1
|
Han KA, Hwang YC, Moon SJ, Cho HC, Yoo HJ, Choi SH, Chon S, Kim KA, Kim TN, Kang JG, Park CY, Won JC, Cho E, Kim J, Park KS. Dual add-on therapy of gemigliptin and dapagliflozin in patients with type 2 diabetes inadequately controlled with metformin alone: The SOLUTION 2 study. Diabetes Obes Metab 2024; 26:3743-3752. [PMID: 38978173 DOI: 10.1111/dom.15717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
AIM To evaluate the efficacy and safety of gemigliptin and dapagliflozin dual add-on therapy (GEMI + DAPA) to metformin in type 2 diabetes (T2D) patients who had inadequate glycaemic control on metformin alone, compared with a single add-on of either gemigliptin (GEMI) or dapagliflozin (DAPA) to metformin. MATERIALS AND METHODS In this randomized, double-blind, double-dummy, active-controlled, parallel-group, phase 3 study, 469 T2D patients treated with a stable dose of metformin for 8 weeks or longer were randomized to receive GEMI + DAPA (n = 157) and either GEMI (n = 156) or DAPA (n = 156). The primary endpoint was change in HbA1c levels from baseline at week 24. RESULTS Baseline characteristics including body mass index and T2D duration were similar among groups. At week 24, the least square mean changes in HbA1c from baseline were -1.34% with GEMI + DAPA, -0.90% with GEMI (difference between GEMI + DAPA vs. GEMI -0.44% [95% confidence interval {CI}: -0.58% to -0.31%], P < .01) and -0.78% with DAPA (difference between GEMI + DAPA vs. DAPA -0.56% [95% CI: -0.69% to -0.42%], P < .01). Both upper CIs were less than 0, demonstrating the superiority of GEMI + DAPA for lowering HbA1c. The rates of responders achieving HbA1c less than 7% and less than 6.5% were greater with GEMI + DAPA (84.9%, 56.6%) than with GEMI (55.3%, 32.2%) and DAPA (49.3%, 15.3%). The incidence rate of adverse events was similar across groups, with low incidence rates of hypoglycaemia, urinary tract infection and genital infection. CONCLUSIONS These results suggest that the addition of GEMI + DAPA to metformin as triple combination therapy was effective, safe and well-tolerated, especially for T2D patients who experienced poor glycaemic control on metformin alone.
Collapse
Affiliation(s)
- Kyung Ah Han
- Division of Endocrinology and Metabolism, Nowon Eulji Medical Centre, Eulji University, Seoul, South Korea
| | - You-Cheol Hwang
- Division of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Shin Je Moon
- Division of Endocrinology and Metabolism, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Ho Chan Cho
- Division of Endocrinology and Metabolism, Keimyung University Dongsan Hospital, Daegu, South Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Korea University College of Medicine, Seoul, South Korea
| | - Sung Hee Choi
- Division of Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Suk Chon
- Division of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, South Korea
| | - Kyoung-Ah Kim
- Division of Endocrinology and Metabolism, Dongguk University Ilsan Hospital, Dongguk University School of Medicine, Goyang, South Korea
| | - Tae Nyun Kim
- Division of Endocrinology and Metabolism, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Jun Goo Kang
- Division of Endocrinology and Metabolism, Hallym University Sacred Heart Hospital, Seoul, South Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Seoul, South Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Eunjoo Cho
- Life Sciences, LG Chem, Ltd, Seoul, South Korea
| | | | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
2
|
Yoon J, Lee DG, Song H, Hong D, Park JS, Hong C, An KM, Lee JW, Park JT, Yoon H, Tak J, Kim SG. Xelaglifam, a novel GPR40/FFAR1 agonist, exhibits enhanced β-arrestin recruitment and sustained glycemic control for type 2 diabetes. Biomed Pharmacother 2024; 177:117044. [PMID: 38941892 DOI: 10.1016/j.biopha.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Xelaglifam, developed as a GPR40/FFAR1 agonist, induces glucose-dependent insulin secretion and reduces circulating glucose levels for Type 2 diabetes treatment. This study investigated the effects of Xelaglifam in comparison with Fasiglifam on the in vitro/in vivo anti-diabetic efficacy and selectivity, and the mechanistic basis. In vitro studies on downstream targets of Xelaglifam were performed in GPR40-expressing cells. Xelaglifam treatment exhibited dose-dependent effects, increasing inositol phosphate-1, Ca2+ mobilization, and β-arrestin recruitment (EC50: 0.76 nM, 20 nM, 68 nM), supporting its role in Gq protein-dependent and G-protein-independent mechanisms. Despite a lack of change in the cAMP pathway, the Xelaglifam-treated group demonstrated increased insulin secretion compared to Fasiglifam in HIT-T15 β cells under high glucose conditions. High doses of Xelaglifam (<30 mg/kg) did not induce hypoglycemia in Sprague-Dawley rats. In addition, Xelaglifam lowered glucose and increased insulin levels in diabetic rat models (GK, ZDF, OLETF). In GK rats, 1 mg/kg of Xelaglifam improved glucose tolerance (33.4 % and 15.6 % for the 1 and 5 h) after consecutive glucose challenges. Moreover, repeated dosing in ZDF and OLETF rats resulted in superior glucose tolerance (34 % and 35.1 % in ZDF and OLETF), reducing fasting hyperglycemia (18.3 % and 30 % in ZDF and OLETF) at lower doses; Xelaglifam demonstrated a longer-lasting effect with a greater effect on β-cells including 3.8-fold enhanced insulin secretion. Co-treatment of Xelaglifam with SGLT-2 inhibitors showed additive or synergistic effects. Collectively, these results demonstrate the therapeutic efficacy and selectivity of Xelaglifam on GPR40, supportive of its potential for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Jongmin Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Don-Gil Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Haengjin Song
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dahae Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Soo Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Changhee Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Kyung Mi An
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jung Woo Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Joon-Tae Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Hongchul Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
3
|
Li H, Li W, Li D, Yuan L, Xu Y, Su P, Wu L, Zhang Z. Based on systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for diabetes. Front Endocrinol (Lausanne) 2024; 15:1366290. [PMID: 38915894 PMCID: PMC11194396 DOI: 10.3389/fendo.2024.1366290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Diabetes and its complications cause a heavy burden of disease worldwide. In recent years, Mendelian randomization (MR) has been widely used to discover the pathogenesis and epidemiology of diseases, as well as to discover new therapeutic targets. Therefore, based on systematic "druggable" genomics, we aim to identify new therapeutic targets for diabetes and analyze its pathophysiological mechanisms to promote its new therapeutic strategies. Material and method We used double sample MR to integrate the identified druggable genomics to evaluate the causal effect of quantitative trait loci (eQTLs) expressed by druggable genes in blood on type 1 and 2 diabetes (T1DM and T2DM). Repeat the study using different data sources on diabetes and its complications to verify the identified genes. Not only that, we also use Bayesian co-localization analysis to evaluate the posterior probabilities of different causal variations, shared causal variations, and co-localization probabilities to examine the possibility of genetic confounding. Finally, using diabetes markers with available genome-wide association studies data, we evaluated the causal relationship between established diabetes markers to explore possible mechanisms. Result Overall, a total of 4,477 unique druggable genes have been gathered. After filtering using methods such as Bonferroni significance (P<1.90e-05), the MR Steiger directionality test, Bayesian co-localization analysis, and validation with different datasets, Finally, 7 potential druggable genes that may affect the results of T1DM and 7 potential druggable genes that may affect the results of T2DM were identified. Reverse MR suggests that C4B may play a bidirectional role in the pathogenesis of T1DM, and none of the other 13 target genes have a reverse causal relationship. And the 7 target genes in T2DM may each affect the biomarkers of T2DM to mediate the pathogenesis of T2DM. Conclusion This study provides genetic evidence supporting the potential therapeutic benefits of targeting seven druggable genes, namely MAP3K13, KCNJ11, REG4, KIF11, CCNE2, PEAK1, and NRBP1, for T2DM treatment. Similarly, targeting seven druggable genes, namely ERBB3, C4B, CD69, PTPN22, IL27, ATP2A1, and LT-β, has The potential therapeutic benefits of T1DM treatment. This will provide new ideas for the treatment of diabetes and also help to determine the priority of drug development for diabetes.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Li
- Urology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongyang Li
- Internal Medicine-Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Lijuan Yuan
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Yucheng Xu
- Department of Critical Care Medicine, Jinan Central Hospital, Jinan, China
| | - Pengtao Su
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Liqiang Wu
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
4
|
Chen GL, Liu Y, Gao XF, Wu KQ, Yang YK, Chen Y, Peng CG, Jin TH, Huang YB, Zhang YW, Su J, Jiang Q, Guo T, Zhao J, Peng XN, Peng JY, Li SX, Sun YL, Zhang HM, Fu YL, Luo D, Ma Y, Shen ZW, Zhang YT, Shou ZF. Safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of Exendin-4-IgG4-Fc in healthy subjects: A phase 1, single-centre, randomized, double-blind, dose escalation study. Diabetes Obes Metab 2024; 26:1395-1406. [PMID: 38287130 DOI: 10.1111/dom.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
AIM Novel long-acting drugs for type 2 diabetes mellitus may optimize patient compliance and glycaemic control. Exendin-4-IgG4-Fc (E4F4) is a long-acting glucagon-like peptide-1 receptor agonist. This first-in-human study investigated the safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of a single subcutaneous injection of E4F4 in healthy subjects. METHODS This single-centre, randomized, double-blind, placebo-controlled phase 1 clinical trial included 96 subjects in 10 sequential cohorts that were provided successively higher doses of E4F4 (0.45, 0.9, 1.8, 3.15, 4.5, 6.3, 8.1, 10.35, 12.6 and 14.85 mg) or placebo (ChinaDrugTrials.org.cn: ChiCTR2100049732). The primary endpoint was safety and tolerability of E4F4. Secondary endpoints were pharmacokinetic, pharmacodynamic and immunogenicity profiles of E4F4. Safety data to day 15 after the final subject in a cohort had been dosed were reviewed before commencing the next dose level. RESULTS E4F4 was safe and well tolerated among healthy Chinese participants in this study. There was no obvious dose-dependent relationship between frequency, severity or causality of treatment-emergent adverse events. Cmax and area under the curve of E4F4 were dose proportional over the 0.45-14.85 mg dose range. Median Tmax and t1/2 ranged from 146 to 210 h and 199 to 252 h, respectively, across E4F4 doses, with no dose-dependent trends. For the intravenous glucose tolerance test, area under the curve of glucose in plasma from time 0 to 180 min showed a dose-response relationship in the 1.8-10.35 mg dose range, with an increased response at the higher doses. CONCLUSION E4F4 exhibited an acceptable safety profile and linear pharmacokinetics in healthy subjects. The recommended phase 2 dose is 4.5-10.35 mg once every 2 weeks.
Collapse
Affiliation(s)
- Gui-Ling Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yang Liu
- China National Biotec Group Company Limited, Beijing, China
| | - Xue-Feng Gao
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Kai-Qi Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yun-Kai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Yong Chen
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Cong-Gao Peng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Ting-Han Jin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yu-Bao Huang
- China National Biotec Group Company Limited, Beijing, China
| | - Yao-Wen Zhang
- China National Biotec Group Company Limited, Beijing, China
| | - Jing Su
- China National Biotec Group Company Limited, Beijing, China
| | - Qi Jiang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Tong Guo
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Jie Zhao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Xiang-Nan Peng
- China National Biotec Group Company Limited, Beijing, China
| | - Jing-Yu Peng
- China National Biotec Group Company Limited, Beijing, China
| | - Si-Xiu Li
- China National Biotec Group Company Limited, Beijing, China
| | - Yong-Li Sun
- China National Biotec Group Company Limited, Beijing, China
| | - Hong-Mei Zhang
- China National Biotec Group Company Limited, Beijing, China
| | - Yan-Li Fu
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Dan Luo
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Yaru Ma
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Zhen-Wei Shen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yun-Tao Zhang
- China National Biotec Group Company Limited, Beijing, China
| | - Zhang-Fei Shou
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| |
Collapse
|
5
|
Mallidi K, Gundla R, Makam P, Katari NK, Jonnalagadda SB. Dual active pyrimidine-based carbocyclic nucleoside derivatives: synthesis, and in silico and in vitro anti-diabetic and anti-microbial studies. RSC Adv 2024; 14:9559-9569. [PMID: 38516166 PMCID: PMC10955399 DOI: 10.1039/d4ra00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by high blood glucose levels, impairing glucose production in the body. Its prevalence has steadily risen over the past decades, leading to compromised immunity and heightened susceptibility to microbial infections. Immune dysfunction associated with diabetes raises vulnerability, while neuropathy dulls sensation in the extremities, reducing injury awareness. Hence, the development of novel chemical compounds for anti-diabetic and anti-infective treatments is imperative to mitigate adverse effects. In this study, we designed and synthesized pyrimidine-based carbocyclic nucleoside derivatives with C-4 substitution to assess their potential in inhibiting α-glucosidase for managing diabetes mellitus (DM) and microbial infections. Compounds 8b and 10a displayed promising IC50 values against α-glucosidase (43.292 nmol and 48.638 nmol, respectively) and noteworthy docking energies (-9.4 kcal mol-1 and -10.3 kcal mol-1, respectively). Additionally, compounds 10a and 10b exhibited better antimicrobial activity against Bacillus cereus, with the zone of inhibition values of 2.2 ± 0.25 mm and 1.4 ± 0.1 mm at a 100 μl concentration, respectively. Compound 10a also exhibited a modest zone of inhibition of 1.2 ± 0.15 mm against Escherichia coli at 100 μl.
Collapse
Affiliation(s)
- Kalyani Mallidi
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Telangana 502329 India
| | - Rambabu Gundla
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Telangana 502329 India
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University Arcadia Grant, P.O. Chandanwari, Premnagar Dehradun Uttarakhand 248007 India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Telangana 502329 India
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, WestvilleCampus, University of KwaZulu-Natal P Bag X 54001 Durban 4000 South Africa
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, WestvilleCampus, University of KwaZulu-Natal P Bag X 54001 Durban 4000 South Africa
| |
Collapse
|
6
|
Cojic M, Klisic A, Sahmanovic A, Petrovic N, Kocic G. Cluster analysis of patient characteristics, treatment modalities, renal impairments, and inflammatory markers in diabetes mellitus. Sci Rep 2024; 14:5994. [PMID: 38472402 PMCID: PMC10933260 DOI: 10.1038/s41598-024-56451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is caused by an interplay of various factors where chronic hyperglycemia and inflammation have central role in its onset and progression. Identifying patient groups with increased inflammation in order to provide more personalized approach has become crucial. We hypothesized that grouping patients into clusters according to their clinical characteristics could identify distinct unique profiles that were previously invisible to the clinical eye. A cross-sectional record-based study was performed at the Primary Health Care Center Podgorica, Montenegro, on 424 T2DM patients aged between 30 and 85. Using hierarchical clustering patients were grouped into four distinct clusters based on 12 clinical variables, including glycemic and other relevant metabolic indicators. Inflammation was assessed through neutrophil-to-lymphocyte (NLR) and platelet to lymphocyte ratio (PLR). Cluster 3 which featured the oldest patients with the longest T2DM duration, highest hypertension rate, poor glycemic control and significant GFR impairment had the highest levels of inflammatory markers. Cluster 4 which featured the youngest patients, with the best glycemic control, the highest GFR had the lowest prevalence of coronary disease, but not the lowest levels of inflammatory markers. Identifying these clusters offers physicians opportunity for more personalized T2DM management, potentially mitigating its associated complications.
Collapse
Affiliation(s)
- Milena Cojic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro.
- Primary Health Care Center, Podgorica, Montenegro.
| | - Aleksandra Klisic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Primary Health Care Center, Podgorica, Montenegro
| | - Amina Sahmanovic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Primary Health Care Center, Podgorica, Montenegro
| | | | - Gordana Kocic
- Department of Medical Biochemistry, School of Medicine, University of Nis, Niš, Serbia
| |
Collapse
|
7
|
Yadav R, Patel B. Insights on effects of Wnt pathway modulation on insulin signaling and glucose homeostasis for the treatment of type 2 diabetes mellitus: Wnt activation or Wnt inhibition? Int J Biol Macromol 2024; 261:129634. [PMID: 38272413 DOI: 10.1016/j.ijbiomac.2024.129634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a major worldwide chronic disease and can lead to serious diabetic complications. Despite the availability of many anti-diabetic agents in the market, they are unable to meet the long-term treatment goals. Also, they cause many side effects which justify the need for novel class of anti-diabetic drugs with newer mechanism of action. Wnt signaling is one of such novel target pathways which can be explored for metabolic disorders. Many key components of the Wnt signaling are involved in the regulation of glucose homeostasis. Polymorphism in the Transcription factor 7-like 2 (TCF7L2) gene, and mutations in the LRP5 (LDL Receptor Related Protein 5) gene lead to disturbed glucose metabolism and obesity. Despite of several years of research in this field, there is no concrete proof of concept available on whether Wnt activation or Wnt inhibition is the beneficial approach for the treatment of T2DM. Here, we have summarized the conclusions of relevant published research studies to give structured insights into possibilities to explore Wnt modulation as a novel target pathway for the treatment of T2DM. The review also highlights the present challenges and future opportunities towards the development of anti-diabetic small molecules targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
8
|
Nikooyeh B, Zargaraan A, Ebrahimof S, Kalayi A, Zahedirad M, Yazdani H, Rismanchi M, Karami T, Khazraei M, Jafarpour A, Neyestani TR. Added γ-oryzanol boosted anti-inflammatory effects of canola oil in adult subjects with type 2 diabetes: a randomized controlled clinical trial. Eur J Nutr 2024; 63:425-433. [PMID: 37971692 DOI: 10.1007/s00394-023-03275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This study was conducted to examine the effects of daily intake of γ-oryzanol (ORZ)-fortified canola oil, as compared with plain canola and sunflower oils, on certain inflammatory and oxidative stress biomarkers in adult subjects with Type 2 Diabetes (T2D). METHODS We randomly allocated 92 adult subjects with T2D from both sexes to one of the following groups to receive: (a) ORZ-fortified canola oil (ORZO; n1 = 30); (b) unfortified canola oil (CANO; n2 = 32); or (c) sunflower oil (SUFO; n3 = 30) for 12 weeks. Dietary and laboratory evaluations were performed initially and finally. RESULTS Serum hs-CRP concentrations significantly decreased in ORZO group (from 3.1 ± 0.2 to 1.2 ± 0.2 mg/L), as compared with CANO (p = 0.003) and SUFO (p < 0.001) groups. Serum IL-6 significantly decreased just in ORZO (- 22.8%, p = 0.042) and CANO groups (- 19.8%, p = 0.038). However, the between-group differences were not significant. Serum IL-1β slightly decreased in ORZO (- 28.1%, p = 0.11) and increased in SUFO (+ 20.6%, p = 0.079) but between-group difference was statistically significant (p = 0.017). Serum IFN-γ concentrations decreased significantly only in ORZO (from 3.3 ± 0.08 to 2.9 ± 0.21 IU/mL, p = 0.044). Salivary IgA concentrations increased significantly in all three intervention groups. Notwithstanding, only the difference between ORZO and CANO groups was statistically significant (p = 0.042). Similarly, circulating malondialdehyde concentrations significantly decreased in all three groups but with no between-group significant difference. CONCLUSIONS Daily consumption of ORZ-fortified canola oil, compared with unfortified canola and sunflower oils, for 12 weeks resulted in boosting of certain anti-inflammatory effects of canola oil. These findings may have preventive implications for both clinicians and policy makers. This clinical trial was registered at clinicaltrials.gov (03.08.2022; NCT05271045).
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azizollaah Zargaraan
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Science, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Samira Ebrahimof
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kalayi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Zahedirad
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hootan Yazdani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rismanchi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Karami
- Department of Research and Development, Kourosh Food Industry, Tehran, Iran
| | | | - Ali Jafarpour
- Quality Assurance Unit, Kourosh Food Industry, Tehran, Iran
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ndile MM, Makori WA, Kibiti CM, Ngugi MP. In Vitro Hypoglycemic and Antioxidant Activities of Dichloromethane Extract of Xerophyta spekei. SCIENTIFICA 2023; 2023:6652112. [PMID: 38188987 PMCID: PMC10769734 DOI: 10.1155/2023/6652112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder which has greatly led to an increase in morbidity and mortality globally. Although Xerophyta spekei is widely used for the management of diabetes among the Embu and Mbeere communities in Kenya, it has never been empirically evaluated for its hypoglycemic activity. This study was carried out to verify the hypoglycemic activity of dichloromethane (DCM) extract of Xerophyta spekei as well as its antioxidant activity using various in vitro techniques. Phytochemicals associated with its antioxidant activity were identified through GC-MS. Data were subjected to descriptive statistics and expressed as mean ± standard error of the mean (X̄ ± SEM). Comparison between various variables was performed by using unpaired Student's t-test and one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test. The confidence interval was set at 95%. The obtained results were presented in tables and graphs. Results showed that there was no difference in α-amylase inhibition activity between the plant extract and the standard (IC50 525.9 ± 12.34 and 475.1 ± 9.115, respectively; p > 0.05). Besides, the glucose adsorption activity of the extract increased with an increase in glucose concentration (from 5.89 to 32.64 mg/dl at 5 mmol and 30 mmol of glucose, respectively; p < 0.05). The extract also limited the diffusion of glucose more than the negative control (7.49 and 17.63 mg/dl, respectively; p < 0.05). It also enhanced glucose uptake by yeast cells. In addition, the studied plant extract showed notable antioxidant activities. The therapeutic effects exhibited by this plant in managing diabetes mellitus and other ailments could be due to its antioxidant as well as its hypoglycemic activity. The study recommends the evaluation of X. spekei for in vivo hypoglycemic and antioxidant activities. Besides, the isolation of bioactive phytochemicals from the plant may lead to the development of new hypoglycaemic agents.
Collapse
Affiliation(s)
- Michael Musila Ndile
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| | - Wycliffe Arika Makori
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
10
|
Wang LJ, Xi W, Yuan XL, Yang XH. Rapid Determination of Dapagliflozin in Rat Plasma by UHPLC-Q-Orbitrap MS and Its Application to a Pharmacokinetic Study. Chem Pharm Bull (Tokyo) 2023; 71:846-851. [PMID: 37793851 DOI: 10.1248/cpb.c22-00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Dapagliflozin (DAPA), sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is used to treat Type 2 diabetes. In this study, a highly sensitive and selective analytical method based on ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was established and validated for the determination of DAPA in rat plasma. The separation of DAPA and internal standard (DAPA-d5) were performed on a reversed-phase ACQUITY UPLC® BEH C18 column (100 × 3.0 mm, 1.7 µm). The mobile phase is composed of 0.1% formic acid in water (solvent A) and methanol (solvent B) in gradient elution. Under the negative ion mode, full MS/dd-MS2 was adopted to collect data via Q-Orbitrap. DAPA was effectively separated from matrix backgrounds within 10 min, and DAPA in plasma showed a good linear relationship in the range of 10-10000 µg/L. The determination coefficient (R2) was 0.9987, and the lower limit of quantification (LLOQ) was 10 µg/L. The precision and accuracy were all less than 10%, and the extraction recovery of DAPA was 86.16-96.06% from plasma. This study offered an efficient separation and quantification method for DAPA. The improved and validated method succeeded in evaluating the pharmacokinetics of DAPA in rat plasma samples after a single oral administration of 1 mg/kg.
Collapse
Affiliation(s)
- Lin-Jiao Wang
- Department of Endocrinology, Hai'an Hospital Affiliated to Nantong University
| | - Wei Xi
- Department of Endocrinology, Hai'an Hospital Affiliated to Nantong University
| | - Xiao-Lan Yuan
- Department of Endocrinology, Hai'an Hospital Affiliated to Nantong University
| | - Xiao-Hua Yang
- Department of Endocrinology, Hai'an Hospital Affiliated to Nantong University
| |
Collapse
|
11
|
Wang YX, Liang JX, Lin R, Yan YJ, Li H, Chen MF. Stratified support pattern-based internet-assisted self-management therapy for diabetes mellitus -mild cognitive impairment: a randomized controlled trial protocol. BMC Endocr Disord 2023; 23:240. [PMID: 37919711 PMCID: PMC10621157 DOI: 10.1186/s12902-023-01485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) associated with diabetes mellitus (DM) is common among older adults, and self-management is critical to controlling disease progression. However, both MCI and DM are heterogeneous diseases, and existing integrated self-management interventions do not consider patient differences. Grouping patients by disease characteristics could help to individualize disease management and improve the use of available resources. The current study sought to explore the feasibility and effectiveness of a stratified support model for DM-MCI patients. METHODS Eighty-four DM-MCI patients will be randomly divided into an intervention group and a control group in a 1:1 ratio. The intervention group will receive a self-management intervention using the stratified support pattern-based internet-assisted therapy (SISMT), while the control group will receive the health manual intervention (HMI). The study recruiter will be blinded to the group allocation and unable to foresee which group the next participant will be assigned to. At the same time, the allocation will be also hidden from the research evaluators and participants. After 12 weeks and 24 weeks, cognitive function, blood glucose, self-management ability, psychological status, health literacy, and self-management behavior of patients in both groups will be measured and compared. DISCUSSION This study developed a stratified support pattern-based internet-assisted to provide self-management intervention for patients with DM-MCI. The impact of different models and forms of self-management intervention on cognitive function, blood glucose management, and psychological status health literacy and self-management behavior of patients will be assessed. The results of this study will inform related intervention research on the stratified support pattern-based internet-assisted self-management therapy, and help to slow the decline of cognitive function in patients with DM-MCI. TRIAL REGISTRATION ChiCTR2200061991. Registered 16 July 2022.
Collapse
Affiliation(s)
- Yun-Xian Wang
- The School of Nursing, Fujian Medical University, No. 88 Jiaotong Road, Fuzhou City, 350004, Fujian Province, China
- Nursing Department, The First People's Hospital of Yunnan Province, No 157 Jinbi Road, Kunming City, 650032, Yunnan Province, China
| | - Ji-Xing Liang
- Endocrinology Department, Fujian Provincial Hospital & Shengli Clinical Medical College, No. 134 East Street, Fuzhou City, 350122, Fujian Province, China
| | - Rong Lin
- The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou City, 350122, Fujian Province, China
| | - Yuan-Jiao Yan
- Research Center for Nursing Theory and Practice, Fujian Provincial Hospital & Shengli Clinical Medical College, No. 134 East Street, Fuzhou City, 350122, Fujian Province, China
| | - Hong Li
- The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou City, 350122, Fujian Province, China.
| | - Ming-Feng Chen
- Neurology Department, Fujian Provincial Hospital & Shengli Clinical Medical College, No. 134 East Street, Fuzhou City, 350122, Fujian Province, China.
| |
Collapse
|
12
|
Mora T, Roche D, Rodríguez-Sánchez B. Predicting the onset of diabetes-related complications after a diabetes diagnosis with machine learning algorithms. Diabetes Res Clin Pract 2023; 204:110910. [PMID: 37722566 DOI: 10.1016/j.diabres.2023.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
AIMS Using machine learning algorithms and administrative data, we aimed to predict the risk of being diagnosed with several diabetes-related complications after one-, two- and three-year post-diabetes diagnosis. METHODS We used longitudinal data from administrative registers of 610,019 individuals in Catalonia with a diagnosis of diabetes and checked the presence of several complications after diabetes onset from 2013 to 2017: hypertension, renal failure, myocardial infarction, cardiovascular disease, retinopathy, congestive heart failure, cerebrovascular disease, peripheral vascular disease and stroke. Four different machine learning (ML) algorithms (logistic regression (LR), Decision tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGB)) will be used to assess their prediction performance and to evaluate the prediction accuracy of complications changes over the period considered. RESULTS 610,019 people with diabetes were included. After three years since diabetes diagnosis, the area under the curve values ranged from 60% (retinopathy) to 69% (congestive heart failure), whereas accuracy rates varied between 60% (retinopathy) to 75% (hypertension). RF was the most relevant technique for hypertension, myocardial and retinopathy, and LR for the rest of the comorbidities. The Shapley additive explanations values showed that age was associated with an elevated risk for all diabetes-related complications except retinopathy. Gender, other comorbidities, co-payment levels and age were the most relevant factors for comorbidity diagnosis prediction. CONCLUSIONS Our ML models allow for the identification of individuals newly diagnosed with diabetes who are at increased risk of developing diabetes-related complications. The prediction performance varied across complications but within acceptable ranges as prediction tools.
Collapse
Affiliation(s)
- Toni Mora
- Research Institute for Evaluation and Public Policies (IRAPP), Universitat Internacional de Catalunya (UIC), Carrer de la Immaculada, 22, 08017 Barcelona, Spain
| | - David Roche
- Research Institute for Evaluation and Public Policies (IRAPP), Universitat Internacional de Catalunya (UIC), Carrer de la Immaculada, 22, 08017 Barcelona, Spain
| | - Beatriz Rodríguez-Sánchez
- Applied Economics, Public Economics and Political Economy, Faculty of Law, Universidad Complutense de Madrid, Plaza Menéndez Pelayo, 4, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Yadav S, Bharti S, Mathur P. GlucoKinaseDB: A comprehensive, curated resource of glucokinase modulators for clinical and molecular research. Comput Biol Chem 2023; 103:107818. [PMID: 36680885 DOI: 10.1016/j.compbiolchem.2023.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Glucokinase (GK), an isoform of hexokinase expressed predominantly in liver, pancreas and hypothalamus is crucial to blood glucose management. It is a critical component of the glucose-sensing mechanism of the pancreatic islet cells and glycogen regulation in hepatocytes. GK modulators such as allosteric GKAs (glucokinase activators) and GK-GKRP (glucokinase regulatory protein) disruptors have found potential applications as safer antihyperglycemics. Recent studies have also demonstrated the potential of GK modulators as antiparasitic agents. Researchers targeting GK often undertake the time-consuming task of independently collecting and compiling modulator information due to the lack of any dedicated single-platform resource. Towards this, in the present study we demonstrate the design and development of GlucoKinaseDB (GKDB), a comprehensive, curated, online resource of GK modulators. GKDB contains experimentally derived structural and bioactivity information of 1723 modulators along with their detailed molecular descriptors. The web-interface is user-friendly with features such as in-browser visualization, advanced search queries, cross-links to other databases and original reference etc. The bioactivity and descriptor data can be downloaded in bulk (for entire database) or for individual modulators. The 3D structures are also downloadable in multiple formats. GKDB employs a PHP-based web design with Bootstrap styling and a MySQL database backend. GKDB can be utilized for clinical and molecular research via development of pharmacophore hypotheses, QSAR/QSPR models, predictive machine learning models etc. GKDB is freely accessible online at https://glucokinasedb.in.
Collapse
Affiliation(s)
- Siddharth Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Samuel Bharti
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Puniti Mathur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.
| |
Collapse
|
14
|
Lu W, Yu L, Wang L, Liu S, Li M, Wu Z, Chen S, Hu R, Hao H. Metformin Hydrochloride Mucosal Nanoparticles-Based Enteric Capsule for Prolonged Intestinal Residence Time, Improved Bioavailability, and Hypoglycemic Effect. AAPS PharmSciTech 2022; 24:31. [PMID: 36577873 DOI: 10.1208/s12249-022-02402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metformin hydrochloride enteric-coated capsule (MH-EC) is a commonly used clinical drug for the treatment of type 2 diabetes. In this study, we described a metformin hydrochloride mucosal nanoparticles enteric-coated capsule (MH-MNPs-EC) based on metformin hydrochloride chitosan mucosal nanoparticles (MH-CS MNPs) and its preparation method to improve the bioavailability and hypoglycemic effect duration of MH-EC. In intestinal adhesion study, the residue rates of free drugs and mucosal nanoparticles were 10.52% and 67.27%, respectively after cleaned with PBS buffer. MH-CS MNPs could significantly improve the efficacy of MH and promote the rehabilitation of diabetes rats. In vitro release test of MH-MNPs-EC showed continuous release over 12 h, while commercial MH-EC released completely within about 1 h in intestinal environment (pH 6.8). Pharmacokinetic study was performed in beagle dogs compared to the commercial MH-EC. The durations of blood MH concentration above 2 μg/mL were 9 h for MH-MNPs-EC versus 2 h for commercial MH-EC. The relative bioavailability of MH-MNPs-EC was determined as 185.28%, compared with commercial MH-EC. In conclusion, MH-CS MNPs have good intestinal adhesion and can significantly prolong the residence time of MH in the intestine. MH-MNPs-EC has better treatment effect compared with MH-EC, and it is expected to be a potential drug product for the treatment of diabetes because of its desired characteristics.
Collapse
Affiliation(s)
- Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Lingfei Yu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Lujun Wang
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Songlin Liu
- Anhui Huangshan Capsule Co. Ltd., Huangshan, 242700, Anhui, China
| | - Manman Li
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Zijun Wu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Shengqi Chen
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
15
|
Jiang Y, Yue R, Liu G, Liu J, Peng B, Yang M, Zhao L, Li Z. Garlic ( Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:5290-5340. [PMID: 36503329 DOI: 10.1080/10408398.2022.2153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Liu
- People's Hospital of NanJiang, Bazhong, China
| | - Bo Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianxue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Gaddas M, Latiri I, Kebaili R, Kacem I, Jaballah N, Maatoug J, Salaani M, Boughammoura L, Ben Saad H. Reversibility of pancreatic β-cells dysfunction after vitamin D and calcium supplementation: a pilot study in a population of obese and prepubescent North-African children. Libyan J Med 2022; 17:2059896. [PMID: 35388742 PMCID: PMC9004520 DOI: 10.1080/19932820.2022.2059896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of diabetogenesis in children remain largely obscure. This study aimed to determine the impact of vitamin D and calcium supplementation on pancreatic β-cells function in terms of insulin secretion and sensitivity. This was a quasi-experimental study involving 30 obese and prepubescent Tunisian children (57% boys). During three months, the children received calcium and vitamin D supplementation at therapeutic doses. An oral glucose tolerance test (OGTT) was performed at the beginning and at the end of the study. The following metabolic definitions were applied: i) hyperinsulinism: insulinemia sum > 300 μ UI/ml during OGTT, ii) insulin-resistance: homeostatic model assessment of insulin-resistance > 2, iii) normal glycaemic profile: normal plasma levels during OGTT without any spike, and iv) pancreatic β-cells dysfunction reversibility: disappearance of the aforementioned disorders. The means ± standard-deviation of age and body mass index were 10.87 ± 1.9 years, and 30.17 ± 4.99 kg/m2, respectively. All children were at the stage of hyperinsulinism associated with insulin-resistance. These disturbances were noted even in children having a normal glycaemic profile at OGTT. After calcium and vitamin D supplementation, glycaemic profile as well as insulin-secretion improved significantly (p < 0.0001). Hyperinsulinism and insulin-resistance decreased significantly by 56.67% (p < 0.0001) and 70.00% (p < 0.0001), respectively. Complete reversibility of these two disorders was noted in 26.6% of children. To conclude, in obese and prepubescent children, vitamin D and calcium supplementation led to the reversibility of the pancreatic β-cells dysfunction.
Collapse
Affiliation(s)
- Meriem Gaddas
- Faculté de Médecine de Sousse, Service de Physiologie et Explorations Fonctionnelles, Université de Sousse, Sousse, Tunisie.,University of Sousse, Farhat HACHED Hospital, Departement of physiology and functional explorations, Sousse, Tunisia Sousse
| | - Imed Latiri
- Faculté de Médecine de Sousse, Service de Physiologie et Explorations Fonctionnelles, Université de Sousse, Sousse, Tunisie.,Laboratoire de recherche LR12SP09 «Insuffisance cardiaque», Université de Sousse, Hôpital Farhat HACHED, Sousse, Tunisie
| | - Raoudha Kebaili
- Paediatrics Department, Farhat HACHED Hospital of Sousse, University of Sousse, Sousse, Tunisia
| | - Ilhem Kacem
- Basic Health Center «Sousse Jawhara", Outpatient consultation, Sousse, Tunisia
| | - Nesrine Jaballah
- Paediatrics Department, Farhat HACHED Hospital of Sousse, University of Sousse, Sousse, Tunisia
| | - Jihene Maatoug
- Epidemiology Department, Farhat HACHED Hospital of Sousse, University of Sousse, Sousse, Tunisia
| | - Mohamed Salaani
- Paediatrics Department, Farhat HACHED Hospital of Sousse, University of Sousse, Sousse, Tunisia
| | - Lamia Boughammoura
- Paediatrics Department, Farhat HACHED Hospital of Sousse, University of Sousse, Sousse, Tunisia
| | - Helmi Ben Saad
- Faculté de Médecine de Sousse, Service de Physiologie et Explorations Fonctionnelles, Université de Sousse, Sousse, Tunisie.,University of Sousse, Farhat HACHED Hospital, Departement of physiology and functional explorations, Sousse, Tunisia Sousse.,Laboratoire de recherche LR12SP09 «Insuffisance cardiaque», Université de Sousse, Hôpital Farhat HACHED, Sousse, Tunisie
| |
Collapse
|
17
|
Thouvenot K, Turpin T, Taïlé J, Clément K, Meilhac O, Gonthier MP. Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and Therapeutic Potential of Polyphenols. Biomolecules 2022; 12:biom12030378. [PMID: 35327570 PMCID: PMC8945445 DOI: 10.3390/biom12030378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is a metabolic disease mainly associated with insulin resistance during obesity and constitutes a major public health problem worldwide. A strong link has been established between type 2 diabetes and periodontitis, an infectious dental disease characterized by chronic inflammation and destruction of the tooth-supporting tissue or periodontium. However, the molecular mechanisms linking periodontal bacteria and insulin resistance remain poorly elucidated. This study aims to summarize the mechanisms possibly involved based on in vivo and in vitro studies and targets them for innovative therapies. Indeed, during periodontitis, inflammatory lesions of the periodontal tissue may allow periodontal bacteria to disseminate into the bloodstream and reach tissues, including adipose tissue and skeletal muscles that store glucose in response to insulin. Locally, periodontal bacteria and their components, such as lipopolysaccharides and gingipains, may deregulate inflammatory pathways, altering the production of pro-inflammatory cytokines/chemokines. Moreover, periodontal bacteria may promote ROS overproduction via downregulation of the enzymatic antioxidant defense system, leading to oxidative stress. Crosstalk between players of inflammation and oxidative stress contributes to disruption of the insulin signaling pathway and promotes insulin resistance. In parallel, periodontal bacteria alter glucose and lipid metabolism in the liver and deregulate insulin production by pancreatic β-cells, contributing to hyperglycemia. Interestingly, therapeutic management of periodontitis reduces systemic inflammation markers and ameliorates insulin sensitivity in type 2 diabetic patients. Of note, plant polyphenols exert anti-inflammatory and antioxidant activities as well as insulin-sensitizing and anti-bacterial actions. Thus, polyphenol-based therapies are of high interest for helping to counteract the deleterious effects of periodontal bacteria and improve insulin resistance.
Collapse
Affiliation(s)
- Katy Thouvenot
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Teva Turpin
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Janice Taïlé
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Karine Clément
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France
| | - Olivier Meilhac
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Marie-Paule Gonthier
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
- Correspondence: ; Tel.: +33-262-693-92-08-55
| |
Collapse
|
18
|
Genovese M, Luti S, Pardella E, Vivoli-Vega M, Pazzagli L, Parri M, Caselli A, Cirri P, Paoli P. Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP. Eur J Nutr 2022; 61:1905-1918. [DOI: 10.1007/s00394-021-02776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
|
19
|
Heise T. Novel Drugs for Diabetes Therapy. Handb Exp Pharmacol 2022; 274:415-438. [PMID: 35112236 DOI: 10.1007/164_2021_574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since the first use of insulin 100 years ago, there have been marked improvements in diabetes therapy including, but not limited to, the development of oral antidiabetic agents (OADs), incretin mimetics and insulin analogues. Still, there are substantial shortcomings in diabetes therapy: the blood-glucose lowering effect of OADs is often limited, incretin mimetics often induce gastrointestinal side effects and insulins still induce hypoglycaemia and weight gain in many patients.This review evaluates on-going developments of antidiabetic drugs for their potential for future therapy focussing on injectable therapies. Recent data from dual agonists, in particular tirzepatide, a combination of GIP- and GLP-1 receptor agonists, show unprecedented reductions in HbA1c, body weight and cardiovascular risk factors. Once-weekly administrations of incretin mimetics open up the potential of a combination with once-weekly insulins that have been shown to have low peak-to-trough fluctuations. Eventually, it might be feasible to administer incretins and insulins (combinations) orally. While this has already been achieved for incretins, there are still some challenges for the oral application of insulin. Nevertheless, many promising data of novel antidiabetic drugs clearly indicate that therapy of people with diabetes will become easier, safer and more efficacious in the next years.
Collapse
Affiliation(s)
- Tim Heise
- Profil Institut für Stoffwechselforschung GmbH, Neuss, Germany.
| |
Collapse
|
20
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|
21
|
Xu F, Wang X, Wei X, Chen T, Wu H. Explore the active ingredients and mechanisms in Musa basjoo pseudostem juice against diabetes based on animal experiment, gas chromatography-mass spectrometer and network pharmacology. Comb Chem High Throughput Screen 2021; 25:1756-1766. [PMID: 34455960 DOI: 10.2174/1386207324666210827112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Musa basjoo pseudostem juice (MBSJ) is a well-known Chinese medicine, and Miao people use MBSJ to treat diabetes. In this work, the active ingredients and molecular mechanism of MBSJ against diabetes were explored. METHODS Anti-diabetic activity of MBSJ was evaluated using diabetic rats, and then the ingredients in the small-polar parts of MBSJ were analyzed by gas chromatography-mass spectrometer (GC-MS). Targets were obtained from several databases to develop the "ingredient-target-disease" network by Cytoscape. A collaborative analysis was carried out using the tools in Cytoscape and R packages, and molecular docking was also performed. RESULTS MBSJ improved the oral glucose tolerance and insulin tolerance, and reduced fasting blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, and low-density lipoprotein levels in the serum of diabetic rats. 13 potential compounds were identified by GC-MS for subsequent analysis, including Dibutyl phthalate, Oleamide, Stigmasterol, Stigmast-4-en-3-one, etc. The anti-diabetic effect of MBSJ was related to multiple signaling pathways, including Neuroactive ligand-receptor interaction, Phospholipase D signaling pathway, Endocrine resistance, Rap1 signaling pathway, EGFR tyrosine kinase inhibitor resistance, etc. Molecular docking at least partially verified the screening results of network pharmacology. CONCLUSION MBSJ had good anti-diabetic activity. The small-polar parts of MBSJ were rich in anti-diabetic active ingredients. Furthermore, the analysis results showed that the anti-diabetic effect of the small-polar parts of MBSJ may be the result of multiple components, multiple targets, and multiple pathways. The current research results can provide important support for studying the active ingredients and exploring the underlying mechanism of MBSJ against diabetes.
Collapse
Affiliation(s)
- Feng Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025. China
| | - Xiangpei Wang
- College of National Medicine, Guizhou Minzu University, Guiyang, 550025. China
| | - Xiujuan Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025. China
| | - Teng Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025. China
| | - Hongmei Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025. China
| |
Collapse
|
22
|
Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9:525-544. [PMID: 34181914 DOI: 10.1016/s2213-8587(21)00113-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Despite the successful development of new therapies for the treatment of type 2 diabetes, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors, the search for novel treatment options that can provide better glycaemic control and at reduce complications is a continuous effort. The present Review aims to present an overview of novel targets and mechanisms and focuses on glucose-lowering effects guiding this search and developments. We discuss not only novel developments of insulin therapy (eg, so-called smart insulin preparation with a glucose-dependent mode of action), but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact. We discuss the potential clinical use of the salutary adipokine adiponectin and the hepatokine fibroblast growth factor (FGF) 21, among others. A GLP-1 peptide receptor agonist (semaglutide) is now available for oral absorption, and small molecules activating GLP-1 receptors appear on the horizon. Bariatric surgery and its accompanying changes in the gut hormonal milieu offer a background for unimolecular peptides interacting with two or more receptors (for GLP-1, glucose-dependent insulinotropic polypeptide, glucagon, and peptide YY) and provide more substantial glycaemic control and bodyweight reduction compared with selective GLP-1 receptor agonists. These and additional approaches will help expand the toolbox of effective medications needed for optimising the treatment of well delineated subgroups of type 2 diabetes or help develop personalised approaches for glucose-lowering drugs based on individual characteristics of our patients.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Isaacs DM, Kruger DF, Spollett GR. Optimizing Therapeutic Outcomes With Oral Semaglutide: A Patient-Centered Approach. Diabetes Spectr 2021; 34:7-19. [PMID: 33627989 PMCID: PMC7887531 DOI: 10.2337/ds20-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In September 2019, the U.S. Food and Drug Administration approved oral semaglutide as the first orally administered glucagon-like peptide 1 (GLP-1) receptor agonist for treating people with type 2 diabetes. Although injectable GLP-1 receptor agonists are well-established treatment options for people with type 2 diabetes, clinical experience with an oral formulation in this class is limited. This article provides practical guidance for diabetes care and education specialists on how to effectively counsel patients initiating therapy with oral semaglutide on appropriate administration of the treatment and its possible effects on glycemic control, body weight, and quality of life. Strategies for mitigating potential side effects typical of the GLP-1 receptor agonist class, namely nausea, vomiting, and diarrhea, are also provided. Involving patients in treatment decisions and educating them about available and prescribed medications are key strategies for encouraging treatment adherence and ensuring optimal therapeutic outcomes.
Collapse
|
24
|
Misnikova IV, Kovaleva YA, Gubkina VA. [Early intensification of glucose-lowering therapy: VERIFY lessons and real clinical practice on the example of the Moscow region diabetes register data]. ACTA ACUST UNITED AC 2020; 66:86-95. [PMID: 33369376 DOI: 10.14341/probl12696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND The prevalence of T2DM is steadily increasing not only among the elderly, but also at a young age. T2DM is preceded by a long period of significant metabolic changes with the development of insulin resistance and в-cell dysfunction. To reduce the prevalence of complications, treatment is needed which affects several pathophysiological mechanisms underlying the disease. Monotherapy with metformin at the onset of T2DM is often insufficient. The VERIFY study demonstrated the advantage of early administration of a combination of vildagliptin and metformin in relation to the glycemic durability compared to the sequential intensification of metformin with vildagliptin in patients with type 2 diabetes. AIMS To assess the current situation in terms of the incidence of T2DM complications and the structure of the prescribing glucose lowering drugs based on the data from the Diabetes Register (DR) of the Moscow Region. To demonstrate the advantages of early combination therapy in patients with newly diagnosed T2DM using clinical cases. MATERIALS AND METHODS The data from the DR of the Moscow region, which is part of the National Diabetes Register of the Russian Federation, were used for the analysis. The data of 6,096 patients with T2DM who died in 2019 were evaluated for building the structure of the causes of death of patients with T2DM. The pattern of glucose-lowering therapy was analyzed based on data of 226,327 patients with T2DM (for 2020), as well as separately of 14,379 patients with newly diagnosed T2DM in 2019. Clinical cases are described based on the data of two patients with T2DM, available in the DR database and outpatient records. RESULTS In patients with young onset T2DM (<40 years), the prevalence of severe complications is higher than in the general population of patients with T2DM: blindness is in 5.9 times, end-stage chronic renal failure in 2.9 times, lower limb amputations in 6.4 times more. When prescribing glucose lowering drugs, monotherapy is prevalent, mostly metformin. In double combination, metformin is used in 96.22% of cases. In the structure of glucose lowering drugs, with newly diagnosed T2DM, combination therapy is used less frequently than in patients with T2DM in general. Of the drugs of the IDP-4 group, vildagliptin is most often prescribed - 46.25% (including of a fixed combination with metformin - 12.22%). Clinical cases reflect a rapid clinical outcome: a decrease in HbA1c to the target in 6 months, the absence of hypoglycemia or other side effects, and positive weight dynamics. CONCLUSIONS A fairly large propotion of patients with T2DM are on monotherapy with glucouse lowering drugs. Early prescription of the combination of metformin plus vildagliptin provides a longer maintenance of glycemic control without increasing the risk of hypoglycemia and weight gain for patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
| | | | - V A Gubkina
- Moscow Regional Research and Clinical Institute
| |
Collapse
|
25
|
Ljubic B, Hai AA, Stanojevic M, Diaz W, Polimac D, Pavlovski M, Obradovic Z. Predicting complications of diabetes mellitus using advanced machine learning algorithms. J Am Med Inform Assoc 2020; 27:1343-1351. [PMID: 32869093 PMCID: PMC7647294 DOI: 10.1093/jamia/ocaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development. MATERIALS AND METHODS Experiments were conducted on the Healthcare Cost and Utilization Project State Inpatient Databases of California for the period of 2003 to 2011. Recurrent neural network (RNN) long short-term memory (LSTM) and RNN gated recurrent unit (GRU) deep learning methods were designed and compared with random forest and multilayer perceptron traditional models. Prediction accuracy of selected complications were compared on 3 settings corresponding to minimum number of hospitalizations between diabetes diagnosis and the diagnosis of complications. RESULTS The diagnosis domain was used for experiments. The best results were achieved with RNN GRU model, followed by RNN LSTM model. The prediction accuracy achieved with RNN GRU model was between 73% (myocardial infarction) and 83% (chronic ischemic heart disease), while accuracy of traditional models was between 66% - 76%. DISCUSSION The number of hospitalizations was an important factor for the prediction accuracy. Experiments with 4 hospitalizations achieved significantly better accuracy than with 2 hospitalizations. To achieve improved accuracy deep learning models required training on at least 1000 patients and accuracy significantly dropped if training datasets contained 500 patients. The prediction accuracy of complications decreases over time period. Considering individual complications, the best accuracy was achieved on depressive disorder and chronic ischemic heart disease. CONCLUSIONS The RNN GRU model was the best choice for electronic medical record type of data, based on the achieved results.
Collapse
Affiliation(s)
- Branimir Ljubic
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA
| | - Ameen Abdel Hai
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA
| | - Marija Stanojevic
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA
| | - Wilson Diaz
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniel Polimac
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA
| | - Martin Pavlovski
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA
| | - Zoran Obradovic
- Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
|
27
|
Bailey CJ, Day C. The future of new drugs for diabetes management. Diabetes Res Clin Pract 2019; 155:107785. [PMID: 31326453 DOI: 10.1016/j.diabres.2019.107785] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
The future of the newer classes of glucose-lowering drugs, namely dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium/glucose co-transporter-2 (SGLT-2) inhibitors, is being redefined by the large prospective cardiovascular outcome trials (CVOTs). These trials have more than confirmed cardiovascular (CV) safety: indeed, various cardio-renal parameters have improved during some of the trials with GLP-1RAs and SGLT-2 inhibitors in type 2 diabetes. Benefits have included reductions in major adverse cardiovascular events such as fatal and non-fatal myocardial infarction and stroke, decreased hospitalization for heart failure, a slower decline in glomerular filtration rate and reduced onset and progression of albuminuria. In consequence, the CVOTs have raised expectations that newer glucose-lowering agents should offer advantages that extend beyond glycaemic control and weight management to address complications and comorbidities of type 2 diabetes, particularly cardio-renal diseases. Although large prospective outcome trials incur a high cost which may prompt reconsideration of their design, these trials are generating evidence to enable more exacting and more effective management of type 2 diabetes and its accompanying cardio-renal diseases.
Collapse
Affiliation(s)
| | - Caroline Day
- Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|