1
|
The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway. Int J Mol Sci 2022; 23:ijms232314644. [PMID: 36498978 PMCID: PMC9740976 DOI: 10.3390/ijms232314644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Connexin 26 (Cx26) is a protein that constitutes a gap junction and is widely expressed in the liver. Abnormal expression of Cx26 is one of the important mechanisms of liver cancer, and is closely related to the transmission of radiation damage signals between cells. In the present study, we investigated the radiosensitivity of hepatocellular carcinoma (HCC) cells HepG2, with low expression of Cx26, and SK-hep-1, with high expression of Cx26 after X-ray irradiation. The cell survival, micronucleus formation and protein expressions of the mitogen-activated protein kinases (MAPK) signaling pathway were detected. The expression level of Cx26 could affect the radiosensitivity of liver cancer cells by affecting the phosphorylation of p38 and ERK proteins and regulating the expression of downstream NF-κB. Cell lines with knock-out and overexpression of Cx26 were also built to confirm the findings. Our results suggested that Cx26 might play an important role in the radiosensitivity of liver cancer and could be a potential target for clinical radiotherapy of liver cancer.
Collapse
|
2
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
3
|
Sun M, Li Y, Qian J, Ding S, Sun M, Tan B, Zhao Y. Connexin26 Modulates the Radiosensitivity of Cutaneous Squamous Cell Carcinoma by Regulating the Activation of the MAPK/NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 9:672571. [PMID: 34291047 PMCID: PMC8287175 DOI: 10.3389/fcell.2021.672571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022] Open
Abstract
Previous studies have confirmed that the gap junction protein Connexin26 (Cx26) is specifically expressed in human skin tissue. Cx26 can transmit radiation-induced damage signals. However, no study has yet reported whether Cx26 expression affects the radiosensitivity of human skin squamous cancer cells or the mechanism by which this occurs. In this study, we found that human skin squamous cell carcinoma cells (A431 cells) expressed significantly more Cx26 and were more sensitive to radiation compared to normal human keratinocytes (HaCaT cells). Knockdown of Cx26 in A431 cells (A431Cx26-/-) decreased radiosensitivity relative to control cells and altered the expression of key proteins in the MAPK and NF-κB signaling pathways. These results demonstrate that Cx26 expression might play an important role in mediating radiation damage in A431 cells and could serve as a potential target for clinical radiotherapy for cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Minqiong Sun
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuan Li
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing Qian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Siwei Ding
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingyu Sun
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Bowen Tan
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Martins-Marques T, Rodriguez-Sinovas A, Girao H. Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role? Free Radic Biol Med 2021; 169:397-409. [PMID: 33892116 DOI: 10.1016/j.freeradbiomed.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
A well-balanced intercellular communication between the different cells within the heart is vital for the maintenance of cardiac homeostasis and function. Despite remarkable advances on disease management and treatment, acute myocardial infarction remains the major cause of morbidity and mortality worldwide. Gold standard reperfusion strategies, namely primary percutaneous coronary intervention, are crucial to preserve heart function. However, reestablishment of blood flow and oxygen levels to the infarcted area are also associated with an accumulation of reactive oxygen species (ROS), leading to oxidative damage and cardiomyocyte death, a phenomenon termed myocardial reperfusion injury. In addition, ROS signaling has been demonstrated to regulate multiple biological pathways, including cell differentiation and intercellular communication. Given the importance of cell-cell crosstalk in the coordinated response after cell injury, in this review, we will discuss the impact of ROS in the different forms of inter- and intracellular communication, as well as the role of gap junctions, tunneling nanotubes and extracellular vesicles in the propagation of oxidative damage in cardiac diseases, particularly in the context of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Antonio Rodriguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Passeig Vall D'Hebron, 119-129, 08035, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
5
|
Choi EJ, Yeo JH, Yoon SM, Lee J. Gambogic Acid and Its Analogs Inhibit Gap Junctional Intercellular Communication. Front Pharmacol 2018; 9:814. [PMID: 30104974 PMCID: PMC6077758 DOI: 10.3389/fphar.2018.00814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
Gap junctions (GJs) are intercellular channels composed of connexins. Cellular molecules smaller than 1 kDa can diffuse through GJs by a process termed gap junctional intercellular communication (GJIC), which plays essential roles in various pathological and physiological conditions. Gambogic acid (GA), a major component of a natural yellow dye, has been used as traditional medicine and has been reported to have various therapeutic effects, including an anti-cancer effect. In this study, two different GJ assay methods showed that GA and its analogs inhibited GJIC. The inhibition was rapidly reversible and was not mediated by changes in surface expression or S368 phosphorylation of Cx43, cellular calcium concentration, or redox state. We also developed an assay system to measure the intercellular communication induced by Cx40, Cx30, and Cx43. Dihydrogambogic acid (D-GA) potently inhibited GJIC by Cx40 (IC50 = 5.1 μM), whereas the IC50 value of carbenoxolone, which is known as a broad spectrum GJIC inhibitor, was 105.2 μM. Thus, D-GA can act as a pharmacological tool for the inhibition of Cx40.
Collapse
Affiliation(s)
- Eun J Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Joo H Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Sei M Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.,Department of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| |
Collapse
|
6
|
Baran A, Köktürk M, Atamanalp M, Ceyhun SB. Determination of developmental toxicity of zebrafish exposed to propyl gallate dosed lower than ADI (Acceptable Daily Intake). Regul Toxicol Pharmacol 2018; 94:16-21. [DOI: 10.1016/j.yrtph.2017.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
|
7
|
Shen R, Liu P, Zhang Y, Yu Z, Chen X, Zhou L, Nie B, Żaczek A, Chen J, Liu J. Sensitive Detection of Single-Cell Secreted H2O2 by Integrating a Microfluidic Droplet Sensor and Au Nanoclusters. Anal Chem 2018; 90:4478-4484. [DOI: 10.1021/acs.analchem.7b04798] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rui Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Peipei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yiqiu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Zhao Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xuyue Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Lu Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anna Żaczek
- Medical Biotechnology Department, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Babica P, Čtveráčková L, Lenčešová Z, Trosko JE, Upham BL. Chemopreventive Agents Attenuate Rapid Inhibition of Gap Junctional Intercellular Communication Induced by Environmental Toxicants. Nutr Cancer 2016; 68:827-37. [PMID: 27266532 DOI: 10.1080/01635581.2016.1180409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.
Collapse
Affiliation(s)
- Pavel Babica
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - Lucie Čtveráčková
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - Zuzana Lenčešová
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - James E Trosko
- c Department of Pediatrics and Human Development & Institute for Integrative Toxicology, Michigan State University , Michigan , USA
| | - Brad L Upham
- c Department of Pediatrics and Human Development & Institute for Integrative Toxicology, Michigan State University , Michigan , USA
| |
Collapse
|
9
|
Kim JS, Lee WM, Rhee HC, Kim S. Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication. Chem Biol Interact 2016; 254:146-55. [PMID: 27154496 DOI: 10.1016/j.cbi.2016.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the protective effect of red paprika extract (RPE) and its main carotenoids, namely, capsanthin (CST) and β-carotene (BCT), on the H2O2-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells (WB cells). We found that pre-treatment with RPE, CST and BCT protected WB cells from H2O2-induced inhibition of GJIC. RPE, CST and BCT not only recovered connexin 43 (Cx43) mRNA expression but also prevented phosphorylation of Cx43 protein by H2O2 treatment. RPE attenuated the phosphorylation of ERK, p38 and JNK, whereas pre-treatment with CST and BCT only attenuated the phosphorylation of ERK and p38 and did not affect JNK in H2O2-treated WB cells. RPE, CST and BCT significantly suppressed the formation of reactive oxygen species (ROS) in H2O2-treated cells compared to untreated WB cells. These results suggest that dietary intake of red paprika might be helpful for lowering the risk of diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Food and Nutrition in Human Ecology, College of Natural Sciences, Korea National Open University, 86, Daehak-ro, Jongno-gu, Seoul, 03078, Republic of Korea
| | - Woo-Moon Lee
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA, Wanju, 55365, Republic of Korea
| | - Han Cheol Rhee
- Protected Horticulture Research Institute, National Institute of Horticultural & Herbal Science, RDA, Haman, 52054, Republic of Korea
| | - Suna Kim
- Department of Food and Nutrition in Human Ecology, College of Natural Sciences, Korea National Open University, 86, Daehak-ro, Jongno-gu, Seoul, 03078, Republic of Korea.
| |
Collapse
|
10
|
Gao K, Chi Y, Zhang X, Zhang H, Li G, Sun W, Takeda M, Yao J. A novel TXNIP-based mechanism for Cx43-mediated regulation of oxidative drug injury. J Cell Mol Med 2015; 19:2469-80. [PMID: 26154105 PMCID: PMC4594688 DOI: 10.1111/jcmm.12641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/28/2015] [Indexed: 01/28/2023] Open
Abstract
Gap junctions (GJs) play an important role in the regulation of cell response to many drugs. However, little is known about their mechanisms. Using an in vitro model of cytotoxicity induced by geneticin (G418), we explored the potential signalling mechanisms involved. Incubation of cells with G418 resulted in cell death, as indicated by the change in cell morphology, loss of cell viability and activation of caspase-3. Before the onset of cell injury, G418 induced reactive oxygen species (ROS) generation, activated oxidative sensitive kinase P38 and caused a shift of connexin 43 (Cx43) from non-phosphorylated form to hyperphosphorylated form. These changes were largely prevented by antioxidants, suggesting an implication of oxidative stress. Downregulation of Cx43 with inhibitors or siRNA suppressed the expression of thioredoxin-interacting protein (TXNIP), activated Akt and protected cells against the toxicity of G418. Further analysis revealed that inhibition of TXNIP with siRNA activated Akt and reproduced the protective effect of Cx43-inhibiting agents, whereas suppression of Akt sensitized cells to the toxicity of G418. Furthermore, interference of TXNIP/Akt also affected puromycin- and adriamycin-induced cell injury. Our study thus characterized TXNIP as a presently unrecognized molecule implicated in the regulatory actions of Cx43 on oxidative drug injury. Targeting Cx43/TXNIP/Akt signalling cascade might be a promising approach to modulate cell response to drugs.
Collapse
Affiliation(s)
- Kun Gao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Xiling Zhang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hui Zhang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Gang Li
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Urology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
11
|
Zou H, Liu X, Han T, Hu D, Wang Y, Yuan Y, Gu J, Bian J, Zhu J, Liu ZP. Salidroside Protects against Cadmium-Induced Hepatotoxicity in Rats via GJIC and MAPK Pathways. PLoS One 2015; 10:e0129788. [PMID: 26070151 PMCID: PMC4466396 DOI: 10.1371/journal.pone.0129788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/13/2015] [Indexed: 12/29/2022] Open
Abstract
It is known that cadmium (Cd) induces cytotoxicity in hepatocytes; however, the underlying mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced hepatotoxicity in rat liver cells (BRL 3A) and in vivo. We observed that Cd treatment was associated with a time- and concentration-dependent decrease in the cell index (CI) of BRL 3A cells and cellular organelle ultrastructure injury in the rat liver. Meanwhile, Cd treatment resulted in the inhibition of gap junction intercellular communication (GJIC) and activation of mitogen-activated protein kinase (MAPK) pathways. Gap junction blocker 18-β-glycyrrhetinic acid (GA), administered in combination with Cd, exacerbated cytotoxic injury in BRL 3A cells; however, GA had a protective effect on healthy cells co-cultured with Cd-exposed cells in a co-culture system. Cd-induced cytotoxic injury could be attenuated by co-treatment with an extracellular signal-regulated kinase (ERK) inhibitor (U0126) and a p38 inhibitor (SB202190) but was not affected by co-treatment with a c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results indicate that ERK and p38 play critical roles in Cd-induced hepatotoxicity and mediate the function of gap junctions. Moreover, MAPKs induce changes in GJIC by controlling connexin gene expression, while GJIC has little effect on the Cd-induced activation of MAPK pathways. Collectively, our study has identified a possible mechanistic pathway of Cd-induced hepatotoxicity in vitro and in vivo, and identified the participation of GJIC and MAPK-mediated pathways in Cd-induced hepatotoxicity. Furthermore, we have shown that salidroside may be a functional chemopreventative agent that ameliorates the negative effects of Cd via GJIC and MAPK pathways.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Tao Han
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Di Hu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Zong-ping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
12
|
Kim YJ, Seo SG, Choi K, Kim JE, Kang H, Chung MY, Lee KW, Lee HJ. Recovery effect of onion peel extract against H2 O2 -induced inhibition of gap-junctional intercellular communication is mediated through quercetin. J Food Sci 2014; 79:H1011-7. [PMID: 24697689 DOI: 10.1111/1750-3841.12440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/21/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Cellular oxidative damage mediated by reactive oxygen species has been reported to inhibit gap-junctional intercellular communication (GJIC). In turn, the inhibition of GJIC can be attenuated by functional food compounds with antioxidant properties. In this study, we compared the protective effects of onion peel extract (OPE) and onion flesh extract (OFE) on oxidative stress-mediated GJIC inhibition, and investigated the mechanisms of action responsible. OPE restored H2 O2 -induced GJIC inhibition to a higher degree than OFE in WB-F344 rat liver epithelial cells. OPE was found to inhibit H2 O2 -induced phosphorylation of ERK1/2 and Cx43. A radical scavenging assay demonstrated superiority of OPE over OFE, suggesting that the observed effects might be mediated via an antioxidant mechanism. Quercetin is the major compound that is likely to be responsible for the protective effect against H2 O2 -mediated GJIC inhibition. This study suggests that OPE, a material often discarded, may be of value for the future development of functional food products. PRACTICAL APPLICATION This study demonstrates that onion peel extract (OPE) exhibits a protective effect against the inhibition of gap-junctional intercellular communication (GJIC) mediated by H2 O2 , which is likely to occur via its antioxidant activity. OPE contains significant concentrations of bioactive phenolic compounds. Reductions in oxidative stress can lead to recovery of GJIC, which has been reported to be implicated in the prevention and treatment of cancers. These findings suggest that onion peel, a common waste product, could be used as potential resources for functional food development. Onion peel could be processed into a quercetin-rich powder or a pill for the prevention of cancer and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Young-Jun Kim
- Dept. of Agricultural Biotechnology, Seoul Natl. Univ, Seoul 151-921, Republic of Korea; Food Safety Center, Ottogi Corp, Gyeonggi-Do 431-070, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gene–environment interactions in heavy metal and pesticide carcinogenesis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:1-9. [DOI: 10.1016/j.mrgentox.2013.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023]
|
14
|
Le HT, Sin WC, Lozinsky S, Bechberger J, Vega JL, Guo XQ, Sáez JC, Naus CC. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J Biol Chem 2013; 289:1345-54. [PMID: 24302722 DOI: 10.1074/jbc.m113.508390] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress induced by reactive oxygen species (ROS) is associated with various neurological disorders including aging, neurodegenerative diseases, as well as traumatic and ischemic insults. Astrocytes have an important role in the anti-oxidative defense in the brain. The gap junction protein connexin43 (Cx43) forms intercellular channels as well as hemichannels in astrocytes. In the present study, we investigated the contribution of Cx43 to astrocytic death induced by the ROS hydrogen peroxide (H2O2) and the mechanism by which Cx43 exerts its effects. Lack of Cx43 expression or blockage of Cx43 channels resulted in increased ROS-induced astrocytic death, supporting a cell protective effect of functional Cx43 channels. H2O2 transiently increased hemichannel activity, but reduced gap junction intercellular communication (GJIC). GJIC in wild-type astrocytes recovered after 7 h, but was absent in Cx43 knock-out astrocytes. Blockage of Cx43 hemichannels incompletely inhibited H2O2-induced hemichannel activity, indicating the presence of other hemichannel proteins. Panx1, which is predicted to be a major hemichannel contributor in astrocytes, did not appear to have any cell protective effect from H2O2 insults. Our data suggest that GJIC is important for Cx43-mediated ROS resistance. In contrast to hypoxia/reoxygenation, H2O2 treatment decreased the ratio of the hypophosphorylated isoform to total Cx43 level. Cx43 has been reported to promote astrocytic death induced by hypoxia/reoxygenation. We therefore speculate the increase in Cx43 dephosphorylation may account for the facilitation of astrocytic death. Our findings suggest that the role of Cx43 in response to cellular stress is dependent on the activation of signaling pathways leading to alteration of Cx43 phosphorylation states.
Collapse
Affiliation(s)
- Hoa T Le
- From the Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3 Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee BK, Chung MY, Lee KW. Benzo[a]pyrene-7,8-diol-9,10-epoxide inhibits gap junction intercellular communication via phosphorylation of tumor progression locus 2 in WB-F344 rat liver epithelial cells. Mol Carcinog 2013; 54:351-8. [PMID: 24249418 DOI: 10.1002/mc.22103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 11/12/2022]
Abstract
Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), a major metabolite of benzo[a]pyrene, has been reported to function as a human carcinogen. However, the molecular mechanism of how B[a]PDE regulates signaling pathways during tumor promotion remains unclear. In this study, we investigated the effects of B[a]PDE on the regulation of gap junction intercellular communication (GJIC), one of the major carcinogenic processes, and its main regulatory signaling pathways using WB-F344 rat liver epithelial (WB-F344 RLE) cells. Treatment of benzo[a]pyrene or B[a]PDE resulted in GJIC inhibition, and B[a]PDE was more active at lower concentrations than benzo[a]pyrene in the suppression of GJIC. This suggests that B[a]PDE is a stronger GJIC inhibitor. B[a]PDE at 1 µM reversibly inhibited GJIC in WB-F344 RLE cells, which was attributable to hyperphosphorylation of connexin43 (Cx43) via phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). We found that B[a]PDE induced phosphorylation of tumor progression locus 2 (Tpl2), a direct upstream regulator of MEK. Tpl2 inhibitor recovered B[a]PDE-induced GJIC inhibition and attenuated B[a]PDE-induced MEK/ERK phosphorylation in WB-F344 RLE cells. Collectively, our results suggest that B[a]PDE suppresses GJIC by activating Tpl2 and subsequently the MEK/ERK pathway and Cx43 phosphorylation in WB-F344 RLE cells. These results outline the potential importance of Tpl2 as a novel therapeutic target for B[a]PDE-induced GJIC inhibition during cancer promotion.
Collapse
Affiliation(s)
- Bo Kyung Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
| | | | | |
Collapse
|
16
|
Abstract
The distal airways are covered with a heterogeneous layer of cells known as the alveolar epithelium. Alveolar epithelial cells provide the major barrier between the airspace and fluid filled tissue compartments. As such, regulation of the alveolar epithelium is critical to maintain a healthy lung and for optimal gas exchange. In this chapter, we discuss functional roles for alveolar epithelial cells with particular emphasis on intercellular junctions and communication. As a thin layer of cells directly exposed to atmospheric oxygen, alveoli are particularly sensitive to oxidant insults. Alcohol significantly diminishes the normal antioxidant reserves of the alveolar epithelium, thereby rendering it sensitized for an exaggerated damage response to acute and chronic injuries. The effects of alcohol on alveolar epithelia are discussed along with open questions and potential therapeutic targets to prevent the pathophysiology of alcoholic lung disease.
Collapse
|
17
|
McConnachie LA, Botta D, White CC, Weldy CS, Wilkerson HW, Yu J, Dills R, Yu X, Griffith WC, Faustman EM, Farin FM, Gill SE, Parks WC, Hu X, Gao X, Eaton DL, Kavanagh TJ. The glutathione synthesis gene Gclm modulates amphiphilic polymer-coated CdSe/ZnS quantum dot-induced lung inflammation in mice. PLoS One 2013; 8:e64165. [PMID: 23724032 PMCID: PMC3664581 DOI: 10.1371/journal.pone.0064165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Quantum dots (QDs) are unique semi-conductor fluorescent nanoparticles with potential uses in a variety of biomedical applications. However, concerns exist regarding their potential toxicity, specifically their capacity to induce oxidative stress and inflammation. In this study we synthesized CdSe/ZnS core/shell QDs with a tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coating and assessed their effects on lung inflammation in mice. Previously published in vitro data demonstrated these TOPO-PMAT QDs cause oxidative stress resulting in increased expression of antioxidant proteins, including heme oxygenase, and the glutathione (GSH) synthesis enzyme glutamate cysteine ligase (GCL). We therefore investigated the effects of these QDs in vivo in mice deficient in GSH synthesis (Gclm +/− and Gclm −/− mice). When mice were exposed via nasal instillation to a TOPO-PMAT QD dose of 6 µg cadmium (Cd) equivalents/kg body weight, neutrophil counts in bronchoalveolar lavage fluid (BALF) increased in both Gclm wild-type (+/+) and Gclm heterozygous (+/−) mice, whereas Gclm null (−/−) mice exhibited no such increase. Levels of the pro-inflammatory cytokines KC and TNFα increased in BALF from Gclm +/+ and +/− mice, but not from Gclm −/− mice. Analysis of lung Cd levels suggested that QDs were cleared more readily from the lungs of Gclm −/− mice. There was no change in matrix metalloproteinase (MMP) activity in any of the mice. However, there was a decrease in whole lung myeloperoxidase (MPO) content in Gclm −/− mice, regardless of treatment, relative to untreated Gclm +/+ mice. We conclude that in mice TOPO-PMAT QDs have in vivo pro-inflammatory properties, and the inflammatory response is dependent on GSH synthesis status. Because there is a common polymorphism in humans that influences GCLM expression, these findings imply that humans with reduced GSH synthesis capabilities may be more susceptible to the pro-inflammatory effects of QDs.
Collapse
Affiliation(s)
- Lisa A. McConnachie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Collin C. White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chad S. Weldy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Hui-Wen Wilkerson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jianbo Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Russell Dills
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Xiaozhong Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - William C. Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Federico M. Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sean E. Gill
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - William C. Parks
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xiaoge Hu
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - David L. Eaton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
Radisavljevic Z. AKT as locus of cancer multidrug resistance and fragility. J Cell Physiol 2013; 228:671-4. [PMID: 22886615 DOI: 10.1002/jcp.24176] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022]
Abstract
Complexity and robustness of cancer hypoxic microenvironment are supported by the robust signaling networks of autocrine and paracrine elements creating powerful interactome for multidrug resistance. These elements generate a positive feedback loops responsible for the extreme robustness and multidrug resistance in solid cancer, leukemia, myeloma, and lymphoma. Phosphorylated AKT is a cancer multidrug resistance locus. Targeting that locus by oxidant/antioxidant balance modulation, positive feedback loops are converted into negative feedback loops, leading to disappearance of multidrug resistance. This is a new principle for targeting cancer multidrug resistance by the locus chemotherapy inducing a phenomenon of loops conversion.
Collapse
Affiliation(s)
- Ziv Radisavljevic
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts, USA.
| |
Collapse
|
19
|
Li K, Chi Y, Gao K, Yan Q, Matsue H, Takeda M, Kitamura M, Yao J. Connexin43 hemichannel-mediated regulation of connexin43. PLoS One 2013; 8:e58057. [PMID: 23460926 PMCID: PMC3584027 DOI: 10.1371/journal.pone.0058057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 01/31/2013] [Indexed: 01/24/2023] Open
Abstract
Background Many signaling molecules and pathways that regulate gap junctions (GJs) protein expression and function are, in fact, also controlled by GJs. We, therefore, speculated an existence of the GJ channel-mediated self-regulation of GJs. Using a cell culture model in which nonjunctional connexin43 (Cx43) hemichannels were activated by cadmium (Cd2+), we tested this hypothesis. Principal Findings Incubation of Cx43-transfected LLC-PK1 cells with Cd2+ led to an increased expression of Cx43. This effect of Cd2+ was tightly associated with JNK activation. Inhibition of JNK abolished the elevation of Cx43. Further analysis revealed that the changes of JNK and Cx43 were controlled by GSH. Supplement of a membrane-permeable GSH analogue GSH ethyl ester or GSH precursor N-acetyl-cystein abrogated the effects of Cd2+ on JNK activation and Cx43 expression. Indeed, Cd2+ induced extracellular release of GSH. Blockade of Cx43 hemichannels with heptanol or Cx43 mimetic peptide Gap26 to prevent the efflux of GSH significantly attenuated the Cx43-elevating effects of Cd2+. Conclusions Collectively, our results thus indicate that Cd2+-induced upregulation of Cx43 is through activation of nonjunctional Cx43 hemichannels. Our findings thus support the existence of a hemichannel-mediated self-regulation of Cx43 and provide novel insights into the molecular mechanisms of Cx43 expression and function.
Collapse
Affiliation(s)
- Kai Li
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, China
- * E-mail: (JY); (KL)
| | - Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kun Gao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Qiaojing Yan
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Chiba University School of Medicine, Chiba, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- * E-mail: (JY); (KL)
| |
Collapse
|
20
|
Abstract
Angiogenesis get full robustness in metastatic cancer, relapsed leukemia or lymphoma when complex positive feedback loop signaling systems become integrative. A cancer hypoxic microenvironment generates positive loops inducing formation of the vascular functional shunts. AKT is an upstream angiogenic locus of integrative robustness and fragility activated by the positive loops. AKT controls two downstream nodes the mTOR and NOS in nodal organization of the signaling genes. AKT phosphorylation is regulated by a balance of an oxidant/antioxidant. Targeting AKT locus represents new principle to control integrative angiogenic robustness by the locus chemotherapy.
Collapse
Affiliation(s)
- Ziv Radisavljevic
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
21
|
Inhibition of Connexin 26/43 and Extracellular-Regulated Kinase Protein Plays a Critical Role in Melatonin Facilitated Gap Junctional Intercellular Communication in Hydrogen Peroxide-Treated HaCaT Keratinocyte Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:589365. [PMID: 23243457 PMCID: PMC3518788 DOI: 10.1155/2012/589365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/26/2012] [Indexed: 01/19/2023]
Abstract
Though melatonin was known to regulate gap junctional intercellular communication (GJIC) in chick astrocytes and mouse hepatocytes, the underlying mechanism by melatonin was not elucidated in hydrogen peroxide- (H2O2-) treated HaCaT keratinocyte cells until now. In the current study, though melatonin at 2 mM and hydrogen peroxide (H2O2) at 300 μM showed weak cytotoxicity in HaCaT keratinocyte cells, melatonin significantly suppressed the formation of reactive oxygen species (ROS) in H2O2-treated HaCaT cells compared to untreated controls. Also, the scrape-loading dye-transfer assay revealed that melatonin enhances the intercellular communication by introducing Lucifer Yellow into H2O2-treated cells. Furthermore, melatonin significantly enhanced the expression of connexin 26 (Cx26) and connexin 43 (Cx43) at mRNA and protein levels, but not that of connexin 30 (Cx30) in H2O2-treated HaCaT cells. Of note, melatonin attenuated the phosphorylation of extracellular signal-regulated protein kinases (ERKs) more than p38 MAPK or JNK in H2O2-treated HaCaT cells. Conversely, ERK inhibitor PD98059 promoted the intercellular communication in H2O2-treated HaCaT cells. Furthermore, combined treatment of melatonin (200 μM) and vitamin C (10 μg/mL) significantly reduced ROS production in H2O2-treated HaCaT cells. Overall, these findings support the scientific evidences that melatonin facilitates gap junctional intercellular communication in H2O2-treated HaCaT keratinocyte cells via inhibition of connexin 26/43 and ERK as a potent chemopreventive agent.
Collapse
|
22
|
Yan Q, Gao K, Chi Y, Li K, Zhu Y, Wan Y, Sun W, Matsue H, Kitamura M, Yao J. NADPH oxidase-mediated upregulation of connexin43 contributes to podocyte injury. Free Radic Biol Med 2012; 53:1286-97. [PMID: 22824863 DOI: 10.1016/j.freeradbiomed.2012.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
The gap junction protein connexin43 (Cx43) was markedly increased in podocytes in a rat model of nephrosis induced by puromycin. However, the mechanisms and roles of the altered Cx43 in podocytes are still unclear. Given that oxidative stress mediates podocyte injury under a variety of pathological situations, we examined the possible involvement of an oxidative stress-related mechanism in the regulation of Cx43. Incubation of podocytes with puromycin led to a time- and concentration-dependent loss of cell viability, which was preceded by an elevation in Cx43 levels. Concomitantly, puromycin also induced NOX4 expression and promoted superoxide (O(2)(·-)) generation. Inhibition of NADPH oxidase with apocynin and diphenyleneiodonium chloride or addition of the superoxide dismutase mimetic tempol completely abrogated, whereas the O(2)(·-) donors menadione and 2,3-dimethoxy-1,4-naphthoquinone reproduced, the effects of puromycin on Cx43 expression and cell injury. Further analysis demonstrated that treatment of podocytes with several structurally different gap-junction inhibitors significantly attenuated the cytotoxicity of puromycin. Our results thus indicate that NADPH oxidase-mediated upregulation of Cx43 contributes to podocyte injury.
Collapse
Affiliation(s)
- Qiaojing Yan
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 2012; 524:23-9. [DOI: 10.1016/j.abb.2012.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 12/26/2022]
|
24
|
Piccoli C, D'Aprile A, Scrima R, Ambrosi L, Zefferino R, Capitanio N. Subcytotoxic mercury chloride inhibits gap junction intercellular communication by a redox- and phosphorylation-mediated mechanism. Free Radic Biol Med 2012; 52:916-27. [PMID: 22240155 DOI: 10.1016/j.freeradbiomed.2011.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/09/2011] [Accepted: 12/20/2011] [Indexed: 11/26/2022]
Abstract
Gap junctions play a central role in coordinating intercellular signal-transduction pathways to control tissue homeostasis. Deregulation of gap junctional intercellular communication is a common phenotype of cancer cells and supports its involvement in the carcinogenesis process. Many carcinogens, like environmental heavy-metal chemical pollutants, are known to activate various signal transduction mechanisms and modulate GJIC. They act as tumor promoters on preexisting "initiated" cells, rather than as genotoxic initiators, albeit their mode of action is often unknown. In this study we investigated the effect of Hg(II) (HgCl(2)) on GJIC in cultured human keratinocytes. It is shown that subcytotoxic concentrations of HgCl(2) as low as 10 nM cause inhibition of the GJIC, assessed by dye transfer assay, despite enhanced expression of connexins. In addition, HgCl(2)-treated keratinocytes exhibited a decrease of free thiols and accumulation of mitochondria-derived reactive oxygen species, albeit no effect on the respiratory chain activity was observed. Treatment of HgCl(2)-exposed keratinocytes with the PKC inhibitor calphostin C and with all-trans retinoic acid resulted in rescue of the mitochondrial ROS overproduction and full recovery of the GJIC. Similar results were obtained with the PKA activator db-cAMP. Overall, the presented results support a cross-talk between the altered intracellular redox tone and PKA- and PKC-mediated signaling in HgCl(2)-challenged keratinocytes. These events, although not cytotoxic, lead to inhibition of GJIC and possibly to carcinogenic priming.
Collapse
Affiliation(s)
- Claudia Piccoli
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, Wang P, Matsue H, Kitamura M, Yao J. Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal 2011; 14:2427-39. [PMID: 21235398 PMCID: PMC3096519 DOI: 10.1089/ars.2010.3150] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the potential involvement of connexin hemichannels in cadmium ions (Cd(2+))-elicited cell injury. Transfection of LLC-PK1 cells with a wild-type connexin43 (Cx43) sensitized them to Cd(2+)-elicited cell injury. The cell susceptibility to Cd(2+) was increased by depletion of glutathione (GSH) with DL-buthionine-[S,R]-sulfoximine, and decreased by N-acetyl-cysteine or glutathione reduced ethyl ester. Fibroblasts derived from Cx43 wild-type (Cx43+/+) and knockout (Cx43-/-) fetal littermates displayed different susceptibility to Cd(2+). Cd(2+) induced a higher concentration of reactive oxygen species, a stronger activation c-Jun N-terminal kinase, and significantly more severe cell injury in Cx43+/+ fibroblasts, as compared with Cx43-/- fibroblasts. Cd(2+) caused a reduction in intracellular GSH, whereas it elevated extracellular GSH. This effect of Cd(2+) was more dramatic in Cx43+/+ than Cx43-/- fibroblasts. Treatment of Cx43+/+ fibroblasts with Cd(2+) caused a Cx43 hemichannel-dependent influx of Lucifer Yellow and efflux of ATP. Collectively, our study demonstrates that Cx43 sensitizes cells to Cd(2+)-initiated cytotoxicity, possibly through hemichannel-mediated effects on intracellular oxidative status.
Collapse
Affiliation(s)
- Xin Fang
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kang NJ, Shin SH, Lee HJ, Lee KW. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther 2011; 130:310-24. [PMID: 21356239 DOI: 10.1016/j.pharmthera.2011.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 12/16/2022]
Abstract
Multiple lines of evidences suggest that oxidative stress induced by reactive oxygen species are closely related to multi-stage carcinogenesis. Polyphenols, a group of chemicals with more than one phenol unit or building block per molecule, have been recognized for possessing many health benefits including cancer-preventive effects mainly due to their antioxidant activity. However, polyphenols can directly bind with signaling molecules involved in carcinogenesis and regulate its activity. Moreover, it is noteworthy that the binding between the polyphenol and the target protein is determined by their structural relationship, which implies that different polyphenols have different target proteins, leading to divergent chemopreventive effects. Extracellular stimuli transmit signals into a cell by activating their target signaling cascades involved in carcinogenesis. As an example, Src family kinase, a family of proto-oncogenic tyrosine kinases activated by a variety of oxidative stress and proinflammatory agents, is known to regulate cell proliferation, differentiation, survival and angiogenesis. Src family kinase subsequently activates downstream signal cascades including mitogen-activated protein kinase, phosphoinositol-3-kinase, and nuclear factor-kappaB, thereby inducing cell proliferation and causing cancer. Recent studies demonstrate that polyphenols can directly target signaling cascades involved in inflammation and the development of cancer. Inhibition of the kinases by polyphenols contributes to the attenuation of carcinogenesis. Therefore, the development of polyphenols as direct inhibitors against target proteins is regarded as a rational approach for chemoprevention. This review describes and discusses recent results about the direct interactions of polyphenols and protein kinases in cancer chemoprevention.
Collapse
Affiliation(s)
- Nam Joo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Trosko JE. The gap junction as a "Biological Rosetta Stone": implications of evolution, stem cells to homeostatic regulation of health and disease in the Barker hypothesis. J Cell Commun Signal 2010; 5:53-66. [PMID: 21484590 DOI: 10.1007/s12079-010-0108-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 02/07/2023] Open
Abstract
The discovery of the gap junction structure, its functions and the family of the "connexin" genes, has been basically ignored by the major biological disciplines. These connexin genes code for proteins that organize to form membrane-associated hemi-channels, "connexons", co-join with the connexons of neighboring cells to form gap junctions. Gap junctions appeared in the early evolution of the metazoan. Their fundamental functions, (e.g., to synchronize electrotonic and metabolic functions of societies of cells, and to regulate cell proliferation, cell differentiation, and apoptosis), were accomplished via integrating the extra-cellular triggering of intra-cellular signaling, and therefore, regulating gene expression. These functions have been documented by genetic mutations of the connexin genes and by chemical modulation of gap junctions. Via genetic alteration of connexins in knock-out and transgenic mice, as well as inherited connexin mutations in various human syndromes, the gap junction has been shown to be directly linked to many normal cell functions and multiple diseases, such as birth defects, reproductive, neurological disorders, immune dysfunction and cancer. Specifically, the modulation of gap junctional intercellular communication (GJIC), either by increasing or decreasing its functions by non-mutagenic chemicals or by oncogenes or tumor suppressor genes in normal or "initiated" stem cells and their progenitor cells, can have a major impact on tumor promotion or cancer chemoprevention and chemotherapy. The overview of the roles of the gap junction in the evolution of the metazoan and its potential in understanding a "systems" view of human health and aging and the diseases of aging will be attempted.
Collapse
Affiliation(s)
- James E Trosko
- Department Pediatrics/Human Development, College of Human Medicine, Michigan State University, 246 Food Safety and Toxicology Bldg, East Lansing, MI, 48824, USA,
| |
Collapse
|
28
|
Rakib MA, Kim YS, Jang WJ, Choi BD, Kim JO, Kong IK, Ha YL. Attenuation of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced gap junctional intercellular communication (GJIC) inhibition in MCF-10A cells by c9,t11-conjugated linoleic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12022-12030. [PMID: 21028875 DOI: 10.1021/jf103205c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The protective effect of c9,t11-conjugated linoleic acid (CLA) on the inhibition of gap junctional intercellular communication (GJIC) was examined in a human mammary epithelial cell line (MCF-10A) treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), relative to t10,c12-CLA isomer. TPA inhibited GJIC in a dose-dependent and reversible manner and was associated with connexin 43 phosphorylation. Pretreatment of 20 μM c9,t11-CLA for 24 h prior to 60 nM TPA for 1 h prevented the inhibition of GJIC by reducing the phosphorylation of connexin 43 via suppressing extracellular signal-regulated kinases (ERK1/2) activation. Reactive oxygen species (ROS) accumulation by TPA was attenuated by c9,t11-CLA. The efficacy of c9,t11-CLA in protecting inhibition of GJIC, connexin 43 phosphorylation, and ROS production was superior to that of t10,c12-CLA. These results suggest that c9,t11-CLA, including t10,c12-CLA, prevents the carcinogenesis of MCF-10A cells by protecting down-regulation of GJIC during the cancer promotion stage, and lack of their toxicities could be an excellent indicator for the chemoprevention of breast cancer.
Collapse
Affiliation(s)
- Md Abdur Rakib
- Division of Applied Life Science (BK21 Program), Graduate School, and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Pries AR, Höpfner M, le Noble F, Dewhirst MW, Secomb TW. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 2010; 10:587-93. [PMID: 20631803 PMCID: PMC3109666 DOI: 10.1038/nrc2895] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Networks of blood vessels in normal and tumour tissues have heterogeneous structures, with widely varying blood flow pathway lengths. To achieve efficient blood flow distribution, mechanisms for the structural adaptation of vessel diameters must be able to inhibit the formation of functional shunts (whereby short pathways become enlarged and flow bypasses long pathways). Such adaptation requires information about tissue metabolic status to be communicated upstream to feeding vessels, through conducted responses. We propose that impaired vascular communication in tumour microvascular networks, leading to functional shunting, is a primary cause of dysfunctional microcirculation and local hypoxia in cancer. We suggest that anti-angiogenic treatment of tumours may restore vascular communication and thereby improve or normalize flow distribution in tumour vasculature.
Collapse
Affiliation(s)
- Axel R Pries
- Department of Physiology and the Centre for Cardiovascular Research, Charité Berlin, Thielallee 71, D-14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
30
|
Kaushik G, Satya S, Naik SN. Green tea: protective action against oxidative damage induced by xenobiotics. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2010. [DOI: 10.1007/s12349-010-0014-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 2010; 459:897-914. [PMID: 20379740 DOI: 10.1007/s00424-010-0830-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly evident that electrical signaling via gap junctions plays a central role in the physiological control of vascular tone via two related mechanisms (1) the endothelium-derived hyperpolarizing factor (EDHF) phenomenon, in which radial transmission of hyperpolarization from the endothelium to subjacent smooth muscle promotes relaxation, and (2) responses that propagate longitudinally, in which electrical signaling within the intimal and medial layers of the arteriolar wall orchestrates mechanical behavior over biologically large distances. In the EDHF phenomenon, the transmitted endothelial hyperpolarization is initiated by the activation of Ca(2+)-activated K(+) channels channels by InsP(3)-induced Ca(2+) release from the endoplasmic reticulum and/or store-operated Ca(2+) entry triggered by the depletion of such stores. Pharmacological inhibitors of direct cell-cell coupling may thus attenuate EDHF-type smooth muscle hyperpolarizations and relaxations, confirming the participation of electrotonic signaling via myoendothelial and homocellular smooth muscle gap junctions. In contrast to isolated vessels, surprisingly little experimental evidence argues in favor of myoendothelial coupling acting as the EDHF mechanism in arterioles in vivo. However, it now seems established that the endothelium plays the leading role in the spatial propagation of arteriolar responses and that these involve poorly understood regenerative mechanisms. The present review will focus on the complex interactions between the diverse cellular signaling mechanisms that contribute to these phenomena.
Collapse
Affiliation(s)
- Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | | |
Collapse
|
32
|
Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication. Br J Nutr 2010; 104:164-70. [PMID: 20302682 DOI: 10.1017/s0007114510000346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We evaluated the effects of the two main kiwifruit cultivars (gold kiwifruit (GOK) and green kiwifruit (GRK)) and their active phenolic compound, quercetin, on H2O2-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells. We found that both GOK and GRK protect WB-F344 cells from H2O2-induced inhibition of GJIC. The extracellular signal-regulated protein kinase 1/2 (ERK1/2)-connexin 43 (Cx43) signalling pathway is crucial for the regulation of GJIC, and both GOK and GRK blocked the H2O2-induced phosphorylation of Cx43 and ERK1/2 in WB-F344 cells. Quercetin alone attenuated the H2O2-mediated ERK1/2-Cx43 signalling pathway and consequently reversed H2O2-mediated inhibition of GJIC in WB-F344 cells. A free radical-scavenging assay using 1,1-diphenyl-2-picrylhydrazyl showed that the scavenging activity of quercetin was higher than that of a synthetic antioxidant, butylated hydroxytoluene, per mol, suggesting that the chemopreventive effect of quercetin on H2O2-mediated inhibition of ERK1/2-Cx43 signalling and GJIC may be mediated through its free radical-scavenging activity. Since the carcinogenicity of reactive oxygen species such as H2O2 is attributable to the inhibition of GJIC, GOK, GRK and quercetin may have chemopreventive potential by preventing the inhibition of GJIC.
Collapse
|
33
|
Oviedo-Orta E, Perreau M, Evans WH, Potolicchio I. Control of the proliferation of activated CD4+T cells by connexins. J Leukoc Biol 2010; 88:79-86. [DOI: 10.1189/jlb.0909613] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Chapter 9: Oxidative stress in malignant progression: The role of Clusterin, a sensitive cellular biosensor of free radicals. Adv Cancer Res 2010; 104:171-210. [PMID: 19878777 DOI: 10.1016/s0065-230x(09)04009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) gene is expressed in most human tissues and encodes for two protein isoforms; a conventional heterodimeric secreted glycoprotein and a truncated nuclear form. CLU has been functionally implicated in several physiological processes as well as in many pathological conditions including ageing, diabetes, atherosclerosis, degenerative diseases, and tumorigenesis. A major link of all these, otherwise unrelated, diseases is that they are characterized by increased oxidative injury due to impaired balance between production and disposal of reactive oxygen or nitrogen species. Besides the aforementioned diseases, CLU gene is differentially regulated by a wide variety of stimuli which may also promote the production of reactive species including cytokines, interleukins, growth factors, heat shock, radiation, oxidants, and chemotherapeutic drugs. Although at low concentration reactive species may contribute to normal cell signaling and homeostasis, at increased amounts they promote genomic instability, chronic inflammation, lipid oxidation, and amorphous aggregation of target proteins predisposing thus cells for carcinogenesis or other age-related disorders. CLU seems to intervene to these processes due to its small heat-shock protein-like chaperone activity being demonstrated by its property to inhibit protein aggregation and precipitation, a main feature of oxidant injury. The combined presence of many potential regulatory elements in the CLU gene promoter, including a Heat-Shock Transcription Factor-1 and an Activator Protein-1 element, indicates that CLU gene is an extremely sensitive cellular biosensor of even minute alterations in the cellular oxidative load. This review focuses on CLU regulation by oxidative injury that is the common molecular link of most, if not all, pathological conditions where CLU has been functionally implicated.
Collapse
|
35
|
Kim JH, Choi SH, Kim J, Lee BK, Lee KW, Lee HJ. Differential regulation of the hydrogen-peroxide-induced inhibition of gap-junction intercellular communication by resveratrol and butylated hydroxyanisole. Mutat Res 2009; 671:40-44. [PMID: 19720069 DOI: 10.1016/j.mrfmmm.2009.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 05/28/2023]
Abstract
The present study was performed to evaluate the effects of two different phenolic antioxidants, resveratrol (3,5,4'-trihydroxystilbene) and butylated hydroxyanisole (BHA), on the hydrogen peroxide (H2O2)-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells (WB-F344). Resveratrol is a naturally occurring polyphenolic antioxidant; on the other hand, BHA is a synthetic phenolic compound. We found that only resveratrol protects WB-F344 cells from H2O2-induced inhibition of GJIC, and BHA has no effect. The extracellular-signal-regulated protein kinase 1/2 (ERK1/2)-connexin 43 (Cx43) signaling pathway is crucial for the regulation of GJIC in rat liver epithelial cells, and resveratrol, but not BHA, blocked the H2O2-induced phosphorylation of Cx43, a critical regulator of GJIC, and ERK1/2 in WB-F344 cells. Resveratrol appears to attenuate the H2O2-mediated ERK1/2-Cx43 signaling pathway and consequently reverses H2O2-mediated inhibition of GJIC. DPPH and ABTS radical-scavenging assays revealed that the protective effect of resveratrol on the H2O2-mediated inhibition of GJIC was not mediated through its free radical-scavenging activity.
Collapse
Affiliation(s)
- Jong Hun Kim
- Major in Biomodulation, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwangak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Garry A, Edwards DH, Fallis IF, Jenkins RL, Griffith TM. Ascorbic acid and tetrahydrobiopterin potentiate the EDHF phenomenon by generating hydrogen peroxide. Cardiovasc Res 2009; 84:218-26. [PMID: 19592567 PMCID: PMC2761203 DOI: 10.1093/cvr/cvp235] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 12/11/2022] Open
Abstract
AIMS Our objective was to investigate whether pro-oxidant properties of ascorbic acid (AA) and tetrahydrobiopterin (BH(4)) modulate endothelium-dependent, electrotonically mediated arterial relaxation. METHODS AND RESULTS In studies with rabbit iliac artery (RIA) rings, NO-independent, endothelium-derived hyperpolarizing factor (EDHF)-type relaxations evoked by the sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid and the G protein-coupled agonist acetylcholine (ACh) were enhanced by AA (1 mM) and BH(4) (200 microM), which generated buffer concentrations of H(2)O(2) in the range of 40-80 microM. Exogenous H(2)O(2) potentiated cyclopiazonic acid (CPA)- and ACh-evoked relaxations with a threshold of 10-30 microM, and potentiation by AA and BH(4) was abolished by catalase, which destroyed H(2)O(2) generated by oxidation of these agents in the organ chamber. Adventitial application of H(2)O(2) also enhanced EDHF-type dilator responses evoked by CPA and ACh in RIA segments perfused intraluminally with H(2)O(2)-free buffer, albeit with reduced efficacy. In RIA rings, both control relaxations and their potentiation by H(2)O(2) were overcome by blockade of gap junctions by connexin-mimetic peptides (YDKSFPISHVR and SRPTEK) targeted to the first and second extracellular loops of the dominant vascular connexins expressed in the RIA. Superoxide dismutase attenuated the potentiation of EDHF-type relaxations by BH(4), but not AA, consistent with findings demonstrating a differential role for superoxide anions in the generation of H(2)O(2) by the two agents. CONCLUSION Pro-oxidant effects of AA and BH(4) can enhance the EDHF phenomenon by generating H(2)O(2), which has previously been shown to amplify electrotonic hyperpolarization-mediated relaxation by facilitating Ca(2+) release from endothelial stores.
Collapse
Affiliation(s)
- Ambroise Garry
- Department of Diagnostic Radiology, Wales Heart Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - David H. Edwards
- Department of Diagnostic Radiology, Wales Heart Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ian F. Fallis
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Robert L. Jenkins
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Tudor M. Griffith
- Department of Diagnostic Radiology, Wales Heart Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
37
|
Ale-Agha N, Galban S, Sobieroy C, Abdelmohsen K, Gorospe M, Sies H, Klotz LO. HuR regulates gap junctional intercellular communication by controlling beta-catenin levels and adherens junction integrity. Hepatology 2009; 50:1567-76. [PMID: 19676129 PMCID: PMC2784158 DOI: 10.1002/hep.23146] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Gap junctional intercellular communication (GJIC) plays a critical role in the regulation of tissue homeostasis and carcinogenesis and is modulated by the levels, subcellular localization, and posttranslational modification of gap junction proteins, the connexins (Cx). Here, using oval cell-like rat liver epithelial cells, we demonstrate that the RNA-binding protein HuR promotes GJIC through two mechanisms. First, HuR silencing lowered the levels of Cx43 protein and Cx43 messenger RNA (mRNA), and decreased Cx43 mRNA half-life. This regulation was likely due to the direct stabilization of Cx43 mRNA by HuR, because HuR associated directly with Cx43 mRNA, a transcript that bears signature adenylate-uridylate-rich (AU-rich) and uridylate-rich (U-rich) sequences in its 3'-untranslated region. Second, HuR silencing reduced both half-life and the levels of beta-catenin mRNA, also a target of HuR; accordingly, HuR silencing lowered the levels of whole-cell and membrane-associated beta-catenin. Coimmunoprecipitation experiments showed a direct interaction between beta-catenin and Cx43. Small interfering RNA (siRNA)-mediated depletion of beta-catenin recapitulated the effects of decreasing HuR levels: it attenuated GJIC, decreased Cx43 levels, and redistributed Cx43 to the cytoplasm, suggesting that depletion of beta-catenin in HuR-silenced cells contributed to lowering Cx43 levels at the membrane. Finally, HuR was demonstrated to support GJIC after exposure to a genotoxic agent, doxorubicin, or an inducer of differentiation processes, retinoic acid, thus pointing to a crucial role of HuR in the cellular response to stress and in physiological processes modulated by GJIC. CONCLUSION HuR promotes gap junctional intercellular communication in rat liver epithelial cells through two related regulatory processes, by enhancing the expression of Cx43 and by increasing the expression of beta-catenin, which, in turn, interacts with Cx43 and is required for proper positioning of Cx43 at the plasma membrane.
Collapse
Affiliation(s)
- Niloofar Ale-Agha
- Institut für umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stefanie Galban
- Institut für Biochemie und Molekularbiologie I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, Laboratory of Cellular and Molecular Biology, National Institute on Aging – Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Christiane Sobieroy
- Institut für Biochemie und Molekularbiologie I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kotb Abdelmohsen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging – Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging – Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Helmut Sies
- Institut für umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, Institut für Biochemie und Molekularbiologie I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lars-Oliver Klotz
- Institut für umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, Institut für Biochemie und Molekularbiologie I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany,Correspondence should be addressed to
| |
Collapse
|
38
|
Irigaray P, Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 2009; 31:135-48. [PMID: 19858070 DOI: 10.1093/carcin/bgp252] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exogenous chemical carcinogenesis is an extremely complex multifactorial process during which gene-environment interactions involving chronic exposure to exogenous chemical carcinogens (ECCs) and polymorphisms of cancer susceptibility genes add further complexity. We describe the properties and molecular mechanisms of ECCs that contribute to induce and generate cancer. A basic and specific property of many lipophilic organic ECCs including polycyclic aromatic hydrocarbons and polyhalogenated aromatic hydrocarbons is their ability to bioaccumulate in the adipose tissue from where they may be released in the blood circulation and target peripheral tissues for carcinogenesis. Many organic ECCs are procarcinogens and consequently need to be activated by the cytochrome P450 (CYP) system and/or other enzymes before they can adduct DNA and proteins. Because they contribute not only to the cocarcinogenic and promoting effects of many aromatic pollutants but also to their mutagenic effects, the aryl hydrocarbon receptor-activating and the inducible CYP systems are central to exogenous chemical carcinogenesis. Another basic property of ECCs is their ability to induce stable and bulky DNA adducts that cannot be simply repaired by the different repair systems. In addition, following ECC exposure, mutagenesis may also be caused indirectly by free-radical production and by epigenetic alterations. As a result of complex molecular interplays, direct and/or indirect mutagenesis may especially account for the carcinogenic effects of many exogenous metals and metalloids. Because of these molecular properties and action mechanisms, we conclude that ECCs could be major contributors to human cancer, with obviously great public health consequences.
Collapse
Affiliation(s)
- Philippe Irigaray
- Cancer Research Center, Association for Research and Treatments Against Cancer, Paris, France.
| | | |
Collapse
|
39
|
Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V. Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit Rev Biochem Mol Biol 2009; 44:201-22. [PMID: 19635038 DOI: 10.1080/10409230903061215] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct communication between hepatocytes, mediated by gap junctions, constitutes a major regulatory platform in the control of liver homeostasis, ranging from hepatocellular proliferation to hepatocyte cell death. Inherent to this pivotal task, gap junction functionality is frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity and carcinogenicity. In the present paper, the deleterious effects of a number of chemical and biological toxic compounds on hepatic gap junctions are discussed, including environmental pollutants, biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. Particular attention is paid to the molecular mechanisms that underlie the abrogation of gap junction functionality. Since hepatic gap junctions are specifically targeted by tumor promoters and epigenetic carcinogens, both in vivo and in vitro, inhibition of gap junction functionality is considered as a suitable indicator for the detection of nongenotoxic hepatocarcinogenicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Goldberg M, Grootveld M, Lynch E. Undesirable and adverse effects of tooth-whitening products: a review. Clin Oral Investig 2009; 14:1-10. [PMID: 19543926 DOI: 10.1007/s00784-009-0302-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/08/2009] [Indexed: 12/11/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is a powerful oxidising agent. It gives rise to agents known to be effective bleaching agents. The mechanisms of bleaching involve the degradation of the extracellular matrix and oxidation of chromophores located within enamel and dentin. However, H(2)O(2) produces also local undesirable effects on tooth structures and oral mucosa. In clinical conditions, the daily low-level doses used to produce tooth whitening never generate general acute and sub-acute toxic effects. Genotoxicity and carcinogenicity only occur at concentrations that are never reached during dental treatments. Some transient adverse effects have been reported on the oral mucosa and the digestive tract if the product is swallowed. Local effects may occur on the oral mucosa and dental tissues during whitening, namely, pulp sensitivity, cervical resorption, release of selected components of dental restorative materials, and alteration of the enamel surface. Most of the local effects are dependent of the technique and concentration of the product so far used, but as the results of bleaching obtained are not stable, repeated treatments add to the adverse effects. The informed decision to administer or not and the control of bleaching effects should stand in the hand of dental surgeons and certainly not as it appears at present, as cosmetics sold without any restriction despite the potential health hazards of peroxides.
Collapse
Affiliation(s)
- Michel Goldberg
- Faculté de Chirurgie Dentaire, Université Paris Descartes, 1 rue Maurice Arnoux, Montrouge, France.
| | | | | |
Collapse
|
41
|
Human health risk assessment for peroxisome proliferators: More than 30 years of research. ACTA ACUST UNITED AC 2009; 61:215-21. [DOI: 10.1016/j.etp.2008.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 11/24/2022]
|
42
|
Abstract
Hyperhomocysteinemia (HHcy) is a significant and independent risk factor for cardiovascular diseases. Endothelial dysfunction (ED) is the earliest indicator of atherosclerosis and vascular diseases. We and others have shown that HHcy induced ED in human and in animal models of HHcy induced by either high-methionine load or genetic deficiency. Six mechanisms have been suggested explaining HHcy-induced ED. These include 1) nitric oxide inhibition, 2) prostanoids regulation, 3) endothelium-derived hyperpolarizing factors suppression, 4) angiotensin II receptor-1 activation, 5) endothelin-1 induction, and 6) oxidative stress. The goal of this review is to elaborate these mechanisms and to discuss biological and molecular events related to HHcy-induced ED.
Collapse
Affiliation(s)
- Zhongjian Cheng
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
43
|
Nakamura Y, Kominami A, Tsujimoto Y, Nakayama Y, Kitahashi T, Yoshimoto S, Kubo A, Watanabe S, Kageyama M, Yokoyama M, Kido Y, Kobayashi Y, Kuwahata M, Chang CC, Upham BL, Trosko JE, Park EY, Sato K. Actin and Vimentin proteins with N-terminal deletion detected in tumor-bearing rat livers induced by intraportal-vein injection of Ha-ras-transfected rat liver cells. Int J Cancer 2009; 124:2512-9. [PMID: 19199359 DOI: 10.1002/ijc.24229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The introduction of the tumorigenic v-Ha-ras oncogene-transformed rat liver epithelial cells (WBras), which is deficient in gap junctional intercellular communication (GJIC), into F344 rats, induces significant formation of hepatocellular tumors. GJIC plays a major role in maintaining tissue homeostasis. Using this in vivo tumor model system, we used 2-dimensional electrophoresis with isoelectric focusing in the first dimension and SDS-PAGE in the second dimension to globally identify proteins that are uniquely expressed in the livers of WBras-treated rats as compared to the sham control. Immunoblotting was used to identify Ras and Connexin43, which were the positive and negative marker proteins, respectively, of the introduced WBras cells. As predicted, immunoblotting indicated that the whole liver of tumor-bearing animals exhibited a decreased level of Connexin43 and an increased level of Ras. Connexin43 and GJIC were expressed and functional in normal liver, but not in the tumor. In addition to these 2 markers, an additional 4 proteins exhibited decreased levels and 2 proteins exhibited increased levels in the livers of tumor-bearing animals. N-Terminal sequencing analysis was used to identify these proteins, which were glucose-regulated protein 78, 2 isoforms of heat shock protein 60, and the beta-chain of ATP synthase for the down regulated proteins, and beta-Actin with a 46 amino acid deletion from its N-terminus and Vimentin with a 71 amino acid deletion from its N-terminus for the up regulated proteins. These data offer potentially new markers of liver tumorigenicity, particularly, Vimentin. (
Collapse
Affiliation(s)
- Yasushi Nakamura
- Department of Food Sciences and Nutritional Health, Kyoto Prefectural University, Shimogamo-Hangi, Sakyo, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Matsumoto H, Tomita M, Otsuka K, Hatashita M. A new paradigm in radioadaptive response developing from microbeam research. JOURNAL OF RADIATION RESEARCH 2009; 50 Suppl A:A67-A79. [PMID: 19346687 DOI: 10.1269/jrr.09003s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A classic paradigm in radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation on living tissue. Using this model, possible risks from exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to higher doses of radiation, using a linear non-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. These important responses to low dose/low dose-rate radiation are the radiation-induced adaptive response, the bystander response, low-dose hypersensitivity, and genomic instability. The mechanisms underlying these responses often involve biochemical and molecular signals generated in response to targeted and non-targeted events. In order to define and understand the bystander response to provide a basis for the understanding of non-targeted events and to elucidate the mechanisms involved, recent sophisticated research has been conducted with X-ray microbeams and charged heavy particle microbeams, and these studies have produced many new observations. Based on these observations, associations have been suggested to exist between the radioadaptive and bystander responses. The present review focuses on these two phenomena, and summarizes observations supporting their existence, and discusses the linkage between them in light of recent results obtained from experiments utilizing microbeams.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaitsuki, Eiheiji-cho, Fukui 910-1193, Japan.
| | | | | | | |
Collapse
|
45
|
Kim JH, Lee BK, Lee KW, Lee HJ. Resveratrol counteracts gallic acid-induced down-regulation of gap-junction intercellular communication. J Nutr Biochem 2009; 20:149-54. [DOI: 10.1016/j.jnutbio.2008.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/31/2007] [Accepted: 01/10/2008] [Indexed: 11/16/2022]
|
46
|
Upham BL, Trosko JE. Oxidative-dependent integration of signal transduction with intercellular gap junctional communication in the control of gene expression. Antioxid Redox Signal 2009; 11:297-307. [PMID: 18834329 PMCID: PMC2933147 DOI: 10.1089/ars.2008.2146] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Research on oxidative stress focused primarily on determining how reactive oxygen species (ROS) damage cells by indiscriminate reactions with their macromolecular machinery, particularly lipids, proteins, and DNA. However, many chronic diseases are not always a consequence of tissue necrosis, DNA, or protein damage, but rather to altered gene expression. Gene expression is highly regulated by the coordination of cell signaling systems that maintain tissue homeostasis. Therefore, much research has shifted to the understanding of how ROS reversibly control gene expression through cell signaling mechanisms. However, most research has focused on redox regulation of signal transduction within a cell, but we introduce a more comprehensive-systems biology approach to understanding oxidative signaling that includes gap junctional intercellular communication, which plays a role in coordinating gene expression between cells of a tissue needed to maintain tissue homeostasis. We propose a hypothesis that gap junctions are critical in modulating the levels of second messengers, such as low molecular weight reactive oxygen, needed in the transduction of an external signal to the nucleus in the expression of genes. Thus, any comprehensive-systems biology approach to understanding oxidative signaling must also include gap junctions, in which aberrant gap junctions have been clearly implicated in many human diseases.
Collapse
Affiliation(s)
- Brad L Upham
- Department of Pediatrics and Human Development, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
47
|
Johnson LN, Koval M. Cross-talk between pulmonary injury, oxidant stress, and gap junctional communication. Antioxid Redox Signal 2009; 11:355-67. [PMID: 18816185 PMCID: PMC2933150 DOI: 10.1089/ars.2008.2183] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gap junction channels interconnect several different types of cells in the lung, ranging from the alveolar epithelium to the pulmonary vasculature, each of which expresses a unique subset of gap junction proteins (connexins). Major lung functions regulated by gap junctional communication include coordination of ciliary beat frequency and inflammation. Gap junctions help enable the alveolus to regulate surfactant secretion as an integrated system, in which type I cells act as mechanical sensors that transmit calcium transients to type II cells. Thus, disruption of epithelial gap junctional communication, particularly during acute lung injury, can interfere with these processes and increase the severity of injury. Consistent with this, connexin expression is altered during lung injury, and connexin-deficiency has a negative impact on the injury response and lung-growth control. It has recently been shown that alcohol abuse is a significant risk factor associated with acute respiratory distress syndrome. Oxidant stress and hormone-signaling cascades in the lung induced by prolonged alcohol ingestion are discussed, as well as the effects of these pathways on connexin expression and function.
Collapse
Affiliation(s)
- Latoya N Johnson
- Division of Pulmonary, Allergy and Critical Care Medicine, and Emory Alcohol and Lung Biology Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
48
|
Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell line. Food Chem Toxicol 2009; 47:404-9. [DOI: 10.1016/j.fct.2008.11.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/18/2008] [Accepted: 11/25/2008] [Indexed: 11/18/2022]
|
49
|
Kang NJ, Lee KM, Kim JH, Lee BK, Kwon JY, Lee KW, Lee HJ. Inhibition of gap junctional intercellular communication by the green tea polyphenol (-)-epigallocatechin gallate in normal rat liver epithelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10422-10427. [PMID: 18828601 DOI: 10.1021/jf801981w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG), a polyphenolic compound found in green tea, is a promising chemopreventive agent against cancer due to its strong antiproliferative effects on cancer cells; however, its possible toxicity and carcinogenicity must be investigated before EGCG can be used as a dietary supplement for chemoprevention. The inhibition of gap junctional intercellular communication (GJIC) is strongly associated with carcinogenesis, particularly the tumor promotion process; thus, we investigated the effects of EGCG on GJIC in WB-F344 normal rat liver epithelial (RLE) cells. EGCG, but not (-)-epicatechin (EC), another polyphenol found in green tea, inhibited GJIC in a dose-dependent and reversible manner in RLE cells. EGCG also induced the phosphorylation of connexin 43 (Cx43), a major regulator of GJIC. The phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) was also observed in EGCG-treated RLE cells. The inhibition of GJIC and phosphorylation of Cx43 and ERK1/2 by EGCG were completely blocked by U0126, a pharmacological inhibitor of mitogen-activated protein kinase/ERK kinase. EGCG generated a larger amount of hydrogen peroxide than EC in a dose-dependent manner. Furthermore, catalase partially inhibited the EGCG-induced inhibition of GJIC and the phosphorylation of Cx43 and ERK1/2. These results indicated that EGCG inhibited GJIC mainly due to its prooxidant activity.
Collapse
Affiliation(s)
- Nam Joo Kang
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA. PPARα Agonist-Induced Rodent Tumors: Modes of Action and Human Relevance. Crit Rev Toxicol 2008; 33:655-780. [PMID: 14727734 DOI: 10.1080/713608372] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Widely varied chemicals--including certain herbicides, plasticizers, drugs, and natural products--induce peroxisome proliferation in rodent liver and other tissues. This phenomenon is characterized by increases in the volume density and fatty acid oxidation of these organelles, which contain hydrogen peroxide and fatty acid oxidation systems important in lipid metabolism. Research showing that some peroxisome proliferating chemicals are nongenotoxic animal carcinogens stimulated interest in developing mode of action (MOA) information to understand and explain the human relevance of animal tumors associated with these chemicals. Studies have demonstrated that a nuclear hormone receptor implicated in energy homeostasis, designated peroxisome proliferator-activated receptor alpha (PPARalpha), is an obligatory factor in peroxisome proliferation in rodent hepatocytes. This report provides an in-depth analysis of the state of the science on several topics critical to evaluating the relationship between the MOA for PPARalpha agonists and the human relevance of related animal tumors. Topics include a review of existing tumor bioassay data, data from animal and human sources relating to the MOA for PPARalpha agonists in several different tissues, and case studies on the potential human relevance of the animal MOA data. The summary of existing bioassay data discloses substantial species differences in response to peroxisome proliferators in vivo, with rodents more responsive than primates. Among the rat and mouse strains tested, both males and females develop tumors in response to exposure to a wide range of chemicals including DEHP and other phthalates, chlorinated paraffins, chlorinated solvents such as trichloroethylene and perchloroethylene, and certain pesticides and hypolipidemic pharmaceuticals. MOA data from three different rodent tissues--rat and mouse liver, rat pancreas, and rat testis--lead to several different postulated MOAs, some beginning with PPARalpha activation as a causal first step. For example, studies in rodent liver identified seven "key events," including three "causal events"--activation of PPARalpha, perturbation of cell proliferation and apoptosis, and selective clonal expansion--and a series of associative events involving peroxisome proliferation, hepatocyte oxidative stress, and Kupffer-cell-mediated events. Similar in-depth analysis for rat Leydig-cell tumors (LCTs) posits one MOA that begins with PPARalpha activation in the liver, but two possible pathways, one secondary to liver induction and the other direct inhibition of testicular testosterone biosynthesis. For this tumor, both proposed pathways involve changes in the metabolism and quantity of related hormones and hormone precursors. Key events in the postulated MOA for the third tumor type, pancreatic acinar-cell tumors (PACTs) in rats, also begin with PPARalpha activation in the liver, followed by changes in bile synthesis and composition. Using the new human relevance framework (HRF) (see companion article), case studies involving PPARalpha-related tumors in each of these three tissues produced a range of outcomes, depending partly on the quality and quantity of MOA data available from laboratory animals and related information from human data sources.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|