1
|
Chen R, Liu H, Meng W, Sun J. Analysis of action of 1,4-naphthoquinone scaffold-derived compounds against acute myeloid leukemia based on network pharmacology, molecular docking and molecular dynamics simulation. Sci Rep 2024; 14:21043. [PMID: 39251712 PMCID: PMC11385794 DOI: 10.1038/s41598-024-70937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
1,4-Naphthoquinone scaffold-derived compounds has shown considerable pharmacological properties against cancer, including acute myeloid leukemia (AML) However, its impact and mechanisms in AML are uncertain. In this study, the mechanisms of 1,4-naphthoquinone scaffold-derived compounds against AML were investigated via network pharmacology, molecular docking and molecular dynamics simulation. ASINEX database was used to collect the 1,4-naphthoquinone scaffold-derived compounds, and compounds were extracted from the software to evaluate their drug similarity and toxicity. The potential targets of compounds were retrieved from the SwissTargetPrediction Database and the Similarity Ensemble Approach Database, while the potential targets of AML were obtained from the GeneCards databases and Gene Expression Omnibus. The STRING database was used to construct a protein-protein interaction (PPI) network, topologically and Cyto Hubb plugin of Cytoscape screen the central targets. After selecting the potential key targets, the gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the intersection targets, and a network map of "compounds-potential targets-pathway-disease" were constructed. Molecular docking of the compounds with the core target was performed, and core target with the strongest binding force and 1,4-naphthoquinone scaffold-derived compounds was selected for further molecular dynamics simulation and further molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) approach verification. In addition, the Bloodspot database was applied to perform the overall survival of core targets. A total of 19 1,4-naphthoquinone scaffold-derived compounds were chosen out, and then 836 targets of compounds, 96 intersection targets of AML were screened. Core targets include STAT3, TLR4, HSP90AA1, JUN, MMP9, PTPRC, JAK2, PTGS2, KIT and CSF1R. GO functional enrichment analysis revealed that 90 biological processes, 10 cell components and 12 molecular functions were enriched while KEGG pathway enrichment analysis revealed 34 enriched signaling pathways. Analysis of KEGG enrichment hinted that these 10 core genes were located in the pathways in cancer, suggesting that 1,4-naphthoquinone scaffold-derived compounds had potential activity against AML. Molecular docking analysis revealed that the binding energies between 1,4-naphthoquinone scaffold-derived compounds and the core proteins were all higher than - 6 kcal/mol, indicating that the 10 core targets all had strong binding ability with compounds. Moreover, a good binding capacity was inferred from molecular dynamics simulations between compound 7 and MMP9. The total binding free energy calculated using the MM/GBSA approach revealed values of - 6356.865 kcal/mol for the MMP9-7 complex. In addition, Bloodspot database results exhibited that HSP90AA1, MMP9 and PTPRC were associated with overall survival. The findings provide foundations for future studies into the interaction underlying the anti-AML potential of compounds with 1,4-naphthoquinone-based scaffold structures. Compounds with 1,4-naphthoquinone-based scaffold structures exhibits considerable potential in mitigating and treating AML through multiple targets and pathways.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Lishui People's Hospital, Lishui, 323000, China
| | - Hengfang Liu
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Weikang Meng
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Jingyu Sun
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China.
| |
Collapse
|
2
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Chaubal R, Gardi N, Joshi S, Pantvaidya G, Kadam R, Vanmali V, Hawaldar R, Talker E, Chitra J, Gera P, Bhatia D, Kalkar P, Gurav M, Shetty O, Desai S, Krishnan NM, Nair N, Parmar V, Dutt A, Panda B, Gupta S, Badwe R. Surgical Tumor Resection Deregulates Hallmarks of Cancer in Resected Tissue and the Surrounding Microenvironment. Mol Cancer Res 2024; 22:572-584. [PMID: 38394149 PMCID: PMC11148542 DOI: 10.1158/1541-7786.mcr-23-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Surgery exposes tumor tissue to severe hypoxia and mechanical stress leading to rapid gene expression changes in the tumor and its microenvironment, which remain poorly characterized. We biopsied tumor and adjacent normal tissues from patients with breast (n = 81) and head/neck squamous cancers (HNSC; n = 10) at the beginning (A), during (B), and end of surgery (C). Tumor/normal RNA from 46/81 patients with breast cancer was subjected to mRNA-Seq using Illumina short-read technology, and from nine patients with HNSC to whole-transcriptome microarray with Illumina BeadArray. Pathways and genes involved in 7 of 10 known cancer hallmarks, namely, tumor-promoting inflammation (TNF-A, NFK-B, IL18 pathways), activation of invasion and migration (various extracellular matrix-related pathways, cell migration), sustained proliferative signaling (K-Ras Signaling), evasion of growth suppressors (P53 signaling, regulation of cell death), deregulating cellular energetics (response to lipid, secreted factors, and adipogenesis), inducing angiogenesis (hypoxia signaling, myogenesis), and avoiding immune destruction (CTLA4 and PDL1) were significantly deregulated during surgical resection (time points A vs. B vs. C). These findings were validated using NanoString assays in independent pre/intra/post-operative breast cancer samples from 48 patients. In a comparison of gene expression data from biopsy (analogous to time point A) with surgical resection samples (analogous to time point C) from The Cancer Genome Atlas study, the top deregulated genes were the same as identified in our analysis, in five of the seven studied cancer types. This study suggests that surgical extirpation deregulates the hallmarks of cancer in primary tumors and adjacent normal tissue across different cancers. IMPLICATIONS Surgery deregulates hallmarks of cancer in human tissue.
Collapse
Affiliation(s)
- Rohan Chaubal
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Nilesh Gardi
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Shalaka Joshi
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Gouri Pantvaidya
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Rasika Kadam
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vaibhav Vanmali
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rohini Hawaldar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Elizabeth Talker
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Jaya Chitra
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Poonam Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Dimple Bhatia
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Prajakta Kalkar
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Mamta Gurav
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Omshree Shetty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Sangeeta Desai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | | | - Nita Nair
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- 3D Printing Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amit Dutt
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Binay Panda
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sudeep Gupta
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rajendra Badwe
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Bhaskari J, Bhagat R, Shilpa V, Premalata CS, Krishnamoorthy L. Pre-operative plasma VEGF-C levels portend recurrence in epithelial ovarian cancer patients and is a bankable prognostic marker even in the initial assessment of a patient. J Ovarian Res 2024; 17:77. [PMID: 38594780 PMCID: PMC11003002 DOI: 10.1186/s13048-024-01398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
PURPOSE Our explorative study assessed a panel of molecules for their association with epithelial ovarian carcinomas and their prognostic implications. The panel included tissue expression of VEGF-C, COX-2, Ki-67 and eNOS alongside plasma levels of VEGF-C and nitric oxide. METHODS 130 cases were enrolled in the study. Plasma levels were quantified by ELISA and tissue expressions were scored by immunohistochemistry. The Chi square and Fischer's exact test were applied to examine the impact of markers on clinicopathological factors. Non-parametric Spearman's rank correlation test was applied to define the association among test factors. RESULTS Plasma VEGF-C levels and COX-2 tissue expression strongly predicted recurrence and poor prognosis (< 0.001). Tissue Ki-67 was strongly indicative of late-stage disease (< 0.001). The aforementioned markers significantly associated with clinicopathological factors. Nuclear staining of VEGF-C was intriguing and was observed to correlate with high grade-stage malignancies, highly elevated plasma VEGF-C, and with recurrence. eNOS tissue expression showed no significant impact while nitric oxide associated positively with ascites levels. Tissue expression of VEGF-C did not associate significantly with poor prognosis although the expression was highly upregulated in most of the cases. CONCLUSION Plasma VEGF-C holds immense promise as a prognostic marker and the nuclear staining of VEGF-C seems to have some significant implication in molecular carcinogenesis and is a novel finding that commands further robust scrutiny. We present a first such study that assesses a set of biomarkers for prognostic implications in clinical management of epithelial ovarian carcinomas in a pan-Indian (Asian) population.
Collapse
Affiliation(s)
- J Bhaskari
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
- National Centre for Biological Sciences, GKVK campus, Bangalore, Karnataka, India
| | - Rahul Bhagat
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
- Oncostem Diagnostic Pvt Ltd, Bangalore, Karnataka, India
| | - V Shilpa
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
- Department of Biochemistry, Sri Shankara Cancer Hospital and Research Centre, Bangalore, 560004, Karnataka, India
| | - C S Premalata
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Lakshmi Krishnamoorthy
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India.
- Department of Biochemistry, Sri Shankara Cancer Hospital and Research Centre, Bangalore, 560004, Karnataka, India.
| |
Collapse
|
5
|
Ahmed SA, Mendonca P, Messeha SS, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, and Angiogenesis Inhibition in Triple-Negative Breast Cancer Cells. Molecules 2023; 28:6536. [PMID: 37764312 PMCID: PMC10535858 DOI: 10.3390/molecules28186536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor-2 restricts the therapy choices for treating triple-negative breast cancer (TNBC). Moreover, conventional medication is not highly effective in treating TNBC, and developing effective therapeutic agents from natural bioactive compounds is a viable option. In this study, the anticancer effects of the natural compound fucoxanthin were investigated in two genetically different models of TNBC cells: MDA-MB-231 and MDA-MB-468 cells. Fucoxanthin had a significant anticancer effect in both cell lines at a concentration range of 1.56-300 µM. The compound decreased cell viability in both cell lines with higher potency in MDA-MB-468 cells. Meanwhile, proliferation assays showed similar antiproliferative effects in both cell lines after 48 h and 72 h treatment periods. Flow cytometry and Annexin V-FITC apoptosis assay revealed the ability of fucoxanthin to induce apoptosis in MDA-MB-231 only. Cell cycle arrest analysis showed that the compound also induced cell cycle arrest at the G1 phase in both cell lines, accompanied by more cell cycle arrest in MDA-MB-231 cells at S-phase and a higher cell cycle arrest in the MDA-MB-468 cells at G2-phase. Wound healing and migration assay showed that in both cell lines, fucoxanthin prevented migration, but was more effective in MDA-MB-231 cells in a shorter time. In both angiogenic cytokine array and RT-PCR studies, fucoxanthin (6.25 µM) downregulated VEGF-A and -C expression in TNF-α-stimulated (50 ng/mL) MDA-MB-231, but not in MDA-MB-468 cells on the transcription and protein levels. In conclusion, this study shows that fucoxanthin was more effective in MDA-MB-231 TNBC cells, where it can target VEGF-A and VEGF-C, inhibit cell proliferation and cell migration, and induce cell cycle arrest and apoptosis-the most crucial cellular processes involved in breast cancer development and progression.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
6
|
Li Z, Solomonidis EG, Berkeley B, Tang MNH, Stewart KR, Perez-Vicencio D, McCracken IR, Spiroski AM, Gray GA, Barton AK, Sellers SL, Riley PR, Baker AH, Brittan M. Multi-species meta-analysis identifies transcriptional signatures associated with cardiac endothelial responses in the ischaemic heart. Cardiovasc Res 2023; 119:136-154. [PMID: 36082978 PMCID: PMC10022865 DOI: 10.1093/cvr/cvac151] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
AIM Myocardial infarction remains the leading cause of heart failure. The adult human heart lacks the capacity to undergo endogenous regeneration. New blood vessel growth is integral to regenerative medicine necessitating a comprehensive understanding of the pathways that regulate vascular regeneration. We sought to define the transcriptomic dynamics of coronary endothelial cells following ischaemic injuries in the developing and adult mouse and human heart and to identify new mechanistic insights and targets for cardiovascular regeneration. METHODS AND RESULTS We carried out a comprehensive meta-analysis of integrated single-cell RNA-sequencing data of coronary vascular endothelial cells from the developing and adult mouse and human heart spanning healthy and acute and chronic ischaemic cardiac disease. We identified species-conserved gene regulatory pathways aligned to endogenous neovascularization. We annotated injury-associated temporal shifts of the endothelial transcriptome and validated four genes: VEGF-C, KLF4, EGR1, and ZFP36. Moreover, we showed that ZFP36 regulates human coronary endothelial cell proliferation and defined that VEGF-C administration in vivo enhances clonal expansion of the cardiac vasculature post-myocardial infarction. Finally, we constructed a coronary endothelial cell meta-atlas, CrescENDO, to empower future in-depth research to target pathways associated with coronary neovascularization. CONCLUSION We present a high-resolution single-cell meta-atlas of healthy and injured coronary endothelial cells in the mouse and human heart, revealing a suite of novel targets with great potential to promote vascular regeneration, and providing a rich resource for therapeutic development.
Collapse
Affiliation(s)
- Ziwen Li
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emmanouil G Solomonidis
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Katherine Ross Stewart
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Daniel Perez-Vicencio
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian R McCracken
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ana-Mishel Spiroski
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anna K Barton
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephanie L Sellers
- Division of Cardiology, Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, Canada
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
7
|
Su W, Liu G, Mohajer B, Wang J, Shen A, Zhang W, Liu B, Guermazi A, Gao P, Cao X, Demehri S, Wan M. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. eLife 2022; 11:e79773. [PMID: 35881544 PMCID: PMC9365389 DOI: 10.7554/elife.79773] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background Metabolic syndrome-associated osteoarthritis (MetS-OA) is a distinct osteoarthritis phenotype defined by the coexistence of MetS or its individual components. Despite the high prevalence of MetS-OA, its pathogenic mechanisms are unclear. The aim of this study was to determine the role of cellular senescence in the development of MetS-OA. Methods Analysis of the human osteoarthritis initiative (OAI) dataset was conducted to investigate the MRI subchondral bone features of MetS-human OA participants. Joint phenotype and senescent cells were evaluated in two MetS-OA mouse models: high-fat diet (HFD)-challenged mice and STR/Ort mice. In addition, the molecular mechanisms by which preosteoclasts become senescent as well as how the senescent preosteoclasts impair subchondral bone microenvironment were characterized using in vitro preosteoclast culture system. Results Humans and mice with MetS are more likely to develop osteoarthritis-related subchondral bone alterations than those without MetS. MetS-OA mice exhibited a rapid increase in joint subchondral bone plate and trabecular thickness before articular cartilage degeneration. Subchondral preosteoclasts undergo senescence at the pre- or early-osteoarthritis stage and acquire a unique secretome to stimulate osteoblast differentiation and inhibit osteoclast differentiation. Antagonizing preosteoclast senescence markedly mitigates pathological subchondral alterations and osteoarthritis progression in MetS-OA mice. At the molecular level, preosteoclast secretome activates COX2-PGE2, resulting in stimulated differentiation of osteoblast progenitors for subchondral bone formation. Administration of a selective COX2 inhibitor attenuated subchondral bone alteration and osteoarthritis progression in MetS-OA mice. Longitudinal analyses of the human Osteoarthritis Initiative (OAI) cohort dataset also revealed that COX2 inhibitor use, relative to non-selective nonsteroidal antiinflammatory drug use, is associated with less progression of osteoarthritis and subchondral bone marrow lesion worsening in participants with MetS-OA. Conclusions Our findings suggest a central role of a senescent preosteoclast secretome-COX2/PGE2 axis in the pathogenesis of MetS-OA, in which selective COX2 inhibitors may have disease-modifying potential. Funding This work was supported by the National Institutes of Health grant R01AG068226 and R01AG072090 to MW, R01AR079620 to SD, and P01AG066603 to XC.
Collapse
Affiliation(s)
- Weiping Su
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang HospitalGuangzhouChina
| | - Bahram Mohajer
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jiekang Wang
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alena Shen
- University of Southern California, Dornsife College of Letters, Arts and SciencesLos AngelesUnited States
| | - Weixin Zhang
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Bin Liu
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ali Guermazi
- Department of Radiology, Boston University School of MedicineBostonUnited States
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shadpour Demehri
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mei Wan
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
8
|
Kiani-Zadeh M, Rezvany MR, Namjoo S, Barati M, Mohammadi MH, Ghasemi B, Tabatabaei T, Ghavamzadeh A, Zaker F, Teimoori-Toolabi L. Studying the potential of upregulated PTGS2 and VEGF-C besides hyper-methylation of PTGS2 promoter as biomarkers of Acute myeloid leukemia. Mol Biol Rep 2022; 49:7849-7862. [PMID: 35733068 DOI: 10.1007/s11033-022-07615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Hereby, we aimed to investigate the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and Vascular Endothelial Factor-C (VEGF-C) besides the methylation of PTGS2 in AML patients. VEGF-C and PTGS2 expression analysis were evaluated in newly diagnosed AML patients and healthy controls by quantitative Reverse Transcriptase PCR method. Also, PTGS2 methylation status was evaluated by Methylation-Sensitive High-Resolution Melting Curve Analysis (MS-HRM). While 34% of patients were female, the mean age of the patients was 43.41 ± 17.60 years suffering mostly from M4 (48.21%) type of AML. Although methylation level between patients and controls was not significantly different, none of the normal controls showed methylation in the PTGS2 promoter. PTGS2 and VEGF-C levels were elevated in AML cases and correlated with WBC, Platelet, and Hemoglobin levels. The survival of patients with overexpressed VEGF-C and PTGS2 was poorer than others. It can be concluded that PTGS2 and especially VEGF-C expression but not PTGS2 methylation can be considered as diagnostic biomarkers for AML.
Collapse
Affiliation(s)
- Masoumeh Kiani-Zadeh
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran.,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.,Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, 17176, Stockholm, Sweden
| | - Soodeh Namjoo
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran.,Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- Department of HSCT research center, Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Ghasemi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Tahere Tabatabaei
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street Kargar Avenue, 1316943551, Tehran, Iran.
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Bhatia S, Nguyen D, Darragh LB, Van Court B, Sharma J, Knitz MW, Piper M, Bukkapatnam S, Gadwa J, Bickett TE, Bhuvane S, Corbo S, Wu B, Lee Y, Fujita M, Joshi M, Heasley LE, Ferris RL, Rodriguez O, Albanese C, Kapoor M, Pasquale EB, Karam SD. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat Commun 2022; 13:3535. [PMID: 35725568 PMCID: PMC9209511 DOI: 10.1038/s41467-022-31124-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/06/2022] [Indexed: 01/14/2023] Open
Abstract
Differential outcomes of EphB4-ephrinB2 signaling offers formidable challenge for the development of cancer therapeutics. Here, we interrogate the effects of targeting EphB4 and ephrinB2 in head and neck squamous cell carcinoma (HNSCC) and within its microenvironment using genetically engineered mice, recombinant constructs, pharmacologic agonists and antagonists. We observe that manipulating the EphB4 intracellular domain on cancer cells accelerates tumor growth and angiogenesis. EphB4 cancer cell loss also triggers compensatory upregulation of EphA4 and T regulatory cells (Tregs) influx and their targeting results in reversal of accelerated tumor growth mediated by EphB4 knockdown. EphrinB2 knockout on cancer cells and vasculature, on the other hand, results in maximal tumor reduction and vascular normalization. We report that EphB4 agonism provides no additional anti-tumoral benefit in the absence of ephrinB2. These results identify ephrinB2 as a tumor promoter and its receptor, EphB4, as a tumor suppressor in HNSCC, presenting opportunities for rational drug design.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jaspreet Sharma
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Wu
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Lynn E Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Yoshitomi Y, Ikeda T, Saito-Takatsuji H, Yonekura H. Emerging Role of AP-1 Transcription Factor JunB in Angiogenesis and Vascular Development. Int J Mol Sci 2021; 22:ijms22062804. [PMID: 33802099 PMCID: PMC8000613 DOI: 10.3390/ijms22062804] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.
Collapse
|
11
|
Coppola C, Hopkins B, Huhn S, Du Z, Huang Z, Kelly WJ. Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4 + T Cells. Int J Mol Sci 2020; 21:E7814. [PMID: 33105566 PMCID: PMC7659484 DOI: 10.3390/ijms21217814] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023] Open
Abstract
While CAR-T therapy is a growing and promising area of cancer research, it is limited by high cost and the difficulty of consistently culturing T-cells to therapeutically relevant concentrations ex-vivo. Cytokines IL-2, IL-7 and IL-15 have been found to stimulate the growth of T cells, however, the optimized combination of these three cytokines for T cell proliferation is unknown. In this study, we designed an integrated experimental and modeling approach to optimize cytokine supplementation for rapid expansion in clinical applications. We assessed the growth data for statistical improvements over no cytokine supplementation and used a systems biology approach to identify genes with the highest magnitude of expression change from control at several time points. Further, we developed a predictive mathematical model to project the growth rate for various cytokine combinations, and investigate genes and reactions regulated by cytokines in activated CD4+ T cells. The most favorable conditions from the T cell growth study and from the predictive model align to include the full range of IL-2 and IL-7 studied, and at lower levels of IL-15 (6 ng/mL or 36 ng/mL). The highest growth rates were observed where either IL-2 or IL-7 was at the highest concentration tested (15 ng/mL for IL-2 and 80 ng/mL for IL-7) while the other was at the lowest (1 ng/mL for IL-2 and 6 ng/mL for IL-7), or where both IL-2 and IL-7 concentrations are moderate-corresponding to condition keys 200, 020, and 110 respectively. This suggests a synergistic interaction of IL-2 and IL-7 with regards to promoting optimal proliferation and survival of the activated CD4+ T cells. Transcriptomic data analysis identified the genes and transcriptional regulators up/down-regulated by each of the cytokines IL-2, IL-7, and IL-15. It was found that the genes with persistent expressing changes were associated with major pathways involved in cell growth and proliferation. In addition to influencing T cell metabolism, the three cytokines were found to regulate specific genes involved in TCR, JAK/STAT, MAPK, AKT and PI3K-AKT signaling. The developed Fuzzy model that can predict the growth rate of activated CD4+ T cells for various combinations of cytokines, along with identified optimal cytokine cocktails and important genes found in transcriptomic data, can pave the way for optimizing activated CD4 T cells by regulating cytokines in the clinical setting.
Collapse
Affiliation(s)
- Canaan Coppola
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| | - Brooks Hopkins
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| | - Steven Huhn
- Cell/Gene Therapy and Biologics Development, Merck & Co., Kenilworth, NJ 07033, USA; (S.H.); (Z.D.)
| | - Zhimei Du
- Cell/Gene Therapy and Biologics Development, Merck & Co., Kenilworth, NJ 07033, USA; (S.H.); (Z.D.)
| | - Zuyi Huang
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| | - William J. Kelly
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| |
Collapse
|
12
|
Schlereth SL, Karlstetter M, Hos D, Matthaei M, Cursiefen C, Heindl LM. Detection of Pro- and Antiangiogenic Factors in the Human Sclera. Curr Eye Res 2018; 44:172-184. [PMID: 30358460 DOI: 10.1080/02713683.2018.1540704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Avascular tissues can be used to identify antilymph- or antihemangiogenic factors. The human sclera-the outer covering layer of the eye, lacks lymphatic vessels and contains only a superficial network of blood vessels and was used here to identify endogenous antiangiogenic factors. METHODS Expression levels of a panel of 96 known pro- and antiangiogenic factors were analyzed in 12 scleral or conjunctival control samples from normal human donors using real-time PCR. In vitro, scleral homogenate was cocultured with blood- and lymphatic endothelial cells (BECs and LECs) and immunohistochemistry was performed of scleral fibroblasts and BECs. RESULTS Three antiangiogenic factors were significantly upregulated in the human sclera compared to the conjunctiva, including FBLN5 (fibulin 5), SERPINF1 (serpin peptidase inhibitor, clade F, member 1 = pigment epithelium derived factor) and TIMP2 (Tissue inhibitor of metalloproteinases 2). Six proangiogenic factors were significantly downregulated in the sclera, including FLT4 (Fms-related tyrosine kinase 4=VEGF-R3), HGF (hepatocyte growth factor), KIT (CD117 / c-kit), PROX1 (prospero homeobox 1), SEMA3F (semaphorin-3F) and TGFA (transforming growth factor alpha). In vitro, scleral homogenate inhibited the growth of both BECs and LECs. Immunohistochemistry labeling of three major antiangiogenic factors from scleral tissue confirmed TIMP3 and PEDF expression both in scleral fibroblasts and in blood endothelial cells, whereas TIMP2 was not detectable. CONCLUSION Balancing anti- and proangiogenic factors actively regulates human scleral avascularity, inhibits endothelial cell growth in vitro, and thus may help maintaining the vascular privilege of the inner eye.
Collapse
Affiliation(s)
- Simona L Schlereth
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Marcus Karlstetter
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Deniz Hos
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Mario Matthaei
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Claus Cursiefen
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Ludwig M Heindl
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| |
Collapse
|
13
|
Shimizu Y, Polavarapu R, Eskla K, Pantner Y, Nicholson CK, Ishii M, Brunnhoelzl D, Mauria R, Husain A, Naqvi N, Murohara T, Calvert JW. Impact of Lymphangiogenesis on Cardiac Remodeling After Ischemia and Reperfusion Injury. J Am Heart Assoc 2018; 7:e009565. [PMID: 30371303 PMCID: PMC6404883 DOI: 10.1161/jaha.118.009565] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Background Lymphatic vessels interconnect with blood vessels to form an elaborate system that aids in the control of tissue pressure and edema formation. Although the lymphatic system has been known to exist in a heart, little is known about the role the cardiac lymphatic system plays in the development of heart failure. Methods and Results Mice (C57 BL /6J, male, 8 to 12 weeks of age) were subjected to either myocardial ischemia or myocardial ischemia and reperfusion for up to 28 days. Analysis revealed that both models increased the protein expression of vascular endothelial growth factor C and VEGF receptor 3 starting at 1 day after the onset of injury, whereas a significant increase in lymphatic vessel density was observed starting at 3 days. Further studies aimed to determine the consequences of inhibiting the endogenous lymphangiogenesis response on the development of heart failure. Using 2 different pharmacological approaches, we found that inhibiting VEGF receptor 3 with MAZ -51 and blocking endogenous vascular endothelial growth factor C with a neutralizing antibody blunted the increase in lymphatic vessel density, blunted lymphatic transport, increased inflammation, increased edema, and increased cardiac dysfunction. Subsequent studies revealed that augmentation of the endogenous lymphangiogenesis response with vascular endothelial growth factor C treatment reduced inflammation, reduced edema, and improved cardiac dysfunction. Conclusions These results suggest that the endogenous lymphangiogenesis response plays an adaptive role in the development of ischemic-induced heart failure and supports the emerging concept that therapeutic lymphangiogenesis is a promising new approach for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Rohini Polavarapu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Kattri‐Liis Eskla
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Yvanna Pantner
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Chad K. Nicholson
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Masakazu Ishii
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Daniel Brunnhoelzl
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rohit Mauria
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Ahsan Husain
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Nawazish Naqvi
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| |
Collapse
|
14
|
Kampen KR, Scherpen FJG, Mahmud H, Ter Elst A, Mulder AB, Guryev V, Verhagen HJMP, De Keersmaecker K, Smit L, Kornblau SM, De Bont ESJM. VEGFC Antibody Therapy Drives Differentiation of AML. Cancer Res 2018; 78:5940-5948. [PMID: 30185550 DOI: 10.1158/0008-5472.can-18-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022]
Abstract
High expression of VEGFC predicts adverse prognosis in acute myeloid leukemia (AML). We therefore explored VEGFC-targeting efficacy as an AML therapy using a VEGFC mAb. VEGFC antibody therapy enforced myelocytic differentiation of clonal CD34+ AML blasts. Treatment of CD34+ AML blasts with the antibody reduced expansion potential by 30% to 50% and enhanced differentiation via FOXO3A suppression and inhibition of MAPK/ERK proliferative signals. VEGFC antibody therapy also accelerated leukemia cell differentiation in a systemic humanized AML mouse model. Collectively, these results define a regulatory function of VEGFC in CD34+ AML cell fate decisions via FOXO3A and serve as a new potential differentiation therapy for patients with AML.Significance: These findings reveal VEGFC targeting as a promising new differentiation therapy in AML. Cancer Res; 78(20); 5940-8. ©2018 AACR.
Collapse
Affiliation(s)
- Kim R Kampen
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, University of Leuven, Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Frank J G Scherpen
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hasan Mahmud
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arja Ter Elst
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - André B Mulder
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han J M P Verhagen
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, University of Leuven, Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer, Houston, Texas
| | - Eveline S J M De Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
Luz CCF, Noguti J, Araújo L, Simão Gomes T, Mara G, Silva MDS, Artigiani Neto R. Expression of VEGF and Cox-2 in Patients with Esophageal Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2018; 19:171-177. [PMID: 29373910 PMCID: PMC5844614 DOI: 10.22034/apjcp.2018.19.1.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 01/23/2023] Open
Abstract
Esophageal cancer is a highly aggressive neoplasm. In Brazil, it is the sixth most frequent among men and fifteenth among women. The most common type is squamous cell carcinoma (SCC), responsible for 96% of cases. Twenty-eight specimens of Esophael squamous cell carcinoma (ESCC) were obtained by surgery procedures.The tissues were fixed in formalin and embedded in paraffin. In each case, all available hematoxylin and eosin stained sections were examined and a representative block was selected. The ages of these patients ranged from 40 to 93 years, with a mean age of 60 years. Results: The histological grade of tumors was 4 well-differentiated, 19 moderately differentiated and 5 poorly differentiated. Expression of Cox-2 and VEGF in ESCC was demonstrated in 23 (82,14%) and 13 (44,43%) cases, respectively. Adjacent normal mucosa was positive in 11 (39,29%) samples and 9 (32,15%) samples for Cox-2 and VEGF, respectively. No relationship between the expression of Cox-2 and VEGF with the clinicopathological parameters, including gender, age, surgical margin, lymph node status and tumor differentiation. The median follow-up period was 60 months. Survival analysis of patients with ESCC showed no relationship with the expression of Cox-2 and VEGF. Conclusion: VEGF and Cox-2 are expressed in ESCC. Cox-2, VEGF, play a significant role in the origin and development of ESCC and the inhibitors of these proteins could prove to be an important therapeutic tool in the control of this disease.
Collapse
|
16
|
Liu Y, Ren W, Bai Y, Wan L, Sun X, Liu Y, Xiong W, Zhang YY, Zhou L. Oxyresveratrol prevents murine H22 hepatocellular carcinoma growth and lymph node metastasis via inhibiting tumor angiogenesis and lymphangiogenesis. J Nat Med 2018; 72:481-492. [PMID: 29350326 DOI: 10.1007/s11418-018-1173-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/06/2018] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the effects and mechanisms of oxyresveratrol (Oxyres) on hepatocellular carcinoma (HCC) in vitro and in vivo. The MTT and Transwell assays were performed to investigate the effects of Oxyres on cell proliferation and migration of two HCC cell lines, QGY-7701 and SMMC-7721 cells. H22 cells were subcutaneously injected into hind foot pads of 70 male mice to establish a lymph node metastasis model. These mice were randomly divided into seven groups as follows, control group, HCC group, Oxyres 20 mg/kg group, Oxyres 40 mg/kg group, Oxyres 60 mg/kg group, Resveratrol (Res) group, and Adriamycin (ADM) group. Oxyres, Res, and ADM were intraperitoneally injected daily for consecutive 21 days. Tumors and popliteal lymph node were isolated and embedded for histology analysis. Expressions of CD31 and vascular endothelial growth factor receptor-3 (VEGFR3) in tumors were detected by immunohistocehmistry. Expressions of vascular endothelial growth factor C (VEGF-C) were measured by Western blot. Oxyres significantly inhibited the proliferation and migration of QGY-7701 and SMMC-7721 cells. Oxyres significantly inhibited tumor growth (p < 0.001) and metastasis to sentinel lymph nodes (70%) in a dose-dependent manner. Oxyres showed a similar inhibition rate as Res. Oxyres also significantly decreased micro-blood vessel density and micro-lymphatic vessel density in tumors (p < 0.05). Expressions of CD31, VEGFR3, and VEGF-C of tumors were also inhibited by Oxyres (p < 0.05). Oxyres exerts anti-tumor effects against HCC through inhibiting both angiogenesis and lymph node metastasis, which suggests Oxyres be a potential therapeutic agent.
Collapse
Affiliation(s)
- Yuanqi Liu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Ren
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.,Institute of Laboratory Animals, Sichuan Academy of Medical Sciences and Sichuan Provincial Peolpe's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yang Bai
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lihong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaodong Sun
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wenbi Xiong
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuan-Yuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Wen YR, Yang JH, Wang X, Yao ZB. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease. Neural Regen Res 2018; 13:709-716. [PMID: 29722325 PMCID: PMC5950683 DOI: 10.4103/1673-5374.230299] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain.First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C) protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3), significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ya-Ru Wen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun-Hua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Bin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proc Natl Acad Sci U S A 2017; 114:4370-4375. [PMID: 28396419 DOI: 10.1073/pnas.1616893114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Arachidonic acid (ARA) is metabolized by cyclooxygenase (COX) and cytochrome P450 to produce proangiogenic metabolites. Specifically, epoxyeicosatrienoic acids (EETs) produced from the P450 pathway are angiogenic, inducing cancer tumor growth. A previous study showed that inhibiting soluble epoxide hydrolase (sEH) increased EET concentration and mildly promoted tumor growth. However, inhibiting both sEH and COX led to a dramatic decrease in tumor growth, suggesting that the contribution of EETs to angiogenesis and subsequent tumor growth may be attributed to downstream metabolites formed by COX. This study explores the fate of EETs with COX, the angiogenic activity of the primary metabolites formed, and their subsequent hydrolysis by sEH and microsomal EH. Three EET regioisomers were found to be substrates for COX, based on oxygen consumption and product formation. EET substrate preference for both COX-1 and COX-2 were estimated as 8,9-EET > 5,6-EET > 11,12-EET, whereas 14,15-EET was inactive. The structure of two major products formed from 8,9-EET in this COX pathway were confirmed by chemical synthesis: ct-8,9-epoxy-11-hydroxy-eicosatrienoic acid (ct-8,9-E-11-HET) and ct-8,9-epoxy-15-hydroxy-eicosatrienoic acid (ct-8,9-E-15-HET). ct-8,9-E-11-HET and ct-8,9-E-15-HET are further metabolized by sEH, with ct-8,9-E-11-HET being hydrolyzed much more slowly. Using an s.c. Matrigel assay, we showed that ct-8,9-E-11-HET is proangiogenic, whereas ct-8,9-E-15-HET is not active. This study identifies a functional link between EETs and COX and identifies ct-8,9-E-11-HET as an angiogenic lipid, suggesting a physiological role for COX metabolites of EETs.
Collapse
|
19
|
Kao SJ, Lee WJ, Chang JH, Chow JM, Chung CL, Hung WY, Chien MH. Suppression of reactive oxygen species-mediated ERK and JNK activation sensitizes dihydromyricetin-induced mitochondrial apoptosis in human non-small cell lung cancer. ENVIRONMENTAL TOXICOLOGY 2017; 32:1426-1438. [PMID: 27539140 DOI: 10.1002/tox.22336] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer with a high mortality rate and still remains a therapeutic challenge. A strategy for targeting NSCLC is to identify agents that are effective against NSCLC cells while sparing normal cells. Dihydromyricetin (DHM) is the major flavonoid component derived from Ampelopsis grossedentata, which has a long history of use in medicine. Herein, the molecular mechanisms by which DHM exerts its anticancer effects against NSCLC cells were investigated. Results from MTS, colony formation, Western blot, flow cytometric, and JC-1 mitochondrial membrane potential assays revealed that DHM showed a selective cytotoxic effect against NSCLC cells (A549 and H1975), but not against normal lung (WI-38) fibroblasts, by inducing apoptosis. DHM-induced cell apoptosis occurred through Bcl-w suppression-mediated mitochondrial membrane depolarization, caspase-9/-7/-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in A549 and H1975 cells. Moreover, treatment of A549 and H1975 cells with DHM induced increase of intracellular peroxide and sustained activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2, and the reactive oxygen species scavenger, N-acetylcysteine (NAC), reversed DHM-induced ERK and JNK activation. Furthermore, treatment of cells with specific inhibitors of ERK and JNK or NAC significantly promoted the DHM-induced activation of caspase-9/-7/-3 and PARP cleavage and also sensitized the antitumorigenic effect of DHM on NSCLC cells. These findings define and support a novel function of DHM of inducing mitochondrion-derived apoptosis in human NSCLC cells, and a combination of DHM with ERK and JNK inhibitors should be a good strategy for preventing NSCLC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1426-1438, 2017.
Collapse
Affiliation(s)
- Shang-Jyh Kao
- Department of Chest Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
EGF-Induced VEGF Exerts a PI3K-Dependent Positive Feedback on ERK and AKT through VEGFR2 in Hematological In Vitro Models. PLoS One 2016; 11:e0165876. [PMID: 27806094 PMCID: PMC5091849 DOI: 10.1371/journal.pone.0165876] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
EGFR and VEGFR pathways play major roles in solid tumor growth and progression, however, little is known about these pathways in haematological tumors. This study investigated the crosstalk between EGFR and VEGFR2 signaling in two hematological in vitro models: THP1, a human monocytic leukemia, and Raji, a Burkitt's lymphoma, cell lines. Results showed that both cell lines express EGFR and VEGFR2 and responded to EGF stimulation by activating EGFR, triggering VEGF production and phosphorylating ERK, AKT, and p38 very early, with a peak of expression at 10-20min. Blocking EGFR using Tyrphostin resulted in inhibiting EGFR induced activation of ERK, AKT, and p38. In addition, EGF stimulation caused a significant and immediate increase, within 1min, in pVEGFR2 in both cell lines, which peaked at ~5-10 min after treatment. Selective inhibition of VEGFR2 by DMH4, anti-VEGFR2 antibody or siRNA diminished EGF-induced pAKT and pERK, indicating a positive feedback exerted by EGFR-induced VEGF. Similarly, the specific PI3K inhibitor LY294002, suppressed AKT and ERK phosphorylation showing that VEGF feedback is PI3K-dependent. On the other hand, phosphorylation of p38, initiated by EGFR and independent of VEGF feedback, was diminished using PLC inhibitor U73122. Moreover, measurement of intracellular [Ca2+] and ROS following VEGFR2 inhibition and EGF treatment proved that VEGFR2 is not implicated in EGF-induced Ca2+ release whereas it boosts EGF-induced ROS production. Furthermore, a significant decrease in pAKT, pERK and p-p38 was shown following the addition of the ROS inhibitor NAC. These results contribute to the understanding of the crosstalk between EGFR and VEGFR in haematological malignancies and their possible combined blockade in therapy.
Collapse
|
21
|
Zhou X, Xu CJ, Wang JX, Dai T, Ye YP, Cui YM, Liao WT, Wu XL, Ou JP. Metastasis-Associated in Colon Cancer-1 Associates With Poor Prognosis and Promotes Cell Invasion and Angiogenesis in Human Cervical Cancer. Int J Gynecol Cancer 2016; 25:1353-63. [PMID: 26332389 PMCID: PMC5106080 DOI: 10.1097/igc.0000000000000524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Supplemental digital content is available in the text. Objective The aim of this study is to investigate the clinicopathologic significance and potential role of metastasis-associated in colon cancer-1 (MACC1) in the progression of cervical cancer. Methods MACC1 expression was examined in cervical cancer cell lines, 6 matched cervical cancer tissues, and adjacent noncancerous tissues using Western blotting and real-time reverse transcriptase polymerase chain reaction. MACC1 protein expression and localization were determined in 181 paraffin-embedded archived cervical cancer samples using immunohistochemistry. Statistical analyses were applied to evaluate the clinicopathologic significance. The effects of MACC1 on cell migration, invasion, and angiogenesis were examined using migration assay, wound healing assay, 3-dimensional morphogenesis assay, and chicken chorioallantoic membrane assay. Western blotting was performed to examine the impact of MACC1 on the Akt and nuclear factor κB signaling pathways. Results Both protein and messenger RNA levels of MACC1 was up-regulated in cervical cancer cell lines and cervical cancer tissues, as compared with normal tissues. High MACC1 expression was detected in 96 (53%) of 181 of the cervical cancer tissues. In addition, high MACC1 expression correlated significantly with aggressiveness of cervical cancer, including International Federation of Gynecology and Obstetric stage (P = 0.001), pelvic lymph node metastasis (P = 0.004), recurrence (P = 0.037), and poor survival (P = 0.001). Moreover, enforced expression of MACC1 in cervical cancer cell lines significantly enhanced cell migration, invasion, and angiogenesis. Conversely, knockdown of MACC1 caused an inhibition of cell migration, invasion, and angiogenesis. Up-regulation of MACC1 increased, but knockdown of MACC1 decreased the expression of matrix metalloproteinase-2 and matrix metalloproteinase-9. Furthermore, enforced expression of MACC1 could enhance, but knockdown of MACC1 could reduce AKT and nuclear factor κB pathway activity. Conclusions Our findings suggest that MACC1 protein, as a valuable marker of cervical cancer prognosis, plays an important role in the progression of human cervical cancer cells.
Collapse
Affiliation(s)
- Xiang Zhou
- *Department of Microscurgery and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; †Department of Pathology of Basic Medical Sciences, Southern Medical University, Guangzhou, China; and ‡Department of Gynaecology and Obstetrics, the 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China; §Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and ∥Center for Reproductive Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zong S, Li H, Shi Q, Liu S, Li W, Hou F. Prognostic significance of VEGF-C immunohistochemical expression in colorectal cancer: A meta-analysis. Clin Chim Acta 2016; 458:106-14. [PMID: 27155587 DOI: 10.1016/j.cca.2016.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND We sought to comprehensively summarize available evidence for the use of VEGF-C protein to evaluate the clinicopathological and prognostic role of VEGF-C in colorectal cancer. METHODS Electronic databases from inception to February 2016 were used to search without language restrictions for original articles. A meta-analysis was undertaken to assess the relationship between VEGF-C expression and overall survival (OS) in colorectal cancer. RESULTS Twenty-seven studies were included in the final meta-analysis. We aggregated 13 trials (n=1.428 patients) that evaluated the correlation between OS and VEGF-C overexpression. Statistics were performed for OS (HR=1.95; 95%CI=1.31-2.92, P=0.007). When the studies were stratified by the pathological variables, including T stage (n=383 patients; OR=1.79; 95%CI=1.14-2.81), lymph node metastasis (n=3212 patients; OR=4.21; 95%CI=3.49-5.08), M stage (n=1106 patients; OR=4.46; 95%CI=2.96-6.70), vascular invasion(n=1471 patients; OR=2.18; 95%CI=1.65-2.88), lymph invasion (n=831 patients; OR=3.95; 95%CI=2.80-5.56), histo-differentiation (n=1695 patients; OR=1.34; 95%CI=1.00-1.79) and Duke's stage(n=778 patients; OR=4.90; 95%CI=3.55-6.75), TNM stage (n=808 patients; OR=1.73; 95%CI=1.18-2.54) provided critical and comprehensive prognostic information. CONCLUSION Our results demonstrated that VEGF-C overexpression was associated with OS in colorectal cancer.
Collapse
Affiliation(s)
- Shaoqi Zong
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, Shanghai 200071, China.
| | - Hongjia Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, Shanghai 200071, China
| | - Qi Shi
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, Shanghai 200071, China
| | - Shanshan Liu
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, Shanghai 200071, China
| | - Wen Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, Shanghai 200071, China.
| | - Fenggang Hou
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, Shanghai 200071, China.
| |
Collapse
|
23
|
Gagliostro V, Seeger P, Garrafa E, Salvi V, Bresciani R, Bosisio D, Sozzani S. Pro-lymphangiogenic properties of IFN-γ-activated human dendritic cells. Immunol Lett 2016; 173:26-35. [PMID: 26987844 DOI: 10.1016/j.imlet.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the initiation of adaptive immune responses. In addition, through the release of pro- and anti-angiogenic mediators, DCs are key regulators of blood vessel remodeling, a process that characterizes inflammation. Less information is available on the role of DCs in lymphangiogenesis. This study reports that human DCs produce VEGF-C, a cytokine with potent pro-lymphangiogenic activity when stimulated with IFN-γ. DC-derived VEGF-C was biologically active, being able to promote tube-like structure formation in cultures of human lymphatic endothelial cells (LECs). DCs co-cultured with IL-15-activated NK cells produced high levels of VEGF-C, suggesting a role for NK-DC cross-talk in peripheral lymphoid and non-lymphoid tissues in inflammation-associated lymphangiogenesis. Induction of VEGF-C by IFN-γ was detected also in other myeloid cells, such as blood-purified CD1c(+) DCs, CD14(+) monocytes and in monocyte-derived macrophages. In all these cell types, VEGF-C was found associated with the cell membrane by low affinity, heparan sulphate-mediated, interactions. Therefore, human DCs should be considered as new players in inflammation-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Vincenzo Gagliostro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pascal Seeger
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Humanitas Clinical Research Center, Rozzano, Italy.
| |
Collapse
|
24
|
Vastatin, an Endogenous Antiangiogenesis Polypeptide That Is Lost in Hepatocellular Carcinoma, Effectively Inhibits Tumor Metastasis. Mol Ther 2016; 24:1358-68. [PMID: 26961408 DOI: 10.1038/mt.2016.56] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/30/2016] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular cancer without effective treatment. Here we report that polypeptide of NC1 domain of type VIII collagen (Vastatin) is an endogenous polypeptide expressed in normal liver tissue but lost in the liver of most HCC patients (73.1%). Its expression level is negatively associated with tumor size (P = 0.035) and metastasis (P = 0.016) in HCC patients. To evaluate its potential use as a therapeutic, we constructed a recombinant adeno-associated virus carrying Vastatin (rAAV-Vastatin) to treat HCC in an orthotopic Buffalo rat model. rAAV-Vastatin treatment significantly prolonged the median survival, inhibited tumor growth, and completely prevented metastasis in HCC-bearing rats by decreasing microvessel density and increasing tumor necrosis. No detectable toxicity in nontumor-bearing mice was observed. To investigate its molecular mechanisms, we performed DNA microarray, western blotting assays, and bioinformatic analysis to determine its effect on global gene expression patterns and signal transduction pathways. Our results indicated that rAAV-Vastatin significantly reduced the expressions of Pck1, JAG2, and c-Fos, thus inhibiting the cellular metabolism, Notch and AP-1 signaling pathways, respectively. Hence, we demonstrated for the first time that Vastatin is a novel, safe, and effective antiangiogenic therapeutic and a potential biomarker for HCC.
Collapse
|
25
|
Rodems TS, Iida M, Brand TM, Pearson HE, Orbuch RA, Flanigan BG, Wheeler DL. Adaptive responses to antibody based therapy. Semin Cell Dev Biol 2016; 50:153-63. [PMID: 26808665 DOI: 10.1016/j.semcdb.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy.
Collapse
Affiliation(s)
- Tamara S Rodems
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Hannah E Pearson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Rachel A Orbuch
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Bailey G Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| |
Collapse
|
26
|
Xuan Y, Chi L, Tian H, Cai W, Sun C, Wang T, Zhou X, Shao M, Zhu Y, Niu C, Sun Y, Cong W, Zhu Z, Li Z, Wang Y, Jin L. The activation of the NF-κB-JNK pathway is independent of the PI3K-Rac1-JNK pathway involved in the bFGF-regulated human fibroblast cell migration. J Dermatol Sci 2016; 82:28-37. [PMID: 26829882 DOI: 10.1016/j.jdermsci.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skin wound healing is a complex process that repairs multiple organ-tissues. Fibroblasts are key players of skin cells, whose migration is important during wound healing process. bFGF has shown a great efficacy to promote cell migration, but the precise mechanism by which bFGF regulates cell migration remains elusive. OBJECTIVE The aim of this study was to find bFGF-regulated gene pools and further identify target molecules that participated in human fibroblast cell migration. METHODS Skin primary fibroblasts and rat skin wound model were used to demonstrate the novel mechanism of bFGF regulating cell migration to accelerate wound healing. Cell migration was determined using the wound healing scratch assay. The differentially expressed genes and numerous biochemical pathways after bFGF treatment were identified by RNA-Seq analysis, and differentially expressed genes were further verified by qRT-PCR. siRNA duplex target to interfering the expression of PI3-kinase (p110α) was transformed into NIH/3T3 cells. Western blotting analysis was used to determine marker protein expressions. The invasive activity of fibroblasts was measured using 3D spheroid cell invasion assay. RESULTS RNA-Seq analysis identified numerous biochemical pathways including the NF-κB pathway under the control of FGF signaling. bFGF negatively regulates the phosphorylation of IκB-α, the most well studied NF-κB signaling regulator while bFGF induces JNK phosphorylation. Application of Bay11-7082, a representative NF-κB inhibitor promoted cell migration, invasion and enhanced the JNKs phosphorylation. However, inhibition of JNKs blocked cell migration when NF-κB is inhibited. Moreover, application of the PI3K inhibitor LY294002 together with Bay11-7082 maintained normal cell migration and knocking-down PI3K (p110α) by a specific siRNA inhibited JNKs phosphorylation while maintaining normal IκBα phosphorylation, indicating that PI3K and NF-κB signaling independently regulate JNKs activation. In addition, administration of bFGF or Bay11-7082 promoted rat skin wound repair and accelerated the invasion of fibroblasts. CONCLUSION This study sheds light on the mode of action of bFGF and identifies that the NF-κB-JNKs pathway is independent of the PI3K-JNKs pathway to accelerate fibroblast migration. In addition, bFGF and the relief of inflammation could be a favorable therapeutic approach for skin wound healing.
Collapse
Affiliation(s)
- Yuanhu Xuan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Lisha Chi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Haishan Tian
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Wanhui Cai
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Sun
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xuan Zhou
- Ningbo First Hospital, Ningbo 315000, China
| | - Minglong Shao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yuting Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Niu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yusheng Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weitao Cong
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongxin Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhaoyu Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Wang
- Institute of neuroscience, Department of histology and embryology, Wenzhou Medical University, Wenzhou 325000, China.
| | - Litai Jin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
27
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
28
|
Chao R, Chow JM, Hsieh YH, Chen CK, Lee WJ, Hsieh FK, Yu NY, Chou MC, Cheng CW, Yang SF, Chien MH. Tricetin suppresses the migration/invasion of human glioblastoma multiforme cells by inhibiting matrix metalloproteinase-2 through modulation of the expression and transcriptional activity of specificity protein 1. Expert Opin Ther Targets 2015; 19:1293-306. [PMID: 26245494 DOI: 10.1517/14728222.2015.1075509] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) is a severely invasive tumor that can be fatal because it is difficult to treat. Tricetin, a natural flavonoid, was demonstrated to inhibit the growth of various cancers, but the effect of tricetin on cancer motility is largely unknown. RESEARCH DESIGN AND METHODS In the present study, we examined the anti-invasive properties of tricetin in huwman GBM cells. RESULTS Our results showed that tricetin inhibited the migration/invasion of two GBM cell lines. We found that tricetin inhibited MMP-2 expression in the GBM cells. Real-time polymerase chain reaction and promoter activity assays indicated that tricetin inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were associated with the suppression of specificity protein-1 (SP-1) DNA-binding activity. An examination of clinical samples revealed a positive correlation between SP-1 and MMP-2 in glioma specimens, and higher expression levels were correlated with a worse probability of survival. Moreover, blocking the extracellular signal-regulated kinase (ERK) pathway also inhibited MMP-2-mediated cell motility, and further enhanced the anti-invasive ability of tricetin in GBM cells. CONCLUSIONS SP-1 is an important target of tricetin for suppressing MMP-2-mediated cell motility in GBM cells, and a combination of tricetin and an ERK inhibitor may be a good strategy for preventing GBM invasion.
Collapse
Affiliation(s)
- Rockey Chao
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan
| | - Jyh-Ming Chow
- b 2 Taipei Medical University, Wan Fang Hospital, Department of Internal Medicine , Taipei, Taiwan
| | - Yi-Hsien Hsieh
- c 3 Chung Shan Medical University, School of Medicine, Department of Biochemistry , Taichung, Taiwan
| | - Chi-Kuan Chen
- d 4 Genomics Research Center, Academia Sinica , Taipei, Taiwan.,e 5 National Taiwan University, Graduate Institute of Toxicology, College of Medicine , Taipei, Taiwan
| | - Wei-Jiunn Lee
- f 6 Taipei Medical University, Wan Fang Hospital, Department of Urology , Taipei, Taiwan
| | - Feng-Koo Hsieh
- g 7 Ludwig-Maximilians University, Department of Surgery, Experimental Surgery and Regenerative Medicine , Munich, Germany
| | - Nuo-Yi Yu
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan
| | - Ming-Chih Chou
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan
| | - Chao-Wen Cheng
- h 8 Taipei Medical University, Graduate Institute of Clinical Medicine , 250 Wu-Hsing Street, Taipei, Taiwan +886 2 2736 1661 ; +886 2 2739 0500 ;
| | - Shun-Fa Yang
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan.,i 9 Chung Shan Medical University Hospital, Department of Medical Research , Taichung, Taiwan
| | - Ming-Hsien Chien
- h 8 Taipei Medical University, Graduate Institute of Clinical Medicine , 250 Wu-Hsing Street, Taipei, Taiwan +886 2 2736 1661 ; +886 2 2739 0500 ; .,j 10 Taipei Medical University, Wan Fang Hospital, Department of Medical Research , Taipei, Taiwan
| |
Collapse
|
29
|
Diab S, Fidanzi C, Léger DY, Ghezali L, Millot M, Martin F, Azar R, Esseily F, Saab A, Sol V, Diab-Assaf M, Liagre B. Berberis libanotica extract targets NF-κB/COX-2, PI3K/Akt and mitochondrial/caspase signalling to induce human erythroleukemia cell apoptosis. Int J Oncol 2015; 47:220-30. [PMID: 25997834 DOI: 10.3892/ijo.2015.3012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/07/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to describe and understand the relationship between cyclooxygenase-2 (COX-2) expression and apoptosis rate in erythroleukemia cells after apoptosis induction by Berberis libanotica (Bl) extract. To achieve this goal we used erythroleukemia cell lines expressing COX‑2 (HEL cell line) or not (K562 cell line). Moreover, we made use of COX‑2 cDNA to overexpress COX‑2 in K562 cells. In light of the reported chemopreventive and chemosensitive effects of natural products on various tumor cells and animal models, we postulated that our Bl extract may mediate their effects through apoptosis induction with suppression of cell survival pathways. Our study is the first report on the specific examination of intrinsic apoptosis and Akt/NF-κB/COX‑2 pathways in human erythroleukemia cells upon Bl extract exposure. Even if Bl extract induced apoptosis of three human erythroleukemia cell lines, a dominant effect of Bl extract treatment on K562 cells was observed resulting in activation of the late markers of apoptosis with caspase-3 activation, PARP cleavage and DNA fragmentation. Whereas, we showed that Bl extract reduced significantly expression of COX‑2 by a dose-dependent manner in HEL and K562 (COX‑2+) cells. Furthermore, in regard to our results, it is clear that the simultaneous inhibition of Akt and NF-κB signalling can significantly contribute to the anticancer effects of Bl extract in human erythroleukemia cells. We observed that the Bl extract is clearly more active than the berberine alone on the induction of DNA fragmentation in human erythro-leukemia cells.
Collapse
Affiliation(s)
- Saada Diab
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Chloe Fidanzi
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - David Y Léger
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Lamia Ghezali
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Marion Millot
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Frédérique Martin
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Rania Azar
- Molecular Tumorigenesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Fadi Esseily
- Laboratory Science Department, Faculty of Public Health, Lebanese University, Jdeidet El Metn, Lebanon
| | - Antoine Saab
- Faculty of Sciences II, Chemistry Department, Lebanese University, Beirut, Lebanon
| | - Vincent Sol
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| | - Mona Diab-Assaf
- Molecular Tumorigenesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Bertrand Liagre
- Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges, France
| |
Collapse
|
30
|
Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
|
31
|
Darling VR, Hauke RJ, Tarantolo S, Agrawal DK. Immunological effects and therapeutic role of C5a in cancer. Expert Rev Clin Immunol 2014; 11:255-63. [PMID: 25387724 DOI: 10.1586/1744666x.2015.983081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The specific role of C5a in cancer, especially in melanoma, has yet to be determined. Differential effects of C5a could be cancer specific. In the host defense system, C5a functions to protect the body from harmful entities via a plethora of mechanisms. Yet, C5a may also serve to potentiate cancerous process. C5a facilitates cellular proliferation and regeneration by attracting myeloid-derived suppressor cells and supporting tumor promotion. In this article, we critically reviewed the properties, mechanisms of action and functions of C5a, with particular emphasis on cancer inhibition and promotion, and clinical application of such knowledge in better management of patients with cancer. Outstanding questions and future directions in regard to the function of C5a in melanoma and other cancers are discussed.
Collapse
Affiliation(s)
- Victoria R Darling
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | |
Collapse
|
32
|
Hsiao PC, Chou YE, Tan P, Lee WJ, Yang SF, Chow JM, Chen HY, Lin CH, Lee LM, Chien MH. Pterostilbene simultaneously induced G0/G1-phase arrest and MAPK-mediated mitochondrial-derived apoptosis in human acute myeloid leukemia cell lines. PLoS One 2014; 9:e105342. [PMID: 25144448 PMCID: PMC4140770 DOI: 10.1371/journal.pone.0105342] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022] Open
Abstract
Background Pterostilbene (PTER) is a dimethylated analog of the phenolic phytoalexin, resveratrol, with higher anticancer activity in various tumors. Herein, the molecular mechanisms by which PTER exerts its anticancer effects against acute myeloid leukemia (AML) cells were investigated. Methodology and Principal Findings Results showed that PTER suppressed cell proliferation in various AML cell lines. PTER-induced G0/G1-phase arrest occurred when expressions of cyclin D3 and cyclin-dependent kinase (CDK)2/6 were inhibited. PTER-induced cell apoptosis occurred through activation of caspases-8-9/-3, and a mitochondrial membrane permeabilization (MMP)-dependent pathway. Moreover, treatment of HL-60 cells with PTER induced sustained activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2, and inhibition of both MAPKs by their specific inhibitors significantly abolished the PTER-induced activation of caspases-8/-9/-3. Of note, PTER-induced cell growth inhibition was only partially reversed by the caspase-3-specific inhibitor, Z-DEVE-FMK, suggesting that this compound may also act through a caspase-independent pathway. Interestingly, we also found that PTER promoted disruption of lysosomal membrane permeabilization (LMP) and release of activated cathepsin B. Conclusion Taken together, our results suggest that PTER induced HL-60 cell death via MAPKs-mediated mitochondria apoptosis pathway and loss of LMP might be another cause for cell apoptosis induced by PTER.
Collapse
Affiliation(s)
- Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Peng Tan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jyh-Ming Chow
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hui-Yu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MHC); (LML)
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MHC); (LML)
| |
Collapse
|
33
|
Liu J, Cheng Y, He M, Yao S. Vascular endothelial growth factor C enhances cervical cancer cell invasiveness via upregulation of galectin-3 protein. Gynecol Endocrinol 2014; 30:461-5. [PMID: 24650367 DOI: 10.3109/09513590.2014.898054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) promotes cervical cancer metastasis, while the detailed mechanism remains obscure. Recent evidence shows that galectin-3 (Gal-3), a glycan binding protein, interacts with the VEGF receptors and reinforces their signal transduction. In this study, we investigated the role of Gal-3 in VEGF-C-induced cervical cancer cell invasion. On cervical carcinoma cell line SiHa cells, silencing of Gal-3 expression with specific siRNA largely impaired VEGF-C-enhanced cell invasion. Treatment with VEGF-C for 12-48 h enhanced Gal-3 protein expression, which was inhibited by the addition of NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Moreover, the silencing of NF-κB subunit p65 expression with specific siRNA attenuated VEGF-C-enhanced Gal-3 expression, suggesting that NF-κB is the key intermediate. Under VEGF-C stimulation, an enhanced interaction between VEGF receptor-3 (VEGF-R3) and Gal-3 was found, which may possibly lead to VEGF-R3 activation since exogenous Gal-3 induced VEGF-R3 phosphorylation in a dose- and time-dependent manner. In conclusion, our findings implied that VEGF-C enhanced cervical cancer invasiveness via upregulation of Gal-3 protein through NF-κB pathway, which may shed light on potential therapeutic strategies for cervical cancer therapy.
Collapse
Affiliation(s)
- Junxiu Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-Sen University , Guangdong, Guangzhou , China and
| | | | | | | |
Collapse
|
34
|
JAM-C promotes lymphangiogenesis and nodal metastasis in non-small cell lung cancer. Tumour Biol 2014; 35:5675-87. [PMID: 24584816 DOI: 10.1007/s13277-014-1751-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/13/2014] [Indexed: 01/09/2023] Open
Abstract
This study aims to investigate lymphatic metastasis-related genes in non-small cell lung carcinomas (NSCLC). NSCLC tissue was analyzed for expression of junctional adhesion molecule-C (JAM-C) protein. Our data revealed novel associations between JAM-C overexpression in primary tumors and lymphatic microvessel density (LMVD), lymph node metastasis, and poorer overall survival and recurrence-free survival. We used the highly metastatic human lung adenocarcinoma cell line Anip973 and its parental line AGZY83-a, which has a low metastatic capacity, in vivo and vitro. We found that JAM-C played an important role in different metastasis capacity of lymph node. JAM-C affected tumor growth, LNM, JAM-C, VEGF-C, vasculature, and ERK1/2 phosphorylation (p-ERK1/2). β1 integrin was involved in lymph node metastasis. Moreover, JAM-C knockdown in highly metastatic Anip973 decreased cell migration in scratch-wound assays. The JAM-C knockdown in Anip973 cells and JAM-C cDNA in AGZY83-a cells regulated the vascular endothelial growth factor C (VEGF-C) expression. Immunofluorescence showed that blocked VEGF-C expression in JAM-C shRNA Anip973 cells were restored after JAM-C treatment. JAM-C-induced VEGF-C in JAM-C cDNA AGZY83-a cells was also effectively inhibited by treatment with an antibody specifically against JAM-C. Use of media from Anip973 cells, AGZY83-a, and A549cells lung cancer cells that overexpressed or downregulated JAM-C was demonstrated to affect activity of VEGF-C-induced β1 integrin subunit or ERK activity in human dermal lymphatic endothelial cells (HDLEC) treated with VEGF-C or inhibitory antibody to JAM-C. Overall, these results indicate that JAM-C could mediate metastasis as it contributes to VEGF-C expression in cancer cells. JAM-C affects β1and ERK activation in HDLEC, thus promoting lymphangiogenesis and nodal metastasis. Our findings indicate that JAM-C may be a therapeutic target for preventing and treating lymphatic metastases.
Collapse
|
35
|
Ramon S, Woeller CF, Phipps RP. The influence of Cox-2 and bioactive lipids on hematological cancers. ACTA ACUST UNITED AC 2014; 2:135-142. [PMID: 24883266 DOI: 10.2174/2211552802999140131105947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is implicated in the progression of multiple types of cancers including lung, colorectal, breast and hematological malignancies. Cyclooxygenases (Cox) -1 and -2 are important enzymes involved in the regulation of inflammation. Elevated Cox-2 expression is associated with a poor cancer prognosis. Hematological malignancies, which are among the top 10 most predominant cancers in the USA, express high levels of Cox-2. Current therapeutic approaches against hematological malignances are insufficient as many patients develop resistance or relapse. Therefore, targeting Cox-2 holds promise as a therapeutic approach to treat hematological malignancies. NSAIDs and Cox-2 selective inhibitors are anti-inflammatory drugs that decrease prostaglandin and thromboxane production while promoting the synthesis of specialized proresolving mediators. Here, we review the evidence regarding the applicability of NSAIDs, such as aspirin, as well as Cox-2 specific inhibitors, to treat hematological malignancies. Furthermore, we discuss how FDA-approved Cox inhibitors can be used as anti-cancer drugs alone or in combination with existing chemotherapeutic treatments.
Collapse
Affiliation(s)
- Sesquile Ramon
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 ; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
36
|
Overexpression of AKIP1 promotes angiogenesis and lymphangiogenesis in human esophageal squamous cell carcinoma. Oncogene 2014; 34:384-93. [PMID: 24413079 DOI: 10.1038/onc.2013.559] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023]
Abstract
A-kinase-interacting protein 1 (AKIP1) is found to be overexpressed in breast and prostate cancers, suggesting that AKIP1 might act as a potent oncogenic protein. However, the clinical significance and biological role of AKIP1 in cancer progression remain largely unknown. Herein, we report that AKIP1 is markedly overexpressed in esophageal squamous cell carcinoma (ESCC) cell lines and clinical ESCC samples. AKIP1 expression significantly correlates with ESCC progression and patients' shorter survival time. Furthermore, we find that overexpressing AKIP1 induces, whereas silencing AKIP1 reduces, ESCC angiogenesis and lymphangiogenesis both in vitro and in vivo. Moreover, we demonstrate that AKIP1 transcriptionally upregulates vascular endothelial growth factor-C (VEGF-C) via interaction with its promoter through cooperation with multiple transcriptional factors, including SP1, AP2 and nuclear factor-κB (NF-κB). Importantly, significant correlation between levels of AKIP1 and VEGF-C is observed in a cohort of human ESCC, as well as in non-small cell lung cancer, hepatocellular carcinoma and ovarian cancer. Hence, these findings indicate an important role for AKIP1 in ESCC angiogenesis and lymphangiogenesis, and uncover a novel mechanism for the upregulation of VEGF-C in cancers.
Collapse
|
37
|
Aliparasti MR, Almasi S, Sanaat Z, Movasaghpoor A, Khalili-Dizaji R, Sadeghi-Bazargani H. Gene Expression of VEGF-A and VEGF-C in Peripheral Blood Mononuclear Cells of Iranian Patients with Acute Myeloid Leukemia. Turk J Haematol 2014; 30:137-43. [PMID: 24385776 PMCID: PMC3878457 DOI: 10.4274/tjh.2011.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 11/06/2012] [Indexed: 12/01/2022] Open
Abstract
Objective: The crucial role of angiogenesis in the pathophysiology of acute myeloid leukemia (AML) has been proposed. One of the key regulators of angiogenesis is the vascular endothelial growth factor (VEGF). Among the VEGF family, it has been observed that VEGF-A and VEGF-C are expressed by AML cells and mediate leukemic cell proliferation, survival, and resistance to chemotherapy. Emerging evidence, however, suggests that elevated levels of VEGF or a proangiogenic phenotype may impede, rather than promote, early tumor development and progression. As the significance of VEGF-A and VEGF-C levels in the pathogenesis of AML has not been clarified well, the aim of this study is to evaluate gene expression of these angiogenesis promoters and its possible prognostic value in peripheral blood mononuclear cells of Iranian patients with AML. Materials and Methods: We investigated the mRNA expression of VEGF-A and VEGF-C in peripheral blood mononuclear cells of 27 patients with newly diagnosed AML and 28 healthy controls by quantitative real-time PCR. Results: Expression of VEGF-C mRNA was significantly lower in AML patients than in healthy controls (p<0.001). However, there was no significant decrement in expression of VEGF-A mRNA of AML patients compared to the control group (p=0.861). VEGF-A and VEGF-C expression were not able to predict clinical outcome. Conclusion: Our data showed that AML is associated with a decreased expression of VEGF-C mRNA. However, expression levels did not influence the clinical outcome in our study. It seems that angiogenesis is affected by different cytokines other than VEGF-C or VEGF-A, and VEGF is also affected by different cytokines. Taken together, these findings help to provide new insights into the investigation of other angiogenic factors and cytokines that may play roles in the pathogenesis of AML. Conflict of interest:None declared.
Collapse
Affiliation(s)
- Mohammad Reza Aliparasti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Almasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movasaghpoor
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Khalili-Dizaji
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homayoun Sadeghi-Bazargani
- Neuroscience Research Center, Department of Statistics & Epidemiology, School of Health & Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Bertrand J, Liagre B, Ghezali L, Beneytout JL, Leger DY. Cyclooxygenase-2 positively regulates Akt signalling and enhances survival of erythroleukemia cells exposed to anticancer agents. Apoptosis 2013; 18:836-50. [PMID: 23435965 DOI: 10.1007/s10495-013-0825-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase-2 (COX-2) has been found to be highly expressed in many types of cancers and to contribute to tumorigenesis via the inhibition of apoptosis, increased angiogenesis and invasiveness. In hematological malignancies, COX-2 expression was found to correlate with poor patient prognosis. However, the exact role of COX-2 expression in these malignancies, and particularly in erythroleukemias, remains unclear. The aim of this work was to describe and understand the relationships between COX-2 expression and apoptosis rate in erythroleukemia cells after apoptosis induction by several anticancer agents. We used three different erythroleukemia cell lines in which COX-2 expression was modulated by transfection with either COX-2 siRNA or COX-2 cDNA. These cellular models were then treated with apoptosis inducers and apoptosis onset and intensity was followed. Cell signalling was evaluated in unstimulated transfected cells or after apoptosis induction. We found that COX-2 inhibition rendered erythroleukemia cells more sensitive to apoptosis induction and that in cells overexpressing COX-2 apoptosis induction was reduced. We demonstrated that COX-2 inhibition decreased the pro-survival Akt signalling and activated the negative regulator of Akt signalling, phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Conversely, in COX-2 overexpressing cells, Akt signalling was activated and PTEN was inhibited. In these last cells, inhibition of casein kinase 2 or Akt signalling restored sensitivity to apoptotic agents. Our findings highlighted that COX-2 can positively regulate Akt signalling mostly through PTEN inhibition, partly via casein kinase 2 activation, and enhances survival of erythroleukemia cells exposed to anticancer agents.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Arsenic Trioxide
- Arsenicals/pharmacology
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Etoposide/pharmacology
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Oxides/pharmacology
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Staurosporine/pharmacology
Collapse
Affiliation(s)
- Julian Bertrand
- FR 3503 GEIST, EA 1069 Laboratoire de Chimie des Substances Naturelles, GDR CNRS 3049, Faculté de Pharmacie, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | | | | | | | | |
Collapse
|
39
|
Kang JX, Liu A. The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis. Cancer Metastasis Rev 2013; 32:201-10. [PMID: 23090260 DOI: 10.1007/s10555-012-9401-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a necessary step in tumor growth and metastasis. It is well established that the metabolites of omega-6 and omega-3 fatty acids, which must be obtained through the diet and cannot be synthesized de novo in mammals, have differential effects on cellular processes. Omega-6 fatty acid (n-6 FA)-derived metabolites promote angiogenesis by increasing growth factor expression whereas omega-3 fatty acids (n-3 FA) have anti-angiogenic and antitumor properties. However, most studies thus far have failed to account for the role of the n-6 FA/n-3 FA ratio in angiogenesis and instead examined the absolute levels of n-6 and n-3 FA. This review highlights the biochemical interactions between n-6 and n-3 FA and focuses on how the n-6/n-3 FA ratio in tissues modulates tumor angiogenesis. We suggest that future work should consider the n-6/n-3 FA ratio to be a key element in experimental design and analysis. Furthermore, we recommend that clinical interventions should aim to both reduce n-6 metabolites and simultaneously increase n-3 FA intake.
Collapse
|
40
|
Li D, Xie K, Ding G, Li J, Chen K, Li H, Qian J, Jiang C, Fang J. Tumor resistance to anti-VEGF therapy through up-regulation of VEGF-C expression. Cancer Lett 2013; 346:45-52. [PMID: 24333721 DOI: 10.1016/j.canlet.2013.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/14/2013] [Accepted: 12/04/2013] [Indexed: 12/22/2022]
Abstract
Increasing evidence has indicated that prolonged use of anti-VEGF (vascular endothelial growth factor) agents for cancer therapy promotes tumor resistance. To gain insight into the molecular mechanism underlying resistance to anti-VEGF therapy, we developed a mouse Lewis lung carcinoma (LLC) cell line that is resistant to treatment with a potent VEGF inhibitor, VEGF-Trap, through repeated in vivo selection. We compared the transcriptome profiles of resistant and non-resistant tumor cells using RNA-seq analysis. VEGF-C was significantly up-regulated in resistant tumor cells, as determined by quantitative real-time PCR and immunohistochemical analyses. Inhibition of VEGF-C in resistant cells suppressed endothelial cell migration in vitro and partially restored sensitivity to VEGF-Trap treatment in vivo. Our findings indicate that tumors may develop resistance to anti-VEGF therapy by activating the VEGF-C pathway.
Collapse
Affiliation(s)
- Dong Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kun Xie
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guitao Ding
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jie Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaiming Chen
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hongwen Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jie Qian
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianmin Fang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
41
|
Affiliation(s)
- Houda Haouas
- Department of Biological and Chemical EngineeringNational Institute of Applied Sciences and Technology, Tunis, Tunisia
| |
Collapse
|
42
|
Hua KT, Lee WJ, Yang SF, Chen CK, Hsiao M, Ku CC, Wei LH, Kuo ML, Chien MH. Vascular endothelial growth factor-C modulates proliferation and chemoresistance in acute myeloid leukemic cells through an endothelin-1-dependent induction of cyclooxygenase-2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:387-97. [PMID: 24184161 DOI: 10.1016/j.bbamcr.2013.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 01/06/2023]
Abstract
High-level expression of vascular endothelial growth factor (VEGF)-C is associated with chemoresistance and adverse prognosis in acute myeloid leukemia (AML). Our previous study has found that VEGF-C induces cyclooxygenase-2 (COX-2) expression in AML cell lines and significant correlation of VEGF-C and COX-2 in bone marrow specimens. COX-2 has been reported to mediate the proliferation and drug resistance in several solid tumors. Herein, we demonstrated that the VEGF-C-induced proliferation of AML cells is effectively abolished by the depletion or inhibition of COX-2. The expression of endothelin-1 (ET-1) rapidly increased following treatment with VEGF-C. We found that ET-1 was also involved in the VEGF-C-mediated proliferation of AML cells, and that recombinant ET-1 induced COX-2 mRNA and protein expressions in AML cells. Treatment with the endothelin receptor A (ETRA) antagonist, BQ 123, or ET-1 shRNAs inhibited VEGF-C-induced COX-2 expression. Flow cytometry and immunoblotting revealed that VEGF-C induces S phase accumulation through the inhibition of p27 and the upregulation of cyclin E and cyclin-dependent kinase-2 expressions. The cell-cycle-related effects of VEGF-C were reversed by the depletion of COX-2 or ET-1. The depletion of COX-2 or ET-1 also suppressed VEGF-C-induced increases in the bcl-2/bax ratio and chemoresistance against etoposide and cytosine arabinoside in AML cells. We also demonstrated VEGF-C/ET-1/COX-2 axis-mediated chemoresistance in an AML xenograft mouse model. Our findings suggest that VEGF-C induces COX-2-mediated resistance to chemotherapy through the induction of ET-1 expression. Acting as a key regulator in the VEGF-C/COX-2 axis, ET-1 represents a potential target for ameliorating resistance to chemotherapy in AML patients.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Kuan Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Ku
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lin-Hung Wei
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
43
|
Liang P, Jiang B, Lv C, Huang X, Sun L, Zhang P, Huang X. The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:4500-12. [PMID: 23726991 DOI: 10.1016/j.bbagen.2013.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/27/2013] [Accepted: 05/20/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs). METHODS Deep partial thickness burn model in Sprague-Dawley rats and the heat denatured cell model (52°C, 35s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin. RESULTS Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs. CONCLUSIONS The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF. GENERAL SIGNIFICANCE We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Burns and Plastic Surgery, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Engelmann D, Mayoli-Nüssle D, Mayrhofer C, Fürst K, Alla V, Stoll A, Spitschak A, Abshagen K, Vollmar B, Ran S, Pützer BM. E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B. J Mol Cell Biol 2013; 5:391-403. [PMID: 24014887 DOI: 10.1093/jmcb/mjt035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is essential for primary tumor growth and metastatic dissemination. E2F1, frequently upregulated in advanced cancers, was recently shown to drive malignant progression. In an attempt to decipher the molecular events underlying this behavior, we demonstrate that the tumor cell-associated vascular endothelial growth factor-C/receptor-3 (VEGF-C/VEGFR-3) axis is controlled by E2F1. Activation or forced expression of E2F1 in cancer cells leads to the upregulation of VEGFR-3 and its ligand VEGF-C, whereas E2F1 depletion prevents their expression. E2F1-dependent receptor induction is crucial for tumor cells to enhance formation of capillary tubes and neovascularization in mice. We further provide evidence for a positive feedback loop between E2F1 and VEGFR-3 signaling to stimulate pro-angiogenic platelet-derived growth factor B (PDGF-B). E2F1 or VEGFR-3 knockdown results in reduced PDGF-B levels, while the coexpression synergistically upregulates promoter activity and endogenous protein expression of PDGF-B. Our findings delineate an as yet unrecognized function of E2F1 as enhancer of angiogenesis via regulation of VEGF-C/VEGFR-3 signaling in tumors to cooperatively activate PDGF-B expression. Targeting this pathway might be reasonable to complement standard anti-angiogenic treatment of cancers with deregulated E2F1.
Collapse
Affiliation(s)
- David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tsai CH, Chiang YC, Chen HT, Huang PH, Hsu HC, Tang CH. High glucose induces vascular endothelial growth factor production in human synovial fibroblasts through reactive oxygen species generation. Biochim Biophys Acta Gen Subj 2013; 1830:2649-58. [PMID: 23274526 DOI: 10.1016/j.bbagen.2012.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/03/2012] [Accepted: 12/16/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diabetes is an independent risk factor of osteoarthritis (OA). Angiogenesis is essential for the progression of OA. Here, we investigated the intracellular signaling pathways involved in high glucose (HG)-induced vascular endothelial growth factor (VEGF) expression in human synovial fibroblast cells. METHODS HG-mediated VEGF expression was assessed with qPCR and ELISA. The mechanisms of action of HG in different signaling pathways were studied using Western blotting. Knockdown of proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of c-Jun to the VEGF promoter. RESULTS Stimulation of OA synovial fibroblasts (OASF) with HG induced concentration- and time-dependent increases in VEGF expression. Treatment of OASF with HG increased reactive oxygen species (ROS) generation. Pretreatment with NADPH oxidase inhibitor (APO or DPI), ROS scavenger (NAC), PI3K inhibitor (Ly294002 or wortmannin), Akt inhibitor, or AP-1 inhibitor (curcumin or tanshinone IIA) blocked the HG-induced VEGF production. HG also increased PI3K and Akt activation. Treatment of OASF with HG increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the VEGF promoter. CONCLUSIONS Our results suggest that the HG increases VEGF expression in human synovial fibroblasts via the ROS, PI3K, Akt, c-Jun and AP-1 signaling pathway. GENERAL SIGNIFICANCE We link high glucose on VEGF expression in osteoarthritis.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Yao J, Liu X, Yang Q, Zhuang M, Wang F, Chen X, Hang H, Zhang W, Liu Q. Proteomic analysis of the aqueous humor in patients with wet age-related macular degeneration. Proteomics Clin Appl 2013; 7:550-60. [PMID: 23418058 DOI: 10.1002/prca.201200012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE A number of studies have shown that the levels of some proteins in the aqueous humor (AH) are altered and correlate with the mechanisms or prognosis of many eye diseases. To identify the possible mechanisms that lead to the development of wet age-related macular degeneration (AMD), a proteomic analysis of the AH composition from wet AMD patients was performed and compared with that from non-AMD cataract patients. EXPERIMENTAL DESIGN Six wet AMD and six non-AMD cataract patients were enrolled. A proteomic approach which included two-dimensional electrophoresis coupled with MS and bioinformatics methods were used to identify AH proteins with altered expression in wet AMD compared with non-AMD patients. An ELISA was used to validate the proteomic results. RESULTS We separated 78 protein spots and identified 68 that were differently expressed in the wet AMD group and controls. Numerous proteins identified in this study are implicated in inflammation, apoptosis, angiogenesis, and oxidative stress. CONCLUSIONS AND CLINICAL RELEVANCE The AH protein composition was significantly different between wet AMD and non-AMD patients. The proteins identified in this study may be potential biomarkers of wet AMD development and might play a role in the mechanisms of wet AMD.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Ophthalmology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kampen KR, Ter Elst A, de Bont ESJM. Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell Mol Life Sci 2013; 70:1307-17. [PMID: 22833169 PMCID: PMC11113417 DOI: 10.1007/s00018-012-1085-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/19/2012] [Accepted: 07/09/2012] [Indexed: 01/08/2023]
Abstract
This review is designed to provide an overview of the current literature concerning vascular endothelial growth factor signaling (VEGF) in acute myeloid leukemia (AML). Aberrant VEGF signaling operates in the bone marrow of AML patients and is related to a poor prognosis. The altered signaling pathway demonstrated to interfere in several autocrine and paracrine signaling pathways. VEGF signaling promotes autocrine AML blast cell proliferation, survival, and chemotherapy resistance. In addition, VEGF signaling can mediate paracrine vascular endothelial cell-controlled angiogenesis in AML. Both effects presumably explain the association of high VEGF levels and poor therapeutic outcome. More recently, researches focusing on bone marrow stem cell niches demonstrate a role for VEGF signaling in the preservation of several cell types within these niches. The bone marrow niches are proposed to be a protective microenvironment for AML cells that could be responsible for relapses in AML patients. This implies the need of sophisticated VEGF-targeted therapeutics in AML therapy strategies. This review highlights our current understanding of aberrant VEGF signaling in AML, appoints the interference of VEGF signaling in the AML-associated microenvironment, and reflects the novelty of current VEGF-targeted therapeutics used in clinical trails for the treatment of AML.
Collapse
Affiliation(s)
- Kim R Kampen
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | | | | |
Collapse
|
48
|
Chen JC, Chang YW, Hong CC, Yu YH, Su JL. The role of the VEGF-C/VEGFRs axis in tumor progression and therapy. Int J Mol Sci 2012; 14:88-107. [PMID: 23344023 PMCID: PMC3565253 DOI: 10.3390/ijms14010088] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/30/2012] [Accepted: 12/14/2012] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) has been identified as a multifaceted factor participating in the regulation of tumor angiogenesis and lymphangiogenesis. VEGF-C is not only expressed in endothelial cells, but also in tumor cells. VEGF-C signaling is important for progression of various cancer types through both VEGF receptor-2 (VEGFR-2) and VEGF receptor-3 (VEGFR-3). Likewise, both receptors are expressed mainly on endothelial cells, but also expressed in tumor cells. The dimeric VEGF-C undergoes a series of proteolytic cleavage steps that increase the protein binding affinity to VEGFR-3; however, only complete processing, removing both the N- and C-terminal propeptides, yields mature VEGF-C that can bind to VEGFR-2. The processed VEGF-C can bind and activate VEGFR-3 homodimers and VEGFR-2/VEGFR-3 heterodimers to elicit biological responses. High levels of VEGF-C expression and VEGF-C/VEGFRs signaling correlate significantly with poorer prognosis in a variety of malignancies. Therefore, the development of new drugs that selectively target the VEGF-C/VEGFRs axis seems to be an effective means to potentiate anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; E-Mails: (J.-C.C.); (C.-C.H.)
| | - Yi-Wen Chang
- Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 11221, Taiwan; E-Mail:
| | - Chih-Chen Hong
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; E-Mails: (J.-C.C.); (C.-C.H.)
| | - Yang-Hao Yu
- Department of Internal Medicine, Divisions of Pulmonary and Critical Care Medicine, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| | - Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; E-Mails: (J.-C.C.); (C.-C.H.)
- Department of Biotechnology, Asia University, No. 500, Lioufeng Road, Wufeng Shiang, Taichung 41354, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-2121 (ext. 7932); Fax: +886-4-2233-3496
| |
Collapse
|
49
|
Lin YM, Huang YL, Fong YC, Tsai CH, Chou MC, Tang CH. Hepatocyte growth factor increases vascular endothelial growth factor-A production in human synovial fibroblasts through c-Met receptor pathway. PLoS One 2012; 7:e50924. [PMID: 23209838 PMCID: PMC3508989 DOI: 10.1371/journal.pone.0050924] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background Angiogenesis is essential for the progression of osteoarthritis (OA). Hepatocyte growth factor (HGF) is an angiogenic mediator, and it shows elevated levels in regions of OA. However, the relationship between HGF and vascular endothelial growth factor (VEGF-A) in OA synovial fibroblasts (OASFs) is mostly unknown. Methodology/Principal Findings Here we found that stimulation of OASFs with HGF induced concentration- and time-dependent increases in VEGF-A expression. Pretreatment with PI3K inhibitor (Ly294002), Akt inhibitor, or mTORC1 inhibitor (rapamycin) blocked the HGF-induced VEGF-A production. Treatment of cells with HGF also increased PI3K, Akt, and mTORC1 phosphorylation. Furthermore, HGF increased the stability and activity of HIF-1 protein. Moreover, the use of pharmacological inhibitors or genetic inhibition revealed that c-Met, PI3K, Akt, and mTORC1 signaling pathways were potentially required for HGF-induced HIF-1α activation. Conclusions/Significance Taken together, our results provide evidence that HGF enhances VEGF-A expression in OASFs by an HIF-1α-dependent mechanism involving the activation of c-Met/PI3K/Akt and mTORC1 pathways.
Collapse
Affiliation(s)
- Yu-Min Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
50
|
Guzmán-Medrano R, Arreola-Rosales RL, Shibayama M, Silva-Olivares DA, Bologna-Molina R, Rodríguez MA. Tumor-associated macrophages and angiogenesis: a statistical correlation that could reflect a critical relationship in ameloblastoma. Pathol Res Pract 2012; 208:672-6. [PMID: 23041027 DOI: 10.1016/j.prp.2012.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/21/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023]
Abstract
Neoplasm growth is determined not only by the tumor cells themselves, but also by the tumor microenvironment. Increased densities of macrophages and activation of angiogenesis have been identified as common events in the progression of several neoplasms. Ameloblastoma is one of the most frequent odontogenic tumors and an excellent model for the study of neoplasm progression due to the different clinical variants that it exhibits. Here, by immunohistochemical studies using antibodies against CD68 and CD34, we evaluated the density of macrophages and microvessels associated to 45 paraffin-embedded ameloblastomas. In solid/multicystic ameloblastoma (SMA), we observed significantly higher densities of both macrophages and microvessels than in unicystic (UA) and desmoplastic (DA) ameloblastomas. Likewise, higher densities of macrophages and microvessels were found in UA than in DA. Furthermore, a predominance of intratumoral and peritumoral macrophage infiltrates was seen in SMA, while in UA, both macrophages and microvessels were also detected in the wall of the cysts. In contrast, DA had scant macrophages and microvessels, mainly situated distant from tumoral cells. In addition, a high correlation between macrophage and microvessel densities was observed in the samples (r=0.9623). Our results suggest that these two tumor microenvironmental elements could have an important role during ameloblastoma progression.
Collapse
Affiliation(s)
- Rebeca Guzmán-Medrano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, México, D.F., Mexico
| | | | | | | | | | | |
Collapse
|