jing Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Long-Ying Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Wen-Ting Lei
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| | - Chang-Jian Yang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
| |
Collapse
|
29
|
Tiberi J, Segatto M, Fiorenza MT, La Rosa P. Apparent Opportunities and Hidden Pitfalls: The Conflicting Results of Restoring NRF2-Regulated Redox Metabolism in Friedreich's Ataxia Pre-Clinical Models and Clinical Trials. Biomedicines 2023; 11:biomedicines11051293. [PMID: 37238963 DOI: 10.3390/biomedicines11051293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.
Collapse
Affiliation(s)
- Jessica Tiberi
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| |
Collapse
|
30
|
Folbergrová J, Ješina P, Otáhal J. Protective Effect of Sulforaphane on Oxidative Stress and Mitochondrial Dysfunction Associated with Status Epilepticus in Immature Rats. Mol Neurobiol 2023; 60:2024-2035. [PMID: 36598650 PMCID: PMC9984354 DOI: 10.1007/s12035-022-03201-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
The present study aimed to elucidate the effect of sulforaphane (a natural isothiocyanate) on oxidative stress and mitochondrial dysfunction during and at selected periods following status epilepticus (SE) induced in immature 12-day-old rats by Li-pilocarpine. Dihydroethidium was employed for the detection of superoxide anions, immunoblot analyses for 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) levels and respiratory chain complex I activity for evaluation of mitochondrial function. Sulforaphane was given i.p. in two doses (5 mg/kg each), at PD 10 and PD 11, respectively. The findings of the present study indicate that both the acute phase of SE and the early period of epileptogenesis (1 week and 3 weeks following SE induction) are associated with oxidative stress (documented by the enhanced superoxide anion production and the increased levels of 3-NT and 4-HNE) and the persisting deficiency of complex I activity. Pretreatment with sulforaphane either completely prevented or significantly reduced markers of both oxidative stress and mitochondrial dysfunction. Since sulforaphane had no direct anti-seizure effect, the findings suggest that the ability of sulforaphane to activate Nrf2 is most likely responsible for the observed protective effect. Nrf2-ARE signaling pathway can be considered a promising target for novel therapies of epilepsy, particularly when new compounds, possessing inhibitory activity against protein-protein interaction between Nrf2 and its repressor protein Keap1, with less "off-target" effects and, importantly, with an optimal permeability and bioavailability properties, become available commercially.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
31
|
Massey N, Vasanthi SS, Samidurai M, Gage M, Rao N, Meyer C, Thippeswamy T. 1400 W, a selective inducible nitric oxide synthase inhibitor, mitigates early neuroinflammation and nitrooxidative stress in diisopropylfluorophosphate-induced short-term neurotoxicity rat model. Front Mol Neurosci 2023; 16:1125934. [PMID: 37008784 PMCID: PMC10064070 DOI: 10.3389/fnmol.2023.1125934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Organophosphate nerve agent (OPNA) exposure induces acute and long-term neurological deficits. OPNA exposure at sub-lethal concentrations induces irreversible inhibition of acetylcholinesterase and cholinergic toxidrome and develops status epilepticus (SE). Persistent seizures have been associated with increased production of ROS/RNS, neuroinflammation, and neurodegeneration. A total of 1400W is a novel small molecule, which irreversibly inhibits inducible nitric oxide synthase (iNOS) and has been shown to effectively reduce ROS/RNS generation. In this study, we investigated the effects of 1400W treatment for a week or two weeks at 10 mg/kg or 15 mg/kg per day in the rat diisopropylfluorophosphate (DFP) model. 1400W significantly reduced the number of microglia, astroglia, and NeuN+FJB positive cells compared to the vehicle in different regions of the brain. 1400W also significantly reduced nitrooxidative stress markers and proinflammatory cytokines in the serum. However, neither of the two concentrations of 1400W for two weeks of treatment had any significant effect on epileptiform spike rate and spontaneous seizures during the treatment period in mixed sex cohorts, males, or females. No significant sex differences were found in response to DFP exposure or 1400W treatment. In conclusion, 1400W treatment at 15 mg/kg per day for two weeks was more effective in significantly reducing DFP-induced nitrooxidative stress, neuroinflammatory and neurodegenerative changes.
Collapse
|
32
|
Esteras N, Blacker TS, Zherebtsov EA, Stelmashuk OA, Zhang Y, Wigley WC, Duchen MR, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates glucose uptake and metabolism in neurons and astrocytes. Redox Biol 2023; 62:102672. [PMID: 36940606 PMCID: PMC10034142 DOI: 10.1016/j.redox.2023.102672] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The transcription factor Nrf2 and its repressor Keap1 mediate cell stress adaptation by inducing expression of genes regulating cellular detoxification, antioxidant defence and energy metabolism. Energy production and antioxidant defence employ NADH and NADPH respectively as essential metabolic cofactors; both are generated in distinct pathways of glucose metabolism, and both pathways are enhanced by Nrf2 activation. Here, we examined the role of Nrf2 on glucose distribution and the interrelation between NADH production in energy metabolism and NADPH homeostasis using glio-neuronal cultures isolated from wild-type, Nrf2-knockout and Keap1-knockdown mice. Employing advanced microscopy imaging of single live cells, including multiphoton fluorescence lifetime imaging microscopy (FLIM) to discriminate between NADH and NADPH, we found that Nrf2 activation increases glucose uptake into neurons and astrocytes. Glucose consumption is prioritized in brain cells for mitochondrial NADH and energy production, with a smaller contribution to NADPH synthesis in the pentose phosphate pathway for redox reactions. As Nrf2 is suppressed during neuronal development, this strategy leaves neurons reliant on astrocytic Nrf2 to maintain redox balance and energy homeostasis.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Evgeny A Zherebtsov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland
| | - Olga A Stelmashuk
- Laboratory of Cell Physiology and Pathology, Orel State University, Orel, Russia
| | - Ying Zhang
- Jacqui Wood Cancer, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - W Christian Wigley
- Reata Pharmaceuticals, 2801 Gateway Dr, Suite 150, Irving, TX, 75063, USA
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
33
|
Dang YL, Yong VT, Sharmin S, Perucca P, Kalincik T. Seizure risk in multiple sclerosis patients treated with disease-modifying therapy: A systematic review and network meta-analysis. Mult Scler 2023; 29:657-667. [PMID: 36802988 DOI: 10.1177/13524585231151400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
BACKGROUND Multiple sclerosis patients experience 3-6 times more seizures than the general population, but observations vary among studies. Seizure risk in disease-modifying therapy recipients remains unknown. OBJECTIVE The objective of this study was to compare seizure risk in multiple sclerosis patients receiving disease-modifying therapy versus placebo. METHODS MEDLINE(OVID), Embase, CINAHL, and ClinicalTrials.gov were searched from database inception until August 2021. Phase 2-3 randomized, placebo-controlled trials reporting efficacy and safety data for disease-modifying therapies were included. Network meta-analysis followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using Bayesian random effects model for individual and pooled (by drug target) therapies. Main outcome was loge seizure risk ratios [95% credible intervals]. Sensitivity analysis included meta-analysis of non-zero-event studies. RESULTS A total of 1993 citations and 331 full-texts were screened. Fifty-six included studies (29,388 patients-disease-modifying therapy = 18,909; placebo = 10,479) reported 60 seizures (therapy = 41; placebo = 19). No individual therapy was associated with altered seizure risk ratio. Exceptions were daclizumab (-17.90 [-65.31; -0.65]) and rituximab (-24.86 [-82.71; -1.37]) trending toward lower risk ratio; cladribine (25.78 [0.94; 4.65]) and pegylated interferon-beta-1a (25.40 [0.78; 85.47]) trended toward higher risk ratio. Observations had wide credible intervals. Sensitivity analysis of 16 non-zero-event studies revealed no difference in risk ratio for pooled therapies (l0.32 [-0.94; 0.29]). CONCLUSION No evidence of association was found between disease-modifying therapy and seizure risk-this informs seizure management in multiple sclerosis patients.
Collapse
Affiliation(s)
- Yew Li Dang
- Department of Neurology, Bladin-Berkovic Comprehensive Epilepsy Program, Austin Health, Melbourne, VIC, Australia/Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia/Melbourne Brain Centre, Melbourne, VIC, Australia
| | - Vivien Ty Yong
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia/Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand/Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Sifat Sharmin
- CORe, Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Piero Perucca
- Department of Neurology, Bladin-Berkovic Comprehensive Epilepsy Program, Austin Health, Melbourne, VIC, Australia/Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia/Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia/Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia/Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia/CORe, Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Sandouka S, Saadi A, Olowe R, Singh PK, Shekh-Ahmad T. Nrf2 is expressed more extensively in neurons than in astrocytes following an acute epileptic seizure in rats. J Neurochem 2023; 165:550-562. [PMID: 36807051 DOI: 10.1111/jnc.15786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
The modulation of the nuclear factor erythroid 2-like 2 (Nrf2) activity has been reported to be implicated in the pathology of various neurological disorders, including epilepsy. Previous studies have demonstrated that Nrf2 is activated in the post-status epilepticus rat model; however, the spatiotemporal as well as cell type-specific expression of Nrf2 following brief epileptic seizures remains unclear. Here, we evaluated how an acute epileptic seizure affected the expression of Nrf2 and its downstream genes in the rats' cortex and the hippocampus up to 1 week following the induced seizure. We found that after a pentylenetetrazol-induced seizure, Nrf2 significantly increased at 24 h at the mRNA level and 3 h at the protein level in the cortex. In the hippocampus, the Nrf2 mRNA level peaked at 3 h after the seizure, and no significant changes were observed in the protein level. Interestingly, the mRNA level of Nrf2 downstream genes peaked at 3-6 h after seizure in both the cortex and the hippocampus. A significant increase in the expression of Nrf2 was observed in the neuronal population of CA1 and CA3 regions of the hippocampus, as well as in the cortex. Moreover, we observed no change in the co-localization of Nrf2 with astrocytes neither in the cortex nor in CA1 and CA3. Our results revealed that following a brief acute epileptic seizure, the expression of Nrf2 and its downstream genes is transiently increased and peaked at early timepoints after the seizure predominantly in the hippocampus, and this expression is restricted to the neuronal population.
Collapse
Affiliation(s)
- Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rhoda Olowe
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prince Kumar Singh
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
35
|
Wu J, Wang S, Zhao W, Li M, Li S. Ginsenoside Rh2 inhibits CBP/p300-mediated FOXO3a acetylation and epilepsy-induced oxidative damage via the FOXO3a-KEAP1-NRF2 pathway. Eur J Pharmacol 2023; 940:175391. [PMID: 36400161 DOI: 10.1016/j.ejphar.2022.175391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Epilepsy is a chronic disease that affects a wide range of people. Furthermore, a third of patients suffering from epileptic seizures do not respond to antiepileptic drugs. In recent years, increasing attention has focused on the role of oxidative stress in acquired epilepsy, and adjuvant antiepileptic drugs to reduce oxidative stress may be a new therapeutic strategy. In this study ginsenoside Rh2 was resistant to oxidative stress induced by epileptic activity in vivo and in vitro. Using online databases, we identified forkhead box O3a (FOXO3a) overexpression in epilepsy tissue and validated this in vitro, in vivo, and in clinical tissues of patients with epilepsy. An in vitro epilepsy model revealed that the overexpression of FOXO3a led to more severe oxidative stress, while the knockdown of FOXO3a had a protective effect on SH-SY5Y cells. Moreover, our results showed that the positive effect of FOXO3a on oxidative stress was caused by the transcriptional activation of Kelch-like ECH-associated protein 1 (KEAP1), a negative regulator of nuclear factor erythroid 2-related factor 2 (NRF2). We also found that ginsenoside Rh2 can directly inhibit the activation of FOXO3a by selectively blocking CREB-binding protein (CBP)/p300-mediated FOXO3a acetylation and play a role in regulating the KEAP1-NRF2 pathway to resist oxidative stress.
Collapse
Affiliation(s)
- Jingheng Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Shuai Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Wujun Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Miaomiao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.
| |
Collapse
|
36
|
Walker MC. Reactive oxygen species in status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S66-S72. [PMID: 36648377 PMCID: PMC10173846 DOI: 10.1002/epi4.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
It has long been recognized that status epilepticus can cause considerable neuronal damage, and this has become one of its defining features. The mechanisms underlying this damage are less clear. Excessive activation of NMDA receptors results in large rises in internal calcium, which eventually lead to neuronal death. Between NMDA receptor activation and neuronal death are a number of intermediary steps, key among which is the generation of free radicals and reactive oxygen and nitrogen species. Although it has long been thought that mitochondria are the primary source for reactive oxygen species, more recent evidence has pointed to a prominent role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme localized in cell membranes. There is burgeoning in vivo and in vitro evidence that therapies that target the production or removal of reactive oxygen species are not only effective neuroprotectants following status epilepticus, but also potently antiepileptogenic. Moreover, combining therapies targeted at inhibiting NADPH oxidase and at increasing endogenous antioxidants seems to offer the greatest benefits.
Collapse
Affiliation(s)
- Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
37
|
Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Antioxidant and Anti-inflammatory Activity of Sea Cucumber ( Holothuria scabra) Active Compounds against KEAP1 and iNOS Protein. Bioinform Biol Insights 2023; 17:11779322221149613. [PMID: 36688185 PMCID: PMC9850421 DOI: 10.1177/11779322221149613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress and inflammation have a role in the development of various diseases. Oxidative stress and inflammation are associated with many proteins, including Kelch ECH associating protein 1 (KEAP1) and inducible nitric oxide synthase (iNOS) proteins. The active compounds contained in Holothuria scabra have antioxidant and anti-inflammatory properties. This study aimed to evaluate the antioxidant and anti-inflammatory activity of sea cucumber's active compounds by targeting KEAP1 and iNOS proteins. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activity of H. scabra extract were measured spectrophotometrically. The 3-dimensional (3D) structures of sea cucumber's active compounds and proteins were obtained from the PubChem and Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) databases. Molecular docking was performed using AutoDock Vina software. Molecular dynamics simulations were carried out using Yet Another Scientific Artificial Reality Application (YASARA) software with environmental parameters according to the cell's physiological conditions. The membrane permeability test was performed using the PerMM web server. The methanol extract of H. scabra had a weak antioxidant activity against DPPH and strong activity against NO radical. Scabraside and holothurinoside G had the most negative binding affinity values when interacting with the active site of KEAP1 and iNOS proteins. Molecular dynamics simulations also showed that both compounds were stable when interacting with KEAP1 and iNOS. However, scabraside and holothurinoside G were difficult to penetrate the cell plasma membrane, which is seen from the high energy transfer value in the lipid acyl chain region of phospholipids. Scabraside and holothurinoside G are predicted to act as antioxidants and anti-inflammations, but in their implementation to in vitro and in vivo study, it is necessary to have liposomes or nanoparticles, or other delivery methods to help these 2 compounds enter the cell.
Collapse
Affiliation(s)
- Teresa Liliana Wargasetia
- Faculty of Medicine, Universitas
Kristen Maranatha (Maranatha Christian University), Bandung, Indonesia,Teresa Liliana Wargasetia, Faculty of
Medicine, Universitas Kristen Maranatha (Maranatha Christian University),
Bandung, Indonesia.
| | - Hana Ratnawati
- Faculty of Medicine, Universitas
Kristen Maranatha (Maranatha Christian University), Bandung, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of
Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia
| | | |
Collapse
|
38
|
Sandouka S, Saadi A, Singh PK, Olowe R, Shekh-Ahmad T. Nrf2 is predominantly expressed in hippocampal neurons in a rat model of temporal lobe epilepsy. Cell Biosci 2023; 13:3. [PMID: 36600279 DOI: 10.1186/s13578-022-00951-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Drug resistance is a particular problem in patients with temporal lobe epilepsy, where seizures originate mainly from the hippocampus. Many of these epilepsies are acquired conditions following an insult to the brain such as a prolonged seizure. Such conditions are characterized by pathophysiological mechanisms including massive oxidative stress that synergistically mediate the secondary brain damage, contributing to the development of epilepsy. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has emerged in recent years as an attractive therapeutic approach targeting to upregulate the antioxidative defenses in the cell, to ameliorate the oxidative stress-induced damage. Thus, it is important to understand the characteristics of Nrf2 activation during epileptogenesis and epilepsy. Here, we studied the temporal, regional, and cell-type specific expression of Nrf2 in the brain, in a rat model of temporal lobe epilepsy. RESULTS Early after status-epilepticus, Nrf2 is mainly activated in the hippocampus and maintained during the whole period of epileptogenesis. Only transient expression of Nrf2 was observed in the cortex. Nevertheless, the expression of several Nrf2 antioxidant target genes was increased within 24 h after status-epilepticus in both the cortex and the hippocampus. We demonstrated that after status-epilepticus in rats, Nrf2 is predominantly expressed in neurons in the CA1 and CA3 regions of the hippocampus, and only astrocytes in the CA1 increase their Nrf2 expression. CONCLUSIONS In conclusion, our data identify previously unrecognized spatial and cell-type dependent activation of Nrf2 during epilepsy development, highlighting the need for a time-controlled, and cell-type specific activation of the Nrf2 pathway for mediating anti-oxidant response after brain insult, to modify the development of epilepsy.
Collapse
Affiliation(s)
- Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Prince Kumar Singh
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Rhoda Olowe
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
39
|
Gola L, Bierhansl L, Hummel N, Korn L, Pawlowski M, Cerina M, Hundehege P, Budde T, König S, Meuth SG, Wiendl H, Kovac S. MMF induces antioxidative and anaplerotic pathways and is neuroprotective in hyperexcitability in vitro. Free Radic Biol Med 2023; 194:337-346. [PMID: 36521578 DOI: 10.1016/j.freeradbiomed.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Hyperexcitability-induced neuronal damage plays a role both in epilepsy as well as in inflammatory brain diseases such as multiple sclerosis (MS) and as such represents an important disease pathway which potentially can be targeted to mitigate neuronal damage. Dimethyl fumarate (DMF) and its pharmacologically active metabolite monomethyl fumarate (MMF) are FDA-approved therapeutics for MS, which can induce immunosuppressive and antioxidant pathways, and their neuroprotective capacity has been demonstrated in other preclinical neurological disease models before. In this study, we used an unbiased proteomic approach to identify potential new targets upon the treatment of MMF in glio-neuronal hippocampal cultures. MMF treatment results in induction of antioxidative (HMOX1, NQO1) and anaplerotic metabolic (GAPDH, PC) pathways, which correlated with reduction in ROS production, increased mitochondrial NADH-redox index and decreased NADH pool, independent of glutathione levels. Additionally, MMF reduced glycolytic capacity indicating individual intra-cellular metabolic programs within different cell types. Furthermore, we demonstrate a neuroprotective effect of MMF upon hyperexcitability in vitro (low magnesium model), where MMF prevents glio-neuronal death via reduced ROS production. These results highlight MMF as a potential new therapeutic opportunity in hyperexcitability-induced neurodegeneration.
Collapse
Affiliation(s)
- Lukas Gola
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Laura Bierhansl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nicolas Hummel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Thomas Budde
- Department of Neurophysiology, University of Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
40
|
Mercado-Gómez OF, Arriaga-Ávila VS, Vega-García A, Sánchez-Hernández J, Jiménez A, Organista-Juárez D, Guzmán-Ruiz MA, Guevara-Guzmán R. Cellular and Molecular Mechanisms of Neuroinflammation in Drug-Resistant Epilepsy. PHARMACORESISTANCE IN EPILEPSY 2023:131-156. [DOI: 10.1007/978-3-031-36526-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol 2022; 58:102549. [PMID: 36459714 PMCID: PMC9712695 DOI: 10.1016/j.redox.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent work by us and others has implicated NADPH oxidase (NOX) enzymes as main producers of reactive oxygen species (ROS) following a brain insult such as status epilepticus, contributing to neuronal damage and development of epilepsy. Although several NOX isoforms have been examined in the context of epilepsy, most attention has focused on NOX2. In this present study, we demonstrate the effect of gp91ds-tat, a specific competitive inhibitor of NOX2, in in vitro epileptiform activity model as well as in temporal lobe epilepsy (TLE) model in rats. We showed that in in vitro seizure model, gp91ds-tat modulated Ca2+ oscillation, prevented epileptiform activity-induced ROS generation, mitochondrial depolarization, and neuronal death. Administration of gp91ds-tat 1 h after kainic acid-induced status epilepticus significantly decreased the expression of NOX2, as well as the overall NOX activity in the cortex and the hippocampus. Finally, we showed that upon continuous intracerebroventricular administration to epileptic rats, gp91ds-tat significantly reduced the seizure frequency and the total number of seizures post-treatment compared to the scrambled peptide-treated animals. The results of the study suggest that NOX2 may have an important effect on modulation of epileptiform activity and has a critical role in mediating seizure-induced NOX activation, ROS generation and oxidative stress in the brain, and thus significantly contributes to development of epilepsy following a brain insult.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- Corresponding author. The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
42
|
Saadi A, Sandouka S, Grad E, Singh PK, Shekh-Ahmad T. Spatial, temporal, and cell-type-specific expression of NADPH Oxidase isoforms following seizure models in rats. Free Radic Biol Med 2022; 190:158-168. [PMID: 35964838 DOI: 10.1016/j.freeradbiomed.2022.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
The NADPH Oxidase (NOX) enzymes are key producers of reactive oxygen species (ROS) and consist of seven different isoforms, distributed across the tissues and cell types. The increasing level of ROS induces oxidative stress playing a crucial role in neuronal death and the development of epilepsy. Recently, NOX2 was reported as a primary source of ROS production, activated by NMDA receptor, a crucial marker of epilepsy development. Here, we demonstrate spatial, temporal, and cellular expression of NOX2 and NOX4 complexes in in-vitro and in-vivo seizure models. We showed that the expression of NOX2 and NOX4 was increased in the initial 24 h following a brief seizure induced by pentylenetetrazol. Interestingly, while this elevated level returns to baseline 48 h following seizure in the cortex, in the hippocampus these levels remain elevated up to one week following the seizure. Moreover, we showed that 1- and 2- weeks following status epilepticus (SE), expression of NOX2 and NOX4 remains significantly elevated both in the cortex and the hippocampus. Furthermore, in in-vitro seizure model, NOX2 and NOX4 isoforms were overexpressed in neurons and astrocytes following seizures. These results suggest that NOX2 and NOX4 in the brain have a transient response to seizures, and these responses temporally vary depending on, seizure duration, brain region (cortex or hippocampus), and cell types.
Collapse
Affiliation(s)
- Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Etty Grad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Prince Kumar Singh
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
43
|
Esteras N, Abramov AY. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. Free Radic Biol Med 2022; 189:136-153. [PMID: 35918014 DOI: 10.1016/j.freeradbiomed.2022.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria are unique and essential organelles that mediate many vital cellular processes including energy metabolism and cell death. The transcription factor Nrf2 (NF-E2 p45-related factor 2) has emerged in the last few years as an important modulator of multiple aspects of mitochondrial function. Well-known for controlling cellular redox homeostasis, the cytoprotective effects of Nrf2 extend beyond its ability to regulate a diverse network of antioxidant and detoxification enzymes. Here, we review the role of Nrf2 in the regulation of mitochondrial function and structure. We focus on Nrf2 involvement in promoting mitochondrial quality control and regulation of basic aspects of mitochondrial function, including energy production, reactive oxygen species generation, calcium signalling, and cell death induction. Given the importance of mitochondria in the development of multiple diseases, these findings reinforce the pharmacological activation of Nrf2 as an attractive strategy to counteract mitochondrial dysfunction.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
44
|
Fabisiak T, Patel M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev Biol 2022; 10:976953. [PMID: 36035987 PMCID: PMC9399352 DOI: 10.3389/fcell.2022.976953] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
The roles of both neuroinflammation and oxidative stress in the pathophysiology of epilepsy have begun to receive considerable attention in recent years. However, these concepts are predominantly studied as separate entities despite the evidence that neuroinflammatory and redox-based signaling cascades have significant crosstalk. Oxidative post-translational modifications have been demonstrated to directly influence the function of key neuroinflammatory mediators. Neuroinflammation can further be controlled on the transcriptional level as the transcriptional regulators NF-KB and nrf2 are activated by reactive oxygen species. Further, neuroinflammation can induce the increased expression and activity of NADPH oxidase, leading to a highly oxidative environment. These factors additionally influence mitochondria function and the metabolic status of neurons and glia, which are already metabolically stressed in epilepsy. Given the implication of this relationship to disease pathology, this review explores the numerous mechanisms by which neuroinflammation and oxidative stress influence one another in the context of epilepsy. We further examine the efficacy of treatments targeting oxidative stress and redox regulation in animal and human epilepsies in the literature that warrant further investigation. Treatment approaches aimed at rectifying oxidative stress and aberrant redox signaling may enable control of neuroinflammation and improve patient outcomes.
Collapse
|
45
|
Salamone A, Terrone G, Di Sapia R, Balosso S, Ravizza T, Beltrame L, Craparotta I, Mannarino L, Cominesi SR, Rizzi M, Pauletti A, Marchini S, Porcu L, Zimmer TS, Aronica E, During M, Abrahams B, Kondo S, Nishi T, Vezzani A. Cholesterol 24-hydroxylase is a novel pharmacological target for anti-ictogenic and disease modification effects in epilepsy. Neurobiol Dis 2022; 173:105835. [PMID: 35932989 DOI: 10.1016/j.nbd.2022.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.
Collapse
Affiliation(s)
- Alessia Salamone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Beltrame
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Ilaria Craparotta
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Laura Mannarino
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sara Raimondi Cominesi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Massimo Rizzi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sergio Marchini
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Porcu
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Till S Zimmer
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, the Netherlands
| | | | - Brett Abrahams
- Ovid Therapeutics, 10036 New York, NY, USA; Departments of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 10461 Bronx, USA
| | - Shinichi Kondo
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Toshiya Nishi
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
| |
Collapse
|
46
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
47
|
Li EC, Zheng Y, Cai MT, Lai QL, Fang GL, Du BQ, Shen CH, Zhang YX, Wu LJ, Ding MP. Seizures and epilepsy in multiple sclerosis, aquaporin 4 antibody-positive neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease. Epilepsia 2022; 63:2173-2191. [PMID: 35652436 DOI: 10.1111/epi.17315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Seizure is one of the manifestations of central nervous system (CNS) inflammatory demyelinating diseases, which mainly include multiple sclerosis (MS), aquaporin 4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). "Acute symptomatic seizures secondary to MS / AQP4-NMOSD / MOGAD" occur in the acute phase of the diseases, and are more frequent in MOGAD. In contrast, recurrent non-provoked seizures, mainly attributed to "autoimmune-associated epilepsy", occur in the non-acute phase of the diseases. Seizures in MS / AQP4-NMOSD / MOGAD mostly have a focal-onset. MS patients with concomitant systemic infections, an earlier onset and a higher disease activity are more likely to have seizures, whereas factors such as higher MS severity, the presence of status epilepticus and cortical damage indicate a greater risk of developing epilepsy. In MOGAD, cerebral cortical encephalitis, acute disseminated encephalomyelitis (ADEM)-like phenotypes (predominately ADEM and multiphasic disseminated encephalomyelitis) indicate a higher seizure risk. Multiple relapses with ADEM-like phenotypes predict epilepsy in pediatrics with MOGAD. Pathophysiologically, acute symptomatic seizures in MS are associated with neuronal hyperexcitability secondary to inflammation and demyelination. Chronic epilepsy in MS is largely due to gliosis, neuronal dysfunction and synaptic abnormalities. The mainstay of treatment for seizures secondary to MS / AQP4-NMOSD / MOGAD include immunotherapy along with antiseizure medications. This critical review discusses the most-updated evidence on epidemiology, clinical correlates, and inflammatory mechanisms underlying seizures and epilepsy in MS / AQP4-NMOSD / MOGAD. Treatment cautions including drug-drug interactions and the impact of treatments on the other are outlined. We also highlight pitfalls and challenges in managing such patients and future research perspectives to address unsolved questions.
Collapse
Affiliation(s)
- Er-Chuang Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Department of Neurology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Gao-Li Fang
- Department of Neurology, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Bing-Qing Du
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Mei-Ping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
QSAR study, molecular docking, and ADMET prediction of vinyl sulfone-containing Nrf2 activator derivatives for treating Parkinson disease. Struct Chem 2022. [DOI: 10.1007/s11224-022-01909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Pošusta A, Folbergrová J, Tauchmannová K, Mráček T, Otáhal J. Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats. Front Cell Neurosci 2022; 16:855161. [PMID: 35370554 PMCID: PMC8965559 DOI: 10.3389/fncel.2022.855161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG μCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.
Collapse
Affiliation(s)
- Jan Daněk
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Šárka Danačíková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - David Kala
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Sonam Kapoor
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Pošusta
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jakub Otáhal,
| |
Collapse
|
50
|
The Novel Nrf2 Activator Omaveloxolone Regulates Microglia Phenotype and Ameliorates Secondary Brain Injury after Intracerebral Hemorrhage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4564471. [PMID: 35308167 PMCID: PMC8933082 DOI: 10.1155/2022/4564471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both in vitro and in vivo experiments showed that Omav treatment inhibited M1-like activation and promoted the activation of the M2-like microglial phenotype. Omav inhibited OxyHb-induced ROS generation and preserved the function of mitochondria in BV2 cells. Intraperitoneal administration of Omav improved sensorimotor function in the ICH mouse model. Importantly, these effects were blocked by pretreatment with ML385, a selective inhibitor of Nrf2. Collectively, Omav modulated microglial polarization by activating Nrf2 and inhibiting ROS generation in ICH models, suggesting that it might be a promising drug candidate for the treatment of ICH.
Collapse
|