1
|
Xu G, Wang J, Mao X, Xu M. 17β-estradiol Inhibits Oxidative Stress-Induced Apoptosis in Endometrial Cancer Cells by Promoting FOXM1 Expression. Cell Biochem Biophys 2024; 82:1243-1251. [PMID: 38724756 DOI: 10.1007/s12013-024-01277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
The steroid hormone 17β-estradiol (E2) has a significant impact on the development and progression of tumors. E2 stimulates tumor cell growth and metabolism, leading to an increase in reactive oxygen species (ROS) production. However, the rise in ROS levels is not sufficient to cause severe harm to cancer cells. and the mechanisms that regulate ROS are not well understood. Since FOXM1 plays a crucial role in the production of ROS, we aimed to investigate the impact of E2 on oxidative stress and the involvement of FOXM1 in the Ishikawa endometrial cancer cell line. Our research revealed that E2 controls the levels of ROS inside cells and safeguards them from apoptosis by promoting the expression of FOXM1. We observed a decrease in the expression of FOXM1 alongside an increase in oxidative damage. Moreover, cells demonstrated elevated levels of FOXM1 and ERα upon E2 treatment. Overall, our findings suggest that E2 prevents apoptosis induced by oxidative stress in endometrial cancer cells by encouraging the expression of FOXM1, potentially affecting ERα.
Collapse
Affiliation(s)
- Ge Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Jiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xiaojie Mao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Maohong Xu
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
2
|
Kalinina T, Kononchuk V, Klyushova L, Gulyaeva L. Effects of Endocrine Disruptors o, p'-Dichlorodiphenyltrichloroethane, p, p'-Dichlorodiphenyltrichloroethane, and Endosulfan on the Expression of Estradiol-, Progesterone-, and Testosterone-Responsive MicroRNAs and Their Target Genes in MCF-7 Cells. TOXICS 2022; 10:25. [PMID: 35051067 PMCID: PMC8780485 DOI: 10.3390/toxics10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022]
Abstract
Many studies have shown that dichlorodiphenyltrichloroethane (DDT) exposure raises breast cancer risk. Another insecticide with similar properties is endosulfan, which has been actively used in agriculture after DDT prohibition. Previously, we have identified some estradiol-, progesterone-, and testosterone-sensitive microRNAs (miRNAs, miRs). Because DDT and endosulfan have estrogenic, antiandrogenic, and antiprogesterone properties, we hypothesized that these miRNAs are affected by the insecticides. We quantified relative levels of miRNAs and expression levels of their target genes in breast cancer MCF-7 cells treated with p,p'-DDT, o,p'-DDT, or endosulfan. We also quantified miR-19b expression, which, as previously shown, is regulated by estrogen. Here, we observed that miR-19b expression increased in response not only to estradiol but also to testosterone and progesterone. Treatment of MCF-7 cells with p,p'-DDT or endosulfan decreased the protein levels of apoptosis regulators TP53INP1 and APAF1. In cells treated with o,p'-DDT, the TP53INP1 amount decreased after 24 h of incubation, but increased after 48 h of incubation with insecticide. OXTR expression, which is known to be associated with breast carcinogenesis, significantly diminished under the exposure of all insecticides. In cells treated with p,p'-DDT or o,p'-DDT, the observed changes were accompanied by alterations of the levels of hormone-responsive miRNAs: miR-324, miR-190a, miR-190b, miR-27a, miR-193b, and miR-19b.
Collapse
Affiliation(s)
- Tatiana Kalinina
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
| | - Vladislav Kononchuk
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Rechkunovskaya Str. 15, 630055 Novosibirsk, Russia
| | - Lyubov Klyushova
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
| | - Lyudmila Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2/12, 630117 Novosibirsk, Russia; (V.K.); (L.K.); (L.G.)
- Institute for Medicine and Psychology, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Effect of prevalent polychlorinated biphenyls (PCBs) food contaminant on the MCF7, LNCap and MDA-MB-231 cell lines viability and PON1 gene expression level: proposed model of binding. ACTA ACUST UNITED AC 2021; 29:159-170. [PMID: 33880740 DOI: 10.1007/s40199-021-00394-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are a group of synthetic organic chlorine compounds known as an organic pollutant in food sources, which play important roles in malignancies. The present study aimed to investigate the direct effects of prevalent PCBs in food in hormone-responsive and non-responsive cell lines. METHODS In the current study, MCF-7, LNCap, and MDA-MB231 cell lines were treated with serial concentrations (0.001-100 μM) of PCBs for 48 h and cell viability assessment was performed using MTT assay. The best concentration then applied and the expression level of PON1 was evaluated using real-time PCR. Besides, molecular docking was performed to determine the binding mechanism and predicted binding energies of PBCs compounds to the AhR receptor. RESULTS Unlike MCF-7 and LNCap cells, the viability of MDA-MB231 cells did not significantly change by different concentrations of PCBs. Meanwhile, quantitative gene expression analysis showed that the PON1 was significantly more expressed in MCF-7 and LNCap lines treated with PCB28 and PCB101. However, the expression level of this gene in other groups and also MDA-MB231cells did not demonstrate any significantly change. Also, the results of molecular docking showed that PBCs had steric interaction with AhR receptor. CONCLUSIONS Current results showed that despite of hormone non-responsive cells the PCBs have a significant positive effect on hormone-responsive cell. Therefore, and regarding to the existence of PCBs contamination in food there should be serious concern about their impact on the prevalence of different malignancies which certainly should result in a standard limit for this material. This study aimed to investigate the direct effects of prevalent PCBs in food in hormone-responsive and non-responsive cell lines. Cell lines were treated with serial concentrations of PCBs and cell viability assessment was performed using MTT assay. The expression level of PON1 was evaluated using real-time PCR. Molecular docking was performed to determine the binding mechanism and predicted binding energies of PBCs compounds to the AhR receptor. PCBs contamination in food there should be serious concern about their impact on the prevalence of different malignancies which certainly should result in a standard limit for this material.
Collapse
|
4
|
Soni R, Verma SK. Impact of herbicide pretilachlor on reproductive physiology of walking catfish, Clarias batrachus (Linnaeus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2065-2072. [PMID: 32772217 DOI: 10.1007/s10695-020-00853-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Herbicide pretilachlor is widely used in paddy fields to control annual weeds. The present study has been carried out in walking catfish, Clarias batrachus, to evaluate the impact of herbicide pretilachlor on reproductive physiology after chronic exposure. Based on the median lethal concentration value (96 h), fish were exposed to three nominal test concentrations of pretilachlor ((SL-I (1/20th LC50), SLII (1/15th LC50), and SL-III (1/10th LC50)) for 30, 45, and 60 days after which plasma sex steroid profile, plasma vitellogenin concentration, and gonadal aromatase activity were analyzed in both sexes. Plasma concentration of testosterone decreases in herbicide-exposed male fish. Significant increase in plasma 17β-estradiol, plasma vitellogenin concentration, and gonadal aromatase activity were observed in herbicide-exposed male fish. All these alterations in reproductive parameters in male fish are dependent on concentration and exposure duration of herbicide. On the other hand, significant decrease in plasma concentration of testosterone was observed in female fish which was also dependent on concentration and exposure duration of herbicide. No significant changes in plasma 17β-estradiol concentrations, plasma vitellogenin concentration, and gonadal aromatase activity were observed in female fish. Above findings clearly suggested that herbicide pretilachlor acts as endocrine disruptor in fish and affects overall reproductive physiology of fish, but its ability to induce reproductive toxicity in male and female differs considerably.
Collapse
Affiliation(s)
- Rakesh Soni
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chattisgarh, India
| | - Sushant Kumar Verma
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chattisgarh, India.
| |
Collapse
|
5
|
Werder EJ, Engel LS, Satagopan J, Blair A, Koutros S, Lerro CC, Alavanja MC, Sandler DP, Beane Freeman LE. Herbicide, fumigant, and fungicide use and breast cancer risk among farmers' wives. Environ Epidemiol 2020; 4:e097. [PMID: 32613154 PMCID: PMC7289136 DOI: 10.1097/ee9.0000000000000097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence from epidemiologic and laboratory studies relating pesticides to breast cancer risk is inconsistent. Women engaging in agricultural work or living in agricultural areas may experience appreciable exposures to a wide range of pesticides, including herbicides, fumigants, and fungicides. METHODS We examined exposure to herbicides, fumigants, and fungicides in relation to breast cancer risk among farmers' wives with no prior history of breast cancer in the Agricultural Health Study. Women provided information on pesticide use, demographics, and reproductive history at enrollment (1993-1997) and at a 5-year follow-up interview. We used Cox proportional hazards regression to estimate associations (hazard ratios [HRs] and 95% confidence intervals [CIs]) between the women's and their husbands' self-reported use of individual pesticides and incident breast cancer risk. RESULTS Out of 30,594 women, 38% reported using herbicides, fumigants, or fungicides and 1,081 were diagnosed with breast cancer during a median 15.3 years of follow-up. We found elevated risk in relation to women's ever use of the fungicide benomyl (HR = 1.6; 95% CI = 0.9, 2.7) and the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) (HR = 1.6; 95% CI = 0.8, 3.1) and to their husbands' use of the herbicide 2-(2,4,5-trichlorophenoxy) propionic acid (2,4,5-TP) (HR = 1.5; 95% CI = 0.9, 2.7). We observed few other chemical associations and little evidence of differential risk by tumor estrogen receptor status or linear exposure-response relationships. CONCLUSION We did not observe clear excesses between use of specific pesticides and breast cancer risk across exposure metrics, although we did observe elevated risk associated with women's use of benomyl and 2,4,5-T and husbands' use of 2,4,5-TP.
Collapse
Affiliation(s)
- Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Jaya Satagopan
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Catherine C. Lerro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Michael C. Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland
| |
Collapse
|
6
|
Thompson LA, Ikenaka Y, Sobhy Darwish W, Nakayama SMM, Mizukawa H, Ishizuka M. Effects of the organochlorine p,p'-DDT on MCF-7 cells: Investigating metabolic and immune modulatory transcriptomic changes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103249. [PMID: 31521043 DOI: 10.1016/j.etap.2019.103249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The organochlorine pesticide dichloro-diphenyl-trichloroethane (DDT) is persistent in the environment and leads to adverse human health effects. High levels in breast milk pose a threat to both breast tissue and nursing infants. The objectives of this study were to investigate DDT-induced transcriptomic alterations in enzymes and transporters involved in xenobiotic metabolism, immune responses, oxidative stress markers, and cell growth in a human breast cancer cell line. MCF-7 cells were exposed to both environmentally-relevant and previously-tested concentrations of p,p'-DDT in a short-term experiment. Significant up-regulation of metabolizing enzymes and transporters (ACHE, GSTO1, NQO1 and ABCC2) and oxidative stress markers (CXCL8, HMOX-1, NFE2L2 and TNF) was clearly observed. Conversely, UGT1A6, AHR and cell growth genes (FGF2 and VEGFA) were severely down-regulated. Identification of these genes helps to identify mechanisms of p,p'-DDT action within cells and may be considered as useful biomarkers for exposure to DDT contamination.
Collapse
Affiliation(s)
- Lesa A Thompson
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Wageh Sobhy Darwish
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44510, Egypt
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| |
Collapse
|
7
|
Ayazgök B, Tüylü Küçükkılınç T. Low-dose bisphenol A induces RIPK1-mediated necroptosis in SH-SY5Y cells: Effects on TNF-α and acetylcholinesterase. J Biochem Mol Toxicol 2018; 33:e22233. [PMID: 30238673 DOI: 10.1002/jbt.22233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor-α (TNF-α) and caspase-8 levels were determined in SH-SY5Y cells. The current study reveals that low-dose BPA treatment induced cytotoxicity, NO, and caspase-8 levels in SH-SY5Y cells. We also evaluated the mechanism underlying BPA-induced cell death. Ours is the first report that receptor-interacting serine/threonine-protein kinase 1-mediated necroptosis is induced by nanomolar BPA treatment in SH-SY5Y cells. This effect is mediated by altered AChE and decreased TNF-α levels, which result in an apoptosis-necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.
Collapse
Affiliation(s)
- Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| | - Tuba Tüylü Küçükkılınç
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| |
Collapse
|
8
|
Begum R, Sheliya MA, Mir SR, Singh E, Sharma M. Inhibition of proinflammatory mediators by coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea, on inflammation-induced animal model. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:376-392. [PMID: 28502905 DOI: 10.1016/j.jep.2017.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 01/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Careya arborea Roxb. (Lecythidaceae) is a large tree found throughout India in deciduous forests and grasslands. C. arborea is traditionally used in tumors, inflammation, anthelmintic, bronchitis, epileptic fits, astringents, antidote to snake-venom, skin disease, diarrhea, dysentery with bloody stools, dyspepsia, ulcer, tooth ache, and ear pain. AIM OF THE STUDY In our previous work, the methanolic extract of Careya arborea stem bark showed significant anti-inflammatory activity. As a continuity of that work, this study aimed at the isolation and evaluation of the anti-inflammatory effect of coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea stem bark. Further, to give an insight into the underlying mechanism of action of the compound on the modulation of proinflammatory mediators. MATERIALS AND METHODS Methanolic extract of Careya arborea stem bark was suspended in water, and sequentially fractionated with n-hexane and ethyl acetate. Further ethyl acetate fraction was subjected to medium pressure liquid chromatography (MPLC) to isolate the active molecules. The isolated compounds were characterized by the various spectral techniques namely UV, IR, 1H NMR, 13C NMR, DEPT, 1H-1H COSY, HMBC and Mass spectral techniques. In vitro COX-1 and COX-2 enzyme inhibition assays using human whole blood was performed to investigate the inhibitory effect of the isolated compounds. The resulted potent COX-2 inhibitor of the isolated constituents compound 5, designated as coumaroyl lupendioic acid (CLA), was investigated in carrageenan induced inflammation and its effect was also compared with betulinic acid (BA) at the doses of 10 and 20mgkg-1, p.o. using indomethacin and celecoxib (10 and 20mgkg-1, p.o., respectively) as reference drugs. The effect of CLA on the production of NO, MPO, PGE2, TNF-α, IL-1β and IL-6 were assessed. In addition, the histopathology and immunohistochemistry (NF-ҡB, COX-2 and TNF-α protein expression) in paw tissues were also carried out. RESULTS The chromatographic fractionation of the methanolic extract resulted in isolation of six new derivatives of lupane type triterpenes for the first time from the stem bark of C. arborea; 3β-hydroxy-lup-5,20 (29),21-trien-28-oic acid (Compound 1), 1, 3, 13, 16-tetrahydroxy-lup-9(11), 20(29)-diene-28-oic acid (Compound 2), 1, 7-di hydroxy betulinic acid (Compound 3), 3β-O-dihydrocinnamyl betulinic acid (Compound 4), 3β-O-trans-coumaryl-lup-6, 9(11), 20(29)-triene-27, 28-dioic acid (Compound 5), 16β-hydroxy-2, 3-seco-lup-5, 20(29)-dien-2, 3, 28-trioic acid (Compound 6). Among the all isolated compounds 3β-O-trans-coumaryl-lup-6, 9(11), 20(29)-triene-27, 28-olioic acid designated as coumaroyl lupendioic acid (CLA) showed higher COX-2 selectivity which is comparable to reference drug (celecoxib). CLA significantly reduced carrageenan induced inflammation whereas CLA revealed greater effect as compared to BA at the similar corresponding doses. Moreover, CLA significantly inhibited pro-inflammatory mediators elevated by carrageenan. CLA also preserved the tissue architecture as evidenced by the histopathology. Furthermore, immunohistochemical studies revealed that CLA significantly down regulated NF-ҡB, COX-2 and TNF-α protein expression. CONCLUSION The study gives an insight into the molecular mechanisms of coumaroyl lupendioic acid and suggests that the down-regulations of proinflammatory mediators provide credence to the ethno botanical use of the plant in the management of inflammation.
Collapse
Affiliation(s)
- Rayhana Begum
- Department of Pharmacy, Primeasia University, Dhaka, Bangladesh
| | - Manjur Ali Sheliya
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Showkat R Mir
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Ekta Singh
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - Manju Sharma
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India.
| |
Collapse
|
9
|
Gogoi-Tiwari J, Williams V, Waryah CB, Costantino P, Al-Salami H, Mathavan S, Wells K, Tiwari HK, Hegde N, Isloor S, Al-Sallami H, Mukkur T. Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model. PLoS One 2017; 12:e0170668. [PMID: 28129375 PMCID: PMC5271311 DOI: 10.1371/journal.pone.0170668] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022] Open
Abstract
Background Biofilm formation by Staphylococcus aureus is an important virulence attribute because of its potential to induce persistent antibiotic resistance, retard phagocytosis and either attenuate or promote inflammation, depending upon the disease syndrome, in vivo. This study was undertaken to evaluate the potential significance of strength of biofilm formation by clinical bovine mastitis-associated S. aureus in mammary tissue damage by using a mouse mastitis model. Methods Two S. aureus strains of the same capsular phenotype with different biofilm forming strengths were used to non-invasively infect mammary glands of lactating mice. Biofilm forming potential of these strains were determined by tissue culture plate method, ica typing and virulence gene profile per detection by PCR. Delivery of the infectious dose of S. aureus was directly through the teat lactiferous duct without invasive scraping of the teat surface. Both bacteriological and histological methods were used for analysis of mammary gland pathology of mice post-infection. Results Histopathological analysis of the infected mammary glands revealed that mice inoculated with the strong biofilm forming S. aureus strain produced marked acute mastitic lesions, showing profuse infiltration predominantly with neutrophils, with evidence of necrosis in the affected mammary glands. In contrast, the damage was significantly less severe in mammary glands of mice infected with the weak biofilm-forming S. aureus strain. Although both IL-1β and TNF-α inflammatory biomarkers were produced in infected mice, level of TNF-α produced was significantly higher (p<0.05) in mice inoculated with strong biofilm forming S. aureus than the weak biofilm forming strain. Conclusion This finding suggests an important role of TNF-α in mammary gland pathology post-infection with strong biofilm-forming S. aureus in the acute mouse mastitis model, and offers an opportunity for the development of novel strategies for reduction of mammary tissue damage, with or without use of antimicrobials and/or anti-inflammatory compounds for the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Jully Gogoi-Tiwari
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - Vincent Williams
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Charlene Babra Waryah
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
- Department of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Paul Costantino
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Hani Al-Salami
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Sangeetha Mathavan
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Kelsi Wells
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Harish Kumar Tiwari
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | - Shrikrishna Isloor
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bangalore, India
| | | | - Trilochan Mukkur
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
10
|
Simstein R, Burow M, Parker A, Weldon C, Beckman B. Apoptosis, Chemoresistance, and Breast Cancer: Insights From the MCF-7 Cell Model System. Exp Biol Med (Maywood) 2016; 228:995-1003. [PMID: 14530507 DOI: 10.1177/153537020322800903] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The MCF-7 cell line was derived from a patient with metastatic breast cancer in 1970. Since then it has become a prominent model system for the study of estrogen receptor-positive breast cancer. With this model as a focus, this review summarizes important studies addressing tumor necrosis factor-α as a prototypical apoptosis-inducing cytokine in MCF-7 cells. Both survival and death receptor signaling pathways are discussed in terms of their role in chemotherapy-induced apoptosis as well as in chemoresistance. Novel therapeutic approaches to the treatment of breast cancer are proposed utilizing knowledge of these signaling pathways as targets. Specifically, ceramide metabolism is proposed as a novel target for chemosensitivity, perhaps combined with selective inhibitors of Bcl-2 or PI3K/Akt/nuclear factor-κB. Suggested areas of future research include translational studies manipulating candidate survival and death signaling pathways.
Collapse
Affiliation(s)
- Rebecca Simstein
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
11
|
Öner Ç, Turgut Coşan D, Çolak E. Estrogen and Androgen Hormone Levels Modulate the Expression of PIWI Interacting RNA in Prostate and Breast Cancer. PLoS One 2016; 11:e0159044. [PMID: 27414029 PMCID: PMC4944994 DOI: 10.1371/journal.pone.0159044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/27/2016] [Indexed: 12/15/2022] Open
Abstract
PIWI interacting RNAs (piRNAs), a member of non-coding RNA, originate from intergenic repetitive regions of the genome. piRNA expressions increase in various cancers and it is thought that this increase could be caused by hormones. We aimed to determine the effects of hormones on piRNA expression in breast and prostate cancer. High viability and a decrease in adhesion were observed at the concentrations of the highest proliferation. Furthermore, an increase in adhesion was also observed in MDA-MB-231 cells. After hormone treatment, while piR-651 expression had increased both breast and prostate cancer cell lines, piR-823 expressions increased in prostate cancer cell lines and only in the breast cancer cell line which was malignant. Thus, it was determined that piR-823 might show different expressions in different type of cancers.
Collapse
Affiliation(s)
- Çağrı Öner
- Eskişehir Osmangazi University, Medical Faculty, Department of Medical Biology, 26480, Eskişehir/Turkey
| | - Didem Turgut Coşan
- Eskişehir Osmangazi University, Medical Faculty, Department of Medical Biology, 26480, Eskişehir/Turkey
| | - Ertuğrul Çolak
- Eskişehir Osmangazi University, Medical Faculty, Department of Biostatistics and Medical Informatics, 26480, Eskişehir/Turkey
| |
Collapse
|
12
|
Jiang J, Chen Y, Yu R, Zhao X, Wang Q, Cai L. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:125-134. [PMID: 26851375 DOI: 10.1016/j.etap.2016.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
The objectives of the present study were to investigate the toxic effects of pretilachlor on zebrafish during its embryo development. The results demonstrated that the transcription of genes involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis was increased after exposure to 50, 100, 200 μg/L pretilachlor for 96 h, the aromatase activity, vitellogenin (VTG) and thyroid hormones T3 and T4 levels in zebrafish were also up-regulated simultaneously. Pretilachlor exposure induced a noticeable increase in ROS level, increased the transcription and level of antioxidant proteins (e.g., CAT, SOD and GPX). Moreover, the up-regulation of P53, Mdm2, Bbc3 expression and Caspase3 and Caspase9 activities in the apoptosis pathway suggested pretilachlor might trigger cell apoptosis in zebrafish. In addition, the transcription of CXCL-C1C, IL-1β and IL-8 related to the innate immunity was down-regulated after pretilachlor exposure. These data suggested that pretilachlor could simultaneously induce endocrine disruption, apoptosis, oxidative stress and immunotoxicity during zebrafish embryo development.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yanhong Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ruixian Yu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Leiming Cai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
13
|
Song L, Zhao M, Liu J, Li Z, Xiao H, Liu W. p,p′-Dichlorodiphenyltrichloroethane inhibits the apoptosis of colorectal adenocarcinoma DLD1 cells through PI3K/AKT and Hedgehog/Gli1 signaling pathways. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00006h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
p,p′-Dichlorodiphenyltrichloroethane is able to inhibit the apoptosis of human colorectal adenocarcinoma cells, which may be an important mechanism to contribute to colorectal cancer development.
Collapse
Affiliation(s)
- Li Song
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| | - Meirong Zhao
- Research Center of Environmental Science
- Zhejiang University of Technology
- Hangzhou 310032
- China
| | - Jianxin Liu
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| | - Zhuoyu Li
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| | - Hong Xiao
- Department of Pathology
- The First Affiliated Hospital
- Shanxi Medical University
- Taiyuan
- China
| | - Weiping Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
14
|
Zhu L, Li W, Zha J, Wang M, Yuan L, Wang Z. Butachlor causes disruption of HPG and HPT axes in adult female rare minnow (Gobiocypris rarus). Chem Biol Interact 2014; 221:119-26. [DOI: 10.1016/j.cbi.2014.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/09/2014] [Accepted: 07/29/2014] [Indexed: 01/16/2023]
|
15
|
Payton-Stewart F, Tilghman SL, Williams LG, Winfield LL. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells. Biochem Biophys Res Commun 2014; 450:1358-62. [PMID: 24997336 PMCID: PMC4190015 DOI: 10.1016/j.bbrc.2014.06.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022]
Abstract
Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.
Collapse
Affiliation(s)
- Florastina Payton-Stewart
- Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, USA
| | - Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - LaKeisha G Williams
- Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA, USA
| | | |
Collapse
|
16
|
Lehmann TP, Wrzesiński T, Jagodziński PP. The effect of mitotane on viability, steroidogenesis and gene expression in NCI‑H295R adrenocortical cells. Mol Med Rep 2012; 7:893-900. [PMID: 23254310 DOI: 10.3892/mmr.2012.1244] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/26/2012] [Indexed: 11/06/2022] Open
Abstract
Mitotane, also known as o,p'‑DDD or (RS)‑1‑chl-oro‑2‑[2,2‑dichloro‑1‑(4‑chlorophenyl)‑ethyl]‑benzene, is an adrenal cortex-specific cytotoxic drug used in the therapy of adrenocortical carcinoma (ACC). The drug also inhibits steroidogenesis, however, the mechanisms of its anticancer and antisteroidogenic effects remain unknown. At present, data on the impact of mitotane on cell viability and the regulation of genes encoding proteins associated with steroids synthesis in the adrenal cortex, including cortisol and dehydroepiandrosterone sulfate (DHEAS), are limited and contradictory. In the present study, the effect of 24‑h mitotane treatment on viability of the ACC cell line, NCI‑H295R, was analyzed, identifying a decrease in cell viability and an increase in caspase‑3 and ‑7 activities. Mitotane treatment also led to decreased cortisol and DHEAS concentration in the culture media. Concomitantly, mitotane resulted in decreased mRNA levels of two cytochromes P450 (CYP11A1 and CYP17A1), mRNAs encoding proteins involved in the synthesis of cortisol and DHEAS. Mitotane did not affect mRNA levels of cyclin dependent kinase inhibitor 1A (encoding p21) and MYC (encoding cMyc). cMyc and p21 are key transcription factors associated with cell cycle regulation. However, mitotane inhibited expression of transforming growth factor β1 gene, encoding a potent inhibitor of cell proliferation and steroidogenesis. PRKAR1A, a protein kinase A regulatory subunit, is involved in the activation of steroidogenesis. PRKAR1A mRNA levels were reduced following 24‑h treatment with mitotane. Results indicate that mitotane markedly inhibited expression of genes involved in steroidogenesis, secretion of cortisol and DHEAS. Reduced expression of TGFB1 cannot account fully for the effect of mitotane on CYP11A1 and CYP17A1. We hypothesized that reduced viability of NCI‑H295R cells in the presence of mitotane may be a result of apoptosis triggered by increased caspase‑3 and ‑7 activities. Since p21 and cMyc mRNA levels were stable in the presence of mitotane, the mechanism by which caspase‑3 and ‑7 are induced remains unknown.
Collapse
Affiliation(s)
- Tomasz P Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan 60‑781, Poland
| | | | | |
Collapse
|
17
|
Bratton MR, Frigo DE, Segar HC, Nephew KP, McLachlan JA, Wiese TE, Burow ME. The organochlorine o,p'-DDT plays a role in coactivator-mediated MAPK crosstalk in MCF-7 breast cancer cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1291-6. [PMID: 22609851 PMCID: PMC3440107 DOI: 10.1289/ehp.1104296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 05/18/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The organochlorine dichlorodiphenyltrichloroethane (DDT), a known estrogen mimic and endocrine disruptor, has been linked to animal and human disorders. However, the detailed mechanism(s) by which DDT affects cellular physiology remains incompletely defined. OBJECTIVES We and others have shown that DDT activates cell-signaling cascades, culminating in the activation of estrogen receptor-dependent and -independent gene expression. Here, we identify a mechanism by which DDT alters cellular signaling and gene expression, independent of the estrogen receptor. METHODS We performed quantitative polymerase chain reaction array analysis of gene expression in MCF-7 breast cancer cells using either estradiol (E₂) or o,p´-DDT to identify distinct cellular gene expression responses. To elucidate the mechanisms by which DDT regulates cell signaling, we used molecular and pharmacological techniques. RESULTS E₂ and DDT treatment both altered the expression of many of the genes assayed, but up-regulation of vascular endothelial growth factor A (VEGFA) was observed only after DDT treatment, and this increase was not affected by the pure estrogen receptor α antagonist ICI 182780. Furthermore, DDT increased activation of the HIF-1 response element (HRE), a known enhancer of the VEGFA gene. This DDT-mediated increase in HRE activity was augmented by the coactivator CBP (CREB-binding protein) and was dependent on the p38 pathway. CONCLUSIONS DDT up-regulated the expression of several genes in MCF-7 breast cancer cells that were not altered by treatment with E₂, including VEGFA. We propose that this DDT-initiated, ER-independent stimulation of gene expression is due to DDT's ability to initiate crosstalk between MAPK (mitogen-activated protein kinase) signaling pathways and transcriptional coactivators.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Bratton MR, Antoon JW, Duong BN, Frigo DE, Tilghman S, Collins-Burow BM, Elliott S, Tang Y, Melnik LI, Lai L, Alam J, Beckman BS, Hill SM, Rowan BG, McLachlan JA, Burow ME. Gαo potentiates estrogen receptor α activity via the ERK signaling pathway. J Endocrinol 2012; 214:45-54. [PMID: 22562654 PMCID: PMC3614348 DOI: 10.1530/joe-12-0097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The estrogen receptor α (ERα) is a transcription factor that mediates the biological effects of 17β-estradiol (E(2)). ERα transcriptional activity is also regulated by cytoplasmic signaling cascades. Here, several Gα protein subunits were tested for their ability to regulate ERα activity. Reporter assays revealed that overexpression of a constitutively active Gα(o) protein subunit potentiated ERα activity in the absence and presence of E(2). Transient transfection of the human breast cancer cell line MCF-7 showed that Gα(o) augments the transcription of several ERα-regulated genes. Western blots of HEK293T cells transfected with ER±Gα(o) revealed that Gα(o) stimulated phosphorylation of ERK 1/2 and subsequently increased the phosphorylation of ERα on serine 118. In summary, our results show that Gα(o), through activation of the MAPK pathway, plays a role in the regulation of ERα activity.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, 1430 Tulane Avenue, SL-78, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tilghman SL, Bratton MR, Segar HC, Martin EC, Rhodes LV, Li M, McLachlan JA, Wiese TE, Nephew KP, Burow ME. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One 2012; 7:e32754. [PMID: 22403704 PMCID: PMC3293845 DOI: 10.1371/journal.pone.0032754] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/30/2012] [Indexed: 12/27/2022] Open
Abstract
Background Several environmental agents termed “endocrine disrupting compounds” or EDCs have been reported to bind and activate the estrogen receptor-α (ER). The EDCs DDT and BPA are ubiquitously present in the environment, and DDT and BPA levels in human blood and adipose tissue are detectable in most if not all women and men. ER-mediated biological responses can be regulated at numerous levels, including expression of coding RNAs (mRNAs) and more recently non-coding RNAs (ncRNAs). Of the ncRNAs, microRNAs have emerged as a target of estrogen signaling. Given the important implications of EDC-regulated ER function, we sought to define the effects of BPA and DDT on microRNA regulation and expression levels in estrogen-responsive human breast cancer cells. Methodology/Principal Findings To investigate the cellular effects of DDT and BPA, we used the human MCF-7 breast cancer cell line, which is ER (+) and hormone sensitive. Our results show that DDT and BPA potentiate ER transcriptional activity, resulting in an increased expression of receptor target genes, including progesterone receptor, bcl-2, and trefoil factor 1. Interestingly, a differential increase in expression of Jun and Fas by BPA but not DDT or estrogen was observed. In addition to ER responsive mRNAs, we investigated the ability of DDT and BPA to alter the miRNA profiles in MCF-7 cells. While the EDCs and estrogen similarly altered the expression of multiple microRNAs in MCF-7 cells, including miR-21, differential patterns of microRNA expression were induced by DDT and BPA compared to estrogen. Conclusions/Significance We have shown, for the first time, that BPA and DDT, two well known EDCs, alter the expression profiles of microRNA in MCF-7 breast cancer cells. A better understanding of the molecular mechanisms of these compounds could provide important insight into the role of EDCs in human disease, including breast cancer.
Collapse
Affiliation(s)
- Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Iankov ID, Allen C, Federspiel MJ, Myers RM, Peng KW, Ingle JN, Russell SJ, Galanis E. Expression of immunomodulatory neutrophil-activating protein of Helicobacter pylori enhances the antitumor activity of oncolytic measles virus. Mol Ther 2012; 20:1139-47. [PMID: 22334023 DOI: 10.1038/mt.2012.4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori neutrophil-activating protein (NAP) is a major virulence factor and powerful inducer of inflammatory reaction and Th1-polarized immune response. Here, we evaluated the therapeutic efficacy of measles virus (MV) strains engineered to express secretory NAP forms against metastatic breast cancer. Recombinant viruses encoding secretory NAP forms (MV-lambda-NAP and MV-s-NAP) efficiently infect and destroy breast cancer cells by cell-to-cell viral spread and large syncytia formation independently of hormone receptor status. Intrapleural administration of MV-s-NAP doubled the median survival in a pleural effusion xenograft model: 65 days as compared to 29 days in the control group (P < 0.0001). This therapeutic effect correlated with a brisk Th1 type cytokine response in vivo. Secretory NAP was expressed at high levels by infected tumor cells and increased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-12/23 cytokine concentrations were detected in the pleural effusion. In an aggressive model of lung metastatic breast cancer, MV-lambda-NAP and MV-s-NAP also significantly improved survival of the treated animals (P < 0.05) as compared to the control MV strain. These data suggest that potent immunomodulators of bacterial origin, such as H. pylori NAP, can enhance the antitumor effect of oncolytic viruses and support the feasibility and potential of a combined viroimmunotherapy approach.
Collapse
Affiliation(s)
- Ianko D Iankov
- Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rhodes LV, Tilghman SL, Boue SM, Wang S, Khalili H, Muir SE, Bratton MR, Zhang Q, Wang G, Burow ME, Collins-Burow BM. Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer. Oncol Lett 2011; 3:163-171. [PMID: 22740874 DOI: 10.3892/ol.2011.460] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to investigate the effects of glyceollins on the suppression of tumorigenesis in triple-negative breast carcinoma cell lines. We further explored the effects of glyceollins on microRNA and protein expression in MDA-MB-231 cells. Triple-negative (ER-, PgR- and Her2/neu-) breast carcinoma cells were used to test the effects of glyceollins on tumorigenesis in vivo. Following this procedure, unbiased microarray analysis of microRNA expression was performed. Additionally, we examined the changes in the proteome induced by glyceollins in the MDA-MB-231 cells. Tumorigenesis studies revealed a modest suppression of MDA-MB-231 and MDA-MB-468 cell tumor growth in vivo. In response to glyceollins we observed a distinct change in microRNA expression profiles and proteomes of the triple-negative breast carcinoma cell line, MDA-MB-231. Our results demonstrated that the glyceollins, previously described as anti-estrogenic agents, also exert antitumor activity in triple-negative breast carcinoma cell systems. This activity correlates with the glyceollin alteration of microRNA and proteomic expression profiles.
Collapse
Affiliation(s)
- Lyndsay V Rhodes
- Department of Medicine, Section of Hematology and Medical Oncology, New Orleans, LA 70125, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bratton MR, Duong BN, Elliott S, Weldon CB, Beckman BS, McLachlan JA, Burow ME. Regulation of ERalpha-mediated transcription of Bcl-2 by PI3K-AKT crosstalk: implications for breast cancer cell survival. Int J Oncol 2010; 37:541-50. [PMID: 20664923 DOI: 10.3892/ijo_00000703] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Both estrogen, through the estrogen receptor (ER), and growth factors, through the phosphatidylinositol-3-kinase (PI3K)-AKT pathway, have been shown to independently promote cell survival. Here, we investigated the role of ER/PI3K-AKT crosstalk in the regulation of cell survival in MCF-7 breast carcinoma cells. The ER inhibitor ICI 182,780 was used to determine the requirement of the ER for estrogen in the suppression of tumor necrosis factor-alpha (TNFalpha) induced apoptosis. Gene reporter assays and Western blot analyses were used to determine the involvement of the pro-survival factor Bcl-2 and the coactivator GRIP1 in this survival crosstalk. We demonstrated that an intact ER signaling pathway was required for estrogen to suppress apoptosis induced by TNFalpha. Our gene reporter assays revealed that ERalpha, not ERbeta, was targeted by AKT, resulting in transcriptional potentiation of the full-length Bcl-2 promoter, ultimately leading to increased Bcl-2 protein levels. AKT targeted both activation function (AF) domains of the ERalpha for maximal induction of Bcl-2 reporter activity, although the AF-II domain was predominately targeted. In addition, AKT also caused an upregulation of GRIP1 protein levels. Finally, AKT and GRIP1 cooperated to increase Bcl-2 protein expression to a greater level than either factor alone. Collectively, our study suggests a role for ER/PI3K-AKT crosstalk in cell survival and documents the ability of AKT to regulate Bcl-2 expression via differential activation of ERalpha and ERbeta as well as regulation of GRIP1.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Tulane University School of Medicine, Department of Pharmacology, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ptak A, Mazur K, Gregoraszczuk EL. Comparison of combinatory effects of PCBs (118, 138, 153 and 180) with 17 beta-estradiol on proliferation and apoptosis in MCF-7 breast cancer cells. Toxicol Ind Health 2010; 27:315-21. [PMID: 20947654 DOI: 10.1177/0748233710387003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We analyzed whether polychlorinated biphenyls (PCBs) interfere with the activity of 17 β-estradiol in the proliferation and apoptosis of the MCF-7 cell line. MCF-7 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) without phenol red supplemented with 5% charcoal-treated fetal bovine serum (CD-FBS) for 3 days with 10 nM 17 β-estradiol or 0.1 µM, 0.5 µM and 1 µM of the tested PCB congeners (118, 138, 153 and 180), or both. Cell proliferation was determined by measuring 5-bromo-2'-deoxyuridine (BrdU) incorporation, and cell apoptosis was measured by caspase-9 activity. From the PCB congeners tested, PCB138 and 153 had the highest stimulatory effects on basal cell proliferation as well as the highest inhibitory actions on basal caspase-9 activity. The proliferative and anti-apoptotic actions of PCB138 and 153 were still observed in the presence of 17 β-estradiol, while the actions of PCB118 and 180 were reversed. In conclusion, the results of this study suggest the possibility that PCB138 and 153 contribute to the action of endogenous 17 β-estradiol on cell proliferation and apoptosis in the breast cancer cell line MCF-7.
Collapse
Affiliation(s)
- Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Kraków, Poland.
| | | | | |
Collapse
|
24
|
Ndebele K, Graham B, Tchounwou PB. Estrogenic activity of coumestrol, DDT, and TCDD in human cervical cancer cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:2045-56. [PMID: 20623010 PMCID: PMC2898035 DOI: 10.3390/ijerph7052045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/30/2010] [Accepted: 04/03/2010] [Indexed: 11/16/2022]
Abstract
Endogenous estrogens have dramatic and differential effects on classical endocrine organ and proliferation. Xenoestrogens are environmental estrogens that have endocrine impact, acting as both estrogen agonists and antagonists, but whose effects are not well characterized. In this investigation we sought to delineate effects of xenoestrogens. Using human cervical cancer cells (HeLa cells) as a model, the effects of representative xenoestrogens (Coumestrol-a phytoestrogen, tetrachlorodioxin (TCDD)-a herbicide and DDT-a pesticide) on proliferation, cell cycle, and apoptosis were examined. These xenoestrogens and estrogen inhibited the proliferation of Hela cells in a dose dependent manner from 20 to 120 nM suggesting, that 17-beta-estrtadiol and xenoestrogens induced cytotoxic effects. Coumestrol produced accumulation of HeLa cells in G2/M phase, and subsequently induced apoptosis. Similar effects were observed in estrogen treated cells. These changes were associated with suppressed bcl-2 protein and augmented Cyclins A and D proteins. DDT and TCDD exposure did not induce apoptosis. These preliminary data taken together, suggest that xenoestrogens have direct, compound-specific effects on HeLa cells. This study further enhances our understanding of environmental modulation of cervical cancer.
Collapse
Affiliation(s)
- Kenneth Ndebele
- The Laboratory of Cancer Immunology, Target Identification and Validation, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA; E-Mails:
(K.N.);
(B.G.)
| | - Barbara Graham
- The Laboratory of Cancer Immunology, Target Identification and Validation, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA; E-Mails:
(K.N.);
(B.G.)
| | - Paul B. Tchounwou
- Molecular Toxicology Research Laboratory, NIH- Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA
- Author to whom correspondence should be addressed; E-Mail:
; Tel.:+1-601-979-0777; Fax: +1-601-979-0570
| |
Collapse
|
25
|
Zimmermann MC, Tilghman SL, Boué SM, Salvo VA, Elliott S, Williams KY, Skripnikova EV, Ashe H, Payton-Stewart F, Vanhoy-Rhodes L, Fonseca JP, Corbitt C, Collins-Burow BM, Howell MH, Lacey M, Shih BY, Carter-Wientjes C, Cleveland TE, McLachlan JA, Wiese TE, Beckman BS, Burow ME. Glyceollin I, a novel antiestrogenic phytoalexin isolated from activated soy. J Pharmacol Exp Ther 2010; 332:35-45. [PMID: 19797619 PMCID: PMC2802480 DOI: 10.1124/jpet.109.160382] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/30/2009] [Indexed: 12/11/2022] Open
Abstract
Glyceollins, a group of novel phytoalexins isolated from activated soy, have recently been demonstrated to be novel antiestrogens that bind to the estrogen receptor (ER) and inhibit estrogen-induced tumor progression. Our previous publications have focused specifically on inhibition of tumor formation and growth by the glyceollin mixture, which contains three glyceollin isomers (I, II, and III). Here, we show the glyceollin mixture is also effective as a potential antiestrogenic, therapeutic agent that prevents estrogen-stimulated tumorigenesis and displays a differential pattern of gene expression from tamoxifen. By isolating the individual glyceollin isomers (I, II, and III), we have identified the active antiestrogenic component by using competition binding assays with human ERalpha and in an estrogen-responsive element-based luciferase reporter assay. We identified glyceollin I as the active component of the combined glyceollin mixture. Ligand-receptor modeling (docking) of glyceollin I, II, and III within the ERalpha ligand binding cavity demonstrates a unique type II antiestrogenic confirmation adopted by glyceollin I but not isomers II and III. We further compared the effects of glyceollin I to the antiestrogens, 4-hydroxytamoxifen and ICI 182,780 (fulvestrant), in MCF-7 breast cancer cells and BG-1 ovarian cancer cells on 17beta-estradiol-stimulated expression of progesterone receptor and stromal derived factor-1alpha. Our results establish a novel inhibition of ER-mediated gene expression and cell proliferation/survival. Glyceollin I may represent an important component of a phytoalexin-enriched food (activated) diet in terms of chemoprevention as well as a novel therapeutic agent for hormone-dependent tumors.
Collapse
Affiliation(s)
- M Carla Zimmermann
- Department of Pharmacology, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Luniwal A, Khupse RS, Reese M, Fang L, Erhardt PW. Total syntheses of racemic and natural glycinol. JOURNAL OF NATURAL PRODUCTS 2009; 72:2072-2075. [PMID: 19943626 DOI: 10.1021/np900509f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Total syntheses of racemic and (-)-glycinol (1) are described. A Wittig reaction produced the isoflav-3-ene from which a Sharpless dihydroxylation introduced either the racemic or enantiomeric 6a-hydroxy group. A 5.5% overall yield of racemic material was obtained after 12 steps. A method was devised for a one-pot switch of protecting groups masking a sensitive resorcinolic para-functionality, and conditions were optimized to prompt spontaneous closure of the pterocarpanolic dihydrofuran upon subsequent exposure of its ortho-functionality. These improvements eliminated two steps and increased the overall yield to 9.8% during production of the natural enantiomer.
Collapse
Affiliation(s)
- Amarjit Luniwal
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, The University of Toledo College of Pharmacy, Toledo, Ohio 43606-3390, USA
| | | | | | | | | |
Collapse
|
27
|
Boué SM, Tilghman SL, Elliott S, Zimmerman MC, Williams KY, Payton-Stewart F, Miraflor AP, Howell MH, Shih BY, Carter-Wientjes CH, Segar C, Beckman BS, Wiese TE, Cleveland TE, McLachlan JA, Burow ME. Identification of the potent phytoestrogen glycinol in elicited soybean (Glycine max). Endocrinology 2009; 150:2446-53. [PMID: 19116342 PMCID: PMC2671905 DOI: 10.1210/en.2008-1235] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/19/2008] [Indexed: 11/19/2022]
Abstract
The primary induced isoflavones in soybean, the glyceollins, have been shown to be potent estrogen antagonists in vitro and in vivo. The discovery of the glyceollins' ability to inhibit cancer cell proliferation has led to the analysis of estrogenic activities of other induced isoflavones. In this study, we investigated a novel isoflavone, glycinol, a precursor to glyceollin that is produced in elicited soy. Sensitive and specific in vitro bioassays were used to determine that glycinol exhibits potent estrogenic activity. Estrogen-based reporter assays were performed, and glycinol displayed a marked estrogenic effect on estrogen receptor (ER) signaling between 1 and 10 microM, which correlated with comparable colony formation of MCF-7 cells at 10 microM. Glycinol also induced the expression of estrogen-responsive genes (progesterone receptor and stromal-cell-derived factor-1). Competitive binding assays revealed a high affinity of glycinol for both ER alpha (IC(50) = 13.8 nM) and ER beta (IC(50) = 9.1 nM). In addition, ligand receptor modeling (docking) studies were performed and glycinol was shown to bind similarly to both ER alpha and ER beta. Taken together, these results suggest for the first time that glycinol is estrogenic and may represent an important component of the health effects of soy-based foods.
Collapse
Affiliation(s)
- Stephen M Boué
- Southern Regional Research Center, United States Department of Agriculture, New Orleans, Louisiana 70179, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen IH, Du YC, Lu MC, Lin AS, Hsieh PW, Wu CC, Chen SL, Yen HF, Chang FR, Wu YC. Lupane-type triterpenoids from Microtropis fokienensis and Perrottetia arisanensis and the apoptotic effect of 28-hydroxy-3-oxo-lup-20(29)-en-30-al. JOURNAL OF NATURAL PRODUCTS 2008; 71:1352-1357. [PMID: 18590313 DOI: 10.1021/np800093a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Seven new lupane triterpenoids were isolated from bioactive methanol extracts of Microtropis fokienensis (1- 4) and Perrottetia arisanensis (4-7), along with 18 known compounds. The structures of the new compounds were elucidated on the basis of spectroscopic data analysis. All triterpenoids were evaluated for their in vitro cytotoxicity toward seven human cancer cell lines. Compound 8 (28-hydroxy-3-oxo-lup-20(29)-en-30-al) was among the most cytotoxic substances obtained and was found to induce apoptosis of human leukemia HL60 cells and mediate cleavage of PARP and up-regulation of Bax proteins.
Collapse
Affiliation(s)
- I-Hsiao Chen
- Graduate Institute of Natural Products, School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Duong BN, Elliott S, Frigo DE, Melnik LI, Vanhoy L, Tomchuck S, Lebeau HP, David O, Beckman BS, Alam J, Bratton MR, McLachlan JA, Burow ME. AKT regulation of estrogen receptor beta transcriptional activity in breast cancer. Cancer Res 2007; 66:8373-81. [PMID: 16951146 DOI: 10.1158/0008-5472.can-05-3845] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth factor activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway has been shown to activate the estrogen receptor (ER) alpha and to mediate tamoxifen resistance in breast cancer. Here, we investigated the regulation of the transcriptional activity of the newer ER beta by PI3K-AKT signaling. Tissue arrays of breast cancer specimens showed a positive association between the expressions of AKT and ER beta in the clinical setting. Reporter gene assays using pharmacologic and molecular inhibitors of AKT and constitutively active AKT revealed for the first time the ability of AKT to (a) potentiate ER beta activity and (b) target predominantly the activation function-2 (AF2) domain of the receptor, with a requirement for residue K269. Given the importance of coactivators in ER transcriptional activity, we further investigated the possible involvement of steroid receptor coactivator 1 (SRC1) and glucocorticoid receptor-interacting protein 1 (GRIP1) in AKT regulation of ER beta. Mammalian two-hybrid assays revealed that AKT enhanced both SRC1 and GRIP1 recruitment to the ER beta-AF2 domain, and reporter gene analyses revealed that AKT and GRIP1 cooperatively potentiated ER beta-mediated transcription to a level much greater than either factor alone. Investigations into AKT regulation of GRIP with mammalian one-hybrid assays showed that AKT potentiated the activation domains of GRIP1 itself, and in vitro kinase assays revealed that AKT directly phosphorylated GRIP1. The cross-talk between the PI3K-AKT and ER beta pathways, as revealed by the ability of AKT to regulate several components of ER beta-mediated transcription, may represent an important aspect that may influence breast cancer response to endocrine therapy.
Collapse
Affiliation(s)
- Bich N Duong
- Center for Bioenvironmental Research, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mastitis, an inflammatory reaction of the mammary gland that is usually caused by a microbial infection, is recognized as the most costly disease in dairy cattle. Decreased milk production accounts for approximately 70% of the total cost of mastitis. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. Mammary tissue damage has been shown to be induced by either apoptosis or necrosis. These 2 distinct types of cell death can be distinguished by morphological, biochemical, and molecular changes in dying cells. Both bacterial factors and host immune reactions contribute to epithelial tissue damage. During infection of the mammary glands, the tissue damage can initially be caused by bacteria and their products. Certain bacteria produce toxins that destroy cell membranes and damage milk-producing tissue, whereas other bacteria are able to invade and multiply within the bovine mammary epithelial cells before causing cell death. In addition, mastitis is characterized by an influx of somatic cells, primarily polymorphonuclear neutrophils, into the mammary gland. With more immune cells migrating into the mammary gland and the breakdown of the blood-milk barrier, damage to the mammary epithelium worsens. It is well known that breakdown of the extracellular matrix can lead to death of the epithelial cells. Meanwhile, polymorphonuclear neutrophils can harm the mammary tissue by releasing reactive oxygen intermediates and proteolytic enzymes. In vitro and in vivo studies suggest that the use of antioxidants and other protective compounds in mastitis control programs is worth investigating, because they may aid in alleviating damage to secretory cells and thus reduce subsequent milk loss.
Collapse
Affiliation(s)
- X Zhao
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Québec, H9X 3V9, Canada.
| | | |
Collapse
|
31
|
Franco-Molina MA, Mendoza-Gamboa E, Miranda-Hernández D, Zapata-Benavides P, Castillo-León L, Isaza-Brando C, Tamez-Guerra RS, Rodríguez-Padilla C. In vitro effects of bovine dialyzable leukocyte extract (bDLE) in cancer cells. Cytotherapy 2006; 8:408-14. [PMID: 16923617 DOI: 10.1080/14653240600847266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Bovine dialyzable leukocyte extract (bDLE) is a dialyzate of a heterogeneous mixture of low molecular weight substances released from disintegrated blood leukocytes or lymphoid tissue obtained from homogenized bovine spleen. The purpose of this study was to determine if bDLE had cytotoxic effects and modulated apoptosis gene expression in breast cancer cells. METHODS The MCF-7, BT-474, MDA-MB-453, A-427, Calu-1, U937 and L5178Y cancer cell lines and PBMC human cells were treated with bDLE (0-0.66 U/mL) for 72 h. The bDLE effect on cell growth proliferation was evaluated by MTT assay, and the MCF-7 was evaluated by ethidium bromide-acridine orange staining; total DNA was evaluated for DNA fragmentation, and total RNA was isolated for p53, bag-1, c-myc, bim, bax, bcl-2 and bad mRNA expression. RESULTS The bDLE had dose-dependent cytotoxic effects and demonstrated an IC50 at a dosage of 0.06 U/mL (P<0.05). The bDLE did not affect the viability of normal human PBMC. The bDLE induced DNA fragmentation at doses of 0.06 and 0.13 U/mL in MCF-7 breast cancer cells. The bDLE induced cytotoxic effects and suppressed the p53, bag-1, c-myc, bax, bcl-2, and bad mRNA expression that influences apoptosis in MCF-7 breast cancer cells. Bim mRNA expression was not detected. DISCUSSION This may open up interesting prospects for the treatment of human breast cancer.
Collapse
Affiliation(s)
- M A Franco-Molina
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kocsis Z, Marcsek ZL, Jakab MG, Szende B, Tompa A. Chemopreventive properties of trans - resveratrol against the cytotoxicity of chloroacetanilide herbicides in vitro. Int J Hyg Environ Health 2005; 208:211-8. [PMID: 15971860 DOI: 10.1016/j.ijheh.2005.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The beneficial effect of trans-resveratrol (RESV) on health is well documented. Our aim was to study the putative preventive effect of RESV on the cytotoxicity of frequently used herbicides (alachlor, acetochlor). Estrogen receptor positive (ER+) MCF-7 human mammary carcinoma, HepG2 (ER+) human hepatocellular carcinoma and VERO estrogen receptor negative (ER-) non-transformed monkey fibroblast cell lines were treated with alachlor and acetochlor (2-500 microg/ml) as toxic agents, and RESV (10 microM) as preventive agent. The MTT dye reduction assay was performed to test cytotoxicity, and flow cytometry to test cell proliferation and apoptosis. RESV is not cytotoxic in the concentration range of 1-100 microM on neither cell lines examined after 24 h, but cytotoxic on Vero and MCF-7 cells at 100 microM after 48h, and on all three cell lines after 72 h. On both ER+ cell lines a stimulation of viability occurs in the low concentration range (0.5-12.5 microM) as detected by the MTT assay. Cell cycle analysis of the culture shows a significant increase of S-phase cells at low concentrations of RESV (10-50 microM) and a decrease in the 100-200 microM concentration range. The ratio of apoptotic cells significantly increases after the administration of 50 microM RESV, depending on the incubation time. The cytotoxicity of 20-65 microg/ml alachlor and 10-65 microg/ml acetochlor was significantly decreased by the addition of 10 microM RESV in Vero ER- cells whereas no significant change was detected on ER+ cell lines MCF-7 and HepG2. These results show that RESV protects non-transformed ER- cells, but has no such effect on ER+ tumor cells.
Collapse
Affiliation(s)
- Zsuzsanna Kocsis
- National Institute of Chemical Safety, József Fodor National Center for Public Health, P.O. Box 36, Nagyvarad ter 2, H-1450 Budapest, Hungary
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Dorsey WC, Tchounwou PB. Pentachlorophenol-Induced Cytotoxic, Mitogenic, and Endocrine-Disrupting Activities in Channel Catfish, Ictalurus punctatus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2004; 1:90-9. [PMID: 16696183 DOI: 10.3390/ijerph2004020090] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pentachlorophenol (PCP) is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Although it has been shown to induce systemic toxicity and carcinogenesis in several experimental studies, the literature is scarce regarding its toxic mechanisms of action at the cellular and molecular levels. Recent investigations in our laboratory have shown that PCP induces cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2) cells [1]. In this research, we hypothesize that environmental exposure to PCP may trigger cytotoxic, mitogenic, and endocrine-disrupting activities in aquatic organisms including fish. To test this hypothesis, we carried out in vitro cultures of male channel catfish hepatocytes, and performed the fluorescein diacetate assay (FDA) to assess for cell viability, and the Western Blot analysis to assess for vitellogenin expression following exposure to PCP. Data obtained from FDA experiments indicated a strong dose-response relationship with respect to PCP cytotoxicity. Upon 48 hrs of exposure, the chemical dose required to cause 50% reduction in cell viability (LD50) was computed to be 1,987.0 +/- 9.6 microg PCP/mL. The NOAEL and LOAEL were 62.5 +/- 10.3 microg PCP/mL and 125.0+/-15.2 microg PCP/mL, respectively. At lower levels of exposure, PCP was found to be mitogenic, showing a strong dose- and time-dependent response with regard to cell proliferation. Western Blot analysis demonstrated the potential of PCP to cause endocrine-disrupting activity, as evidenced by the up regulation of the 125-kDa vitellogenin protein the hepatocytes of male channel catfish.
Collapse
Affiliation(s)
- Waneene C Dorsey
- Molecular Toxicology Research Laboratory, NIH - Center for Environmental Health, School of Science and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, Mississippi, USA
| | | |
Collapse
|
35
|
Dorsey WC, Tchounwou PB, Sutton D. Mitogenic and Cytotoxic Effects of Pentachlorophenol to AML 12 Mouse Hepatocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2004; 1:100-5. [PMID: 16696184 DOI: 10.3390/ijerph2004020100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pentachlorophenol (PCP), an organochlorine fungicide, is extensively used in the United States for the protection of wood products. Moreover, widespread agricultural, domestic, and industrial applications have caused PCP-contaminants to enter the food chain from the environment. There is accumulating evidence indicating that PCP is highly toxic to humans, and causes injury to major organs including the lung, liver, kidneys, heart, and brain. While PCP has been shown to induce systemic toxicity and carcinogenesis in several experimental studies, the literature is scarce regarding its toxic mechanisms of action. Recent investigations in our laboratory have shown that PCP exerts both cytotoxic and mitogenic effects in human liver carcinoma (HepG2) cells [1], and in primary culture of catfish hepatocytes [2]. In the present study, we hypothesized that PCP exposure will trigger similar cytotoxic and mitogenic responses in AML 12 Mouse hepatocytes. To test this hypothesis, we performed the MTT assay for cell viability in PCP-treated and control cells. Data obtained from this experiment indicated a biphasic response with respect to PCP toxicity; showing a hormosis effect characterized by mitogenicity at lower levels of exposure, and cytotoxicity at higher doses. Upon 48 hrs of exposure, PCP chemical doses required to cause 50% reduction in the viability (LC50) of AML 12 mouse hepatocytes was computed to be 16.0 + 2.0 microg/mL. These results indicate that, although the sensitivity to PCP toxicity varies from one cell line to another, its toxic mechanisms are similar across cell lines.
Collapse
Affiliation(s)
- Waneene C Dorsey
- Wildlife Biology Unit, Grambling State University, Grambling, LA 71245, USA.
| | | | | |
Collapse
|
36
|
Fernando RI, Wimalasena J. Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Mol Biol Cell 2004; 15:3266-84. [PMID: 15121878 PMCID: PMC452582 DOI: 10.1091/mbc.e03-11-0823] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/16/2004] [Accepted: 04/18/2004] [Indexed: 11/11/2022] Open
Abstract
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.
Collapse
Affiliation(s)
- Romaine Ingrid Fernando
- Department of Obstetrics and Gynecology, and the Comparative and Experimental Medicine Program, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee 37920, USA
| | | |
Collapse
|
37
|
Kanda N, Watanabe S. 17beta-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression. J Invest Dermatol 2004; 121:1500-9. [PMID: 14675202 DOI: 10.1111/j.1523-1747.2003.12617.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined in vitro effects of 17beta-estradiol on H2O2-induced apoptosis in human keratinocytes. 17beta-estradiol prevented the H2O2-induced apoptosis. H2O2 decreased, whereas 17beta-estradiol increased Bcl-2 protein and mRNA levels in keratinocytes, and H2O2 plus 17beta-estradiol led to basal levels. Overexpression of Bcl-2 protected keratinocytes against H2O2-induced apoptosis, indicating the anti-apoptotic effect of Bcl-2. H2O2 suppressed, whereas 17beta-estradiol enhanced bcl-2 promoter activity, and H2O2 plus 17beta-estradiol led to basal activity. Cyclic adenosine monophosphate (cAMP) response element on bcl-2 promoter was responsible for the effects of 17beta-estradiol and H2O2. Bcl-2 expression was enhanced by membrane-impermeable bovine serum albumin-conjugated 17beta-estradiol, indicating the effects via membrane 17beta-estradiol-binding sites. H2O2 decreased, whereas 17beta-estradiol increased the amount of phosphorylated cAMP response element-binding protein and cAMP response element-dependent transcriptional activity, and H2O2 plus 17beta-estradiol led to basal levels. H-89, an inhibitor of cAMP-dependent protein kinase A, suppressed basal and 17beta-estradiol-induced cAMP response element-binding protein phosphorylation, cAMP response element-dependent transcriptional activity, Bcl-2 expression, and apoptosis resistance. The cAMP analog, dibutyryl cAMP, enhanced cAMP response element-binding protein phosphorylation, cAMP response element-dependent transcriptional activity, Bcl-2 expression, and apoptosis resistance. 17Beta-estradiol increased intracellular cAMP level and protein kinase A activity, whereas these were not altered by H2O2. Keratinocytes expressed mRNA for estrogen receptor beta and guanine nucleotide-binding protein-coupled receptor, GPR30. GPR30 anti-sense oligonucleotide did, but anti-sense estrogen receptor beta did not suppress 17beta-estradiol-induced cAMP signal, cAMP response element-binding protein phosphorylation, Bcl-2 expression, and apoptosis resistance. These results suggest that 17beta-estradiol may enhance Bcl-2 expression and prevent H2O2-induced apoptosis by phosphorylating cAMP response element-binding protein via cAMP/protein kinase A pathway in keratinocytes. These effects of 17beta-estradiol may be mediated via membrane GPR30.
Collapse
|
38
|
Suh KS, Koh G, Park CY, Woo JT, Kim SW, Kim JW, Park IK, Kim YS. Soybean isoflavones inhibit tumor necrosis factor-alpha-induced apoptosis and the production of interleukin-6 and prostaglandin E2 in osteoblastic cells. PHYTOCHEMISTRY 2003; 63:209-15. [PMID: 12711143 DOI: 10.1016/s0031-9422(03)00101-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of individual soybean isoflavones, genistein (4',5,7-trihydroxyisoflavone) and daidzein (4',7-dihydroxyisoflavone), on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis and the production of local factors in osteoblastic cells has been investigated. Soybean isoflavones increased DNA synthesis and the number of viable cells. When cells were treated with TNF-alpha, the number of viable cells dose-dependently decreased. The decrease in cell number caused by TNF-alpha treatment was due to apoptosis, which was confirmed by TUNEL and cell death ELISA analyses. Soybean isoflavones inhibited apoptosis of osteoblastic cells subjected to TNF-alpha treatment. MC3T3-E1 osteoblastic cells secrete interleukin-6 (IL-6), interleukin-1beta (IL-1beta), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) constitutively, but at low levels. Soybean isoflavones had no effect on the constitutive production of these local factors. When cells were treated with TNF-alpha (10(-10)M), the production of IL-6 and PGE(2), but not that of IL-1beta and NO, significantly increased. Treatment with soybean isoflavones (10(-5)M), in the presence of TNF-alpha (10(-10)M), for 48 h inhibited production of IL-6 and PGE(2), suggesting the antiresorptive action of soy phytoestrogen may be mediated by decreases in these local factors. The findings of this study thus suggest that soybean isoflavones may promote the function of osteoblastic cells and play an important role in bone remodeling.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Endocrine Research Institute, Kyung Hee University School of Medicine, 1 Hoeki-dong, Dongdaemun-ku, Seoul 130-702, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Boué SM, Wiese TE, Nehls S, Burow ME, Elliott S, Carter-Wientjes CH, Shih BY, McLachlan JA, Cleveland TE. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:2193-2199. [PMID: 12670155 DOI: 10.1021/jf021114s] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Seven legume extracts containing phytoestrogens were analyzed for estrogenic activity. Methanol extracts were prepared from soybean (Glycine max L.), green bean (Phaseolus vulgaris L.), alfalfa sprout (Medicago sativa L.), mung bean sprout (Vigna radiata L.), kudzu root (Pueraria lobata L.), and red clover blossom and red clover sprout (Trifolium pratense L.). Extracts of kudzu root and red clover blossom showed significant competitive binding to estrogen receptor beta (ERbeta). Estrogenic activity was determined using an estrogen-dependent MCF-7 breast cancer cell proliferation assay. Kudzu root, red clover blossom and sprout, mung bean sprout, and alfalfa sprout extracts displayed increased cell proliferation above levels observed with estradiol. The pure estrogen antagonist, ICI 182,780, suppressed cell proliferation induced by the extracts, suggesting an ER-related signaling pathway was involved. The ER subtype-selective activities of legume extracts were examined using transiently transfected human embryonic kidney (HEK 293) cells. All seven of the extracts exhibited preferential agonist activity toward ERbeta. Using HPLC to collect fractions and MCF-7 cell proliferation, the active components in kudzu root extract were determined to be the isoflavones puerarin, daidzin, genistin, daidzein, and genistein. These results show that several legumes are a source of phytoestrogens with high levels of estrogenic activity.
Collapse
Affiliation(s)
- Stephen M Boué
- Agricultural Research Service, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana 70179, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Effects of Xenoestrogens on T Lymphocytes: Modulation of bcl-2, p53, and Apoptosis. Int J Mol Sci 2003. [DOI: 10.3390/i4020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Evans MD, Butler JM, Nicoll K, Cooke MS, Lunec J. 17 beta-Oestradiol attenuates nucleotide excision repair. FEBS Lett 2003; 535:153-8. [PMID: 12560095 DOI: 10.1016/s0014-5793(02)03898-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidemiological studies strongly suggest associations between chronic exposure to endogenous oestrogens and the development of breast and gynaecological tumours. Two mechanisms by which 17 beta-oestradiol (E2) may enhance tumorigenesis are: (i) enhancement of cell proliferation and (ii) the production of reactive, genotoxic metabolites. Here we suggest an additional mechanism, inhibition of DNA repair. The removal of UV-induced thymine dimers from human keratinocytes, reflective of nucleotide excision repair, was significantly attenuated by treatment of cells with E2. In contrast, treatment with 17 alpha-oestradiol had no effect. Mechanisms are proposed for this effect of E2, which may contribute to its carcinogenic potential.
Collapse
Affiliation(s)
- Mark D Evans
- Oxidative Stress Group, Department of Clinical Biochemistry, P.O. Box 65, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | | | |
Collapse
|
42
|
Lee C, Kim H, Kho Y. Agastinol and agastenol, novel lignans from Agastache rugosa and their evaluation in an apoptosis inhibition assay. JOURNAL OF NATURAL PRODUCTS 2002; 65:414-416. [PMID: 11908994 DOI: 10.1021/np010425e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Investigation of the whole plant of Agastache rugosa resulted in the isolation of two new lignan compounds. Their structures were elucidated as (8S,7'R,8'S)-4-hydroxybenzoic acid 4-(4-hydroxy-3-methoxybenzyl)-2-(4-hydroxy-3-methoxyphenyl)tetrahydrofuran-3-ylmethyl ester (agastinol, 1) and (7'R,8'S)-4-hydroxybenzoic acid 4-(hydroxy-3-methoxybenzylidene)-2-(4-hydroxy-3-methoxyphenyl)-tetrahydrofuran-3-ylmethyl ester (agastenol, 2). Agastinol and agastenol inhibited etoposide-induced apoptosis in U937 cells with IC50 values of 15.2 and 11.4 microg/mL, respectively.
Collapse
Affiliation(s)
- Choonghwan Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), P.O. Box 115, Yusong, Taejon 305-600, Korea
| | | | | |
Collapse
|
43
|
Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W. The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 2002; 80:239-56. [PMID: 11897507 DOI: 10.1016/s0960-0760(01)00189-3] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitogen-activated protein kinase (MAP kinase) cascades transmit and amplify signals involved in cell proliferation as well as cell death. These signal transduction pathways serve as an indicators of the intensity of trafficking induced by various growth factor, steroid hormone, and G protein receptor mediated ligands. Three major MAP kinase pathways exist in human tissues, but the one involving ERK-1 and -2 is most relevant to breast cancer. Peptide growth factors acting through tyrosine kinase containing receptors are the major regulators of ERK-1 and -2. Estradiol, progesterone, and testosterone can act non-genomically via membrane associated receptors to activate MAP kinase as can various other ligands acting through heterotrimeric G protein receptors. Recent studies demonstrate that breast cancers frequently contain an increased proportion of cells with the activated form of MAP kinase. In estrogen receptor positive breast tumors, MAP kinase pathways can exert "cross talk" effects at the level of ER induced transcription as well as at the level of the cell cycle. Estradiol stimulates cell proliferation by mechanisms which involve activation of MAP kinase, either through rapid, non-transcription effects or by increasing growth factor production and consequently MAP kinase. Progesterone and androgens also stimulate MAP kinase through both of these two mechanisms. Strategies used to treat hormone dependent breast cancer appear to result in upregulation of MAP kinase activation. Direct experimental data demonstrate that the pressure of estradiol deprivation results in the upregulation of MAP kinase in breast cancer cells growing in tissue culture and as xenografts. A number of investigators have now studied the expression of activated MAP kinase in human breast cancer tissues by enzymatic assay and by immunohistochemical techniques. Approximately half of breast tumors express more activated MAP kinase than does the surrounding benign tissue. Studies show a trend toward higher MAP kinase activity in primary tumors of node positive than in node negative patients. However, larger numbers of patients must be studied for these results to achieve statistical significance. The up-regulation of MAP kinase activity does not represent mutations of Ras, but appears to result from enhancement of growth factor pathway activation. No data are yet available on the relationship between MAP kinase activation and apoptosis. Additional studies are now needed to determine the precise relationship between MAP kinase activation and tumor proliferation, apoptosis, and degree of invasiveness as well as on disease free and overall survival.
Collapse
Affiliation(s)
- Richard J Santen
- Department of Medicine, Division of Endocrinology, University of Virginia Health System, P.O. Box 800379, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Members of the nuclear steroid hormone superfamily mediate essential physiological functions. Steroid hormone receptors (SHR) act directly on DNA, regulate the synthesis of their target genes and are usually activated by ligand binding. Both endogenous and exogenous compounds and their metabolites may act as activators of SHR and disruptors of endocrine, cellular and lipid homeostasis. The endogenous ligands are generally steroids such as 17beta-oestradiol, androgens, progesterone and pregnenolone. The exogenous compounds are usually delivered through the diet and include non-steroidal ligands. Examples of such ligands include isoflavanoids or phytooestrogens, and food contaminants such as exogenous oestrogens from hormone-treated cattle, pesticides, polychlorinated biphenyls and plasticisers. Certain drugs are also ligands; so nuclear receptors are also important drug targets for intervention in disease processes. The present review summarises recent reports on ligand-activated SHR that describe the selective regulation of a tightly-controlled cross-talking network involving exchange of ligands, and the control of major classes of cytochrome P450 (CYP) isoforms which metabolise many bioactive exogenous compounds. Many CYP have broad substrate activity and appear to be integrated into a coordinated metabolic pathway, such that whilst some receptors are ligand specific, other sensors may have a broader specificity and low ligand affinity to monitor aggregate levels of inducers. They can then trigger production of metabolising enzymes to defend against possible toxic nutrients and xenobiotic compounds. The influence of dietary intakes of nutrients and non-nutrients on the human oestrogen receptors (alpha and beta), the aryl hydrocarbon receptor, the pregnane X receptor, the constitutive androstane receptor, and the peroxisome proliferator-activated receptors (alpha and gamma), can be examined by utilising computer-generated molecular models of the ligand-receptor interaction, based on information generated from crystallographic data and sequence homology. In relation to experimental and observed data, molecular modelling can provide a scientifically sound perspective on the potential risk and benefits to human health from dietary exposure to hormone-mimicking chemicals, providing a useful tool in drug development and in a situation of considerable public concern.
Collapse
Affiliation(s)
- Miriam N Jacobs
- School of Biomedical and Life Sciences, University of Surrey, Guildford, UK.
| | | |
Collapse
|
45
|
Kottke TJ, Blajeski AL, Meng XW, Svingen PA, Ruchaud S, Mesner PW, Boerner SA, Samejima K, Henriquez NV, Chilcote TJ, Lord J, Salmon M, Earnshaw WC, Kaufmann SH. Lack of correlation between caspase activation and caspase activity assays in paclitaxel-treated MCF-7 breast cancer cells. J Biol Chem 2002; 277:804-15. [PMID: 11677238 DOI: 10.1074/jbc.m108419200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MCF-7 human breast cancer cells are widely utilized to study apoptotic processes. Recent studies demonstrated that these cells lack procaspase-3. In the present study, caspase activation and activity were examined in this cell line after treatment with the microtubule poison paclitaxel. When cells were harvested 72 h after the start of a 24-h treatment with 100 nm paclitaxel, 37 +/- 5% of the cells were nonadherent and displayed apoptotic morphological changes. Although mitochondrial cytochrome c release and caspase-9 cleavage were detectable by immunoblotting, assays of cytosol and nuclei prepared from the apoptotic cells failed to demonstrate the presence of activity that cleaved the synthetic caspase substrates LEHD-7-amino-4-trifluoromethylcoumarin (LEHD-AFC), DEVD-AFC, and VEID-AFC. Likewise, the paclitaxel-treated MCF-7 cells failed to cleave a variety of caspase substrates, including lamin A, beta-catenin, gelsolin, protein kinase Cdelta, topoisomerase I, and procaspases-6, -8, and -10. Transfection of MCF-7 cells with wild type procaspase-3 partially restored cleavage of these polypeptides but did not result in detectable activities that could cleave the synthetic caspase substrates. Immunoblotting revealed that caspase-9, and -3, which were proteolytically cleaved in paclitaxel-treated MCF-7/caspase-3 cells, were sequestered in a salt-resistant sedimentable fraction rather than released to the cytosol. Immunofluorescence indicated large cytoplasmic aggregates containing cleaved caspase-3 in these apoptotic cells. These observations suggest that sequestration of caspases can occur in some model systems, causing tetrapeptide-based activity assays to underestimate the amount of caspase activation that has occurred in situ.
Collapse
Affiliation(s)
- Timothy J Kottke
- Division of Oncology Research, Mayo Clinic, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Burow ME, Weldon CB, Tang Y, McLachlan JA, Beckman BS. Oestrogen-mediated suppression of tumour necrosis factor alpha-induced apoptosis in MCF-7 cells: subversion of Bcl-2 by anti-oestrogens. J Steroid Biochem Mol Biol 2001; 78:409-18. [PMID: 11738551 DOI: 10.1016/s0960-0760(01)00117-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In oestrogen receptor (ER)-positive breast carcinoma cells, 17beta-oestradiol suppresses a dose-dependent induction of cell death by tumour necrosis factor alpha (TNF). The ability of oestrogens to promote cell survival in ER-positive breast carcinoma cells is linked to a coordinate increase in Bcl-2 expression, an effect that is blocked with the pure anti-oestrogen ICI 182,780. The role of Bcl-2 in MCF-7 cell survival was confirmed by stable overexpression of Bcl-2 which resulted in suppression of apoptosis induced by doxorubicin (DOX), paclitaxel (TAX) and TNF as compared to vector-control cells. The pure anti-oestrogen ICI 182,780 in combination with TNF, DOX or TAX potentiated apoptosis in vector-transfected cells. Interestingly, pre-treatment with ICI 182,780 markedly enhanced chemotherapeutic drug- or TNF-induced apoptosis in Bcl-2 expressing cells, an effect that was correlated with ICI 182,780 induced activation of c-Jun N-terminal kinase. Our results suggest that the effects of oestrogens/anti-oestrogens on the regulation of apoptosis may involve coordinate activation of signalling events and Bcl-2 expression.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Survival/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Drug Interactions
- Estradiol/administration & dosage
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Receptor Modulators/administration & dosage
- Estrogen Receptor Modulators/pharmacology
- Female
- Fulvestrant
- Genes, bcl-2
- Humans
- Mitogen-Activated Protein Kinases/metabolism
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Paclitaxel/administration & dosage
- Paclitaxel/pharmacology
- Signal Transduction
- Transfection
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/administration & dosage
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- M E Burow
- Center for Bioenvironmental Research, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
47
|
Long E, Capuco AV, Wood DL, Sonstegard T, Tomita G, Paape MJ, Zhao X. Escherichia coli induces apoptosis and proliferation of mammary cells. Cell Death Differ 2001; 8:808-16. [PMID: 11526434 DOI: 10.1038/sj.cdd.4400878] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Revised: 02/28/2001] [Accepted: 02/28/2001] [Indexed: 12/11/2022] Open
Abstract
Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection. The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection. Induction of matrix metalloproteinase-9, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue. These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation.
Collapse
Affiliation(s)
- E Long
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The term "endocrine disrupting chemicals" is commonly used to describe environmental agents that alter the endocrine system. Laboratories working in this emerging field-environmental endocrine research-have looked at chemicals that mimic or block endogenous vertebrate steroid hormones by interacting with the hormone's receptor. Environmental chemicals known to do this do so most often with receptors derived from the steroid/thyroid/retinoid gene family. They include ubiquitous and persistent organochlorines, as well as plasticizers, pharmaceuticals, and natural hormones. These chemicals function as estrogens, antiestrogens, and antiandrogens but have few, if any, structural similarities. Therefore, receptor-based or functional assays have the best chance of detecting putative biological activity of environmental chemicals. Three nuclear estrogen receptor forms-alpha, beta, and gamma-as well as multiple membrane forms and a possible mitochondrial form have been reported, suggesting a previously unknown diversity of signaling pathways available to estrogenic chemicals. Examples of environmental or ambient estrogenization occur in laboratory experiments, zoo animals, domestic animals, wildlife, and humans. Environmentally estrogenized phenotypes may differ depending upon the time of exposure-i.e., whether the exposure occurred at a developmental (organizational and irreversible) or postdevelopmental (activational and reversible) stage. The term "estrogen" must be defined in each case, since steroidal estrogens differ among themselves and from synthetic or plant-derived chemicals. An "estrogen-like function" seems to be an evolutionarily ancient signal that has been retained in a number of chemicals, some of which are vertebrate hormones. Signaling, required for symbiosis between plants and bacteria, may be viewed, therefore, as an early example of hormone cross-talk. Developmental feminization at the structural or functional level is an emerging theme in species exposed, during embryonic or fetal life, to estrogenic compounds. Human experience as well as studies in experimental animals with the potent estrogen diethylstilbestrol provide informative models. Advances in the molecular genetics of sex differentiation in vertebrates facilitate mechanistic understanding. Experiments addressing the concept of gene imprinting or induction of epigenetic memory by estrogen or other hormones suggest a link to persistent, heritable phenotypic changes seen after developmental estrogenization, independent of mutagenesis. Environmental endocrine science provides a new context in which to examine the informational content of ecosystem-wide communication networks. As common features come to light, this research may allow us to predict environmentally induced alterations in internal signaling systems of vertebrates and some invertebrates and eventually to explicate environmental contributions to human reproductive and developmental health.
Collapse
Affiliation(s)
- J A McLachlan
- Department of Pharmacology, Tulane University Health Sciences Center, Environmental Endocrinology Laboratory, Center for Bioenvironmental Research, Tulane and Xavier Universities, New Orleans, Louisiana 70112-2699, USA.
| |
Collapse
|
49
|
O'Neil JS, Burow ME, Green AE, McLachlan JA, Henson MC. Effects of estrogen on leptin gene promoter activation in MCF-7 breast cancer and JEG-3 choriocarcinoma cells: selective regulation via estrogen receptors alpha and beta. Mol Cell Endocrinol 2001; 176:67-75. [PMID: 11369444 DOI: 10.1016/s0303-7207(01)00473-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leptin is a potential regulator of conceptus development. We have previously suggested that in primate pregnancy, leptin biosynthesis is regulated by estrogen in a tissue-specific manner. Therefore, the objective of the current study was to determine the mechanism of estrogen action on LEP promoter activation in divergent cell types. The effects of estrogen were investigated in estrogen receptor (ER)-positive MCF-7 breast cancer cells and in ER-negative JEG-3 choriocarcinoma cells. Cells were transfected with a leptin-luciferase or an estrogen responsive element (ERE)-luciferase reporter construct, in conjunction with ERalpha, ERbeta, or empty vector expression plasmids. Cells were treated with estradiol and/or the specific estrogen antagonists, ICI-182,780 or 4-hydroxytamoxifen. In MCF-7 cells, estradiol stimulated (P<0.05) ERE-luciferase activity and was inhibited by ICI-182,780, but did not stimulate leptin-luciferase activity. However, leptin-luciferase was stimulated by estradiol (P<0.05) and inhibited by antiestrogens in JEG-3 cells that were co-transfected with ERalpha. Both antiestrogens stimulated leptin-luciferase activity (P<0.05) in JEG-3 cells co-transfected with ERbeta. Results suggested that LEP promoter activation may depend upon co-activators present in leptin-producing cells and may be inhibited by repressors present in non-leptin producing cells. Divergent effects of estrogen may be owed to differences in the type of ER (alpha or beta) expressed in target tissues.
Collapse
Affiliation(s)
- J S O'Neil
- Department of Obstetrics and Gynecology SC-11, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | | | | | | | | |
Collapse
|
50
|
Lee C, Kim J, Lee H, Lee S, Kho Y. Two new constituents of Isodon excisus and their evaluation in an apoptosis inhibition assay. JOURNAL OF NATURAL PRODUCTS 2001; 64:659-660. [PMID: 11374970 DOI: 10.1021/np000604g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Investigation of the whole plant of Isodon excisus resulted in the isolation of two new apoptosis inhibitors (1 and 2). Compounds 1 and 2 inhibited etoposide-induced apoptosis in U937 cells with IC50 values of 10.2 and 52.4 microg/mL, respectively. The structures of 1 and 2 were determined by spectral data interpretation.
Collapse
Affiliation(s)
- C Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), P.O. Box 115, Yusong, Taejon 305-600, Korea
| | | | | | | | | |
Collapse
|