1
|
Gravitis AC, Sivendiran K, Tufa U, Zukotynski K, Chinvarun Y, Devinsky O, Wennberg R, Carlen PL, Bardakjian BL. Wavelet phase coherence of ictal scalp EEG-extracted muscle activity (SMA) as a biomarker for sudden unexpected death in epilepsy (SUDEP). PLoS One 2024; 19:e0298943. [PMID: 39208242 PMCID: PMC11361603 DOI: 10.1371/journal.pone.0298943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Approximately 50 million people worldwide have epilepsy and 8-17% of the deaths in patients with epilepsy are attributed to sudden unexpected death in epilepsy (SUDEP). The goal of the present work was to establish a biomarker for SUDEP so that preventive treatment can be instituted. APPROACH Seizure activity in patients with SUDEP and non-SUDEP was analyzed, specifically, the scalp EEG extracted muscle activity (SMA) and the average wavelet phase coherence (WPC) during seizures was computed for two frequency ranges (1-12 Hz, 13-30 Hz) to identify differences between the two groups. MAIN RESULTS Ictal SMA in SUDEP patients showed a statistically higher average WPC value when compared to non-SUDEP patients for both frequency ranges. Area under curve for a cross-validated logistic classifier was 81%. SIGNIFICANCE Average WPC of ictal SMA is a candidate biomarker for early detection of SUDEP.
Collapse
Affiliation(s)
- Adam C. Gravitis
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Krishram Sivendiran
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Uilki Tufa
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Zukotynski
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yotin Chinvarun
- Department of Medicine, Phramongkutklao Royal Army Hospital, Bangkok, Thailand
| | - Orrin Devinsky
- Grossman School of Medicine, New York University, New York, New York, United States of America
| | - Richard Wennberg
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Peter L. Carlen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Berj L. Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Lin S, Schwartz TH, Pitt GS. Sudden Unexpected Death in Epilepsy: Respiratory vs. Cardiac Contributions. Cardiovasc Res 2024:cvae170. [PMID: 39110639 DOI: 10.1093/cvr/cvae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 08/06/2024] [Indexed: 10/20/2024] Open
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) poses a significant risk to life expectancy for individuals with epilepsy. Mechanistic insight, while incomplete, has advanced through clinical observational studies and animal models. Yet we lack preventative therapies, which will depend on understanding SUDEP mechanisms. Recurrent convulsive seizures are the major SUDEP risk factor. Cardiorespiratory dysfunction precedes SUDEP, but whether cardiac arrhythmias are major proximate culprits for SUDEP remains to be determined. Here, we highlight recent data from mouse models and clinical studies that provide increasing support for respiratory depression and decreasing evidence for tachyarrhythmia-induced SUDEP. Further, we review data from genetic and chemoconvulsant mouse models that have enabled a deeper understanding for how seizures initiated in the central nervous system propagate to the autonomic nervous system and drive seizure-induced respiratory depression and subsequent SUDEP, rather than supporting a proximate cardiac arrhythmia cause. Ongoing research will continue to identify predictive SUDEP biomarkers, improve animal models, and translate basic research into precision medicine approaches. Identifying and understanding the brainstem circuits vulnerable in seizure-induced apnea will enable therapeutic interventions, to enhance the quality of life and life expectancy for individuals with epilepsy.
Collapse
Affiliation(s)
- Susan Lin
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York-Presbyterian Hospital, New York, New York, USA
| | - Geoffrey S Pitt
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
3
|
Quintino C, Malheiros-Lima MR, Ghazale PP, Braga PPP, Maia OAC, de Oliveira CEG, Andrade FW, Schoorlemmer GH, Moreira TS, da Matta DH, Colugnati DB, Pansani AP. The latency to awake from induced-obstructive sleep apnea is reduced in rats with chronic epilepsy. Epilepsy Behav 2024; 157:109848. [PMID: 38823073 DOI: 10.1016/j.yebeh.2024.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
OSA is known to increase the risk for SUDEP in persons with epilepsy, but the relationship between these two factors is not clear. Also, there is no study showing the acute responses to obstructive apnea in a chronic epilepsy model. Therefore, this study aimed to characterize cardiorespiratory responses to obstructive apnea and chemoreceptor stimulation in rats. In addition, we analyzed respiratory centers in the brain stem by immunohistochemistry. Epilepsy was induced with pilocarpine. About 30-60 days after the first spontaneous seizure, tracheal and thoracic balloons, and electrodes for recording the electroencephalogram, electromyogram, and electrocardiogram were implanted. Intermittent apneas were made by inflation of the tracheal balloon during wakefulness, NREM sleep, and REM sleep. During apnea, respiratory effort increased, and heart rate fell, especially with apneas made during wakefulness, both in control rats and rats with epilepsy. Latency to awake from apnea was longer with apneas made during REM than NREM, but rats with epilepsy awoke more rapidly than controls with apneas made during REM sleep. Rats with epilepsy also had less REM sleep. Cardiorespiratory responses to stimulation of carotid chemoreceptors with cyanide were similar in rats with epilepsy and controls. Immunohistochemical analysis of Phox2b, tryptophan hydroxylase, and NK1 in brain stem nuclei involved in breathing and sleep (retrotrapezoid nucleus, pre-Bötzinger complex, Bötzinger complex, and caudal raphe nuclei) revealed no differences between control rats and rats with epilepsy. In conclusion, our study showed that rats with epilepsy had a decrease in the latency to awaken from apneas during REM sleep, which may be related to neuroplasticity in some other brain regions related to respiratory control, awakening mechanisms, and autonomic modulation.
Collapse
Affiliation(s)
- Cláudio Quintino
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, Brazil
| | - Poliana Peres Ghazale
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pedro Paulo Pereira Braga
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Octávio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, Brazil
| | | | - Felipe Waks Andrade
- Institute of Mathematics and Statistics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Guus H Schoorlemmer
- Physiology Department, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, Brazil
| | | | - Diego Basile Colugnati
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Aline Priscila Pansani
- Department of Physiological Sciences, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
Kouchi H, Smith J, Georges B, Cracknell F, Bezin L, Rheims S. Serotonin 2C receptor in a rat model of temporal lobe epilepsy: From brainstem expression to pharmacological blockade in relation to ventilatory function. Epilepsia 2024; 65:e125-e130. [PMID: 38738911 DOI: 10.1111/epi.18006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2 h after administration of SB242084 (2 mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower.
Collapse
Affiliation(s)
- Hayet Kouchi
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Jonathon Smith
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Béatrice Georges
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Freya Cracknell
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| |
Collapse
|
5
|
Misirocchi F, Vaudano AE, Florindo I, Zinno L, Zilioli A, Mannini E, Parrino L, Mutti C. Imaging biomarkers of sleep-related hypermotor epilepsy and sudden unexpected death in epilepsy: a review. Seizure 2024; 114:70-78. [PMID: 38088013 DOI: 10.1016/j.seizure.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, imaging has emerged as a promising source of several intriguing biomarkers in epilepsy, due to the impressive growth of imaging technology, supported by methodological advances and integrations of post-processing techniques. Bearing in mind the mutually influencing connection between sleep and epilepsy, we focused on sleep-related hypermotor epilepsy (SHE) and sudden unexpected death in epilepsy (SUDEP), aiming to make order and clarify possible clinical utility of emerging multimodal imaging biomarkers of these two epilepsy-related entities commonly occurring during sleep. Regarding SHE, advanced structural techniques might soon emerge as a promising source of diagnostic and predictive biomarkers, tailoring a targeted therapeutic (surgical) approach for MRI-negative subjects. Functional and metabolic imaging may instead unveil SHE's extensive and night-related altered brain networks, providing insights into distinctions and similarities with non-epileptic sleep phenomena, such as parasomnias. SUDEP is considered a storm that strikes without warning signals, but objective subtle structural and functional alterations in autonomic, cardiorespiratory, and arousal centers are present in patients eventually experiencing SUDEP. These alterations could be seen both as susceptibility and diagnostic biomarkers of the underlying pathological ongoing loop ultimately ending in death. Finally, given that SHE and SUDEP are rare phenomena, most evidence on the topic is derived from small single-center experiences with scarcely comparable results, hampering the possibility of performing any meta-analytic approach. Multicenter, longitudinal, well-designed studies are strongly encouraged.
Collapse
Affiliation(s)
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy; Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Florindo
- Neurology Unit, University Hospital of Parma, Parma, Italy
| | - Lucia Zinno
- Neurology Unit, University Hospital of Parma, Parma, Italy
| | | | - Elisa Mannini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Liborio Parrino
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Neurology Unit, University Hospital of Parma, Parma, Italy; Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy.
| | - Carlotta Mutti
- Neurology Unit, University Hospital of Parma, Parma, Italy; Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| |
Collapse
|
6
|
Brodovskaya A, Sun H, Adotevi N, Wenker IC, Mitchell KE, Clements RT, Kapur J. Neuronal plasticity contributes to postictal death. Prog Neurobiol 2023; 231:102531. [PMID: 37778436 PMCID: PMC10842614 DOI: 10.1016/j.pneurobio.2023.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Repeated generalized tonic-clonic seizures (GTCSs) are the most critical risk factor for sudden unexpected death in epilepsy (SUDEP). GTCSs can cause fatal apnea. We investigated neuronal plasticity mechanisms that precipitate postictal apnea and seizure-induced death. Repeated seizures worsened behavior, precipitated apnea, and enlarged active neuronal circuits, recruiting more neurons in such brainstem nuclei as periaqueductal gray (PAG) and dorsal raphe, indicative of brainstem plasticity. Seizure-activated neurons are more excitable and have enhanced AMPA-mediated excitatory transmission after a seizure. Global deletion of the GluA1 subunit of AMPA receptors abolishes postictal apnea and seizure-induced death. Treatment with a drug that blocks Ca2+-permeable AMPA receptors also renders mice apnea-free with five-fold better survival than untreated mice. Repeated seizures traffic the GluA1 subunit-containing AMPA receptors to synapses, and blocking this mechanism decreases the probability of postictal apnea and seizure-induced death.
Collapse
Affiliation(s)
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Nadia Adotevi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Keri E Mitchell
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Rachel T Clements
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
7
|
Manis AD, Cook-Snyder DR, Duffy E, Osmani WA, Eilbes M, Dillard M, Palygin O, Staruschenko A, Hodges MR. Repeated seizures lead to progressive ventilatory dysfunction in SS Kcnj16-/- rats. J Appl Physiol (1985) 2023; 135:872-885. [PMID: 37535709 PMCID: PMC10642517 DOI: 10.1152/japplphysiol.00072.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Patients with uncontrolled epilepsy experience repeated seizures putting them at increased risk for sudden unexpected death in epilepsy (SUDEP). Data from human patients have led to the hypothesis that SUDEP results from severe cardiorespiratory suppression after a seizure, which may involve pathological deficiencies in the brainstem serotonin (5-HT) system. Rats with a genomic Kcnj16 mutation (SSKcnj16-/- rats) are susceptible to sound-induced generalized tonic-clonic seizures (GTCS) which, when repeated once daily for up to 10 days (10-day seizure protocol), increased mortality, particularly in male rats. Here, we test the hypothesis that repeated seizures across the 10-day protocol will cause a progressive ventilatory dysfunction due to time-dependent 5-HT deficiency. Initial severe seizures led to ictal and postictal apneas and transient decreases in breathing frequency, ventilatory drive, breath-to-breath variability, and brief hypoventilation. These seizure-induced effects on ventilation were exacerbated with increasing seizures and ventilatory chemoreflexes became further impaired after repeated seizures. Tissue analyses of key brainstem regions controlling breathing showed time-dependent 5-HT system suppression and increased immunoreactivity for IBA-1 (microglial marker) without changes in overall cell counts at 3, 7, and 10 days of seizures. Fluoxetine treatment in SSKcnj16-/- rats prevented repeated seizure-induced progressive respiratory suppression but failed to prevent seizure-related mortality. We conclude that repeated seizures cause a progressive compromise of ventilatory control in the immediate postictal period largely mediated by serotonin system suppression in brainstem regions of respiratory control. However, other unknown factors contribute to overall survival following repeated seizures in this model.NEW & NOTEWORTHY This study demonstrated that repeated seizures in a novel rat model (SSKcnj16-/- rats) caused a progressively greater ventilatory dysfunction in the immediate postictal period associated with brainstem serotonin (5-HT) suppression. Augmenting brain 5-HT with a selective serotonin reuptake inhibitor prevented the progressive ventilatory dysfunction induced by repeated seizures but failed to prevent seizure-related mortality, suggesting that repeated seizures may lead to cardiorespiratory suppression and failure through multiple mechanisms.
Collapse
Affiliation(s)
- Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Denise R Cook-Snyder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Erin Duffy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Wasif A Osmani
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa Eilbes
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Matthew Dillard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
8
|
Sainju RK, Dragon DN, Winnike HB, Vilella L, Li X, Lhatoo S, Eyck PT, Wendt LH, Richerson GB, Gehlbach BK. Interictal respiratory variability predicts severity of hypoxemia after generalized convulsive seizures. Epilepsia 2023; 64:2373-2384. [PMID: 37344924 PMCID: PMC10538446 DOI: 10.1111/epi.17691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE Severe respiratory dysfunction induced by generalized convulsive seizures (GCS) is now thought to be a common mechanism for sudden unexpected death in epilepsy (SUDEP). In a mouse model of seizure-induced death, increased interictal respiratory variability was reported in mice that later died of respiratory arrest after GCS. We studied respiratory variability in epilepsy patients as a predictive tool for severity of postictal hypoxemia, a potential biomarker for SUDEP risk. We then explored the relationship between respiratory variability and central CO2 drive, measured by the hypercapnic ventilatory response (HCVR). METHODS We reviewed clinical, video-electroencephalography, and respiratory (belts, airflow, pulse oximeter, and HCVR) data of epilepsy patients. Mean, SD, and coefficient of variation (CV) of interbreath interval (IBI) were calculated. Primary outcomes were: (1) nadir of capillary oxygen saturation (SpO2 ) and (2) duration of oxygen desaturation. Poincaré plots of IBI were created. Covariates were evaluated in univariate models, then, based on Akaike information criteria (AIC), multivariate regression models were created. RESULTS Of 66 GCS recorded in 131 subjects, 30 had interpretable respiratory data. In the multivariate model with the lowest AIC value, duration of epilepsy was a significant predictor of duration of oxygen desaturation. Duration of tonic phase and CV of IBI during the third postictal minute correlated with SpO2 nadir, whereas CV of IBI during non-rapid eye movement sleep had a negative correlation. Poincaré plots showed that long-term variability was significantly greater in subjects with ≥200 s of postictal oxygen desaturation after GCS compared to those with <200 s desaturation. Finally, HCVR slope showed a negative correlation with measures of respiratory variability. SIGNIFICANCE These results indicate that interictal respiratory variability predicts severity of postictal oxygen desaturation, suggesting its utility as a potential biomarker. They also suggest that interictal respiratory control may be abnormal in some patients with epilepsy.
Collapse
Affiliation(s)
- Rup K. Sainju
- Department of Neurology University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Deidre N. Dragon
- Department of Neurology University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Harold B. Winnike
- Institute for Clinical and Translational Science University of Iowa, Iowa City, IA
| | - Laura Vilella
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaojin Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Samden Lhatoo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science University of Iowa, Iowa City, IA
| | - Linder H Wendt
- Institute for Clinical and Translational Science University of Iowa, Iowa City, IA
| | - George B. Richerson
- Department of Neurology University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, IA
- VA Medical Center, Iowa City, IA
| | - Brian K. Gehlbach
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA
| |
Collapse
|
9
|
Giussani G, Falcicchio G, La Neve A, Costagliola G, Striano P, Scarabello A, Mostacci B, Beghi E. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023; 8:728-757. [PMID: 36896633 PMCID: PMC10472423 DOI: 10.1002/epi4.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a sudden, unexpected, witnessed or unwitnessed, non-traumatic and non-drowning death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus in which postmortem examination does not reveal other causes of death. Lower diagnostic levels are assigned when cases met most or all of these criteria, but data suggested more than one possible cause of death. The incidence of SUDEP ranged from 0.09 to 2.4 per 1000 person-years. Differences can be attributed to the age of the study populations (with peaks in the 20-40-year age group) and the severity of the disease. Young age, disease severity (in particular, a history of generalized TCS), having symptomatic epilepsy, and the response to antiseizure medications (ASMs) are possible independent predictors of SUDEP. The pathophysiological mechanisms are not fully known due to the limited data available and because SUDEP is not always witnessed and has been electrophysiologically monitored only in a few cases with simultaneous assessment of respiratory, cardiac, and brain activity. The pathophysiological basis of SUDEP may vary according to different circumstances that make that particular seizure, in that specific moment and in that patient, a fatal event. The main hypothesized mechanisms, which could contribute to a cascade of events, are cardiac dysfunction (included potential effects of ASMs, genetically determined channelopathies, acquired heart diseases), respiratory dysfunction (included postictal arousal deficit for the respiratory mechanism, acquired respiratory diseases), neuromodulator dysfunction, postictal EEG depression and genetic factors.
Collapse
Affiliation(s)
- Giorgia Giussani
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | | | - Pasquale Striano
- IRCCS Istituto “Giannina Gaslini”GenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Anna Scarabello
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Ettore Beghi
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
10
|
Argo A, Puntarello M, Malta G, Buscemi R, Scalzo G, Triolo V, Albano GD, Zerbo S. The analysis of SUDEP forensic autopsies leading to preventable events. Front Neurol 2023; 14:1231515. [PMID: 37456625 PMCID: PMC10346851 DOI: 10.3389/fneur.2023.1231515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The diagnosis of unexpected death by excluding non-natural causes, particularly in subjects with epilepsy, is a topic of interest and it is difficult to identify in the forensic field. Health professionals sometimes are faced with cases of sudden death, generally in young adults with a long history of epilepsy that require, for judicial purposes, an explanation in terms of cause and means to determine the death. SUDEP is an entity diagnosed by the exclusion of other causes that may have led to death, and then for forensic purposes, it requires particular attention and knowledge, and there is difficulty in identifying it. Our contribution aims to illustrate the scientific community pathological findings, medical history, and circumstantial evidence of four cases of sudden death in epileptic subjects. Method We illustrated four cases of judicial autopsies from the Institute of Forensic Medicine of Palermo, Italy; the purpose was to exclude the criminal intervention in determining the death as non-natural. The study of victims' medical history, the toxicological investigations, and the autopsy findings analyzed both from macroscopic and microscopic aspects have made it possible to highlight some findings that can be traced back to SUDEP despite the small sample of subjects studied. Results These presented findings of four SUDEP cases could help forensic pathologists in recognizing this entity, by highlighting its characteristics, and allowing for a pathological classification, also in relation to the use of drugs for epilepsy treatment and circumstances of death. Discussion To obtain a definite diagnosis of SUDEP, a complex investigation process is required in a multidisciplinary approach. Considering the literature review with criticism, it could allow health professionals to select the characteristics of epileptic patients at risk of sudden death. Processing human behaviors, molecular and histopathological findings of the autopsies, but also the physiological, and pathological human body system functions thanks to Artificial Intelligence, could be the key to explaining SUDEP mechanisms and the future results to prevent it.
Collapse
Affiliation(s)
- Antonina Argo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Maria Puntarello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Ginevra Malta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Roberto Buscemi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Giovanni Scalzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | | | - Giuseppe Davide Albano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Stefania Zerbo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with epilepsy. This review highlights the recent literature regarding epidemiology on a global scale, putative mechanisms and thoughts towards intervention and prevention. RECENT FINDINGS Recently, numerous population-based studies have examined the incidence of SUDEP in many countries. Remarkably, incidence is quite consistent across these studies, and is commensurate with the recent estimates of about 1.2 per 1000 patient years. These studies further continue to support that incidence is similar across the ages and that comparable factors portend heightened risk for SUDEP. Fervent research in patients and animal studies continues to hone the understanding of potential mechanisms for SUDEP, especially those regarding seizure-induced respiratory dysregulation. Many of these studies and others have begun to lay out a path towards identification of improved treatment and prevention means. However, continued efforts are needed to educate medical professionals about SUDEP risk and the need to disclose this to patients. SUMMARY SUDEP is a devastating potential outcome of epilepsy. More is continually learned about risk and mechanisms from clinical and preclinical studies. This knowledge can hopefully be leveraged into preventive measures in the near future.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology
- Neuroscience Graduate Program
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ana T Novella Maciel
- Department of Neurology
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Universidad Nacional Autónoma de México, Mexico City, México
| | - Matthew J Summerfield
- Neuroscience Graduate Program
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Mulkey DK, Milla BM. Perspectives on the basis of seizure-induced respiratory dysfunction. Front Neural Circuits 2022; 16:1033756. [PMID: 36605420 PMCID: PMC9807672 DOI: 10.3389/fncir.2022.1033756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is an umbrella term used to define a wide variety of seizure disorders and sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in epilepsy. Although some SUDEP risk factors have been identified, it remains largely unpredictable, and underlying mechanisms remain poorly understood. Most seizures start in the cortex, but the high mortality rate associated with certain types of epilepsy indicates brainstem involvement. Therefore, to help understand SUDEP we discuss mechanisms by which seizure activity propagates to the brainstem. Specifically, we highlight clinical and pre-clinical evidence suggesting how seizure activation of: (i) descending inhibitory drive or (ii) spreading depolarization might contribute to brainstem dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder, we also considered factors expected to favor or oppose mechanisms of seizure propagation. We also consider whether epilepsy-associated genetic variants directly impact brainstem function. Because respiratory failure is a leading cause of SUDEP, our discussion of brainstem dysfunction focuses on respiratory control.
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
14
|
Genes involved in paediatric apnoea and death based on knockout animal models: Implications for sudden infant death syndrome (SIDS). Paediatr Respir Rev 2022; 44:53-60. [PMID: 34750067 DOI: 10.1016/j.prrv.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
The mechanism of death in Sudden infant death syndrome (SIDS) remains unknown but it is hypothesised that cardiorespiratory failure of brainstem origin results in early post-natal death. For a subset of SIDS infants, an underlying genetic cause may be present, and genetic abnormalities affecting brainstem respiratory control may result in abnormalities that are detectable before death. Genetic knockout mice models were developed in the 1990s and have since helped to elucidate the physiological roles of a number of genes. This systematic review aimed to identify which genes, when knocked out, result in the phenotypes of abnormal cardiorespiratory control and/or early post-natal death. Three major genes were identified: Pet1- a serotonin transcription factor, the neurotrophin pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor (PAC1). Knockouts targeting these genes had blunted hypercapnic and/or hypoxic responses and early post-natal death. The hypothesis that these genes have a role in SIDS is supported by their being identified as abnormal in SIDS cohorts. Future research in SIDS cohorts will be important to determine whether these genetic abnormalities coexist and their potential applicability as biomarkers.
Collapse
|
15
|
Cheng HM, Gao CS, Lou QW, Chen Z, Wang Y. The diverse role of the raphe 5-HTergic systems in epilepsy. Acta Pharmacol Sin 2022; 43:2777-2788. [PMID: 35614227 PMCID: PMC9622810 DOI: 10.1038/s41401-022-00918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
The raphe nuclei comprise nearly all of 5-hydroxytryptaminergic (5-HTergic) neurons in the brain and are widely acknowledged to participate in the modulation of neural excitability. "Excitability-inhibition imbalance" results in a variety of brain disorders, including epilepsy. Epilepsy is a common neurological disorder characterized by hypersynchronous epileptic seizures accompanied by many psychological, social, cognitive consequences. Current antiepileptic drugs and other therapeutics are not ideal to control epilepsy and its comorbidities. Cumulative evidence suggests that the raphe nuclei and 5-HTergic system play an important role in epilepsy and epilepsy-associated comorbidities. Seizure activities propagate to the raphe nuclei and induce various alterations in different subregions of the raphe nuclei at the cellular and molecular levels. Intervention of the activity of raphe nuclei and raphe 5-HTergic system with pharmacological or genetic approaches, deep brain stimulation or optogenetics produces indeed diverse and even contradictory effects on seizure and epilepsy-associated comorbidities in different epilepsy models. Nevertheless, there are still many open questions left, especially regarding to the relationship between 5-HTergic neural circuit and epilepsy. Understanding of 5-HTergic network in a circuit- and molecule-specific way may not only be therapeutically relevant for increasing the drug specificity and precise treatment in epilepsy, but also provide critical hints for other brain disorders with abnormal neural excitability. In this review we focus on the roles of the raphe 5-HTergic system in epilepsy and epilepsy-associated comorbidities. Besides, further perspectives about the complexity and diversity of the raphe nuclei in epilepsy are also addressed.
Collapse
Affiliation(s)
- He-Ming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chen-Shu Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiu-Wen Lou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
16
|
Kreitlow BL, Li W, Buchanan GF. Chronobiology of epilepsy and sudden unexpected death in epilepsy. Front Neurosci 2022; 16:936104. [PMID: 36161152 PMCID: PMC9490261 DOI: 10.3389/fnins.2022.936104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is a neurological disease characterized by spontaneous, unprovoked seizures. Various insults render the brain hyperexcitable and susceptible to seizure. Despite there being dozens of preventative anti-seizure medications available, these drugs fail to control seizures in nearly 1 in 3 patients with epilepsy. Over the last century, a large body of evidence has demonstrated that internal and external rhythms can modify seizure phenotypes. Physiologically relevant rhythms with shorter periodic rhythms, such as endogenous circadian rhythms and sleep-state, as well as rhythms with longer periodicity, including multidien rhythms and menses, influence the timing of seizures through poorly understood mechanisms. The purpose of this review is to discuss the findings from both human and animal studies that consider the effect of such biologically relevant rhythms on epilepsy and seizure-associated death. Patients with medically refractory epilepsy are at increased risk of sudden unexpected death in epilepsy (SUDEP). The role that some of these rhythms play in the nocturnal susceptibility to SUDEP will also be discussed. While the involvement of some of these rhythms in epilepsy has been known for over a century, applying the rhythmic nature of such phenomenon to epilepsy management, particularly in mitigating the risk of SUDEP, has been underutilized. As our understanding of the physiological influence on such rhythmic phenomenon improves, and as technology for chronic intracranial epileptiform monitoring becomes more widespread, smaller and less invasive, novel seizure-prediction technologies and time-dependent chronotherapeutic seizure management strategies can be realized.
Collapse
Affiliation(s)
- Benjamin L. Kreitlow
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - William Li
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan, ; orcid.org/0000-0003-2371-4455
| |
Collapse
|
17
|
Kløvgaard M, Sabers A, Ryvlin P. Update on Sudden Unexpected Death in Epilepsy. Neurol Clin 2022; 40:741-754. [DOI: 10.1016/j.ncl.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Leitner DF, Kanshin E, Askenazi M, Faustin A, Friedman D, Devore S, Ueberheide B, Wisniewski T, Devinsky O. Raphe and ventrolateral medulla proteomics in epilepsy and sudden unexpected death in epilepsy. Brain Commun 2022; 4:fcac186. [PMID: 35928051 PMCID: PMC9344977 DOI: 10.1093/braincomms/fcac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
Brainstem nuclei dysfunction is implicated in sudden unexpected death in epilepsy. In animal models, deficient serotonergic activity is associated with seizure-induced respiratory arrest. In humans, glia are decreased in the ventrolateral medullary pre-Botzinger complex that modulate respiratory rhythm, as well as in the medial medullary raphe that modulate respiration and arousal. Finally, sudden unexpected death in epilepsy cases have decreased midbrain volume. To understand the potential role of brainstem nuclei in sudden unexpected death in epilepsy, we evaluated molecular signalling pathways using localized proteomics in microdissected midbrain dorsal raphe and medial medullary raphe serotonergic nuclei, as well as the ventrolateral medulla in brain tissue from epilepsy patients who died of sudden unexpected death in epilepsy and other causes in diverse epilepsy syndromes and non-epilepsy control cases (n = 15-16 cases per group/region). Compared with the dorsal raphe of non-epilepsy controls, we identified 89 proteins in non-sudden unexpected death in epilepsy and 219 proteins in sudden unexpected death in epilepsy that were differentially expressed. These proteins were associated with inhibition of EIF2 signalling (P-value of overlap = 1.29 × 10-8, z = -2.00) in non-sudden unexpected death in epilepsy. In sudden unexpected death in epilepsy, there were 10 activated pathways (top pathway: gluconeogenesis I, P-value of overlap = 3.02 × 10-6, z = 2.24) and 1 inhibited pathway (fatty acid beta-oxidation, P-value of overlap = 2.69 × 10-4, z = -2.00). Comparing sudden unexpected death in epilepsy and non-sudden unexpected death in epilepsy, 10 proteins were differentially expressed, but there were no associated signalling pathways. In both medullary regions, few proteins showed significant differences in pairwise comparisons. We identified altered proteins in the raphe and ventrolateral medulla of epilepsy patients, including some differentially expressed in sudden unexpected death in epilepsy cases. Altered signalling pathways in the dorsal raphe of sudden unexpected death in epilepsy indicate a shift in cellular energy production and activation of G-protein signalling, inflammatory response, stress response and neuronal migration/outgrowth. Future studies should assess the brain proteome in relation to additional clinical variables (e.g. recent tonic-clonic seizures) and in more of the reciprocally connected cortical and subcortical regions to better understand the pathophysiology of epilepsy and sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Dominique F Leitner
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman
School of Medicine, New York University, 223 East 34th
Street, New York, NY 10016, USA
| | - Manor Askenazi
- Biomedical Hosting LLC, Arlington, MA
02140, USA
- Department of Biochemistry and Molecular Pharmacology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
- Department of Pathology, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Sasha Devore
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman
School of Medicine, New York University, 223 East 34th
Street, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
- Center for Cognitive Neurology, Department of Neurology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
- Department of Pathology, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
- Department of Psychiatry, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| |
Collapse
|
19
|
Hampson JP, Lacuey N, Rani MRS, Hampson JS, Simeone KA, Simeone TA, Narayana PA, Lemieux L, Lhatoo SD. Functional MRI Correlates of Carbon Dioxide Chemosensing in Persons With Epilepsy. Front Neurol 2022; 13:896204. [PMID: 35873766 PMCID: PMC9301231 DOI: 10.3389/fneur.2022.896204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Sudden unexpected death in epilepsy (SUDEP) is a catastrophic epilepsy outcome for which there are no reliable premortem imaging biomarkers of risk. Percival respiratory depression is seen in monitored SUDEP and near SUDEP cases, and abnormal chemosensing of raised blood carbon dioxide (CO2) is thought to contribute. Damage to brainstem respiratory control and chemosensing structures has been demonstrated in structural imaging and neuropathological studies of SUDEP. We hypothesized that functional MRI (fMRI) correlates of abnormal chemosensing are detectable in brainstems of persons with epilepsy (PWE) and are different from healthy controls (HC). Methods We analyzed fMRI BOLD activation and brain connectivity in 10 PWE and 10 age- and sex-matched HCs during precisely metered iso-oxic, hypercapnic breathing challenges. Segmented brainstem responses were of particular interest, along with characterization of functional connectivity metrics between these structures. Regional BOLD activations during hypercapnic challenges were convolved with hemodynamic responses, and the resulting activation maps were passed on to group-level analyses. For the functional connectivity analysis, significant clusters from BOLD results were used as seeds. Each individual seed time-series activation map was extracted for bivariate correlation coefficient analyses to study changes in brain connectivity between PWE and HCs. Results (1) Greater brainstem BOLD activations in PWE were observed compared to HC during hypercapnic challenges in several structures with respiratory/chemosensing properties. Group comparison between PWE vs. HC showed significantly greater activation in the dorsal raphe among PWE (p < 0.05) compared to HCs. (2) PWE had significantly greater seed-seed connectivity and recruited more structures during hypercapnia compared to HC. Significance The results of this study show that BOLD responses to hypercapnia in human brainstem are detectable and different in PWE compared to HC. Increased dorsal raphe BOLD activation in PWE and increased seed-seed connectivity between brainstem and adjacent subcortical areas may indicate abnormal chemosensing in these individuals. Imaging investigation of brainstem respiratory centers involved in respiratory regulation in PWE is an important step toward identifying suspected dysfunction of brainstem breathing control that culminates in SUDEP and deserve further study as potential imaging SUDEP biomarkers.
Collapse
Affiliation(s)
- Johnson P. Hampson
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nuria Lacuey
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - MR Sandhya Rani
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaison S. Hampson
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristina A. Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Timothy A. Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Samden D. Lhatoo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
20
|
Respiratory dysfunction in two rodent models of chronic epilepsy and acute seizures and its link with the brainstem serotonin system. Sci Rep 2022; 12:10248. [PMID: 35715469 PMCID: PMC9205882 DOI: 10.1038/s41598-022-14153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Patients with drug-resistant epilepsy can experience respiratory alterations, notably during seizures. The mechanisms underlying long-term alterations in respiratory function remain unclear. As the brainstem 5-HT system is a prominent modulator of respiratory function, this study aimed at determining whether epilepsy is associated with alterations in both the respiratory function and brainstem serotonin (5-HT) system in rats. Epilepsy was triggered by pilocarpine-induced status epilepticus in rats. Our results showed that 30–50% of epileptic (EPI) rats exhibited a sharp decrease in oxygen consumption (SDOC), low metabolic rate of oxygen, and slow regular ventilation (EPI/SDOC + rats). These alterations were detected only in rats with chronic epilepsy, independent of behavioral seizures, were persistent over time, and not associated with death. In these rats, 5-HT fiber density in the nucleus tractus solitarius was lower than that in the control and EPI/SDOC− rats. Both EPI/SDOC + rats and DBA/2 mice that present with audiogenic-induced seizure followed by fatal respiratory arrest—a model of sudden and expected death in epilepsy—had increased transcript levels of tryptophan hydroxylase 2 and 5-HT presynaptic transporter. Thus, our data support that 5-HT alterations are associated with chronic and acute epilepsy-related respiratory dysfunction.
Collapse
|
21
|
Arslan GA, Erkent I, Saygi S, Tezer FI. Changes of oxygen saturation in patients with pure temporal lobe epilepsy. Seizure 2022; 100:30-35. [PMID: 35728344 DOI: 10.1016/j.seizure.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Ictal hypoxemia is accepted as one of the mechanisms underlying sudden unexpected death in epilepsy (SUDEP). Although ictal hypoxemia is more common in generalized seizures, it also occurs in focal seizures with or without generalization. In this study, we aimed to show the relationship between clinical and electroencephalographic findings of seizures in patients with temporal lobe epilepsy (TLE) with periictal oxygen saturation. METHODS The data of 55 adult patients who were hospitalized in the Video EEG Monitoring Unit (VEMU) and operated on for drug-resistant TLE between January 2017 and December 2020 were examined. Forty-five seizures from 21 patients with ictal peripheral arterial saturation information and that were seizure-free for at least a year during the follow-up were included in the study. RESULTS The median patient age was 28 (IQR 25-39.5) years (women: 9, men: 12). Age at epilepsy onset was negatively correlated with saturation at seizure onset. Moreover, the age at VEMU admission was also negatively correlated with saturation at seizure onset and the lowest levels of saturation. The saturation at the end of the seizures and the lowest saturation measured in the periictal period with generalization of EEG were significantly lower than those without generalization. The onset of ictal EEG with the rhythmic theta pattern was significantly associated with the lowest level of saturation (<90%), postictal generalized electroencephalographic suppression (PGES), and the presence of generalization. CONCLUSION According to the study, rhythmic ictal theta activity, older age, nocturnal seizure, and generalization in ictal EEG might increase the potential risk of SUDEP. Further studies including a greater number of subjects and different epilepsy syndromes may provide more comprehensive information about potential biomarkers for SUDEP.
Collapse
Affiliation(s)
- Gokce Ayhan Arslan
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - Irem Erkent
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - Serap Saygi
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - F Irsel Tezer
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| |
Collapse
|
22
|
Gu L, Yu Q, Shen Y, Wang Y, Xu Q, Zhang H. The role of monoaminergic neurons in modulating respiration during sleep and the connection with SUDEP. Biomed Pharmacother 2022; 150:112983. [PMID: 35453009 DOI: 10.1016/j.biopha.2022.112983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among epilepsy patients, occurring even more frequently in cases with anti-epileptic drug resistance. Despite some advancements in characterizing SUDEP, the underlying mechanism remains incompletely understood. This review summarizes the latest advances in our understanding of the pathogenic mechanisms of SUDEP, in order to identify possible targets for the development of new strategies to prevent SUDEP. Based on our previous research along with the current literature, we focus on the role of sleep-disordered breathing (SDB) and its related neural mechanisms to consider the possible roles of monoaminergic neurons in the modulation of respiration during sleep and the occurrence of SUDEP. Overall, this review suggests that targeting the monoaminergic neurons is a promising approach to preventing SUDEP. The proposed roles of SDB and related monoaminergic neural mechanisms in SUDEP provide new insights for explaining the pathogenesis of SUDEP.
Collapse
Affiliation(s)
- LeYuan Gu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qian Yu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - HongHai Zhang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310006, China.
| |
Collapse
|
23
|
Leitner DF, William C, Faustin A, Askenazi M, Kanshin E, Snuderl M, McGuone D, Wisniewski T, Ueberheide B, Gould L, Devinsky O. Proteomic differences in hippocampus and cortex of sudden unexplained death in childhood. Acta Neuropathol 2022; 143:585-599. [PMID: 35333953 PMCID: PMC8953962 DOI: 10.1007/s00401-022-02414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/01/2022]
Abstract
Sudden unexplained death in childhood (SUDC) is death of a child over 1 year of age that is unexplained after review of clinical history, circumstances of death, and complete autopsy with ancillary testing. Multiple etiologies may cause SUDC. SUDC and sudden unexpected death in epilepsy (SUDEP) share clinical and pathological features, suggesting some similarities in mechanism of death and possible abnormalities in hippocampus and cortex. To identify molecular signaling pathways, we performed label-free quantitative mass spectrometry on microdissected frontal cortex, hippocampal dentate gyrus (DG), and cornu ammonis (CA1-3) in SUDC (n = 19) and pediatric control cases (n = 19) with an explained cause of death. At a 5% false discovery rate (FDR), we found differential expression of 660 proteins in frontal cortex, 170 in DG, and 57 in CA1-3. Pathway analysis of altered proteins identified top signaling pathways associated with activated oxidative phosphorylation (p = 6.3 × 10-15, z = 4.08) and inhibited EIF2 signaling (p = 2.0 × 10-21, z = - 2.56) in frontal cortex, and activated acute phase response in DG (p = 8.5 × 10-6, z = 2.65) and CA1-3 (p = 4.7 × 10-6, z = 2.00). Weighted gene correlation network analysis (WGCNA) of clinical history indicated that SUDC-positive post-mortem virology (n = 4/17) had the most significant module in each brain region, with the top most significant associated with decreased mRNA metabolic processes (p = 2.8 × 10-5) in frontal cortex. Additional modules were associated with clinical history, including fever within 24 h of death (top: increased mitochondrial fission in DG, p = 1.8 × 10-3) and febrile seizure history (top: decreased small molecule metabolic processes in frontal cortex, p = 8.8 × 10-5) in all brain regions, neuropathological hippocampal findings in the DG (top: decreased focal adhesion, p = 1.9 × 10-3). Overall, cortical and hippocampal protein changes were present in SUDC cases and some correlated with clinical features. Our studies support that proteomic studies of SUDC cohorts can advance our understanding of the pathogenesis of these tragedies and may inform the development of preventive strategies.
Collapse
|
24
|
Patodia S, Somani A, Liu J, Cattaneo A, Paradiso B, Garcia M, Othman M, Diehl B, Devinsky O, Mills JD, Foong J, Thom M. Serotonin transporter in the temporal lobe, hippocampus and amygdala in SUDEP. Brain Pathol 2022; 32:e13074. [PMID: 35478467 PMCID: PMC9425018 DOI: 10.1111/bpa.13074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Several lines of evidence link deficient serotonin function and SUDEP. Chronic treatment with serotonin reuptake inhibitors (SRIs) reduces ictal central apnoea, a risk factor for SUDEP. Reduced medullary serotonergic neurones, modulators of respiration in response to hypercapnia, were reported in a SUDEP post‐mortem series. The amygdala and hippocampus have high serotonergic innervation and are functionally implicated in seizure‐related respiratory dysregulation. We explored serotonergic networks in mesial temporal lobe structures in a surgical and post‐mortem epilepsy series in relation to SUDEP risk. We stratified 75 temporal lobe epilepsy patients with hippocampal sclerosis (TLE/HS) into high (N = 16), medium (N = 11) and low risk (N = 48) groups for SUDEP based on generalised seizure frequency. We also included the amygdala in 35 post‐mortem cases, including SUDEP (N = 17), epilepsy controls (N = 10) and non‐epilepsy controls (N = 8). The immunohistochemistry labelling index (LI) and axonal length (AL) of serotonin transporter (SERT)‐positive axons were quantified in 13 regions of interest with image analysis. SERT LI was highest in amygdala and subiculum regions. In the surgical series, higher SERT LI was observed in high risk than low risk cases in the dentate gyrus, CA1 and subiculum (p < 0.05). In the post‐mortem cases higher SERT LI and AL was observed in the basal and accessory basal nuclei of the amygdala and peri‐amygdala cortex in SUDEP compared to epilepsy controls (p < 0.05). Patients on SRI showed higher SERT in the dentate gyrus (p < 0.005) and CA4 (p < 0.05) but there was no difference in patients with or without a psychiatric history. Higher SERT in hippocampal subfields in TLE/HS cases with SUDEP risk factors and higher amygdala SERT in post‐mortem SUDEP cases than epilepsy controls supports a role for altered serotonergic networks involving limbic regions in SUDEP. This may be of functional relevance through reduced 5‐HT availability.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Alyma Somani
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Joan Liu
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Alice Cattaneo
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Beatrice Paradiso
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Garcia
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Muhammad Othman
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Beate Diehl
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Departments of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Orrin Devinsky
- NYU Langone Comprehensive Epilepsy Center, New York University, New York City, New York, USA
| | - James D Mills
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK.,Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jackie Foong
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Departments of Psychiatry, National Hospital for Neurology and Neurosurgery, London, UK
| | - Maria Thom
- Department of clinical and experimental epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Departments of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Sudden unexpected death in epilepsy (SUDEP) is a major contributor to premature mortality in people with epilepsy. This review provides an update on recent findings on the epidemiology of SUDEP, clinical risk factors and potential mechanisms. RECENT FINDINGS The overall risk rate of SUDEP is approximately 1 per 1000 patients per year in the general epilepsy population and that children and older adults have a similar incidence. Generalized convulsive seizures (GCS), perhaps through their effects on brainstem cardiopulmonary networks, can cause significant postictal respiratory and autonomic dysfunction though other mechanisms likely exist as well. Work in animal models of SUDEP has identified multiple neurotransmitter systems, which may be future targets for pharmacological intervention. There are also chronic functional and structural changes in autonomic function in patients who subsequently die from SUDEP suggesting that some SUDEP risk is dynamic. Modifiable risks for SUDEP include GCS seizure frequency, medication adherence and nighttime supervision. SUMMARY Current knowledge of SUDEP risk factors has identified multiple targets for SUDEP prevention today as we await more specific therapeutic targets that are emerging from translational research studies.
Collapse
Affiliation(s)
- Daniel Friedman
- NYU Grossman School of Medicine, Department of Neurology, 223 East 34th Street, New York, New York, USA
| |
Collapse
|
26
|
Zhuravlev D, Lebedeva A, Lebedeva M, Guekht A. Current concepts about autonomic dysfunction in patients with epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:131-138. [DOI: 10.17116/jnevro2022122031131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Perulli M, Battista A, Sivo S, Turrini I, Musto E, Quintiliani M, Gambardella ML, Contaldo I, Veredice C, Mercuri EM, Lanza GA, Dravet C, Delogu AB, Battaglia DI. Heart rate variability alterations in Dravet Syndrome: The role of status epilepticus and a possible association with mortality risk. Seizure 2021; 94:129-135. [PMID: 34896816 DOI: 10.1016/j.seizure.2021.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Preliminary data suggest that patients with Dravet Syndrome (DS) have a reduced heart rate variability (HRV). This seems particularly evident in patients who experienced sudden unexpected death in epilepsy (SUDEP). This study aims at confirming these findings in a larger cohort and at defining clinical, genetic or electroencephalographic predictors of HRV impairment in DS patients. METHODS DS patients followed at our Institution performed a 24h-ECG Holter to derive HRV parameters. We used as control population patients with epilepsy (PWEs) and healthy controls (HCs). In DS patients, we assessed the impact of different clinical, neurophysiological and genetic features on HRV alterations through multiple linear regression. After a mean follow-up of 7.4 ± 3.2 years since the HRV assessment, all DS patients were contacted to record death or life-threatening events. RESULTS 56 DS patients had a significantly reduced HRV compared to both HCs and PWEs. A recent history of status epilepticus (SE) was the only significant predictor of lower HRV in the multivariate analysis. At follow-up, only one patient died; her HRV was lower than that of all the controls and was in the low range for DS patients. CONCLUSION We describe for the first time an association between SE and HRV alterations in DS. Further studies on other SCN1A-related phenotypes and other epilepsies with frequent SE will help clarify this finding. Compared to the literature, our cohort showed better HRV and lower mortality. Although limited, this observation reinforces the role of HRV as a biomarker for mortality risk in DS.
Collapse
Affiliation(s)
- Marco Perulli
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Battista
- Pediatrics, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Sivo
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ida Turrini
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisa Musto
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Quintiliani
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Luigia Gambardella
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilaria Contaldo
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Veredice
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Maria Mercuri
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Antonio Lanza
- Cardiology, Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze cardiovascolari e pneumologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Charlotte Dravet
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angelica Bibiana Delogu
- Pediatrics, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenica Immacolata Battaglia
- Pediatric Neurology, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
28
|
Patodia S, Somani A, Thom M. Review: Neuropathology findings in autonomic brain regions in SUDEP and future research directions. Auton Neurosci 2021; 235:102862. [PMID: 34411885 PMCID: PMC8455454 DOI: 10.1016/j.autneu.2021.102862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Autonomic dysfunction is implicated from clinical, neuroimaging and experimental studies in sudden and unexpected death in epilepsy (SUDEP). Neuropathological analysis in SUDEP series enable exploration of acquired, seizure-related cellular adaptations in autonomic and brainstem autonomic centres of relevance to dysfunction in the peri-ictal period. Alterations in SUDEP compared to control groups have been identified in the ventrolateral medulla, amygdala, hippocampus and central autonomic regions. These involve neuropeptidergic, serotonergic and adenosine systems, as well as specific regional astroglial and microglial populations, as potential neuronal modulators, orchestrating autonomic dysfunction. Future research studies need to extend to clinically and genetically characterized epilepsies, to explore if common or distinct pathways of autonomic dysfunction mediate SUDEP. The ultimate objective of SUDEP research is the identification of disease biomarkers for at risk patients, to improve post-mortem recognition and disease categorisation, but ultimately, for exposing potential treatment targets of pharmacologically modifiable and reversible cellular alterations.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alyma Somani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
29
|
Autonomic manifestations of epilepsy: emerging pathways to sudden death? Nat Rev Neurol 2021; 17:774-788. [PMID: 34716432 DOI: 10.1038/s41582-021-00574-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Epileptic networks are intimately connected with the autonomic nervous system, as exemplified by a plethora of ictal (during a seizure) autonomic manifestations, including epigastric sensations, palpitations, goosebumps and syncope (fainting). Ictal autonomic changes might serve as diagnostic clues, provide targets for seizure detection and help us to understand the mechanisms that underlie sudden unexpected death in epilepsy (SUDEP). Autonomic alterations are generally more prominent in focal seizures originating from the temporal lobe, demonstrating the importance of limbic structures to the autonomic nervous system, and are particularly pronounced in focal-to-bilateral and generalized tonic-clonic seizures. The presence, type and severity of autonomic features are determined by the seizure onset zone, propagation pathways, lateralization and timing of the seizures, and the presence of interictal autonomic dysfunction. Evidence is mounting that not all autonomic manifestations are linked to SUDEP. In addition, experimental and clinical data emphasize the heterogeneity of SUDEP and its infrequent overlap with sudden cardiac death. Here, we review the spectrum and diagnostic value of the mostly benign and self-limiting autonomic manifestations of epilepsy. In particular, we focus on presentations that are likely to contribute to SUDEP and discuss how wearable devices might help to prevent SUDEP.
Collapse
|
30
|
Tupal S, Faingold CL. Serotonin 5-HT 4 receptors play a critical role in the action of fenfluramine to block seizure-induced sudden death in a mouse model of SUDEP. Epilepsy Res 2021; 177:106777. [PMID: 34601387 DOI: 10.1016/j.eplepsyres.2021.106777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Our previous study showed that the recently approved anticonvulsant drug, fenfluramine, which enhances the release of serotonin (5-hydroxytryptamine, 5-HT) in the brain, prevents seizure-induced respiratory arrest (S-IRA) in the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP). The present study examined the role of 5-HT receptor subtypes in mediating the effect of this agent by combined administration of fenfluramine with selective 5-HT receptor antagonists prior to seizure in DBA/1 mice. METHODS Fenfluramine (15 mg/kg, i.p.) was administered to primed DBA/1 mice, and audiogenic seizure (Sz) was induced 16 h later. Thirty min prior to Sz induction a selective antagonist acting on 5-HT1A, 5-HT2, 5-HT3 5-HT4, 5-HT5A, 5-HT6 or 5-HT7 receptors at a sub-toxic dose was administered, and changes in seizure-induced behaviors were evaluated. Follow-up studies examined the effect of administration of a 5-HT4 receptor agonist, BIMU 8, as well as the effect of co-administration of ineffective doses of fenfluramine and BIMU-8 on Sz behaviors. RESULTS The 5-HT4 antagonist (GR125487) was the only 5-HT receptor antagonist that was able to reverse the action of fenfluramine to block Sz and S-IRA. Treatment with the 5-HT4 receptor agonist (BIMU-8), or co-administration of ineffective doses of BIMU-8 and fenfluramine significantly reduced the incidence of S-IRA and tonic Sz in DBA/1 mice. The antagonists for 5-HT3, 5-HT5A 5-HT6, and 5-HT7 receptors did not significantly affect the action of fenfluramine. However, the 5-HT1A and the 5-HT2 antagonists enhanced the anticonvulsant effects of fenfluramine. CONCLUSIONS These findings suggest that the action of fenfluramine to prevent seizure-induced sudden death in DBA/1 mice is mediated primarily by activation of 5-HT4 receptors. These studies are the first to indicate the therapeutic potential of 5-HT4 receptor agonists either alone or in combination with fenfluramine for preventing SUDEP. Enhancement of the anticonvulsant effect of fenfluramine by 5-HT1A and 5-HT2 antagonists may involve presynaptic actions of these antagonists. Thus, the Sz and S-IRA blocking actions of fenfluramine involve complex interactions with several 5-HT receptor subtypes. These data also provide further support for the serotonin hypothesis of SUDEP.
Collapse
Affiliation(s)
- Srinivasan Tupal
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
31
|
El Atrache R, Tamilia E, Amengual-Gual M, Mohammadpour Touserkani F, Yang Y, Wang X, Ufongene C, Sheehan T, Cantley S, Jackson M, Zhang B, Papadelis C, Sarkis RA, Loddenkemper T. Association between semiologic, autonomic, and electrographic seizure characteristics in children with generalized tonic-clonic seizures. Epilepsy Behav 2021; 122:108228. [PMID: 34388667 DOI: 10.1016/j.yebeh.2021.108228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Generalized tonic-clonic seizures (GTCS) are associated with elevated electrodermal activity (EDA) and postictal generalized electroencephalographic suppression (PGES), markers that may indicate sudden unexpected death in epilepsy (SUDEP) risk. This study investigated the association of GTCS semiology, EDA, and PGES in children with epilepsy. METHODS Patients admitted to the Boston Children's Hospital long-term video-EEG monitoring unit wore a sensor that records EDA. We selected patients with at least one GTCS and reviewed video-EEGs for semiology, tonic and clonic phase duration, total clinical seizure duration, electrographic onset, offset, and PGES. We grouped patients into three semiology classes: GTCS 1: bilateral symmetric tonic arm extension, GTCS 2: no specific tonic arm extension or flexion, GTCS 3: unilateral or asymmetrical arm extension, tonic arm flexion or posturing that does not fit into GTCS 1 or 2. We analyzed the correlation between semiology, EDA, and PGES, and measured the area under the curve (AUC) of the ictal EDA (seizure onset to one hour after), subtracting baseline EDA (one-hour seizure-free before seizure onset). Using generalized estimating equation (GEE) and linear regression, we analyzed all seizures and single episodes per patient. RESULTS We included 30 patients (median age 13.8 ± 3.6 years, 46.7% females) and 53 seizures. With GEE, GTCS 1 was associated with longer PGES duration compared to GTCS 2 (Estimate (β) = -26.32 s, 95% Confidence Interval (CI): -36.46 to -16.18, p < 0.001), and the presence of PGES was associated with greater EDA change (β = 429604 μS, 95% CI: 3550.96 to 855657.04, p = 0.048). With single-episode analysis, GTCS 1 had greater EDA change than GTCS 2 ((β = -601339 μS, 95% CI: -1167016.56 to -35661.44, p = 0.047). EDA increased with PGES presence (β = 637500 μS, 95% CI: 183571.84 to 1091428.16, p = 0.01) and duration (β = 16794 μS, 95% CI: 5729.8 to 27858.2, p = 0.006). Patients with GTCS 1 had longer PGES duration compared to GTCS 2 (β = -30.53 s, 95% CI: -44.6 to -16.46, p < 0.001) and GTCS 3 (β = -22.07 s, 95% CI: -38.95 to -5.19, p = 0.016). CONCLUSION In children with epilepsy, PGES correlates with greater ictal EDA. GTCS 1 correlated with longer PGES duration and may indirectly correlate with greater ictal EDA. Our study suggests potential applications in monitoring and preventing SUDEP in these patients.
Collapse
Affiliation(s)
- Rima El Atrache
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fatemeh Mohammadpour Touserkani
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Yonghua Yang
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaofan Wang
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire Ufongene
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore Sheehan
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Cantley
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele Jackson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rani A Sarkis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Acute and chronic cardiorespiratory consequences of focal intrahippocampal administration of seizure-inducing agents. Implications for SUDEP. Auton Neurosci 2021; 235:102864. [PMID: 34428716 DOI: 10.1016/j.autneu.2021.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
The risk factors for SUDEP are undoubtedly heterogenous but the main factor is the frequency of generalized tonic-clonic seizures with apnoea and/or cardiac abnormalities likely precipitating the lethal event. By its very nature modelling SUDEP experimentally is challenging, yet insights into the nature of the lethal event and precipitating factors are vital in order to understand and prevent fatalities. Acute animal models, which induce status epilepticus (SE), can be used to help understand pathophysiological processes during and following seizures, which sometimes lead to death. The most commonly used method to induce seizures and status epilepticus is systemic administration of an ictogenic agent. Microinjection of such agents into restricted regions within the brain induces a more localised epileptic focus and circumvents the risk of direct actions on cardiorespiratory control centres. Both approaches have revealed substantial cardiovascular and respiratory consequences, including death as a result of apnoea, which may be of central origin, obstructive due to laryngospasm or, at least in genetically modified mice, a result of spreading depolarisation to medullary respiratory control centres. SUDEP is by definition a result of epilepsy, which in turn is diagnosed on the basis of two or more unprovoked seizures. The incidence of tonic-clonic seizures is the main risk factor, raising the possibility that repeated seizures cause cumulative pathological and/or pathophysiological changes that contribute to the risk of SUDEP. Chronic experimental models, which induce repeated seizures that in some cases lead to death, do show progressive development of pathophysiological changes in the myocardium, e.g. prolongation of QT the interval of the ECG or, over longer periods, ventricular hypertrophy. However, the currently available evidence indicates that seizure-related deaths are primarily due to apnoeas, but cardiac factors, particularly cumulative cardiac pathophysiologies due to repeated seizures, are potential contributing factors.
Collapse
|
33
|
Leitner DF, Faustin A, Verducci C, Friedman D, William C, Devore S, Wisniewski T, Devinsky O. Neuropathology in the North American sudden unexpected death in epilepsy registry. Brain Commun 2021; 3:fcab192. [PMID: 34514397 PMCID: PMC8417454 DOI: 10.1093/braincomms/fcab192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Sudden unexpected death in epilepsy is the leading category of epilepsy-related death and the underlying mechanisms are incompletely understood. Risk factors can include a recent history and high frequency of generalized tonic-clonic seizures, which can depress brain activity postictally, impairing respiration, arousal and protective reflexes. Neuropathological findings in sudden unexpected death in epilepsy cases parallel those in other epilepsy patients, with no implication of novel structures or mechanisms in seizure-related deaths. Few large studies have comprehensively reviewed whole brain examination of such patients. We evaluated 92 North American Sudden unexpected death in epilepsy Registry cases with whole brain neuropathological examination by board-certified neuropathologists blinded to the adjudicated cause of death, with an average of 16 brain regions examined per case. The 92 cases included 61 sudden unexpected death in epilepsy (40 definite, 9 definite plus, 6 probable, 6 possible) and 31 people with epilepsy controls who died from other causes. The mean age at death was 34.4 years and 65.2% (60/92) were male. The average age of death was younger for sudden unexpected death in epilepsy cases than for epilepsy controls (30.0 versus 39.6 years; P = 0.006), and there was no difference in sex distribution respectively (67.3% male versus 64.5%, P = 0.8). Among sudden unexpected death in epilepsy cases, earlier age of epilepsy onset positively correlated with a younger age at death (P = 0.0005) and negatively correlated with epilepsy duration (P = 0.001). Neuropathological findings were identified in 83.7% of the cases in our cohort. The most common findings were dentate gyrus dysgenesis (sudden unexpected death in epilepsy 50.9%, epilepsy controls 54.8%) and focal cortical dysplasia (FCD) (sudden unexpected death in epilepsy 41.8%, epilepsy controls 29.0%). The neuropathological findings in sudden unexpected death in epilepsy paralleled those in epilepsy controls, including the frequency of total neuropathological findings as well as the specific findings in the dentate gyrus, findings pertaining to neurodevelopment (e.g. FCD, heterotopias) and findings in the brainstem (e.g. medullary arcuate or olivary dysgenesis). Thus, like prior studies, we found no neuropathological findings that were more common in sudden unexpected death in epilepsy cases. Future neuropathological studies evaluating larger sudden unexpected death in epilepsy and control cohorts would benefit from inclusion of different epilepsy syndromes with detailed phenotypic information, consensus among pathologists particularly for more subjective findings where observations can be inconsistent, and molecular approaches to identify markers of sudden unexpected death in epilepsy risk or pathogenesis.
Collapse
Affiliation(s)
- Dominique F Leitner
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Arline Faustin
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Chloe Verducci
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Christopher William
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Department of Pathology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Sasha Devore
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Department of Pathology, NYU Langone Health and School of Medicine, New York, NY, USA
- Department of Psychiatry, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Bleasel A. Reader Response: Temporal Trends and Autopsy Findings of SUDEP Based on Medicolegal Investigations in the United States. Neurology 2021; 97:350-351. [PMID: 34400566 DOI: 10.1212/wnl.0000000000012433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Chen D, Zhu L, Lin X, Zhou D, Liu L. Dysregulated long noncoding RNAs in the brainstem of the DBA/1 mouse model of SUDEP. BMC Genomics 2021; 22:621. [PMID: 34404356 PMCID: PMC8369804 DOI: 10.1186/s12864-021-07921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play an important role in many neurological diseases. This study aimed to investigate differentially expressed lncRNAs and messenger RNAs (mRNAs) in the susceptibility gaining process of primed DBA/1 mice, a sudden unexpected death in epilepsy (SUDEP) model, to illustrate the potential role of lncRNAs in SUDEP. Methods The Arraystar mouse lncRNA Microarray V3.0 (Arraystar, Rockville, MD) was applied to identify the aberrantly expressed lncRNAs and mRNAs between primed DBA/1 mice and normal controls. The differences were verified by qRT-PCR. We conducted gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and coexpression analyses to explore the possible function of the dysregulated RNAs. Results A total of 502 lncRNAs (126 upregulated and 376 downregulated lncRNAs) and 263 mRNAs (141 upregulated and 122 downregulated mRNAs) were dysregulated with P < 0.05 and a fold change over 1.5, among which Adora3 and Gstt4 were possibly related to SUDEP. GO analysis revealed that chaperone cofactor-dependent protein refolding and misfolded protein binding were among the top ten downregulated terms, which pointed to Hspa1a, Hspa2a and their related lncRNAs. KEGG analysis identified 28 upregulated and 10 downregulated pathways. Coexpression analysis showed fifteen dysregulated long intergenic noncoding RNAs (lincRNAs) and three aberrantly expressed antisense lncRNAs, of which AK012034 and NR_040757 are potentially related to SUDEP by regulating LMNB2 and ITPR1, respectively. Conclusions LncRNAs and their coexpression mRNAs are dysregulated in the priming process of DBA/1 in the brainstem. Some of these mRNAs and lncRNAs may be related to SUDEP, including Adora3, Lmnb2, Hspa1a, Hspa1b, Itrp1, Gstt4 and their related lncRNAs. Further study on the mechanism of lncRNAs in SUDEP is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07921-7.
Collapse
Affiliation(s)
- Deng Chen
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, 610041, Chengdu, Sichuan, China
| | - Lina Zhu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, 610041, Chengdu, Sichuan, China
| | - Xin Lin
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, 610041, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, 610041, Chengdu, Sichuan, China.
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
36
|
Peixoto-Santos JE, Blumcke I. Neuropathology of the 21st century for the Latin American epilepsy community. Seizure 2021; 90:51-59. [DOI: 10.1016/j.seizure.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
|
37
|
Massey CA, Thompson SJ, Ostrom RW, Drabek J, Sveinsson OA, Tomson T, Haas EA, Mena OJ, Goldman AM, Noebels JL. X-linked serotonin 2C receptor is associated with a non-canonical pathway for sudden unexpected death in epilepsy. Brain Commun 2021; 3:fcab149. [PMID: 34396109 PMCID: PMC8361391 DOI: 10.1093/braincomms/fcab149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Sudden Unexpected Death in Epilepsy is a leading cause of epilepsy-related mortality, and the analysis of mouse Sudden Unexpected Death in Epilepsy models is steadily revealing a spectrum of inherited risk phenotypes based on distinct genetic mechanisms. Serotonin (5-HT) signalling enhances post-ictal cardiorespiratory drive and, when elevated in the brain, reduces death following evoked audiogenic brainstem seizures in inbred mouse models. However, no gene in this pathway has yet been linked to a spontaneous epilepsy phenotype, the defining criterion of Sudden Unexpected Death in Epilepsy. Most monogenic models of Sudden Unexpected Death in Epilepsy invoke a failure of inhibitory synaptic drive as a critical pathogenic step. Accordingly, the G protein-coupled, membrane serotonin receptor 5-HT2C inhibits forebrain and brainstem networks by exciting GABAergic interneurons, and deletion of this gene lowers the threshold for lethal evoked audiogenic seizures. Here, we characterize epileptogenesis throughout the lifespan of mice lacking X-linked, 5-HT2C receptors (loxTB Htr2c). We find that loss of Htr2c generates a complex, adult-onset spontaneous epileptic phenotype with a novel progressive hyperexcitability pattern of absences, non-convulsive, and convulsive behavioural seizures culminating in late onset sudden mortality predominantly in male mice. RNAscope localized Htr2c mRNA in subsets of Gad2+ GABAergic neurons in forebrain and brainstem regions. To evaluate the contribution of 5-HT2C receptor-mediated inhibitory drive, we selectively spared their deletion in GAD2+ GABAergic neurons of pan-deleted loxTB Htr2c mice, yet unexpectedly found no amelioration of survival or epileptic phenotype, indicating that expression of 5-HT2C receptors in GAD2+ inhibitory neurons was not sufficient to prevent hyperexcitability and lethal seizures. Analysis of human Sudden Unexpected Death in Epilepsy and epilepsy genetic databases identified an enrichment of HTR2C non-synonymous variants in Sudden Unexpected Death in Epilepsy cases. Interestingly, while early lethality is not reflected in the mouse model, we also identified variants mainly among male Sudden Infant Death Syndrome patients. Our findings validate HTR2C as a novel, sex-linked candidate gene modifying Sudden Unexpected Death in Epilepsy risk, and demonstrate that the complex epilepsy phenotype does not arise solely from 5-HT2C-mediated synaptic disinhibition. These results strengthen the evidence for the serotonin hypothesis of Sudden Unexpected Death in Epilepsy risk in humans, and advance current efforts to develop gene-guided interventions to mitigate premature mortality in epilepsy.
Collapse
Affiliation(s)
- Cory A Massey
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha J Thompson
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan W Ostrom
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Janice Drabek
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olafur A Sveinsson
- Department of Neurology, National University Hospital of Iceland, 101 Reykjavik, Iceland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Elisabeth A Haas
- Department of Pathology, Rady Children’s Hospital-San Diego, San Diego, CA 92123, USA
| | - Othon J Mena
- Medical Examiner Office, Ventura County Health Care Agency, Ventura, CA 93003, USA
| | - Alica M Goldman
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
38
|
Leitner DF, Mills JD, Pires G, Faustin A, Drummond E, Kanshin E, Nayak S, Askenazi M, Verducci C, Chen BJ, Janitz M, Anink JJ, Baayen JC, Idema S, van Vliet EA, Devore S, Friedman D, Diehl B, Scott C, Thijs R, Wisniewski T, Ueberheide B, Thom M, Aronica E, Devinsky O. Proteomics and Transcriptomics of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Patients. Neurology 2021; 96:e2639-e2652. [PMID: 33910938 PMCID: PMC8205452 DOI: 10.1212/wnl.0000000000011999] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To identify the molecular signaling pathways underlying sudden unexpected death in epilepsy (SUDEP) and high-risk SUDEP compared to control patients with epilepsy. METHODS For proteomics analyses, we evaluated the hippocampus and frontal cortex from microdissected postmortem brain tissue of 12 patients with SUDEP and 14 with non-SUDEP epilepsy. For transcriptomics analyses, we evaluated hippocampus and temporal cortex surgical brain tissue from patients with mesial temporal lobe epilepsy: 6 low-risk and 8 high-risk SUDEP as determined by a short (<50 seconds) or prolonged (≥50 seconds) postictal generalized EEG suppression (PGES) that may indicate severely depressed brain activity impairing respiration, arousal, and protective reflexes. RESULTS In autopsy hippocampus and cortex, we observed no proteomic differences between patients with SUDEP and those with non-SUDEP epilepsy, contrasting with our previously reported robust differences between epilepsy and controls without epilepsy. Transcriptomics in hippocampus and cortex from patients with surgical epilepsy segregated by PGES identified 55 differentially expressed genes (37 protein-coding, 15 long noncoding RNAs, 3 pending) in hippocampus. CONCLUSION The SUDEP proteome and high-risk SUDEP transcriptome were similar to those in other patients with epilepsy in hippocampus and cortex, consistent with diverse epilepsy syndromes and comorbid conditions associated with SUDEP. Studies with larger cohorts and different epilepsy syndromes, as well as additional anatomic regions, may identify molecular mechanisms of SUDEP.
Collapse
Affiliation(s)
- Dominique F Leitner
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - James D Mills
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Geoffrey Pires
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Arline Faustin
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Eleanor Drummond
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Evgeny Kanshin
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Shruti Nayak
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Manor Askenazi
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Chloe Verducci
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Bei Jun Chen
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Michael Janitz
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Jasper J Anink
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Johannes C Baayen
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Sander Idema
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Erwin A van Vliet
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Sasha Devore
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Daniel Friedman
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Beate Diehl
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Catherine Scott
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Roland Thijs
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Thomas Wisniewski
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Beatrix Ueberheide
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Maria Thom
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Eleonora Aronica
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Orrin Devinsky
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| |
Collapse
|
39
|
Somani A, El-Hachami H, Patodia S, Sisodiya S, Thom M. Regional microglial populations in central autonomic brain regions in SUDEP. Epilepsia 2021; 62:1318-1328. [PMID: 33942290 DOI: 10.1111/epi.16904] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) may arise as a result of autonomic dysfunction during a seizure. The central autonomic networks (CANs) modulate brainstem cardiorespiratory regulation. Recent magnetic resonance imaging (MRI) studies in SUDEP have shown cortical and subcortical volume changes and altered connectivity between CAN regions, but the pathological correlate is unknown. Because neuroinflammation is both a cause and a consequence of seizures and may relate to regional brain pathology, our aim was to evaluate microglial populations in CANs in SUDEP. METHODS In 55 postmortem cases, including SUDEP, epilepsy controls without SUDEP and nonepilepsy controls, we quantified Iba1-expressing microglia in 14 cortical and thalamic areas that included known CAN regions. RESULTS Mean Iba1 labeling across all brain regions was significantly higher in SUDEP cases compared to epilepsy and nonepilepsy controls. There was significant regional variation in Iba1 labeling in SUDEP cases only, with highest labeling in the medial thalamus. Significantly higher labeling in SUDEP cases than epilepsy and nonepilepsy controls was consistently noted in the superior temporal gyrus. In cases with documented seizures up to 10 days prior to death, significantly higher mean Iba1 labeling was observed in SUDEP compared to epilepsy controls. SIGNIFICANCE Our findings support microglial activation in SUDEP, including cortical and subcortical regions with known autonomic functions such as the thalamus and superior temporal gyrus. This may be relevant to cellular pathomechanisms underlying cardioregulatory failure during a seizure.
Collapse
Affiliation(s)
- Alyma Somani
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hanna El-Hachami
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Smriti Patodia
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sanjay Sisodiya
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| | - Maria Thom
- Departments of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Neuropathology, National Hospital for Neurology and Neurosurgery Queen Square, London, UK
| |
Collapse
|
40
|
Li HL, Deng ZR, Zhang J, Ding CH, Shi XG, Wang L, Chen X, Cao L, Wang Y. Sonographic hypoechogenicity of brainstem raphe nucleus is correlated with electroencephalographic spike frequency in patients with epilepsy. Epilepsy Behav 2021; 117:107884. [PMID: 33714930 DOI: 10.1016/j.yebeh.2021.107884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brainstem raphe nucleus (BRN) hypoechogenicity in transcranial sonography (TCS) has been demonstrated in patients with major depression, possibly representing a sonographic manifestation of serotonergic dysfunction in depression. Most patients with epilepsy with comorbid depression exhibit hypoechogenic BRN in TCS. However, the role of BRN in the pathogenesis of epilepsy is unclear. This study aimed to evaluate the correlation of BRN echogenicity with epilepsy itself, and the echogenicity of other midbrain structures and the size of lateral ventricle (LV) will also be evaluated in patients with epilepsy. METHODS Thirty-six patients with epilepsy without depression and 37 healthy controls were recruited. Sonographic echogenicity of BRN, caudate nucleus (CN), lentiform nucleus (LN), substantia nigra (SN), and the width of frontal horns of the lateral ventricles (LV) and the third ventricle (TV) were evaluated with TCS. The frequency of interictal epileptiform discharges (IEDs) was assessed with ambulatory electroencephalogram (AEEG). RESULTS Hypoechogenicity of BRN was depicted in 36.1% of patients with epilepsy and 18.9% of controls, showing no significant difference. Patients with epilepsy with BRN hypoechogenicity had higher epileptic discharge index (EDI) than those with normal BRN echogenecity. Especially, higher EDI in patients with BRN hypoechogenicity was observed during the sleep period but not during awake period. The width of TV was significantly larger in patients with epilepsy than that in controls. We did not find any difference between patients with epilepsy and controls in the echogenicity of CN, LN, and SN, as well as in the width of frontal horn of LV. CONCLUSIONS Hypoechogenic BRN is correlated with a high frequency of epileptic discharges in electroencephalogram (EEG), especially during sleep period but not during awake period, indicating that BRN alterations may play a potential role in the pathogenesis of epilepsy in association with sleep cycle.
Collapse
Affiliation(s)
- Han-Li Li
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Zi-Ru Deng
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Juan Zhang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Chu-Han Ding
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xue-Gong Shi
- Department of Echocardiography, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Long Wang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xin Chen
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Li Cao
- Department of Electrocardiogram, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Yu Wang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China.
| |
Collapse
|
41
|
Buchanan GF, Gluckman BJ, Kalume FK, Lhatoo S, Maganti RK, Noebels JL, Simeone KA, Quigg MS, Pavlova MK. Proceedings of the Sleep and Epilepsy Workshop: Section 3 Mortality: Sleep, Night, and SUDEP. Epilepsy Curr 2021; 21:15357597211004556. [PMID: 33787378 PMCID: PMC8609595 DOI: 10.1177/15357597211004556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Likely pathophysiological mechanisms include seizure-induced cardiac and respiratory dysregulation. A frequently identified feature in SUDEP cases is that they occur at night. This raises the question of a role for sleep state in regulating of SUDEP. An association with sleep has been identified in a number of studies with patients and in animal models. The focus of this section of the Sleep and Epilepsy Workshop was on identifying and understanding the role for sleep and time of day in the pathophysiology of SUDEP.
Collapse
Affiliation(s)
- Gordon F. Buchanan
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce J. Gluckman
- Department of Engineering Science & Mechanics, Penn State University, University Park, PA, USA
- Department of Neurosurgery, Penn State University, University Park, PA, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Franck K. Kalume
- Department of Neurological Surgery, University of Washington and Seattle Children’s Research Institute, Seattle, WA, USA
| | - Samden Lhatoo
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jeffrey L. Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kristina A. Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Mark S. Quigg
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Milena K. Pavlova
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF, Devinsky O. Immunoreactivity of Muscarinic Acetylcholine M2 and Serotonin 5-HT2B Receptors, Norepinephrine Transporter and Kir Channels in a Model of Epilepsy. Life (Basel) 2021; 11:life11040276. [PMID: 33810231 PMCID: PMC8066555 DOI: 10.3390/life11040276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is characterized by an imbalance in neurotransmitter activity; an increased excitatory to an inhibitory activity. Acetylcholine (ACh), serotonin, and norepinephrine (NE) may modulate neural activity via several mechanisms, mainly through its receptors/transporter activity and alterations in the extracellular potassium (K+) concentration via K+ ion channels. Seizures may disrupt the regulation of inwardly rectifying K+ (Kir) channels and alter the receptor/transporter activity. However, there are limited data present on the immunoreactivity pattern of these neurotransmitter receptors/transporters and K+ channels in chronic models of epilepsy, which therefore was the aim of this study. Changes in the immunoreactivity of epileptogenesis-related neurotransmitter receptors/transporters (M2, 5-HT2B, and NE transporter) as well as Kir channels (Kir3.1 and Kir6.2) were determined in the cortex, hippocampus and medulla of adult Wistar rats by utilizing a Pentylenetetrazol (PTZ)-kindling chronic epilepsy model. Increased immunoreactivity of the NE transporter, M2, and 5-HT2B receptors was witnessed in the cortex and medulla. While the immunoreactivity of the 5-HT2B receptor was found increased in the cortex and medulla, it was decreased in the hippocampus, with no changes observed in the M2 receptor in this region. Kir3.1 and Kir6.2 staining showed increase immunoreactivity in the cerebral cortex, but channel contrasting findings in the hippocampus and medulla. Our results suggest that seizure kindling may result in significant changes in the neurotransmitter system which may contribute or propagate to future epileptogenesis, brain damage and potentially towards sudden unexpected death in epilepsy (SUDEP). Further studies on the pathogenic role of these changes in neurotransmitter receptors/transporters and K+ channel immunoreactivity may identify newer possible targets to treat seizures or prevent epilepsy-related comorbidities.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Betul Koklu
- Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey;
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alina Arulsamy
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone School of Medicine, New York, NY 10010, USA
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| |
Collapse
|
43
|
Mazzola L, Rheims S. Ictal and Interictal Cardiac Manifestations in Epilepsy. A Review of Their Relation With an Altered Central Control of Autonomic Functions and With the Risk of SUDEP. Front Neurol 2021; 12:642645. [PMID: 33776894 PMCID: PMC7994524 DOI: 10.3389/fneur.2021.642645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
There is a complex interrelation between epilepsy and cardiac pathology, with both acute and long-term effects of seizures on the regulation of the cardiac rhythm and on the heart functioning. A specific issue is the potential relation between these cardiac manifestations and the risk of Sudden and Unexpected Death in Epilepsy (SUDEP), with unclear respective role of centrally-control ictal changes, long-term epilepsy-related dysregulation of the neurovegetative control and direct effects on the heart function. In the present review, we detailed available data about ictal cardiac changes, along with interictal cardiac manifestations associated with long-term functional and structural alterations of the heart. Pathophysiological mechanisms of these cardiac changes are discussed, with a specific focus on central mechanisms and the investigation of a possible deregulation of the central control of autonomic functions in addition to the role of catecholamine and hypoxemia on heart.
Collapse
Affiliation(s)
- Laure Mazzola
- Neurology Department, University Hospital, Saint-Étienne, France.,Lyon Neuroscience Research Center, INSERM U 1028, CNRS UMR, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, INSERM U 1028, CNRS UMR, Lyon, France.,Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| |
Collapse
|
44
|
Wengert ER, Wenker IC, Wagner EL, Wagley PK, Gaykema RP, Shin JB, Patel MK. Adrenergic Mechanisms of Audiogenic Seizure-Induced Death in a Mouse Model of SCN8A Encephalopathy. Front Neurosci 2021; 15:581048. [PMID: 33762902 PMCID: PMC7982890 DOI: 10.3389/fnins.2021.581048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death amongst patients whose seizures are not adequately controlled by current therapies. Patients with SCN8A encephalopathy have an elevated risk for SUDEP. While transgenic mouse models have provided insight into the molecular mechanisms of SCN8A encephalopathy etiology, our understanding of seizure-induced death has been hampered by the inability to reliably trigger both seizures and seizure-induced death in these mice. Here, we demonstrate that mice harboring an Scn8a allele with the patient-derived mutation N1768D (D/+) are susceptible to audiogenic seizures and seizure-induced death. In adult D/+ mice, audiogenic seizures are non-fatal and have nearly identical behavioral, electrographical, and cardiorespiratory characteristics as spontaneous seizures. In contrast, at postnatal days 20–21, D/+ mice exhibit the same seizure behavior, but have a significantly higher incidence of seizure-induced death following an audiogenic seizure. Seizure-induced death was prevented by either stimulating breathing via mechanical ventilation or by acute activation of adrenergic receptors. Conversely, in adult D/+ mice inhibition of adrenergic receptors converted normally non-fatal audiogenic seizures into fatal seizures. Taken together, our studies show that in our novel audiogenic seizure-induced death model adrenergic receptor activation is necessary and sufficient for recovery of breathing and prevention of seizure-induced death.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ronald P Gaykema
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
45
|
Bourgeois-Vionnet J, Jung J, Bouet R, Leclercq M, Catenoix H, Bezin L, Ryvlin P, Rheims S. Relation between coffee consumption and risk of seizure-related respiratory dysfunction in patients with drug-resistant focal epilepsy. Epilepsia 2021; 62:765-777. [PMID: 33586176 DOI: 10.1111/epi.16837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Caffeine is an antagonist of the adenosine pathway, which is involved in regulation of breathing. Extracellular concentrations of adenosine are increased in the immediate aftermath of a seizure. Seizure-related overstimulation of adenosine receptors might promote peri-ictal apnea. However, the relation between caffeine consumption and risk of seizure-related respiratory dysfunction in patients with drug-resistant focal epilepsy remains unknown. METHODS We performed a cross-sectional analysis of data collected in patients included in the SAVE study in Lyon's epilepsy monitoring unit at the Adult Epilepsy Department of the Lyon University Hospital between February 2016 and October 2018. The video-electroencephalographic recordings of 156 patients with drug-resistant focal epilepsy included in the study were reviewed to identify those with ≥1 focal seizure (FS), valid pulse oximetry (SpO2 ) measurement, and information about usual coffee consumption. This latter was collected at inclusion using a standardized self-questionnaire and further classified into four groups: none, rare (≤3 cups/week), moderate (4 cups/week to 3 cups/day), and high (≥4 cups/day). Peri-ictal hypoxemia (PIH) was defined as SpO2 < 90% for at least 5 s occurring during the ictal period, the post-ictal period, or both. RESULTS Ninety patients fulfilled inclusion criteria, and 323 seizures were analyzed. Both the level of usual coffee consumption (p = .033) and the level of antiepileptic drug withdrawal (p = .004) were independent risk factors for occurrence of PIH. In comparison with FS in patients with no coffee consumption, risk of PIH was four times lower in FS in patients with moderate consumption (odds ratio [OR] = .25, 95% confidence interval [CI] = .07-.91, p = .036) and six times lower in FS in patients with high coffee consumption (OR = .16, 95% CI = .04-.66, p = .011). However, when PIH occurred, its duration was longer in patients with moderate or high consumption than in those with no coffee consumption (p = .042). SIGNIFICANCE Coffee consumption may be a protective factor for seizure-related respiratory dysfunction, with a dose-dependent effect.
Collapse
Affiliation(s)
- Julie Bourgeois-Vionnet
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Julien Jung
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Mathilde Leclercq
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Vaudois University Hospital Center, Lausanne, Switzerland
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
46
|
Patodia S, Somani A, Thom M. Polyglucosan bodies in medullary catecholaminergic neurones in SUDEP. Epilepsy Behav Rep 2021; 15:100430. [PMID: 33604535 PMCID: PMC7875820 DOI: 10.1016/j.ebr.2021.100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Medullary autonomic dysfunction may contribute to the cascade leading to SUDEP. Polyglucosan bodies (PGB) identified primarily in the medullary catecholaminergic neurones has not previously been reported. Deposition of PGB in the medulla could compromise brainstem function in the agonal peri-ictal period.
Polyglucosan bodies have been reported in the context of hypoxic-ischaemic perinatal brain injury, mainly in the pallidum but with rare reports in brainstem neurons. We report a case of a five-year-old boy with cerebral palsy and complex neurological features including epilepsy who experienced sudden nocturnal death. At post-mortem long-standing bilateral necrosis of basal ganglia and hippocampal atrophy was identified in keeping with hypoxic-ischaemic perinatal injury. In addition numerous polyglucosan bodies, which were PAS, p62 and ubiquitin positive, were noted in brainstem neurones and dendrites, primarily involving the ventrolateral and dorsomedial medulla. Immunohistochemistry confirmed relative preservation of medullary neuronal populations in the reticular formation, including catecholaminergic (tyrosine hydroxylase, TH), serotonergic (tryptophan hydroxylase) and neurokinin1 receptor/somatostatin positive neurones. The polyglucosan bodies predominated in catecholaminergic neurones which could indicate their selective vulnerability and a functional deficiency, which during a critical peri-ictal period contributed to the sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Alyma Somani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| |
Collapse
|
47
|
Kanth K, Park K, Seyal M. Severity of Peri-ictal Respiratory Dysfunction With Epilepsy Duration and Patient Age at Epilepsy Onset. Front Neurol 2021; 11:618841. [PMID: 33391175 PMCID: PMC7775547 DOI: 10.3389/fneur.2020.618841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Respiratory dysfunction preceding death is fundamental in sudden unexpected death in epilepsy (SUDEP) pathophysiology. Hypoxia occurs with one-third of seizures. In temporal lobe epilepsy, there is volume loss in brainstem regions involved in autonomic control and increasing neuropathological changes with duration of epilepsy suggesting increasingly impaired regulation of ventilation. In animal models, recurrent hypoxic episodes induce long-term facilitation (LTF) of ventilatory function, however, LTF is less robust in older animals. LTF of ventilation may, to some degree, ameliorate the deleterious effects of progressive brainstem atrophy. We investigated the possibility that the duration of epilepsy, or age at epilepsy onset, may impact the severity of seizure-associated respiratory dysfunction. Patients with focal epilepsy undergoing video-EEG telemetry in the epilepsy monitoring unit (EMU) were studied. We found a significant relationship between age at epilepsy onset and duration of peri-ictal oxygen desaturation for focal seizures not progressing to bilateral tonic-clonic seizures, with longer duration of peri-ictal oxygen desaturation in patients with epilepsy onset at an older age but no significant relationships between duration of epilepsy or age at EMU admission and ventilatory dysfunction. Our findings suggest an intriguing possibility that LTF of ventilation may be protective when epilepsy starts at a younger age.
Collapse
Affiliation(s)
- Kiran Kanth
- Department of Neurology, University of California, Davis, Sacramento, CA, United States
| | - Katherine Park
- Department of Neurology, University of California, Davis, Sacramento, CA, United States
| | - Masud Seyal
- Department of Neurology, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
48
|
Vilella L, Lacuey N, Hampson JP, Zhu L, Omidi S, Ochoa-Urrea M, Tao S, Rani MRS, Sainju RK, Friedman D, Nei M, Strohl K, Scott C, Allen L, Gehlbach BK, Hupp NJ, Hampson JS, Shafiabadi N, Zhao X, Reick-Mitrisin V, Schuele S, Ogren J, Harper RM, Diehl B, Bateman LM, Devinsky O, Richerson GB, Ryvlin P, Zhang GQ, Lhatoo SD. Association of Peri-ictal Brainstem Posturing With Seizure Severity and Breathing Compromise in Patients With Generalized Convulsive Seizures. Neurology 2020; 96:e352-e365. [PMID: 33268557 DOI: 10.1212/wnl.0000000000011274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To analyze the association between peri-ictal brainstem posturing semiologies with postictal generalized electroencephalographic suppression (PGES) and breathing dysfunction in generalized convulsive seizures (GCS). METHODS In this prospective, multicenter analysis of GCS, ictal brainstem semiology was classified as (1) decerebration (bilateral symmetric tonic arm extension), (2) decortication (bilateral symmetric tonic arm flexion only), (3) hemi-decerebration (unilateral tonic arm extension with contralateral flexion) and (4) absence of ictal tonic phase. Postictal posturing was also assessed. Respiration was monitored with thoracoabdominal belts, video, and pulse oximetry. RESULTS Two hundred ninety-five seizures (180 patients) were analyzed. Ictal decerebration was observed in 122 of 295 (41.4%), decortication in 47 of 295 (15.9%), and hemi-decerebration in 28 of 295 (9.5%) seizures. Tonic phase was absent in 98 of 295 (33.2%) seizures. Postictal posturing occurred in 18 of 295 (6.1%) seizures. PGES risk increased with ictal decerebration (odds ratio [OR] 14.79, 95% confidence interval [CI] 6.18-35.39, p < 0.001), decortication (OR 11.26, 95% CI 2.96-42.93, p < 0.001), or hemi-decerebration (OR 48.56, 95% CI 6.07-388.78, p < 0.001). Ictal decerebration was associated with longer PGES (p = 0.011). Postictal posturing was associated with postconvulsive central apnea (PCCA) (p = 0.004), longer hypoxemia (p < 0.001), and Spo2 recovery (p = 0.035). CONCLUSIONS Ictal brainstem semiology is associated with increased PGES risk. Ictal decerebration is associated with longer PGES. Postictal posturing is associated with a 6-fold increased risk of PCCA, longer hypoxemia, and Spo2 recovery. Peri-ictal brainstem posturing may be a surrogate biomarker for GCS severity identifiable without in-hospital monitoring. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that peri-ictal brainstem posturing is associated with the GCS with more prolonged PGES and more severe breathing dysfunction.
Collapse
Affiliation(s)
- Laura Vilella
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Nuria Lacuey
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johnson P Hampson
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Liang Zhu
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Shirin Omidi
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Manuela Ochoa-Urrea
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Shiqiang Tao
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - M R Sandhya Rani
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Rup K Sainju
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniel Friedman
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Maromi Nei
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Kingman Strohl
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Catherine Scott
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Luke Allen
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Brian K Gehlbach
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Norma J Hupp
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jaison S Hampson
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nassim Shafiabadi
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Xiuhe Zhao
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Victoria Reick-Mitrisin
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stephan Schuele
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jennifer Ogren
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ronald M Harper
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Beate Diehl
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lisa M Bateman
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Orrin Devinsky
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - George B Richerson
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Philippe Ryvlin
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Guo-Qiang Zhang
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Samden D Lhatoo
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
49
|
Goldman AM. Peri-ictal Brainstem-Driven Posturing and Its Meaning. Neurology 2020; 96:89-90. [PMID: 33268564 DOI: 10.1212/wnl.0000000000011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 2020; 265:118826. [PMID: 33259863 DOI: 10.1016/j.lfs.2020.118826] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Epilepsy is a neurologicaldisorder characterized by persistent predisposition to recurrent seizurescaused by abnormal neuronal activity in the brain. Epileptic seizures maydevelop due to a relative imbalance of excitatory and inhibitory neurotransmitters. Expressional alterations of receptors and ion channelsactivated by neurotransmitters can lead to epilepsy pathogenesis. AIMS In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy. MATERIALS AND METHODS A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles. KEY FINDINGS Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission. SIGNIFICANCE The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.
Collapse
|